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Modelling dynamical systems using manifest and latent variables
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Abstract

The behavioral approach provides a mathematical language for the modelling of systems, particularly dynamical
systems. An introduction to behaviors is given, with emphasis to interconnected systems. This is viewed as consisting
of modules, combined with an interconnection architecture. The latter is formalized as a graph with leaves. The
elimination theorem is discussed. This allows to obtain behavioral equations involving only manifest variables,
starting from models that contain also latent variables. Subsequently, the notions of controllability and observability
are cast in this setting. © 2000 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

The purpose of this presentation is to outline the basics of a mathematical language for the modelling,
analysis, and the synthesis of dynamical systems. The framework that we will present considers the
behaviorof a system as the main object of study. This paradigm differs in an essential way from the
input/output paradigm which has dominated the development of the field of systems and control in the
20th century. This paradigm-shift calls for a reconsideration of many of the basic concepts, of the model
classes, of the problem formulations, and of the algorithms in the field.

We will concentrate of a few main themes:
• The basic motivation, in the context of modelling, of the conceptual framework that is used.
• The role of latent variables as they emerge from modelling interconnected systems.
• A discussion of system representations, mainly in the context of systems described by differential

equations.
• The notions of controllability and observability in this new setting.
• The formulation of control questions and issues of implementation and design.
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This article sketches a mathematical framework that allows to discuss systems in interaction with their
environment. However, it is not the purpose to develop mathematical ideas for their own sake. To the
contrary, we will downplay mathematical issues throughout. The main aim is to convince the reader that
the behavioral framework is a cogent systems theoretic setting that properly deals with physical systems
and that approaches modelling as an essential motivation for choosing appropriate concepts.

The behavioral approach is discussed, including the mathematical technicalities, in the recent textbook
[1]. A very early reference that contain some of the (immature) ideas is [2]. The three part paper [3–5]
provides the first detailed presentation of the behavior framework. It has been further elaborated in [6]
and in [7]. This latter reference contains a comprehensive overview. In [8], control is discussed from this
perspective. Finally, we mention the article [9] where many of these results are generalized to partial
differential equations. Informal expositions of the behavioral approach can be found in [10].

2. The behavior

The framework that we use for discussing mathematical models views a model as follows. Assume
that we have a phenomenon (i.e. a set of outcomes) that we try to model. Nature (i.e. the reality that
governs this phenomenon) can produce certain outcomes. The totality of these possible outcomes (before
we have modeled the phenomenon) forms a setU, called theuniversum. A mathematical modelrestricts
the outcomes that a model declares possible to a subsetB of U; B is called thebehaviorof the model.
We often refer to(U,B) as a mathematical model.

In the study of dynamical systems we are, more specifically, interested in situations where the outcomes
of the phenomena are signals, i.e. maps with independent variables (time, or space, or time and space)
and dependent variables (the space where the signals take on their values). In this case the universum is
therefore the space of all maps from the set of independent variables to the set of dependent variables. It
is hence convenient to distinguish these sets explicitly in the notation:T (suggesting ‘time’) for the set of
independent, andW for the set of dependent variables. Whence we define adynamical systemas a triple
Σ = (W,T,B) with B, the behavior, a subset ofWT, (WT is the standard mathematical notation for the
set of all maps fromT toW).

We give a couple of examples. In the first and thirdT is time only, while in the second example,
Maxwell’s equations,T involves time and space.
1. Newton’s second lawimposes a restriction that relates the positionEq of a point mass and the force

EF acting on it. This relation isEF = md2/dt2Eq, with m the mass. This is a dynamical system with
T = R,W = R3 × R3 (typical elements ofB are,w = (Eq, EF): R → R

3 × R3) and behaviorB
consisting of all mapst ∈ R 7→ (Eq, EF)(t) ∈ R3 ×R3 that satisfyEF = md2/dt2Eq. We will not specify
the precise sense of what it means that a function satisfies a differential equation.

