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H.,, Control in a Behavioral Context:
The Full Information Case

H. L. Trentelman,Senior Member, IEEEand Jan C. WillemskFellow, IEEE

Abstract—in this paper the authors formulate the H..-control ~ system” (i.e., the system consisting of those variables that
problem in a behavioral setting. Given a mathematical model, are compatible with both set of equations) satisfies the given
say a set of higher order differential equations together with control specifications

some static equations, the vector of manifest variables (i.e., the Thi . £ Vi L .. LS
variables to be modeled) is partitioned into yet to be controlled IS point of view Is, In our opinion, very natural. Suppose
variables, unknown exogenous variables (called disturbances), we have a mathematical model obtained from first principles
and interconnection variables. The interconnection variables are modeling, say a set of higher order differential equations,
available for interconnection, in the sense that they can be made together with some static equations. The collection of all
to obey certain differential or static equations, to be specified by . . . e . .
the designer. Such a system of differential equations and static (vector-valued) t!me trajectories S.atlsfylng the.se eqqat|0n§ IS
equations is called a controller. The design problem that we called the behav!or. In ge:neral, th_ls vector of time trajectories
consider is to find controllers such that (in the£,-sense) the size (called the manifest variable) will consist of several types
of the to be controlled variables is less than a given tolerance, for of components. Typically, certain components are variables
_aII disturbances in the ur_nt ball, and such that the_lnterconr]gctlon that we want to keep small, as certain components represent
is a stable system. We find necessary and sufficient conditions for K iabl d oth
the existence of suitable controllers, under the hypothesis that YN .nown exogenous' vanal es, an . other ComPO”e_”tS are
we have a full information problem. These conditions involve Variables that are still available for interconnection, in the
indefinite factorizations of polynomial matrices and a test on a sense that we can make them obey certain differential or static
given Pick matrix. equations, to be specified by the control design. In the classical
Index Terms—Behaviors, dissipativity, H.. control, linear sys- control framework one proceeds as follows. The mathematical
tems, Pick matrices, quadratic differential forms, spectral factor- model is put into some standard form, for example expressing
ization, storage functions. the laws that are satisfied by the various variables in terms of a
standard transfer matrix model or a standard state-space model.
|. INTRODUCTION Inherent in this procedure is that the manifest variable is split
p into input components and output components: some are

RESENT day control theory is centered around the prop? led exoaen nout me 1o b ntrolled output m
lem of designing feedback loops around a given plant su €led exogenous Inputs, some 1o be controfied outputs, some
ntrol inputs, and some measured outputs. Next, one does a

that in the closed-loop system certain design specificatio%% ' ) i :
are satisfied. The plant under consideration typically hggntroller deS|gr1. .In the classical frameyvork, this results na
control inputs, exogenous inputs, measured outputs, angc@troller description in the form of an mput—output relatlon_
be controlled outputs. The controller to be designed takes thgiWeen the measured outputs and the control inputs. As in
measured outputs of the system as its inputs, and genera@@) N this paper we propose a more general way of looking at
on the basis of these inputs, control inputs for the plant. TheSntroller design. Instead of putting the original mathematical
controllers should be designed in such a way that the resultifitpde! into some standard form while specifying inputs and
closed-loop system meets the specifications. The above gen@Fputs, we prefer to leave the model as it is and not bother
scheme of approaching control design problems has pehput the question WhI.Ch varlablgs should be called inputs or
called the intelligent control paradignfsee [22]). outputs. Instead, we simply specify some of the components
It is our conviction that in many cases it is more naturdf the manifest variable to bimterconnection variablesi.e.,
to view controller design as the problem of designing fofariables that we can make to satisfy certain equations. Then,
a given plant an additional set of “laws” that the varidepending on what properties one wants the controlled system
ables appearing in the system should obey. More specificaflg, satisfy, we do a controller design. This controller design
if a plant is modeled as a set of “behavioral equationsi8 Now the determination of a set of additional equations
then, from our point of view, the controller design questiofivolving the interconnection variables.
is to invent an additional set of equations—the controller In this paper, we reformulate and study t#&,-control
equations—involving the variables appearing in the systefroblem from this vantage point. Starting from the dynamical
These additional equations should be such that the “controll@@del, some components of the manifest variable are assumed
to be free, in the sense that they are not constrained by
Manuscript received October 14, 1996; revised September 30, 1997 4h€ model. Hence, such a component can in principle be
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deviation from some desired time trajectory). These are called L
to be controlled variables. A third group of components are 1 B, —c
the interconnection variables (some of them are also free L~

of course) as explained above. The control problem that
we consider in this paper is to design a set of additional
dynamic constraints on the interconnection variables (differ-
ential equations involving these variables) such that, roughly
speaking, the to be controlled variables are “small” whateveyg. 1. interconnection oB; and Bo.
the disturbance that occurs. We want to stress that this point

of view generalizes the “classical” approach #,,. In that

context, for the interconnection variabteone would take the
composite vectofu,y) with « the control inputs and the
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R to X for which [ ||f(#)||? dt is finite. We denote
£z == (/=2 IF (D)7 dt)*/2. The space>(R, X) consists

measured outputs. As also in some of the clasgitaltheory, as usual of all infinitely often differentiable functions from

one feature of our theory is then that the dynamic constrairlﬁsto X, and D(R, X) denotes the elements ¢ (R,.X)

on (u,y) need not be described by a proper transfer matrixW'th compagt sm_,lpport. I is a 'H'ermltlan matrix, 1.e., a
uare matrix with complex coefficients such thdt = A,

This paper is concerned with a detailed formulation of th’;‘

problem and with a complete resolution of the full informatio en]\v/v[e definj\/[e its sij?/[naturi as thej\cé;rd(jered tr@:(M) :b
version of theH., problem. As other research in this area”’— (M), no(M),n4(M)), wheren_ (M) denotes the number

we mention the work of d’Andrea [3], [4], where a Sim”ar(counting multiplicities) of negative eigenvaluesif, no(M)

problem formulation is considered from a state space point%}e mu_lt_lpI|C|ty ofthe eigenvalue Z€ro, amd,(M) the number
view. o] .posmve e!genvalues' ofV1. If G.IS a .matnx of proper

This paper is organized as follows. In addition to the mafr‘?‘t'onal funptlons, then |tsLoo-r_10rm IS dt_aflned oY| Gl =
text, the paper contains an Appendix containing most of tﬁkf‘pweﬂ |GGw)]|. If G has all its poles in the open left half
proofs. In Section Il of this paper we formulate the suboptim the complex plane, thefiGi{|o = supge(x)zo [IG(A)], the
and optimal H..-control problem in a representation-free, eo-nOMM of G.
behavioral context. We define the notions of (stricth)
contracting controller and stabilizing controller. In Section III, Il. Hoo CONTROL IN A BEHAVIORAL SETTING
we discuss some material on the class of linear differentialin this section we first briefly recall our view of control in
systems, the class of systems that we will restrict ourselvig® context of the behavioral approach to dynamical systems.
to in this paper. In this paper, we heavily use two-variable dynamical system is a tripley = (7, W, B) with T C R
polynomial matrices and quadratic differential forms (QDF’s}the time axis W a set called theignal spaceand B3 ¢ W7
These notions are briefly discussed in Section IV. For the behavior The behavior consists of a family of admissible
more extensive treatment, we refer to [23]. In Sections Minctionsw: T — W. The variablew is called themanifest
and VI, we study theH.-control problem for the class of variableof the system. Sinc& andW are often apparent from
linear differential systems. We also explain what is meant hie context (in the present pap&r= R and W = RW), we
a full information control problem. In Section VII we giveidentify the systent. = (T, W, B) simply with its behavioi3.
conditions for a controller to be (strictlyy-contracting and Let ¥, = (7, W; x C,B1) andXs = (T, W x C, B) be two
stabilizing. Before we formulate and prove the main resulty/namical systems with the same time axis. We assume that
of this paper, in Section VIII, we discuss dissipative systemihe signal spaces &f; and¥, are Cartesian products, with the
Finally, in Sections IX and X we give a solution of the fullfactor C in common. Correspondingly, trajectories Bf are
information suboptimalid,-control problem. denoted by(w, ¢) and trajectories 0B, by (w2, ¢). We define

A Few Words on Notationin this paper, integers that re-the interconnectionof £; and X, as the dynamical system
fer to dimensions of linear spaces and/or sizes of matricEs A ¥, := (T, W1 x Wy, B), with B = {(wy,ws): T —
are always denoted in typewriter type style. For exampl&/; x W,| there exists: such that(w,,c) € By and(wy,¢) €
RW denotes the linear space of real column vectors with Bz}. The interconnection takes place via the variableshich
componentsRP>*d (cP>Y) s the space of real (complex)is called theinterconnection variableOften, we denote the
p X q matrices,/z denotes the identity matrix of sizex z, interconnected system b§; A B,. This interconnection is
etc. We also use the following convention: vectaersd, =, ¢, illustrated in Fig. 1.
and x are always elements d&%, Rd, RZ, Rl , and RX, In this context, a control problem is formulated as follows.
respectively. Given two column vectors and y, the col- Assume that thelant a dynamical systenx, = (7, W, x
umn vector obtained by stacking over y is denoted by C,B,)is given. The signal spad& of the plant is given as the
col(z,y). Likewise, for given matricesl and B with the same Cartesian produd®,, x C, where the second factaof;, denotes
number of columnscol(A4, B) denotes the matrix obtainedthe space in whicl, the interconnection variable, takes its
by stackingA over B. For a given complex matriY we values.C is calledthe interconnection spacaf X,,. Consider
denote byM* the conjugate transpose @ff. The complex now a family A of dynamical systems, all with common
conjugate of the complex number is denoted by). For time axisZ7 and with common signal spadg. An element
a given finite-dimensional Euclidean spadg we denote 3. = (7,C, B.) of A is called anadmissible controllerThe
by £+(R,X) the space of all measurable functiofisfrom interconnected systed,, A %. is called thecontrolled system
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— L such that(z,d,c¢) € B,}. Now, in the controlled system,
w,— B, —c— B, d is of course still interpreted as an unknown externally
= — imposed disturbance. Hence, agany d should be possible

as the second component of the manifest varigblel) of
EE E— the controlled system. If this requirement holds, then we call
w, == B, —— B the controlleradmissible .. is admissible if in the controlled
i - systemX, A X. the variabled is free.

In the controlled system we want the signato be small,
regardless of the disturbandethat occurs. This specification
can of course be formalized in many ways, and in this paper
= — — we consider théd ., performance. We assume thatthe time

B, c - Be axis, is equal td&® and that the signal spacés D, andC are
— finite-dimensional Euclidean spaces. The size of the signals
andd is measured by theif,-norms||z||2 and||d||2.

Definition 2.1: Let B, be an admissible controller. The
H-performance of the controlled systefp A 3. is defined
as

Fig. 3. Bj, controlled byB.. J(BC) — inf{’y > 0| HZHQ < ’VHdH? for all
(z,d) €(B, A B.) N L2(R,Z x D)}

The control problem for the plarX, is now to specify the
set A of admissible controllers, to describe what desirablgiven v >0, the controller B, is called v-contracting if
properties the controlled system should have, and, finally, ¥¢5.) < ~, equivalently, if for all (z,d) € (B, A B.) N
find an admissible controlleE. such thatY, A 3. has [y(R,Z x D) we have||z|]l2 < 7||d||2, and strictly ~-
the desired properties. Thus control is nothing more thancentracting if .7(B.) <+, equivalently, if there exists >0
special type of interconnection (see Fig. 2). This paper dealisch that for all(z,d) € (B, A B.) N L2(R,Z x D) we
with the H,.-control problem. In this context, the main desirethave ||z||> < (v — €)||d]|2.
property of the controlled system is that certain componentsDefinition 2.2: An admissible controller3. is called a
(called the to be controlled variables) of the system’s manifestabilizing controller if in the controlled system the signal
variable are small (in an appropriate sense), regardless of averges to zero whenevér= 0, i.e., if (z,0) € B, A B,
values that certain other components (called the disturbanciesplies thatlim;_.., z(t) = 0.
take. In addition, the controlled system should be stable, in theExample 2.3: As an example, suppose that the controlled
sense that if the disturbances happen to be zero, then the tgfstem is given by a second-order linear differential equation
controlled variables should converge to zero as time runs ¢ > /t?) + «1(dz/dt) + a2z = d (with «; and ay given
to infinity. Therefore, our starting point is that the manifestonstants). The behavior of this system consists of ali)
variable w of the plant, consist of three componentsthat satisfy this differential equation. Our notion of stability
w = (2,d,c). Here, z is the to be controlled variable] requires that for all solutiongz,d) with ¢ = 0 we have
is the disturbance, and is the interconnection variable aslim,_.., z(t) = 0. Thus stability is equivalent to the require-
referred to above. The variable is available to attach a ment that all solutions of the homogeneous equation converge
controller (see Fig. 3). Accordingly, the signal spaceXyf to zero ast — oo.
is the Cartesian produdf x D x C, with Z, D, andC the sets  The H_,-optimal control problem is to minimize théi.,
in which respectively, d, andc take their values. Thus, in theperformance of3, A B. over the class of all admissible
terminology used above, we také, = Zx D. The component stabilizing controllers, i.e., to calculate
d is interpreted as a free unknown disturbance. This is modeled
by assuming thatdny’ function d: 7" — D can occur as the
second component of the manifest variabl®f ¥,,. In order
to iormallze this, if, in gineral,.fwe ha\{eball dynamical jnyteg]dmissible stabilizing controller8; such thaty* = J(B}).
= = (T, W1 x Wa, B), with manifest variabldw,, w») and i Given~ > 0 (thetolerancg, the H,.-suboptimal control prob-
m: Wi x Wa — Wa is the projection(w, ’#’2) = w2, then 10 s to determine, if one exists, altcontracting stabilizing
the variablews is ca_llledfr_ee if (B) = W; . Thus, fo_r t_he controllers. Thestrict H..-suboptimal control problem is to
plant:, under consideration, we assume that the varidhte oo ming g strictlyy-contracting stabilizing controllers. The
free. Of COurse, for .mathem.a}tlcal reasons we W|II_need 0 p[Wesent paper deals with the striéf.-suboptimal control
some minor regularity conditions an(3) (see Section V). roblem

We now specify the set of admissible controllers. Considgr '
any dynamical systent. = (7, C, B.) with the same time
axis as the plant,, whose signal space is equal to the
interconnection space&’ of X,. According to the above We restrict our attention to systems described by linear
definition, the interconnection 8, A . = (T, Zx D, B, A differential equations with constant coefficients. Letlenote
B.), with B, A B. := {(2,d): T — Zx D|there exists: € B, an indeterminate, and leR**V[¢] be the set of all real

~* .= inf{J(B,.)|B. admissible and stabilizing

and to determine, if one exists, all optimal controllers, i.e., all

lll. LINEAR TIME-INVARIANT DIFFERENTIAL SYSTEMS
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polynomial matrices withs columns and any (finite) numberrows that satisfies (2) yields a minimal kernel representation
of rows. An element? € R**W[¢] can be written explicitly as of the system with image representation= W (d/dt){.
R(€) = Ro+R1£+Ro&%+- - -+ Ry &N, for given real matrices  Let B € £W be controllable and lety = W (d/dt)¢ be an

Ry, Ry,---, Ry. Consider now the system of differentialobservable image representation. There exists a permutation
equationsRow + Ry(dw/dt) + --- + Ry(dVw/dtY) = 0 matrix P such thatPM = col({J,Y'), with YT/ ~1 a matrix of
or, in compact notation proper rational functions (see [14] and [21]). This corresponds
d to permuting the components af as Ilw = col(u,y), with
R<%>w =0. (1) w=U(d/dt)f andy = Y (d/dt)¢, such that is an input and

y is an output. The number of input componentsifi.e.,
This defines a linear time-invariant differential system, i.e., the size ofu, is denoted bymn(8B), and the number of output
dynamical systent: = (R,RW, B) with time axisR, signal components of3, i.e., the size ofy, is denoted byp(B). A
spaceRY, and behavior3 equal to the solution set of (1): polynomial matrixX € RX *Wie] is said to define atate map
B := {w € C=(R,RW)|w satisfies (1). The class of all such for Bif = := X(d/dt){ is a state variable faB (see [16]). The
systems is denoted bg". Equation (1) is called a kernel dimension of the state space of a state-minimal representation
representation o3 ¢ £LW. of B ¢ £Wis to be called theMcMillan degreeof B and is
Remark 3.1:In order to avoid irrelevant smoothness issuesienoted byn(). Often, n(B) is denoted byn. A state map
in this paper we define the behavior of a linear differentia{ for B is called a minimal state map if its number of rows
system with kernel representation (1) to be the set of alis equal ton(5).
C*-solutions (also calledtrongsolutions) of this polynomial ~ We finally introduce the notion of duality for differen-
differential equation. We could also define the behavior tinl systems. Again consider a controllable systéin =
be the set of alkv € £¥°(R,RY) (i.e., all measurabler’s (R,RW,B), in image representation given by = W (d/dt)¢
for which ffo‘ |lw||? dt exists for allty and ;) that satisfy and in kernel representation bi(d/dt)w = 0. Assume
(1) in the sense of distributions (also callegaksolutions). that B has !’ rows. We definethe dual of ¥ to be the
Temporarily denoting the set of strong solutions By° system:+ = (R,RW, B+) with image representation’ =
and the set of weak solutions by, it can be proven that RT(—(d/dt))¢' with latent variablel’ € COO(R,HRQI ). Thus,
B>= N Lo(R,RY) is dense inB N L»(R,RW), i.e., for the signal space ofl is equal to the signal spacBW
everyw € B N Ly(R,RW) there exists a sequendev,} of ¥, and the behavio3t of £+ is equal to the image
in B N Ly(R,RY) such thatw, — w (n — o0) in  of RT(—(d/dt)), i.e., BL = RT(—(d/dt))c=(R,R! ). The
L2(R,RW)-sense. This implies that in the context of the, notation 8+ is motivated by the fact that, in an appropriate
control problem there is no loss of generality in restrictingense, this is the set of trajectories orthogonal3fait can
oneself to strong solutiong}z|[> < +||d||> for all (z,d) € be shown that for al’ € D(R,RW) we have:w’ € B iff
(B, AN B.) N Lx(Z, D) iff this inequality holds for all = (' ()Y w(t) dt = 0 for all w € B. Also, (BY)+ = B.
(z,d) € (By N B)™ N Ly(Z, D). Since we will not use these facts in this paper, we omit the
We will make heavy use of image representations, thgfoof.
is, representations of the form = W (d/dt)¢. The image
representation is called observable is uniquely determined
by w, i.e., if w = W(d/dt)t; = W(d/dt)ls implies £, = fo. V. TwO-VARIABLE POLYNOMIAL MATRICES
It can be shown that this image representation is observable iff AND QUADRATIC DIFFERENTIAL FORMS
W(A) has full column rank for alk € C (see [14]). A system  An important role is played in this paper by two-variable
B € £Y admits an image representation iff it is controllabl@olynomial matrices. An extensive treatment was given in
(see [14] and [21]). Furthermore, such image representatign). |n this section we give a brief review.
can always be chosen to be observable. An 1 x 1 two-variable polynomial matrix in the (commuting)
For a given real polynomial matrik, we definerank(R) as  indeterminateg andr is an expression of the forsa(¢,7) =
the rank ofR considered as a matrix with elements in the fiel@;}’k=0 @y, ¢, where @, ;, are reall x 1 matrices, and
R(£) of real rational functions. On the other hand, for a giveyhere N > 0 is an integer. With any such two-variable
A € C, rank(R())) denotes the rank of the complex matrixpolynomial matrix we can associate a bilinear functional
R(N). Itis well known thatrank(R) = maxaec rank(R(N).  Lg: ¢=(R,R ) x ¢*(R,R ) — C=(R,R) by defining
The following proposition gives conditions for givé# and Lo(ly,6s) = SN, o (d"4/dt")T @y 1 (d" s/ dt¥). The
R, under whichR(d/dt)w = 0 is a kernel representation oftyo-variable polynomial matrix(¢,n) is called symmetric
the system with image representation= W (d/dt)<. if @, =®7, forall h,k. In that case we also associate with
Proposition 3.2: Let W € RW! [¢], rank(W) = r, and let ®(C,n) the QDF Qa(£) := Lo(4,4).