2. Maxwell’s equationsprovide a typical example of a distributed dynamical system with many indepen-
dent variables. They describe the possible realizations of the fieldsEE: R× R3 → R

3, EB: R× R3 →
R

3, Ej : R× R3 → R
3, andρ: R× R3 → R. Maxwell’s equations are

∇ · EF = 1

ε0
ρ,

∇ × EF = − ∂

∂t
EB,
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∇ · EB = 0,

c2∇ × EB = 1

ε0

Ej + ∂

∂t
EF,

with ε0 the dielectric constant of the medium andc2 the speed of light in the medium. This defines
the system(R × R3,R3 × R3 × R3 × R,B), with B the set of all fields( EF, EB, Ej, ρ): R × R3 →
R

3 × R3 × R3 × R that satisfy Maxwell’s equations.
3. Kepler’s lawsdescribe the possible motions of the planets in the solar system. This defines a dynamical

system withT = R,W = R3, andB the set of mapsw: R→ R
3 that satisfy Kepler’s laws: the paths

w must be ellipses inR3 with the sun (assumed in fixed position, say the origin ofR3) in one of the
foci; the radius vector from the sun to the planet must sweep out equal areas in equal time, and the
ratio of the period of revolution around the ellipse to the major axis must be the same for allw’s in B.

These examples fit perfectly our notion of a dynamical system as a tripleΣ = (T,W,B) withB ⊆WT.
Of course, the first two examples could be thought of as input/output systems. This already requires some
goodwill in the case of Newton’s second law in order to avoid a debate of causality in mechanics. But it is
inappropriate to force Maxwell’s equations (where there are also free variables in the system: the number
of equations, eight, being strictly less than the number of variables, 10) into an input/output setting.

First principles laws in physics always state that some outcomes can happen (those satisfying the model
equations) while others cannot happen (those violating the model equations). This is a far distance from
specifying a system as being driven by free inputs which together with an initial state (whatever that is
meant to be) specifies the other variables, the outputs. The behavioral framework treats a model for what
it is: an exclusion law.

3. Interconnections and latent variables

Systems, especially engineering systems, usually consist of interconnections of subsystems. This fea-
ture is crucial in both modelling and design. The aim of this section is to formalize interconnections and
to analyze the model structures that emerge from it. We assume throughout finiteness, i.e. we assume that
we interconnect a finite number of systems, each with a finite number of terminals, etc.

The building blocks of an interconnected system aresystems with terminals. Each of these terminals
carries variables from a universum, and the laws that governs the system are expressed by a behavior that
relates these variables. Formally, a system § withT terminals has a behaviorB ⊂ U = U1×U2×· · ·×UT .
If (u1, u2, . . . , uT ) ∈ B, then we think ofuk ∈ Uk as the variables realized at thekth terminal.

As an example, consider an electrical component. We view this as an device that can interact with
its environment through wires. These wires are the terminals. With each terminal we associate two real
variables, the potentialV and the currentI (agreed to be positive when electrical current flows into the
device). The laws of the device specify the behavior which will thus be a subsetB of the universum
R

2 × R2 × · · · × R2 = (R2)T , whereT denotes the number of terminal wires. Usually, the behaviorB
will have to satisfy certain restrictions in order for it to qualify as the behavior of an electrical device.
For example,Kirchhoff’s current lawandKirchhoff’s voltage law. These can be expressed as stating that
((V1, I1), . . . , (VT , IT )) ∈ Bmust implyI1 + I2 +· · ·+ IT = 0 and((V1 +α, I1), . . . , (VT +α, IT )) ∈ B
for all α ∈ R. There may be other requirements, as passivity, etc. but these will not concern us here.
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For a thermal terminal, the terminal variables are the heat flow and the temperature. For a mechanical
system, the terminal variables are position, and attitude, force and momentum (but it is much more
involved to formalize interconnection in this case).

An interconnected system is specified by these subsystems, its building blocks, and by an interconnec-
tion architectures. The notion of agraph with leavesappears to be the appropriate concept for formalizing
an interconnection architecture.