R € ROW[¢]. Then R(d/dt)yw = 0 is a kernel representation The properties of the two-variable polynomial matrix
of the system with image representation= W (d/dt)¢ iff ®(¢,n) are completely determined by the real constant
RW =0 and rank(R\)=w—r forall AeC. (2) (N+1)1 ><_(N+ 1_)1_ matrix ¢ Whose_(i_z, k)th blqck is e_qual

to ®;, x. This matrix is called theoefficient matrixassociated
The minimal number of rows over alR’s that yield a kernel with ®({,#). Note that®({,n) is symmetric if and only if
representation of the system with image representation its coefficient matrix is a symmetric matrix. Factorizations of
W (d/dt)¢ is thus equal tar — r. Hence, anyR with w — r the coefficient matrix immediately give rise to corresponding
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factorizations of the associated two-variable polynomial matrivith Z, D, and C' real polynomial matrices of appropriate
and QDF. In fact, we have the following. dimensions.3, is therefore equal to the set of signals=
Proposition 4.1: Let ®({,n) be a symmetric two-variable col(z,d, ¢) € C>(R,R? x RY x RC) for which there exists

1 x 1 polynomial matrix. Let® be its coefficient matrix. Let a function/ € COO(RR' ) such thatz = Z(d/dt)¢, d =
11,12 > 0 be integers such thatnk(®) = 1; +1». Thenthe D(d/dt)¢, andc = C(d/dt)L.
following stgltements are equivalent. Recall from Section Il that the signalis interpreted as an
1) sign (@) = (12,1 —1; — 12,11?. unknown disturbance. We have formalized this by assuming
2) There exist real matrices; € R' 1** and L, € Rl 2xe  that d is free. In the present context of linear differential
such that® = L, 7L, — LT L,. systems this is formalized as follows. In general, if we have a
3) There exist real polynomial matricds;, € Rl 1x! [¢] ~dynamical systenB € £ with signal spac&" x R":, and
and L, € R 2! [¢] such that®(¢,n) = LT(¢)Li(n) — Mmanifest variablgwy, wy), and if m: R% x R% — R is
LE(O) Ly(n). the projections(wy , we) = ws, then the variableyv, is called
i i i I o C>-freeif n(B) = C=(R,R™). This is equivalent to sayin
4) There exist real polynomial matricés € R [£] and " ) q ying
Lo € Rtz €] such that for alll € C>(R R! ), for all that everyC® function can occur as the second component
t € R, Qa(£)(t) = ||Li(d/dt)e(t)||? — | Lo(d/dt)e(t)||?. Of @ trajectory(wy, wz) of 5. Let us now examine how this
The QDF Qs is called nonnegativeif Qo(¢) > 0, in the notion translates into a property of an image representation. If

sense thatQs(¢)(¢) > 0 for all t € R. It is easily seen B is given in image representation

that Q¢ is nonnegative iff the coefficient matri® satisfies d
® > 0. Let B € £W be a differential system as (1) and wy N\
let ®(¢,n) be a symmetric two-variable x w polynomial <w2> = £

d

matrix. ThenQs is callednonnegative o3 if Qr(w) > 0 WQ(%)
for all w € B. If B is controllable and given in image
representation byv = W(d/dt)¢, then it is easily seen thatthen w, is C=-free iff the differential operator
this holds iff the QDFQg, associated with®,((,n) = Wa(d/dt): C“(R,IR' ) — C=(R,R™) is surjective. This is
WT(0)®(¢, n)W (n) is nonnegative (see also [23]).4(¢,n) the case if and only if the polynomial matri¥’>; has full
is constant, sap(¢,n) = S, and if W(¢) = & Wi c¥ then row rank. This equivalence is easily proven, for example,
the coefficient matrixd; of ®; is equal to®; = W7 SW, via the Smith form of\W,.
with W := (WoW, - - - Wy) the coefficient matrix of the (one We henceforth assume that in the plé&tthe variabled is
variable) polynomial matri®V (¢). Hence, the QDRv? Swis C>-free. Thus, in (3) we assume that the polynomial mat¥ix
nonnegative on the systethgiven byw = W (d/dt)¢ if and has full row rankd, equivalently, that the differential operator
only if the matrix WX SW > 0. D(d/dt) is surjective.

Any two-variable polynomial matri® (¢, ) gives risetoan ~ We now specify the set of admissible controllers in the
associated one-variable polynomial matrix in the indeterminagentext of linear differential systems. Any linear differential

¢ by taking ¢ = —¢ andn = £. The resulting polynomial systemB. with manifest variable: and signal space equal to
matrix plays an important role in the sequel. It is denoted B interconnection spadg® of the plantB, is a candidate
9P = P(=£,8). admissible controller. However, for obvious reasons, we re-

quire that in the interconnected systéin A B., the variable
d (as an externally imposed disturbance) should still be free.
In the context of linear differential systems we interpret this

. ) . ] in the sense thad should remainC>-free.
As already mentioned, we deal with differential systems pefinition 5.1: The linear differential systens. is called
whose manifest variablev consists of three componentsi;n admissible controllerfor our plantB, if in B, A B, the

w = col(z,d,c), with » the to be controlled variables! \ 5riable d is ¢<-free.

the disturbances, and the interconnnection variables. Let We explain in the next section how the requirement of ad-

B, € L7 (the plant) be §uczh adsystem. éNe assume Hhal  missibility translates into a condition involving the polynomial
and ¢ take their values irR“, R, and R~ respectively, so matrices defining the plant and the controller.

the signal space of the plant equii¥ = RZ x RY x RC. A
standing assumption will be that the plaf is controllable.
Therefore, it admits an image representation= W (d/dt)¢
for some real polynomial matri¥¥, say with 1 columns. In this paper we restrict ourselves to a solution of thi¢
Without loss of generality, we assume moreover that thigformation H..-control problem. Related material on this
image representation is observable, i.e., tHag\) has full issue can be found in [5]. In the present section we explain
column rankl for all A € C. Partition W conformable the the notion of full information control problem.

V. LINEAR TIME-INVARIANT DIFFERENTIAL
SYSTEMS WITH DISTURBANCES

VI. THE FULL INFORMATION H,,-CONTROL PROBLEM

partition of w into col(z, d, c) In general, if3 is a dynamical system with manifest variable
w = col(wy,ws), then we calks; observable fromw, if wy is
Z completely determined by, in the sense that ifol(w;, w3)
W=D (3)  andcol(w?, w?) are inB and if w} = w2, thenw! = w?. If

¢ w; IS observable fromws then we callw, a full information
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variable for B: in this case the whole manifest variaklecan and the set of controllers of the form
actually be determined from the componant, and observing J J
wy alone still gives full information about. Suppose that we = C<—>£, K’ <_>g =0 (6)
have a linear differential syster8 given by an observable dt dt

Image representation yield one and the same set of controlled systems. Therefore,

< d ) we may without loss of generality restrict ourselves to the set
1
L

wy\ dt of all controllers given by (6), wher& ranges over the set
we | d of all polynomial matrices withL columns. Without loss of
W» <@> generality we further restrict ourselves to polynomial matrices

K’ with full row rank.

In the following lemma we deal with the question under
what conditions a controller (6) is admissible.

Lemma 6.2: Consider the planB, with observable image

We claim thatw, is a full information variable forB if
and only if the systemw, = W(d/dt)¢ is observable,
equivalently, Wo(A) has full column rank for allA € C.

Indeed, le8V(d/dt)¢, = Wy(d/dt)l,. Then, by observability onresentation (6). Assume thais a full information variable.

of w, from w,, we must haveW,(d/dt)é, = Wi(d/dt)¢2-  Then the controller (6) withs” of full row rank is admissible
Since the representation itself is observable, we conclude tat,q only if (D) has full row rank
K’ )

{1 = £5. The converse is immediate. Proof: See the Appendix. 0

Consider now, as before, a plaB, € £W with manifest In the sequel we simply writd( instead ofK”.
variablew = col(z,d, c). In this paper, we restrict attention to 15 summarize. we consider the play, given by the
the case that the interconnection variabls a full information  ;pservable image representation (4), with full information

variable for 5,. In other words,(z, d) is observable from \aiaple. This means that = C(d/d#)¢ is also observable.
c. If this is the case, then we call the correspondiig, \\e consider controller$s, given by

optimal and suboptimal control problenfsll information

problems We now investigate how the property thatis d d

a full information variable translates into conditions on the - C<@>£’ K<%>£ =0 ()
defining polynomial matrices in case that the plant is a linear

differential system in image representation. Consider the plamth K a polynomial matrix withl columns. Assuming,

B, with image representation without loss of generality, thak™ has full row rank then such
d a controller is admissible ifol(D, K') has full row rank. The
Z<—> class of all admissible controllefs. given by equations of the
2 dt form (7) is be denoted byl. Note that if 3. is admissible and
d| = D<i) /. (4) X hasfull row rank, ther can at most havee—d rows. Thus
c dt an admissible controller can impose at mbst d differential
C(i) relations on the latent variable
dt In the following proposition, the properties of being sta-

bilizing, ~v-contracting, and strictlyy-contracting (as defined

Proposition 6.1: Assume that the representation (4) is ob.' Definitions 2.1 and 2.2) are formulated in terms of the
servable. Then the interconnection variabls a full informa- polynomial matrices defining the plant and the controller. A

tion variable forB3, if and only if c = C(d/dt)¢ is observable, proof follq\{vs |mmed|ately from the d¢f|q|t|ons. :

equivalently, iffrank(C())) = 1 for all A € C. Proposition 63 Let 5. be an admissible controller, i.e.,
Thus we will henceforth assume that the plant is describ&d € A. Then. o |

by (4), with C(X) of full column rank for all € C. 1) B, is stabilizing iff for all / € C=(R,R ) such
We now specify the admissible controllers in the full in-  that K(d/df)¢ = 0 and D(d/dt){ = 0 we have

formation case. As a differential system, a controller imposes limy— 00 Z(d/dt)((t) = Q% _ .

a restriction on the interconnection variablesf the form ~ 2) for a glver} v>0,B. is v-contracting iff for all

K(d/dt)c = 0. Such a controller can of course always also £ € COO((jRR ) such thatK (d/dt){ = 0, D(d/dt)¢ €

be viewed as imposing a condition on the latent variahté Ly(R,RY) and Z(d/dt)l € L>(R,R*) we have

the plant (4). Indeed, imposing (d/dt)c = 0 is equivalent 1Z(d/dt)e|]> < ~|[D(d/dt)e||2;

to imposingK’(d/dt)¢ = 0 with K’ = KC. However, in the ~ 3) Bc is strictly y-contracting iff there exists >0 such

full information case the converse also holds: any polynomial ~ that for all £ as in 2) we have|Z(d/dt)¢||> < (v —

matrix K’ with 1 columns can be written &’ := K C (define )| D(d/dt)!]|>.