A graph with leavesis defined by three (disjoint) sets(N,E,L), and two maps(e, `);e: E→ Ñ
2, (Ñ2

denotes the set of unordered pairs{n′, n′′} with n′, n′′ ∈ N) and`: L→ N. The set ofN consists of the
nodes, E of theedges, L of the leaves; if e(α) = {n′, n′′}, then the edgeα connectsthe nodesn′ andn′′;
if `(β) = n, then the leaveβ is attachedto the noden.

In associating a graph with leaves with an interconnection architecture, the nodes correspond to subsys-
tems with terminals. These are the building blocks that are being connected. Edges that are connected to
specific node and leaves that are attached to it, correspond to the terminals of the subsystem in that node.
An edge signifies that the corresponding terminal of one subsystem is connected to the corresponding
terminal of another (or in the case of a loop, that two terminals of the same system are connected). The
leaves signify that the attached terminal is not connected and that it therefore serves as a terminal for the
interconnected system.

It is assumed that by interconnecting two terminals by means of an edge, one imposes a restriction on
the variables associated with these terminals. For example, if terminalt1 with variablesut1 is connected
by an edge with terminalt2 with variablesut2, we assume that a restriction is imposed on the pair(ut1, ut2).
For instance, ift1 andt2 are both electrical terminals, this restriction isVt1 = Vt2, It1 + It2 = 0. If they
are thermal terminals, this restriction isqt1 + qt2 = 0 (the heat flows are opposite) andTt1 = Tt2 (the
temperatures are equal). Similar, but more complex, interconnection constraints can be formulated for
mechanical connections, etc.

In an interconnection architecture there will usually also be the constraint that edges can only connect
terminals that are of the same type (both electrical, both thermal, both mechanical, etc.). Also, a typical
system that serves as a building block will have terminals of different type (a motor has electrical and
mechanical terminals). However, we do not pursue these ideas here.

The behavior defined by an interconnected system is specified as follows. Its universum equalsU =
U`1 × · · · × U`L

, whereL = (`1, . . . , `L) is the set of leaves. The behavior is specified by the behavior
of system in the nodes and by the edges. The variables on the terminals connected to a node and the
leaves attached to it, must satisfy the laws of the subsystem associated with that node. The variables on
the terminals of an edge must satisfy also the interconnection law resulting from the connection.

The resulting behaviorB ⊂ U`1×· · ·×U`L
of the interconnected system is therefore specified in terms of

the behaviorsBn1, . . . ,BnN
of the system in the nodes, and the interconnection constraints. The important

thing is that the specification ofB involves not only the variables on the leaves, but also those on the edges.
This presence of auxiliary variables in a model is basically an invariant of a first principles modelling

procedure: in such a model there will essentially always be auxiliary variables involved in order to
specify the laws of the system. It is therefore important to incorporate these auxiliary variablesab initio
in a modelling framework. This leads to the notion of a model withmanifestvariables (the variables that a
model aims at) andlatentvariables (variables that have been introduced in the modelling process). Hence,
a mathematical model with latent variablesis defined as a triple(U,L,Bfull ) with U the universum of
manifest variables,L the universum of latent variables, andBfull ⊆ U × L the full behavior. It induces
themanifest systems(U,B), with B = {u ∈ U|∃` ∈ L such that(u, `) ∈ Bfull }.
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A dynamical system with latent variablesis defined completely analogously as(T,W,L,Bfull ) with
Bfull ⊆ (W × L)T . The notion of a dynamical system with latent variables is the natural end-point of a
modelling process and hence a very natural starting point for the analysis and synthesis of systems. We
shall see that latent variables also enter very forcefully in representation questions.

Interconnected systems provide the prime example of the usefulness of behaviors and the inadequacy
of input/output thinking. Even if our system, after interconnection, allows for a natural input/output
representation, this is unlikely be the case of the subsystem and of the interconnection architecture. If
the field of systems and control wants to take modelling seriously, is should retrace thefaux pasof
input/output thinking and cast models in the language of behaviors.

4. Differential systems

The ‘ideology’ that underlies the behavioral approach is the belief that in a model of a dynamical
(physical) phenomenon, it is the behaviorB, i.e. a set of trajectoriesw: T→W, that is the central object
of study. However, as we have seen, in first principles modelling, also latent variables enterab initio. But,
the setB orBfull of trajectories must be specified somehow, and it is here that differential (and difference)
equations enter the scene. Of course, there are important examples where the behavior is specified in
other ways (for example, in Kepler’s laws for planetary motion), but differential equations are certainly
the most prevalent specification of behaviors encountered in applications. ForT = R, and in the case
without latent variables,B then consists of the solutions of a system of differential equations as

f1

(
w,

d

dt
w, . . . ,

dN

dtN
w

)
= f2

(
w,

d

dt
w, . . . ,

dN

dtN
w

)
.

We call these itdifferential systems. In the case of systems with latent variables these differential equation
involves both manifest and latent variables. ForT = Rn, this leads to partial differential equations.

Of particular interest (at least in control, signal processing, circuit theory, etc.) are systems with a signal
space that is a finite-dimensional vector space and behavior described by linear constant–coefficient dif-
ferential equations. A1-D linear time-invariant differential systemis a dynamical systemΣ = (R,W,B),
withW a finite-dimensional (real) vector space, whose behavior consists of the solutions of

R

(
d

dt

)
w = 0,

with R ∈ R•×•[ξ ], a real polynomial matrix. We call this akernel representationof the associated
linear time-invariant differential system. Of course, the number of columns ofR equals the dimension
of W. The number of rows ofR, which represents the number of equations, is arbitrary. In fact, when
the row dimension ofR is less than its column dimension, as is usually the case,R(d/dg)w = 0 is an
under-determined system of differential equations which is typical for models in which the influence of the
environment is taken into account. The precise definition of what we consider a solution ofR(d/dt)w = 0
is an issue that we will slide over.

The analogue for systems with latent variables, leads to

f1

(
w,

d

dt
w, . . . ,

dN

dtN
w, `,

d

dt
`, . . . ,

dN

dtN
`

)
= f2

(
w,

d

dt
w, . . . ,

dN

dtN
w, `,

d

dt
`, . . . ,

dN

dtN
`

)
,
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relating the (vector of) manifest variablesw to the (vector of) latent variables̀. In the linear time-invariant
case this becomes

R

(
d

dt

)
w = M

(
d

dt

)
`,

with R andM polynomial. Define themanifestbehavior of this system as{
w|∃` such thatR

(
d

dt

)
w = M

(
d

dt

)
`

}
.

We call the above differential equation involving` alatent variablerepresentation of the manifest behavior
B. The question occurs whetherB can be described by a linear constant coefficient differential equation.
This is the case indeed.

Theorem 1. For any real polynomial matrices(R, M) with rowdim(R) = rowdim(M), there exists a
real polynomial matrixR′ such that the manifest behavior ofR(d/dt)w = M(d/dt)` has the kernel
representationR′(d/dt)w = 0.

The above theorem is called theelimination theorem. Its relevance in object-oriented modelling is as fol-
lows. As we have seen for the simple electrical circuit discussed in the previous section, a model obtained
this way usually involves very many variables and equations, among them many algebraic ones. The elim-
ination theorem tells us that the latent variables may be eliminated, and (in the case of linear time-invariant
differential systems) that the number of equations can be reduced to no more than the number of manifest
variables. Of course, the order of the differential equation goes up in the elimination process.

5. Controllability

An important property in the analysis and synthesis of dynamical systems is controllability. Control-
lability refers to be ability of transferring a system from one mode of operation to another. By viewing
the first mode of operation as undesired and the second one as desirable, the relevance to control and
other areas of applications becomes clear. The concept of controllability has originally been introduced
in the context of state space systems. The classical definition runs as follows. The system described by
the controlled vector-field(d/dt)x = f (x, u) is said to be controllable if∀a, b, , ∃u andT ≥ 0 such
that the solution to(d/dt)x = f (x, u) andx(0) = a yieldsx(T ) = b. One of the elementary results of
system theory states that the finite-dimensional linear system(d/dt)x = Ax+ Bu is controllable if and
only if the matrix [B AB A2B · · · Adim(x)−1B] has full row rank. Various generalizations of this result to
time-varying, to nonlinear (involving Lie brackets), and to infinite-dimensional systems exist.