K := K'L, with . a polynomial left inverse of). Hence, if

in the plantB, the representation= C(d/dt)¢ is observable,

i.e., in the full information case, the set of controllers of the

form

Then we arrive at the following.

VIlI. WHEN IS A CONTROLLER STABILIZING
AND STRICTLY CONTRACTING?

In this section we derive conditions for a controllgr € .4
K<i>c — (5) to be stabilizing and strictly-contracting. Consider again the
dt plant 3, with observable image representation (4), and with
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a full information variable (equivalently¥?(\) has full column
rank for all A € C). In the sequel we denote

w=(4)

(8)

Throughout this paper, as an additional assumption on the plém

B, we assume that/(\) has full column rank for alk € C,

equivalently thatcol(z, d)

image representation (see Section IIl).
For a giveny > 0, define the(z + d) x

matrix 2., by
_(Iz 0
z, ._<0 —’721d>'

(z + 4) diagonal

(9)

Associated with the plan3, and v>0, we consider the

symmetric two-variablel x 1 polynomial matrix ¢.,(¢, )
defined by

., (¢m) :=M* ¥ DT (C)D(n).

(10)

(OB, M(n) = Z(OZ(m) -

= M(d/dt)¢ is observable as an v IP(d/dy)5 <
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Next, we derive the analogue of Lemma 7.1 frictly
~-contracting controllers. If3. is a strictly v-contracting
controller, then by Proposition 6.3 there exists-0 such
that for all £ € COO(R,IRI ), satisfying K(d/dt)¢ = 0 and

D(d/dt)e, Z(d/dt)¢ € L, we have||Z(d/dt)l||z < (v —
(d/dt)¢||2- By taking e>0 sufficiently small and by
takmg €1 = 2¢y — €2, this is equivalent td|Z(d/dt)¢||3 —
—cl||D(d/dt)£||2 Next, by defininge? :=
(Fl/l—i—’y — €2) this, in turn, is equivalent tﬂZ(d/dt)EHQ
VID(/ a3 < —S(1D(d/dt)e|3+ ]| Z(d/dt)el|3). We can
restate this in terms ab{(d/dt)¢ as follows.

Lemma 7.3:Let v>0. B, € A is strictly y-contracting
iff there existse >0 such that for all¢ e C“(R,R' ) with
K(d/dt)e = 0 and M(d/dt)¢ € Lo(R,RZ+Y) we have

130 ( 5 B s, <~ ( 5 )3

By defining v, := (2 — ¢2/1 + ¢2)¥/2 and by noting that
Y. = (1/1+ €)(Z, + ¢2I) we have that (12) is equivalent
with || M(d/dt)¢||5 < 0. Thus, we can immediately apply

(12)

This two-variable polynomial matrix induces a one-variable€mma 7.1, to obtain the following.

1 x 1 polynomial matrixd®., (in the indeterminatg) defined
as discussed in Section IV +(&) = ©,(=&,8).

For v = col(z,d) € C%*Y define its squared.,-norm
by |[v]:. = v*Ev = |]z]]? — ¥?d|]>, and for v €
LQ(R,CZJFOI), v = col(z,d), we define its squared, .-
norm by [[v]f3 v, i= /% [lo(#)|13, dt. Of course [lv]|3 v, =

2 _ 2114112 ’ o
[z — ¥ ld]l2-

Lemma 7.1:Let B. € A be represented by = C(d/dt)¢,
K(d/dt)¢ = 0, with K full row rank. Let~ > 0. Then the
following statements are equivalent.

1) B. is y-contracting.

2) For allZ € D(R, R! ) such thatK(d/dt)¢ = 0 we have

1M (d/dt)elf3 s, < o.
3) For allw € R such thatrank(K (iw)) = rank(K) and
for all v € ker K (iw) we have|| M (w)v||3 < 0.

4) The polynomial matrix(})) is nonsingular, and the

matrix of rational functions

-1

—z(P 1q
o 2(2) (%) a

is proper and satisfie$F||oo < -
Proof: See the Appendix. O

Remark 7.2: The controlled system is governed by =
Z(d/dt)e,d = D(d/dt)¢ and K(d/dt)¢ = 0. If B, is +-
contracting, then because of the nonsingularit)(ﬁ) we can

Lemma 7.4:Let B. € A be represented by = C(d/dt)¢,

K(d/dt)f = 0, with K full row rank. Lety >0. Then the
following statements are equivalent.

1) B, is strictly v-contracting.

2) There existse >0 such that for all¢ € D(R, RJ‘)
with K(d/dt){ = 0 we have ||M(d/dt)£||§7zw
—&||M(d/dt)L||3.

There exists > 0 such that for alle € R such that
rank(K (iw)) = rank(K) and for allv € ker K (iw) we
have||M(iw)v||227 < —e?|| M (iw)v||*.

The polynomial matrix(%) is nonsingular, and the
matrix of rational functions

D\ (4
o=(x) (8)
is proper and satisfie$|| . <.

Remark 7.5: A remark similar to Remark 7.2 holds. This
time, however, the transfer matri¥ from d to z has to have
L..-norm strictly less tharyy.

Remark 7.6:Consider a controllei3. represented by =
C(d/dt)e, K(d/dt)f = 0, with K full row rank. We can
always factorK = K"K with det(K™) # 0 and
rank(K ™ () = rank(K) for all A € C. The controller3so™
given by c = C(d/dt)¢, K°™(d/dt)¢ = 0 is the controllable
part of B.. It is easily verified thaf3s°™ is admissible iff3.

3)

4)

(13)

(formally) solve forﬁ using standard transfer function notationis, |t also follows easily from Lemmas 7.1 and 7.4 thRge™

yielding ¢ = (2)~
can be interpreted as the transfer matrix frdnto z. Thus,

as a consequence of the above resflt,is a v-contracting
controller iff in the controlled systen®, A B. the variables
d andz are related by a proper rational matrix with-norm

( 9) d. Hence, the rational matrix (11)is (strictly) v-contracting iff 3. is (strictly) v-contracting.

Thus, in this sense we may as well restrict our attention to
controllable controllers.

A polynomial matrix F' is called Hurwitz if it is square,
if det(F) # 0, and if det(F) has all its zeroes in the open

less than or equal tg. In particular, this implies that in the left-half of the complex plane. As an easy consequence of
controlled system the variablesand » must have the usual Proposition 6.3, the following lemma gives a necessary and
properties of input and output, respectively (see [21]). sufficient condition for a controller to be stabilizing.
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Lemma 7.7:Let B. € A be represented by = C(d/dt)¢, WT()®((,n)W(n). It is easily verified that ifw and ¢
K(d/dt)¢ = 0, with K full row rank. ThenB, is stabilizing are related by (14), the@s(w) = Qg (¢). Therefore, the
iff () is Hurwitz. system is dissipative iff for all € D(R,R ) we have

Remark 7.8:1f B, is a stabilizing, strictly~y-contracting [>_ Q4 (£)(¢t) > 0, and strictly dissipative iff there exists
controller, then in the controlled systeiy A 3. the variables ¢ o such that for alll ¢ D(R, IRl ) we have
d and > are related by the proper rational matrX with o o d
|G|s < 7. Furthermore(G has now all its poles ifite(A) < 0 / Qo (£) dt > 62/ ||W<—>£||2 dt.
so theL,-norm of G is in fact equal to the,-norm of . -0 —o0 dt
Thus, we see Dthai;ﬁc is a stabilizing and strictlyy-contracting These conditions are equivalent to
controller iff (;7) is Hurwitz and in the controlled system the PP
variablesd arggz are related by a proper rational matrix with ¢(-iw,iw) 20 forallw eR (17)
H_.-norm less thany. and

Remark 7.9:The assumption thad/(\) should have full P o T, .
column rank for allx € C is made as E’:\ )standing assumption (v, iw) 2 EWT(—w)W(iw) forallweR  (18)
in order to improve readability. However, at many placegspectively (see [23]). It is well known (see [1], [2], [15],
in this paper it is possible to relax this assumption. Faind [10]) that if (17) holds then we can factorig@’(¢) =
example, Lemmas 7.1 and 7.4 already hold under the weaker—¢ ¢) = F7(—£)F(¢), with F € Rl I [£]- If (18) holds,
assumption that\/(A) has full column rank forRRe(A) = then F can be chosen Hurwitz, and also anti-Hurwitz (a
0. Also, Lemma 7.7 already holds under the assumptigivlynomial matrixF is calledanti-Hurwitz if it is square, if
that M()\) has full column rank forRe(\) > 0. Indeed, det(F) # 0 and if det(#") has all its zeroes in the open right
already under this assumption an admissible contreller half of the complex plane). Introduce now the two-variable
C(d/dt)t, K(d/dt)¢ = 0, with K full row rank, is stabilizing polynomial A defined byA(¢,n) := ®'(¢,n) — FY(O)F(n).
iff col(D, K) is Hurwitz, or, equivalentlyD(d/dt)¢ =0 and SincedA = 0, the two-variable polynomial must contain a
K(d/dt)t = 0 implies £(t) — 0 ast — oc. In particular, factor ¢ + 7 (see [23, Th. 3.1]), and therefore we can define
this implies that for any state variabte= X (d/dt)¢ we have the new two-variable polynomial’ by

limg oo x(t) = O. U(¢,m) = ((+n) A 7). (19)