A disadvantage of the notion of controllability as formulated above is that it refers to a particular
representation of a system, notably a state space representation. Thus a system may be uncontrollable
either for the intrinsic reason that the control has insufficient influence on the system variables, or because
the state has been chosen in an inefficient way. It is clearly not desirable to confuse these reasons. In
the context of behavioral systems, a definition of controllability has been put forward that involves the
system variables directly.

Let Σ = (T,W,B) be a dynamical system withT = R or Z, and assume that is time-invariant, that
is σ tB = B for all t ∈ T, whereσ t denotes thet-shift (defined by(σ tf )(t ′) = f (t ′ + t)); Σ is said to
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becontrollableif for all w1, w2 ∈ B there existsT ∈ T, T ≥ 0 andw ∈ B such thatw(t) = w1(t) for
t < 0 andw(t) = w2(t − T ) for t ≥ T . Thus controllability refers to the ability to switch from any one
trajectory in the behavior to any other one, allowing some time-delay.

Two questions that occur are the following: what conditions on the parameters of a system representation
imply controllability? Do controllable systems admit a particular representation in which controllability
becomes apparent? For linear time-invariant differential systems, these questions are answered in the
following theorem.

Theorem 2. Let Σ = (R,Rw,B) be a linear time-invariant differential system. The following are
equivalent:
1. Σ is controllable;
2. The polynomial matrixR in a kernel representationR(d/dt)w = 0 of B satisfies rank

(R(λ)) = rank(R) for all λ ∈ C;
3. The behaviorB is the image of a linear constant–coefficient differential operator, that is, there exists

a polynomial matrixM ∈ Rw×•[ξ ] such thatB = {w|w = M(d/dt)` for somè }.
There exist various algorithms for verifying controllability of a system starting from the coefficients of

the polynomial matrixR in a kernel (or a latent variable) representation ofΣ , but we will not enter into
these algorithmic aspects.

A point of the above theorem that is worth emphasizing is that, as stated in the above theorem, control-
lable systems admit a representation as the manifest behavior of the latent variable system of the special
form

w = M

(
d

dt

)
`.

We call this animagerepresentation. It follows from the elimination theorem that every system in image
representation can be brought in kernel representation. But not every system in kernel representation can
be brought in image representation: it is precisely the controllable ones for which this is possible.

The controllability issue has been pursued for many other classes of systems. In particular (more difficult
to prove) generalizations have been derived for differential-delay [12,14], for nonlinear, forn-D systems
[11,13], and, as we will discuss soon, for PDE’s. Systems in an image representation have received much
attention recently for nonlinear differential–algebraic systems, where they are referred to asflat systems
[15]. Flatness implies controllability, but the exact relation remains to be studied.

The controllability issue has been pursued for many other classes of systems. In particular (more
difficult to prove) generalizations have been derived for differential-delay, nonlinear, andn-D systems,
and, as we will discuss soon, for PDE’s. Systems in an image representation have received much attention
recently for nonlinear differential–algebraic systems, where they are referred to asflat systems. Flatness
implies controllability, but the exact relation remains to be studied.

6. Observability

The notion of observability is always introduced hand in hand with controllability. In the context of
the input/state/output system(d/dt)x = f (x, u), y = h(x, u), it refers to the possibility of deducing,
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using the laws of the system, the state from observation of the input and the output. The definition that
is used in the behavioral context is more general in that the variables that are observed and the variables
that need to be deduced are kept general.

Let Σ = (T,W,B) be a dynamical system, and assume thatW is a product space:W = W1 ×W2.
Thenw1 is said to beobservablefrom w2 in Σ if (w1, w

′
2) ∈ B and(w1, w

′′
2) ∈ B imply w′

2 = w′′
2.

Observability thus refers to the possibility of deducing the trajectoryw1 from observation ofw2 and from
the laws of the system (B is assumed to be known).

The theory of observability runs parallel to that of controllability. We mention only the result that for
linear time-invariant differential systems,w1 is observable fromw2 if and only if there exists a set of
differential equations satisfied by the behavior of the system of the following form that puts observability
into evidence:w1 = R′

2(d/dt)w2.

7. Distributed systems

We now explain the generalization of some of the above concepts and results to constant–coefficient
PDE’s. Define adistributed differential systemas ann-D systemΣ = (Rn,Rw,B), with behaviorB
consisting of the solution set of a system of partial differential equations:

R

(
∂

∂x1
, . . . ,

∂

∂xn

)
w = 0,

viewed as an equation in the functions

(x1, . . . , xn) = x ∈ Rn 7→ (w1(x), . . . , ww(x)) = w(x) ∈ Rw.

Here,R ∈ R•×w[ξ1, . . . , ξn] is a matrix of polynomials inR[ξ1, . . . , ξn]. Important properties of these
systems are theirlinearity (meaning thatB is a linear subspace of(Rw)R

n

), andshift-invariance(meaning
σxB = B for all x ∈ Rn, whereσx denotes thex-shift, defined by(σ xf )(x ′) = f (x ′ + x)). We call the
above PDE akernel representationof thisn-D system.

For distributed differential systems with latent variables, this leads to equations of the form

R

(
∂

∂x1
, . . . ,

∂

∂xn

)
w = M

(
∂

∂x1
, . . . ,

∂

∂xn

)
`,

with R andM matrices of polynomials inR[ξ1, . . . , ξn]. This equation relates the (vector of) manifest
variablesw to the (vector of) latent variables̀. Define thefull behaviorof this system as

Bfull = {(w, `)| the PDEin(w, `) holds}
and themanifest behavioras

B = {w| ∃` such that(w, `) ∈ Bfull }
We call the PDE with latent variables alatent variablerepresentation ofB. The question again occurs
whetherB can itself be described by a set of PDE’s. This is the case indeed.
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Theorem 3. For any pair of real matrices of polynomials(R, M) inR[ξ1, ξ2, . . . , ξn] with rowdim(R) =
rowdim(M), there exists a real matrix of polynomialsR′ in R[ξ1, ξ2, . . . , ξn] such that the manifest
behavior ofB has kernel representationR′(∂/∂x1, . . . , ∂/∂xn)w = 0.

As an illustration of the elimination theorem, consider the elimination ofEB andρ from Maxwell’s
equations. The following equations describe the possible realizations of the fieldsEF and Ej :

ε0
∂

∂t
∇ · EF + ∇ · Ej = 0, ε0

∂2

∂t2
EF + ε0c

2∇ × ∇ × EF + ∂

∂t
Ej = 0.

Note that it follows from the elimination theorem that the manifest behavior of a system in image
representation, i.e. a latent variable system of the special form

w = M

(
∂

∂x1
, . . . ,

∂

∂xn

)
` (1)

can be described as the solution set of a system of constant coefficient PDE’s. Whence, every image
of a constant coefficient linear partial differential operator is the kernel of a constant coefficient linear
partial differential operator. However, not every kernel of a constant coefficient linear partial differential
operator is the image of a constant coefficient linear partial differential operator. The following theorem,
obtained in [9], shows that it are precisely the controllable systems that admit an image representation.

Theorem 4. The following statements are equivalent for systems described by constant coefficient linear
PDE’s:
1. B defines a controllable system,
2. B admits an image representation,
3. The trajectories of compact support are dense inB.

It can be shown that Maxwell’s equations define a controllable distributed differential system. Note
that an image representation corresponds to what in mathematical physics is called apotential function
with ` the potential andM(∂/∂x1, . . . , ∂/∂xn), the partial differential operator that generates elements
of the behavior from the potential. An interesting aspect of the above theorem therefore is the fact that
it identifies the existence of a potential function with the system theoretic property of controllability and
concatenability of trajectories in the behavior. In the case of Maxwell’s equations, an image representation
is given by