VIIl. D ISSIPATIVE SYSTEMS AND STORAGE FUNCTIONS Consider now the QDF'§)y and QA associated withl and
In this paper, our aim is to establish conditions on th@, respectively. We hav@a(¢) = Qe (¢) — [[F(d/dt)L||*.
plant 3, for the existence of stabilizing, strictly-contracting Furthermore, (19) is equivalent @Qw (¢)/dt) = Qa(¥) for
controllers, and to provide algorithms for calculating sucll £ € C**(R,R" ). Thus we obtain
controllers. An important role in our development is played dQu(¥)
by the notions of dissipativeness, strict dissipativeness, and T(t) < Qar (£)(2) (20)
storage function. These notions have been studied before in - | )
[18], [8], and [17]. We also refer to [13]. In the present sectioWr all£€Cc=(R,R ), forallteR. If we mterp_ret_Q\p(E)(t)
we introduce and study these notions in the framework 8f e amountof supply (€.g., energy) stored inside the system
linear differential systems. at time ¢, then (20) expresses the fact that the rate at which
Consider, in general, a controllable differential syst&m the_ internal storageT increases does not e_xceed t_he rate at
given by the observable image representation WhICh SL_JppI_y flqws mtq the system. Inequality (20? is called
the dissipation inequality Any QDF Qu: C™®(R,R
w = W(i)g (14) C(R,R) that satisfies this inequality is called storage
dt function It can be shown that3 is dissipative if and only
with W RW! 1e1 1n addition, let Op: C=(R.RW) — if there exists a symmetric two-variable polynomial matrix
COO(IR,IR);Gw . Qi]w% be the QDF agsqz)ciatec(i v7vith )a giver\\lj(c’ n) such that the co_rresponding QI;IERI, satisfies (20).
two-variable polynomial matri® € R¥W¢. 1]. Qo is called n general, storage functions are not unique. In fact, we guote
the supply rate System (14) is calledissipativewith respect [23, Th. .5:7]' ) o .
to the supply rat€s if for all w € B N D(R,RY) there holds Proposition 8.1: AssumeB is dlsglpat|ve with respect to
- Q. Then there exist storage functiofg,_ and Qy, such
/ Qo(w) dt > 0. (15) that any other storage functio@y satisfies@Qy_ < Qup <
—c0 Qy, . If B is strictly dissipative thenl_ and ¥, may be
System (14) is calledtrictly dissipativewith respect to the constructed as follows. L&t andA be, respectively, Hurwitz
supply rateQq if there existse>0 such that for allw € and anti-Hurwitz factorizations o§@’. Then

) —

B N D(R,RO‘:V) ) W (Cn) = (¢, m) C—f;(C)A(n)
[ @waze [ jeoPaas g
Given the image representation (14) and the polynomial U_(Cn) = ‘I’I(QU)—HT(C)H(??)'

matrix ®(¢,n), define & € RL I [€,n] by (¢, n) = B C+n
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If a storage functionly is a positive semidefinite (negativepositivity. We call B strictly R*-halfline X-positiveif there
semidefinite) QDF, then we call it a positive semidefinitexistse > 0 such that for alw € B N D(R, RW) we have
(negative semidefinite) storage function. oo oo
We now review a basic result from [23], which says that if / wrSw dt > 62/ ||w]|? dt. (24)
the systent3 is dissipative, then storage functions can always 0 0
be represented as quadratic functions of any state variablg ffa\ise we can define the notion atrict R—-halfline X-
B. We now make this precise. _ positivity, which requires the inequality over integrals from
Theorem 8.2:Let 3 be dissipative with respect Qs _ . o zero. The following theorem states that a controllable
and let Qy be a stcl)rage function, i.e., assume that (2Qstems s strictly dissipative with respect o7 Yw and has a
holds. LetX € R**' [¢] define a state map oB. Then pegative definite storage function i is strictly R*-halfline
there exists a real symmetric matrik € RX*X such s-positive.
that W(¢,n) = XT(QKX(n). Equivalently, Ly (f1,2) =  Theorem 8.4:Let X € RN! [¢] define a minimal state map
(X(d/dt)0)T KX (d/dt)es for all £1,6, € C*R,R ). In for 5. The following statements are equivalent.
particular this implies thaQQy(£) = || X(d/dt)||3 for all 1) Bis strictly dissipative with respect to? Lw and there

oo I
teC (IR.,IR )- _ exists a negative definite matrix’ ¢ R"*" such that
Proof: For a proof of this, we refer to [23]. - Qu(l) = || X(d/dt)¢||% is a storage function.
A storage functiony for B is called positive (negative) 2) Bis strictly R*-halfline S-positive.
??f;n(l)te( II; t<h§)r esSé;wStfh:t csgtazj) m_aﬁH ;?(r dfd 32?2 af(;rr]a;rlllx Proof: The analogue of this theorem for the case of strict
A K R~-halfline X-positivity was proven in [23, Th. 9.3]. The proof

¢ e ¢(R,R). = ! .
o . . . for th itive halflin nterpart i mpletely anal .
In the remainder of this section we consider the case thg{t € positive halfline counterpart is completely a ao%ous

®(¢,n) is constant,®({,n) = >, with > the nonsingular Again consider system (14). Lét € ROW=1 )xl [¢] be such

signature matrix that R(d/dt)w = 0 is a kernel representation of it. Recall
5 _ Ir . 0 21 from Section Ill that the dualB' of B is given in image
Vo0 =Ir_ (21) representation by’ = RT(—(d/dt))¢'. The McMillan degree
n(B1) of BL is equal to the McMillan degree of B. We now
Here, r_ and r; are given positive integers. The correrecall the following result from [23].
sponding supply rate is then given s (w) = w’Sw; ri |emma 8.5: Assume thatY € R"¥! [¢] defines a minimal
corresponds to the number of positive squareginandr_  state map foi3, i.e., z = X(d/dt)/ defines a minimal state of
to the number of negative squares. In this case the propegyThen there exists & e RN *W- )[¢] defining a minimal

that Q(£) = ||X(d/dt)¢||% is a storage function foB can  gi4te mapZ(d/dt) for B+, such that for all¢ € Coo(RRI )
be expressed in terms of nonnegativeness of a certain constapf »» C=(R RW-I ) we have

QDF on an auxiliary system associated with We explain

this now. d d\ \* d
Let X (d/dt)¢ be a state map df given in image represen- It <<Z<§>£> X <§>E>
tation by (14). Defing¥v, € RW20xI [¢] py .
W(E) = <RT <—%>£’> W<%>£. (25)
We(§) = (X(S) ) (22)
£X(¢)

The system with image representation = W.(d/dt)¢ is
denoted by3.. This system will be called thextensiorof 3.
Denote the coefficient matrix d, (see Section IV) by¥V..
The following lemma holds.

Lemma 8.3Let K € RX*X_ DefineX, e RWx2X)x(Wx2X)

If a pair of minimal state mapéX, Z) of B and B+ satisfies
(25), then it is called anatched pairof state maps.

We also recall the following result from [23], which relates
dissipativeness oB with that of B+.

Theorem 8.6: Assume that = m(B), i.e., the number of
positive squares i) is equal tomn(3), the number of inputs
of B. Then B is strictly dissipative with respect ta/” Lw

by iff BL is strictly dissipative with respect to-(w')TZw’.
Y0 0 Assume this to be the case. LEX,Z) be a matched pair

Y, = (0 0 —K). (23) of minimal state maps fol3 and Bt and letQy define a
0 -K 0 storage function foB8. By Theorem 8.2(), is a quadratic state

function, i.e., there exists a real symmetric matkixsuch that
Then || X (d/dt)¢||5. is a storage function for the systeth Qy(¢) = || X (d/dt){||3.. Assume thatX is nonsingular. Then
with supply ratew” Sw iff the QDF w! S.w. is nonnegative Qu-(¢') = ||Z(d/dt)¢'||> .. is a storage function 0B~
on B., equivalently, iff W, 7S, W, > 0. Proof: See [23, Th. 10.2]. O
Proof: See the Appendix. O Remark 8.7: Theorem 8.6 can be easily extended to the
In addition to the notion of strict dissipativity @, which case that the supply rate is given B (w) = w’ Sw, with
requires strict positivity of the integrgl™>> w”>w dt over S = ST, det(S) # 0 and sign(S) = (r_,0,r;) with
the whole real line, we also need the notion of sthatfline r, = m(B). Then B is dissipative w.r.taw? Sw iff Bt is
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dissipative w.r.t.—(w")TS~1w'. If (X,Z) is a matched pair for the plants, iff the dual B+ of B [given by (26)] is strictly

of minimal state maps fo3 and B+ and if || X (d/dt)¢||3, dissipative with respect to the supply rate’)”>; ,,w’ and,

is a storage function of3 w.r.t. w?' Sw (with det(K) # 0) in addition, has aegative definitestorage function.

then || Z(d/dt)¢'||> .. is a storage function o3+ w.r.t. We also show that the existence of stabilizing, strictly

—(w)T S, contracting controllers is equivalent to the existence of certain
To conclude this section, we discuss the relationship begular Hurwitz factorizations of the polynomial mati.,.

tween the existence of positive semidefinite storage functiohbese factorizations yield explicit formulas for the controllers

and stability. that we are seeking. This result is strongly related to earlier
Theorem 8.8:Assume thatr, = m(B). Partition work on the polynomial approach ., control by Meinsma
P (see [12] and [11]). In particular, the equivalence between
W = <N) the existence of a stabilizing, stricthrcontracting controller

and the existence of a regular Hurwifzspectral factor was
compatible with the partitioning of. Then P square. Assume already established in [12]. Related results can also be found
that det(P) # 0. Let X € RN~ [£] and define a minimal in [7], [6], and [9].

state map foi3. If B is dissipative with respect tQq(w) = Theorem 9.1:Let~ > 0. Then the following statements are
wYw then NP~! is proper, and the following statementsequivalent.
are equivalent. 1) There exists a stabilizing, strictly-contracting con-
1) P is Hurwitz. troller.
2) There exists a positive semidefinite storage funofign 2) Bt is strictly dissipative with respect to the supply
3) There exists a positive definite matig € R"*" such rate (w')*'S;,,w’, and there exists a negative definite
that Qg (¢) = || X (d/d¢t)¢||% is a storage function. storage function for it.
Proof: See [23, Th. 6.4]. O 3) There exists a polynomial matrix € Rl I [£] such that

a) 0%,(&) = FT(=9%| _d dF(&);
IX. EXISTENCE OF STABILIZING , L _
STRICTLY CONTRACTING CONTROLLERS b) MF~ is proper;

We now return to the planB, with image representation c) (F{i) is Hurwitz;
(4). Assume thatC(\) has full column rank for all € C. In
the sequel, an important role is played by the system obtained d) £ is Hurwitz.
by taking thez and d components of the plaris, Here, F is obtained by partitioning” into

O[] - B

7 (E)
dt where £y hasl — d rows, andZ_ hasd rows. If ' is a
This system is denoted simply i#. Recall the Definition 7.1 polynomial matrix such that (3) is satisfied, théR has full
of M M = col(Z, D). We assume that/(X) has full column oW rank, and the controlleB, represented by = C(d/dt)¢,
rank for all A € C, equivalently, that the representation (26) (q/dt)¢ = 0 is admissible, stabilizing, and strictly-
is observable. We also denatel(z, d) simply by w. contracting.

In this section we consider factorizations of the polynomial |n the remainder of this section we prove this theorem.
matrix 9@.,(§) = ¢.,(=¢, &) = M* (=X, M(€) [see (9) and we first show that the existence of a stabilizing, strictly
(10)]. A factorizationd®,(¢) = F*(=&)%r , r F(&) with  contracting controller implies tha has a negative definite
Fer (€], is called asymmetric factorizatiorof 9¢.. storage function.

Here,r andr_ are nonnegative integers such that4-r_ = Lemma 9.2:Let v > 0. If there exists a stabilizing, strictly
1 andXy , r _ denotes the signature matrix (21)dét(F) # ~-contracting controller, them+ is strictly dissipative with
0 then the factorization is said to @nsingular The integers respect to the supply rates’)*'s; ,.,w’ and for every minimal

r4 andr_ are called theositivity indexandnegativity index gtate mapZ € RN x| ,[5] of B! there exists a negative definite
respectively, of the factorization. A nonsingular factorization igyatrix & ¢ R"*N such thatQw(¢) = [|Z(d/dt)l'||% is a
called aregular factorizationif MF~! is a matrix of proper storage function.

rational functions. The factorization is callddurwitz if the Proof: See the Appendix. O

factor I is Hurwitz. _ _ Clearly, Lemma 9.2 immediately yields a proof of the
In the following, in accordance with (9), I&l; /., be given impiication (1) = (2) in Theorem 9.1. We now formulate a

by lemma that will enable us to prove the implication €2) (3).
Iz 0 Lemma 9.3:Let v > 0. Let (X, Z) be a matched pair of
21y = < 0 _ijd ) minimal state maps foB and B+. Let B+ be strictly dissipa-

¥2 tive with respect tqw')7E, /.’ and letk_ = KT € RN

We now formulate the main result of this section. It turns odte such thaty (¢') = || Z(d/dt)¢'||3_ is the smallest storage
that there exists a stabilizing, strictrcontracting controller function of B+. Assume thatlet(K_) # 0. Then there exist
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F e R~ [£] such that a certain Pick matrix associated with the systBns negative
_ definite. At the end of the section these results are applied to
= (CHmMXT(QKZ X (m) + MT(C) 2, M () the H., control problem.

= FHQOZ) _d,dF (- (28)  We first express strict dissipativity o8+ in terms of a
condition on the original system. Recall the definition (10) of
the two-variable polynomial matrig. (¢, n). It turns out that
B+ is strictly dissipative iffd®.,(¢) satisfies a strict signature
condition along the imaginary axis.

Lemma 10.1: B+ is strictly dissipative with respect to the
supply rate(w’)*'%, ., w' iff there existse > 0 such that

Under these assumptions, for evdrysuch that (28) holds we
have det(F) # 0 and the rational matrix(/ F'~* is proper.
If, in addition, K_ <0, then for anyZ" such that (28) holds,
col(D, Iy ) and I are Hurwitz. HereF, is obtained by taking
the first1 — d rows of £. Consequently, any such yields
a regular Hurwitz factorization ofi®¢., with positivity index

1-4d sign(9®, (iw) + M (—iw) M (iw))

90,(&6) = FT (=) _d.dF(©) (29) —(4,0,1—d) forallweR. (30)
with col(D, F,) Hurwitz.

Proof: See the Appendix.
Proof of (2)= (3): Assume that3+ is strictly dissipa-

Proof. See the Appendix. O
Remark 10.2:1t can be proven that there exists- 0 such

tive and has a negative definite storage function. Then thép t (26) holds iff there_eX|Stso >0 .SUCh. that (26) holdsor
exists a minimal state mag of B+ and K = K7 € all 0 < ¢ < ¢. In particular, this implies that a necessary

RN, K <0, such thatQq (#') = I1Z(d/dt)?'||2. is a storage condition for a stabilizing, strictlyy-contracting controller to

function. Now letQy_(#') be the smallest storage function®XiSt IS that alreadyign(9®,(iw)) = (4,0,1 — d) for all

of B, According to Theorem 8.2, there exishé. = KZ ¢ IE t[ﬁ' following definiti id | tri
Rnxn such thatQ\p_ (El) _ ||Z(d/dt)£/||%: Clearly, K_< n the tollowing detinition we consiaer a general symmetric

K, s0 K <0. Now take a minimal state mag of 3 such two-variablel x 1 polynomial matrix®((, 7). We associate

that (X, Z) is a matched pair. Then according to Lemma 9\g/ith $ a Pick matrix to be defined below. Since the expression
there e;<istsF e Rl A [€] such that (28) holds and such tha-S much simpler in the_lt_case, we restrict oursglvgs here to
det(F) # 0. Any suchF* has the properties that are require e case thaﬁ<1>.|s semlsllmple. Due to space limitations, the

in condition (3) of Theorem 9.1. general case will be omitted. However, the results below are

R . . _ still valid in that case. A polynomial matri®® € RA>9[¢],
W;ge proof of the implication (3 (1) is now straightfor det(P) # 0, is called semisimpleif for all X € € the

Proof of (3)= (1): Since det(col(D, F}y)) # 0, Fy dimension ofker(P()\))_ is equal to the multiplicity ofx as

has full row rank and yields an admissible controller. sind® ggft'nqtf'cfzelg%ly(g%nr;lzﬂgt(Ij;))éaseﬁss me thatdet(9®

col(D, Fy) is Hurwitz, this controller is stabilizing (see nit ' =misSimp . u et(99)
has no roots on the imaginary axis. Lat, As,---, Ak € C be

Lemma 7.7). Ne?<t we ShO\.N tha is a stnf:tlyfy-co_ntractlng_ the roots (counting multiplicity) oflet(9®) with negative real
controller. Consider the linear polynomial matrix equation

GF = M in the unknownG. Clearly, G = MF-! is Parl and letay, az, -~ a € €' be such thabd(\)a; = 0,

a proper rational solution without poles on the imaginargnd_ such that the,,’s associated ,W'th the Eaxrl?)@ form a
axis. Hencesup,, g ||G(iw)|| < 0. Now, for all w € R and asis ofker(9®();)). Then we definélp € C to be the

v € ker Fi(iw) we have M(iwyv = Gliw)F(iw)y = Hermitian matrixTy = (77,;) with
G(iw)col(0 F_(iw))v. Hence there existd >0 such that BT\
IM(iw)v]|? < K||F_(iw)v]|?>. This yields that for all T, . =% ( "’)\J)af (31)

v € ker Fy(iw) we have | M(iw)ll2 = v*9. (iw)y = ! Xi
—||F_(iw)v||? < —1/k|M(iw)v||*. Apply Lemma 7.4 to
conclude that, is strictly v-contracting. This completes the
proof of Theorem 9.1. O

Next, we express the existence of a negative definite storage
function for B+ as a condition on the Pick matrix associated
with the original problem dat#.,.

Lemma 10.4:Assume thatB" is strictly dissipative with
respect to the supply ratev’)”' <, ,,w'. Then it has a negative
definite storage function iff the Pick matriks_ is negative

In Section IX we have shown that there exists a stabilizindgfinite.
strictly v-contracting controller for the plans, iff the dual Proof. See the Appendix. O
systemB of B [given by (26)] is strictly dissipative and has Thus, summarizing, we immediately obtain the following
a negative definite storage function. Of course, we would likbeorem giving necessary and sufficient conditions (in terms
to express these conditions in terms of thginal system of the original problem data summarized in the two-variable
B. In this section we obtain a test in terms of the origingdolynomial matrix ¢.) for the existence of a stabilizing,
systems to decide whether the du#' is strictly dissipative. strictly ~-contracting controller.

We also obtain a test in terms of the original systénto Theorem 10.5:Let ~ > 0. There exists a stabilizing, strictly
decide whetheB has a negative definite storage function. -contracting controller iff the following two conditions are
is shown that such negative definite storage function exists shtisfied.