EF = − ∂

∂t
EA − ∇φ,

EB = ∇ × EA,

Ej = ε0
∂2

∂t2
EA − ε0c

2∇2 EA,

ρ = ε0

c2

∂2

∂t2
φ − ε0∇2φ,

whereφ:R×R3 → R is a scalar, andEA:R×R3 → R
3 a vector potential. Note that Maxwell’s equations

consist of eight equations in 10 variables. It turns out that the number of free variables is three. In the
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above image representation there are four free latent variables. This can actually be reduced to three, say
by putting one component ofEA to zero. A more elegant way of reducing the freedom in the latent variables
is by imposing agauge, for example, restrictingEA andφ to satisfyc2∇ · EA + ∂/∂tφ = 0. Imposing this
gauge retains the symmetry, but the resulting set of equations yields a latent variable representation of
the behavior, not an image representation.

For distributed differential systems,w1 is observable fromw2 if and only if there exists a set of annihi-
lators of the behavior of the following form that puts observability into evidence:w1 = R′

2(∂/∂x1, . . . , ∂/

∂xn)w2, with R′
2 ∈ Rdim(w1)×dim(w2)[ξ1, . . . , ξn]. We call a latent variable representation of the manifest

behaviorobservableif ` is observable fromw in its full behavior. We call itweakly observable, if to every
w ∈ B of compact support, there corresponds a unique` that is also of compact support.

For 1-D systems it is easy to show that every controllable linear time-invariant differential behav-
ior B admits an observable image representation. This, however, does not hold forn-D systems, and
hence the representation of controllable systems in image representation (i.e. with potential functions)
may require the introduction of latent variables that are ‘hidden’, in the sense thatM(∂/∂x1, . . . , ∂/

∂xn)` = 0 has solutions̀ 6= 0. This means that however one represents a controllable behaviorB
of a PDE asw = M(∂/∂x1, . . . , ∂/∂xn)`, there may not exist anN ∈ Rw×•[ξ1, . . . , ξn] such that
w = M(∂/∂x1, . . . , ∂/∂xn)` implies ` = N(∂/∂x1, . . . , ∂/∂xn)w. The latent variables do not be re-
coverable from the manifest ones by a ‘local’ differential operator. However, locally observable image
representations always exist.

For example, the image representation of the behavior defined by Maxwell’s equations in terms of
the vector potentialEA field and the scalar potentialφ, is not observable (neither is the latent variable
representation obtained after imposing the gauge, but then the resulting latent variable representation is
weakly observable). In fact, Maxwell’s equations are an example of a controllable system that does not
allow an observable image representation.

8. Conclusions

In this paper, we have covered some highlights of the behavioral approach to systems and control. We
view a mathematical model as a subset of an universum. However, in engineering applications, models
are invariably obtained by interconnecting subsystems. This leads to the presence in mathematical models
of manifest variables (the variables whose behavior the model aims at) and latent variables (the auxiliary
variables introduced in the modelling process). Thus the central object in systems theory is a dynamical
system with latent variables.

Various problems occur in this framework. For example, the elimination problem: obtaining differential
equations for the manifest behavior that contain only the manifest variables. Further, the state space repre-
sentation problem: obtaining a special latent variable representation in which the latent variables capture
the memory of a system. There are many other representation questions, related to image representations,
to input/output representations, etc.

In the behavioral framework, the concept of controllability becomes an intrinsic systems property re-
lated to concatenability of system trajectories. In the context of latent variable systems, observability
refers to the possibility of deducing the latent variables in a system from observation of the mani-
fest variables. In this way, these important concepts are extended far beyond the classical state space
setting.
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We view control as the design of a subsystem in an interconnected system, a subsystem that interacts
with the plant through certain pre-specified variables, the control variables. For a linear time-invariant
differential plant, it is possible to prove that a behavior is implementable by a linear time-invariant
controller if and only if its behavior is wedged in between the hidden behavior and the realizable plant
behavior.

The pre-occupation of systems and control with input/output systems does not do proper justice to the
nature of physical systems: most physical systems are simply not a signal processors. Notwithstanding
the importance of signal processors, the universal view of a system as an input/output device is simply a
faux pas. And an unneccesary one at that: the behavioral approach offers a viable alternative.
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