X. A PicK MATRIX TEST FOR THEEXISTENCE OF
STABILIZING STRICTLY CONTRACTING CONTROLLERS
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1) There exists e>0 such that sign(0®.,(iw) + In other wordsd necessarily satisfies a nontrivial differential
eEMT(—iw)M(iw)) = (d,0,1 —d) for all w € R. equation, so it can not bg>-free. O

2) Ty, <O0. Proof of Lemma 7.1:Factor K = K"K with
This theorem vyields a test for the existence of stabilizinget(EK"") # 0 andrank(K*(\)) = r for all A € C. Note
strictly y-contracting controllers and an algorithm to calculathat rank(K())) = r iff det(K“"*(\)) # 0. Furthermore,
one. We start with a plan, in image representation (4) andrank(K(A)) <r for at most finitely manyX. Also, there
a required tolerance > 0. Hence, our data are the polynomiaexistsN € Rl *( ~T)[¢] such thatk<e» ¥ = 0 and such that
matricesZ, D, and C andy > 0. We assume that’(\) and im(N(A)) = ker(K™(A)) for all A € C. HenceN(A) has
M(\) = (£3)) have full column rank for all\ € C. full column rank for allA € C. ' .

Step 1: Calculate ®-(¢,7). Check if there existse>0 (1):>_(_2): This implication follows immediately from
such that for allw € R we have sign(d®,(iw) + Froposition 6.3. .
MY (—iw)M(iw)) = (d.0,1 — d). If not, then stop: (2= (3): Letw € R be such thatank(K (iw)) = r._Let
no stabilizing, strictlyy-contracting controller exists. If yes,? € ker(K(iw)). Thenv € ker(K“™ (iw)) so there exist’

Step 2: Calculate the roots oflet(d®.) in the open left- ‘ Y
half of the complex plane, and calculate the Pick mafijx . ety [t < W
Check if T3 < 0. If not, then stop: no stabilizing strictly / N 27n drn
~-contracting controller exists. If yes, a stabilizing strictly e =4 fHt+ Dl LA
~-contracting controller exists.TGo to Step 3. _ il s 2, 2

Step 3: Factor 9¢.(§) = F* (=) _q gL' (§) with F ~ ) o
Hurwitz, () Hurwitz, and (2)F~* proper. Here,F is

obtained by taking the first— d rows of F. The controllerB. Here 7 is chosen such thatt, € D(R,C! —7). Note that/ is
represented by = C(d/dt)¢, I (d/dt){ = 0 is admissible, (and can) be chosen to be independentoDefine ¢,, :=

stabilizing, and strictlyy-contracting. N(d/dt)¢'. Then K(d/dt)¢, = 0. Now, an easy calculation
shows [>_ ||M(d/dt)e,||%. dt = (dmn/w)||M (iw)v|% +
XI. CONCLUSIONS 120 1M (d/dt)N(d/dt)é(t)||%. dt. Since the integral on the

In this paper we formulated thé-control problem from a left is < 0 we must have|M (iw)v[3, < 0.
behavioral perspective. We focused on the strictly suboptimal,(3) = (4): First note that(f,) has full row rank. We show
full information case. It was shown that a stabilizing, striefly that it also has full column rank. Let € R be such that
contracting controller exists for the plant under consideratiofmpnk(K (4w)) = r and assume(f(gj‘:;)v = 0. From (3)
iff a given one-variable polynomial matrix associated with thge get Z(iw)v = 0. By observability of M this yields
plant has a certain regular, indefinite spectral factorization. The— . Hence(D(i‘“) has full column rank. Define a matrix

required controller can be obtained directly from the spectra] Feli) =11

factor. We also showed that such a regular, indefinite spect?il rational functionsR := (i) ~(;), where I denotes the
factorization exists iff the polynomial matrix associated witf] % ¢ identity matrix. Note thatDE = I and Kﬁij 0.

the plant satisfies a given strict signature condition along thg&in letw be such thatank(K(iw)) = r. Then (reiy) s

imaginary axis, and a given Pick matrix is negative definit@onsingular. For alb € cd we haveR(iw)v € ker(K (iw))

Future research will be dedicated to a treatment of the genestid hences* R* (—iw) Z (—iw) Z(iw)R(iw)v < v*v*. Thus

not full-information problem. Also, in a forthcoming paper weG” (—iw)G(iw) < ~2I. This inequality holds for all but
develop algorithms to obtain the required indefinite spectriihitely many «w € R. We conclude that& is proper and

factorizations. 1Gloe < .
(4) = (1): Consider the systemx = Z(d/dt)¢, d =
APPENDIX D(d/dt)l, K(d/dt)¢ = 0. Using thatG = Z(2) 7 (}) is
PROOFS a proper rational matrix, it can be shown thais an input

Proof of Lemma 6.2:We need to prove that in (4) Com_andz an output. Hence, there_exist constant matriegs, H,
bined with (6)4is C-free ff () has full row rank. If this is 29 7 Such thatz and d satsfy (du/if) = Fa 4 Cad.
the case, then the differential operatd¥/%4) is surjective. - " +Jd, for some absolutely continuous function
\(d/dt) Also, G(¢) = J + H(¢l — I')"*G4. We can chooséd’ and
Let d € c>(R,RY) be arbitrary. There existsc C(R,R' ) H such that the pai H, F) is observable. Using thaf¥
such that(f) = (I’?,((‘fi//‘fft)))ﬁ. Define z = Z(d/dt)¢, d = has no poles on the imaginary axis, we can chaBssuch
D(d/dt)t, c = C(d/dt)L. Thencol(z,d,c) € B, A B,. This that Re(\) # 0 for every eigenvalue\. Our proof is now
proves that inB, A B., d is indeedC>-free. Conversely, if completed by applying the following well-known resuilt.
(I’?,) does not have full row rank then there exists a polynomial Lemma 12.1:Assume thatz € L»(R,R?) and d ¢
row vector0 # (p;p2) such thatp; D + p. K’ = 0. Since K’ L3(R, Rd) are related bydx/dt) = Fo+Ghd, = = Hz+Jd,
has full row rankp; # 0. Now letcol(z,d,c) € B, A B, be where (H,F) is observable with# such thatRe(\) # 0
a C= function, z = Z(d/dt)¢, d = D(d/dt)¢{ ¢ = C(d/dt)¢, for every eigenvalue. Then ||z]l2 < [|Gllco||d||2, with

and K'(d/dt)¢ = 0. Then there must holg (d/dt)d = 0. ||Glleo := supeg ||/ + H(iwl — F)'Gy]|.
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Proof of Lemma 8.3:|| X (d/dt)¢||% is a storage function In particular this implies that if in forming the prod-
for B with supply ratew®Sw iff (d/dt)|| X (d/dt)¢||3 — uct matrix P the loss of rank ik, thenk negative
W (d/dt)¢||% < 0 for all £ € C=(R,R' ). This can be eigenvalues and positive eigenvalues will be lost.
seen to hold iff(W.(d/dt)6)" . W,(d/dt)¢ > 0 for all £ € Proof: Statement 1) is obvious. Now first assume that
C>=(R,R' ), equivalently iff the QDFw'S w, is nonnegative L; and L, have full column rank. Them; + my = r.
on the extensiors3.. To prove 2), use that3L; = 0. Using this it can eas-

Proof of Lemma 9.2:Let R be such thatRM = 0 and ily be verified thatQL ker(LiQL;) = Loker(L3Q 1L,).
rank(R())) = z+d—1forall A € C, so thatR(d/dt)w = 0is Since QL; and L, have full column rank, this implies that
a minimal kernel representation Bf Assume that there existsdim(ker(L:QL1)) = dim(ker(L3Q~'L>)), which proves
a stabilizing, strictlyy-contracting controller: = C(d/dt)¢, 2). Next we prove 3). Letign(LiQL;) = (v1,k%,71) and
K(d/dt)f = 0. We may assume thak’ has full row rank sign(L3Q~'Ls) = (10,k, m2). Then clearlysign(P) = (11 +
and thatK(d/dt)¢ = 0 is controllable. LetN be such that 1,2k, ) + 7). We show now that; +» = n_(Q) —k and
KN = 0 and rank(N(X)) = d for all A € C. Then 7 +m =n,(Q)—k. This will be done using a perturbation
¢ = N(d/dt)¢' is an observable image representation cfrgument. Fok > 0 sufficiently small we haveign(L:(Q +
K(d/dt)¢ = 0. Denote the systerw = M (d/dt)N(d/dt)' eI)L;) = (11,0,71 +k). Also, for e > 0 sufficiently small we
by Bx. Obviously, By C B. It is easily verified thatDN  havesign(L5(Q + eI)™*Ly) = (12 +k,0, 7). Also
is Hurwitz since(f,) is Hurwitz, and that the systefiy is

strictly dissipative with respect to the supply rates?’s. w. P. = < . L _1>(Q +e)(L1(Q + e)™ Ly)
Let X define a minimal state map f&,, and letZ define a Ly(@Q +el)

minimal state map of33; such that( X, %) is a matched pair. _ <L’{(Q +el)Ly 0 )

Note that the number of positive eigenvalues-dt., is equal B 0 Ly(Q+el) Ly )

FO m(By), the number of inputs oy Sln_ceDN IS I_-|_urW|tz,_ . The right-hand side of this equation is nonsingular, so all three
it follows from Theorem 8.8 that there exists a positive deflthaCtOI‘S on the left-hand side are nonsingular as well.&ef
matrix & such thatIIX(d/dt)E/II% is a storage function for sufficiently small this implies theft, +1 1.0 7r1+7r2+-k) "

By . By applying Theorem 8.635; is strictly dissipative with sign(P.) = sien(Q + ¢I) = (ny(Q),0,n (7Q)’) This proves
respect to(w’)"' ., w’, and || Z(d/dt)¢"||? ;_. is a storage ¢ FAR) T :

; ; . the claim.
function (£ which den_otes thi I_aten_t variable Bf’%) Now To prove the lemma for generél, and L. (not necessarily
app_ly Theqrem 8.4 to find thaly is strictly R*-halfineX, , - of full column rank), letZ; andZ, be such thatlet(77) #
positive. Since, howeve3!t C By, the same holds foB+, 0 and det(Th) # 0 and such thatLi,Ty = (L, 0)

which, again by Theorem 8.4, completes our proof. =

Broof of L 931N th ot L 0.3 g2 = (L»0) with L; and Ly full column rank. Then
foof ofL.emma =.3. n_t € proof ot Lémma 3.5 we nee apply the previous data usingy and L., and note that rank
the following general matrix theoretical lemma.

and signature are invariant under premultiplication nd
Lemma 12.2:Let Q € C" > be nonsingular and Hermi- g P P Thya

. E . . d let L rxm d postmultiplication byZ; . O
tan. orr gn|¥en integers; and my, let L, € € » an We now proceed with the proof of Lemma 9.3. In addition
Ly, € C" "™ pe such thatank(L;) + rank(Ls) = r, and

" X . to the extension3, of B, we consider the extensiof of
L3L, = 0. Define the(m; +m;) x (m; +m;) matrix P by BL. Let Z be a state map oBL. We defineBt to be the
system with image representatiari = R (—(d/dt)¢', with
* * T .

Pi= < *L1_1>Q(L1 0Ly = <L1QL1 0 ) RT(—¢) defined by
L3Q 0  L3Q 'L, .
R (=€) :=| =€Z(&) |- (34)

-Z(¢)
Then the following holds. L 123:Let (X.Z) b hed pair of minimal
1) rank(LFOL) < rank(L:) and rank(Li0-1L,) < emma 12.3:Let (X, e a matched pair of minima
) EIEkELé)Q 1) s rank(Ly) rank(L3Q7"L2) < state maps fof3 and 3. Define subspacest c RZ+d+2n

z+d+2n
2) For any integerk > 0 we haverank(LiQL;) = R C REFEHEL by

rank(L;) — k iff rank(L5Q'L,) = rank(L;) — k. 7 daon - |
Consequently, there exists an intege?> 0 such that M= {a € RZT5F|30 € ¢ (R, R’ ) such that
rank(P) = r— 2k, i.e., in forming the product matri® d
the loss of rank (compared to the rank of the nonsingular a= M, <%>£(0)} (35)
r X r matrix Q) is always even.
3) Letk be such thatank(P) = r—2k. Then the signature R = {b c pZ+d+2n 3¢ € C>(R, Rl ’) such that
of P is given by
e
(n—(P),no(P),n4(P))
! (36)

=n-(Q) —km +m —r +2k,n(Q) — k).
(33) Thendim(M) = n+ 1 and M+ = R.
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Proof: For a proof, we refer to [23, Lemma 12.4]. O
We now give a proof of Lemma 9.3(X,7) is a
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0, and such thattU~! is a proper rational matrix. De-
fine Mo := limzjmoo M(ANU(A)™L. We first show that

matched pair of minimal state maps. Consider the extensiats (M3 M.,) # 0. Note that, by constructiody/., has full

M.(&) of M(¢) and RT(-¢) of RT(-¢). Define X, €
R(Z+d+2n)x(Z+d+2n) by

S0 O 0
Sei=1 0 0o -K_|. (37)
0 -K_ 0

Then condition (28) is equivalent ta4 ()X 1 M. (n)

FT(Q)S) _q.dF(n). Let M, and R! be the coefficient ma-
trices associated with the extensiofs,. (¢) and R (—¢).
According to Lemma 12.3% M, = 0. Also, rank(M,) =
n+1 andrank(R?7) =n+z+d — 1. Letm; andm, denote
the number of columns off. and R.”, respectively. Note
thatn, (X;1) =n+z andn_(X.!) = n+d. Now consider
the product

M.T
r= <Rgze
<J\Z/€,TE€1M€,

)E;l(ﬂ?[e Y.R.T)

)

Sincerank(R.”) = n4+z+d—1, we haverank(R. 2. R.7) =
n+z+d-—1-—k for some integerk > 0. We prove
that, in fact,kx = n. Indeed, we havé&k = n+z +d —
1 — rank(R. 2. R.T). Now, Qu_(#) = || Z(d/dt)¢'||% s
the smallest storage function df- with respect to the
supply rate(w ’)TEI/Ww’. Since there exists > 0 such that
RT(Lw)El/,\/ (iw) > eRT (iw)R(iw) for all w € R, Qg _(#)

~ 0 ~
RcY R,

0

column rank. Next, as before, 1& € REZ+d-1)x@+d)[¢] pe

such thatRM = 0 and such thatank(R(\)) = z+d—1

for all X. Since Bt is strictly dissipative, there exists> 0

such thatR(iw)%; ), R (—iw) > € R(iw)R"(—iw) for all

w € R Let A € R@+d- |>X<Z+d 1)[¢] be such that
limpymee AN)TLR(N) ~ has full row rank. Then
we have Ro,%,/,RL, > eQROORZO>O, SO Ro¥1/ R, is

nonsingular. We claim that this implies thafZ >, M., is

nonsingular. Indeed, consider the square mai%.,RZ).

Obviously, sinceR..M., = 0, this matrix is nonsingular.
Consider the product

MT
(=)ot 08

_ (MIMs
o 0

*

Ro,%,,RE,

)

Since MZ M. > 0, we have that?,.%,,,R% is nonsingular
iff (MooX1/,R2,) is nonsingular. This holds iff

M, T
_(MZI¥ M, 0
- 0 R %y, R,

is nonsingular. This implies that/1 . M, is nonsingular
as claimed.
We now show thatFU/—! is a proper rational matrix. To

is obtained from a Hurwitz spectral factorization, in the senggove this, postmultiply (28) with/(r)~* to obtain

that if we factorR(¢)%, ., R (—¢) =
Hurwitz, then

v_(¢,m)

HT(=¢&)H(¢) with H

= ZT(Q)K_Z(n)
R(_C)EI/WRT(_U)
B C+n

— HT({)H(n)

(see Proposition 8.1).
R.(—0)%. RT( n) = HT(¢)H(n) by definition. Thus we
find R.X.R.” = H” H, where H is the coefficient matrix of
H. Slncedet( ) #0, H must have full row rankz +d — 1.

This implies thatR.X.R.” has rankz + d — 1, so that

— (C+mXT(OK "X (U ~"
+ MY (S, M(n)U(n)~*
=FT(Q% qdFmUm™.

Assume thatL;n’ is the term of degreé in the polynomial
part of the rational matrix(/ (n)U(n)~*. Since the left-hand

(38)

Evidently, this is equivalent teide of (38) is proper im and equating powers of yields

FT(Q)Y) _d,dLi = 0 (i > 1). Expressingl(¢) as I(¢) =

F col(I,1¢,---,I¢N) we obtainFTy) _g gL; = 0. SinceF’
has full row rank this yieldd,; = 0. Thus we proved that
FU—' is proper. Definel,, := limy—.oc F(A)U(N)"L. By

k = n as claimed. Accordlng to Lemma 12.2 we then havgutting in (28),¢ = —\, andn = X, premultiplying the result

rank(P) = z+d andsign(P) = (d,m; + my —z — d,z). We
also haverank(M."$-1M,) =1

Since B has storage functiofj Z(d/d¢)¢'||% _, the QDF
(w))T S.w!, is nonnegative ol.-. Equivalently,R. Q. R.T >
0. Of course, this is equivalent tdgn(R. X R.7) = (0,m; —
z —d+ 1,z +d— 1). According to Lemma 12.2, this is
equivalent tosign(M."S7TM,) = (d,m; — 1,1 — d). It then
follows from Proposition 4.1 that there exisis € Rl ~I (€]
such that (28) holds. It is easily seen thatFifsatisfies (28)
then det(F) # 0. Note that its coefficient matrix then
automatically has full row rank.

Next we prove that iff" satisfies 9.3, thed/F ! is a
proper rational matrix. There exists a permutation mafrix
such thatPM = col(U,Y) with U € R <! [¢], det(U) #

by U(—X)~T and postmultiplying by/(1\)~*, and by finally
letting |A| — oo, we obtain ML M., = FOTOE| _d.dFoe
This implies thatF,, is nonsingular. Thereforef'U~! is
in fact biproper, i.e., has a proper inverse. Thus'—! =
MUY FU-Y)~1 is proper as claimed.

Now assume that{_ < 0. We first prove thatol(D, F; )
is Hurwitz. Clearly, it is square. To prove that it is non-
singular, we show thatlet(col(D(iw), Fiy (iw))) # 0 for
all w. Indeed, assume to the contrary that 0 satisfies
D(iw)v 0 and F,(iw)v = 0. Then it follows from
(29) that alsoZ(iw)v = 0. This contradicts observability
of M. We conclude from this thadet(col(D, F)) # 0.
Consider now the systerd = W (d/dt)¢, with W defined
by W = col(~D,F,,Z). Since (28) is equivalent with
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(d/dt)|| X (d/dt)l||? - + |1 Z(d/dt)2)]* — v?|| D(d/dt)e]]* =
| F(d/dt)e|)? — || F-(d/dt)e))? for all £ € C=(R,R! ), we

have
’7D<
dt
i o7 - 1z )ar

F —
+ <dt

{=3e] | . 2 i
for all £ € C*(R,R" ). Thus Qg (¥) := ||X(d/dt)£||7K:1 is
a storage function for the systein= W (d/d¢)¢. This storage

d
d /2 <
dt|‘((d/dt) |—K:1 = ||

function is positive semidefinite. It follows from Theorem 8.8V

that col(yD, F.), so alsocol(D, Iy ), is Hurwitz.

Finally, we prove that the factof itself is Hurwitz. As
before, letR.” and M. be the coefficient matrices of the
extensionsRT (—¢) and M, (¢), respectively. LetR and M
be the subspaces defined by (35) and (36). Note Ehat
im(R.") and M = im(M,). According to Lemma 12.3,
R = ker(M.T) and M = ker(R.). From this, it is easily
verified that

M 0 ker(MTY ) = 2R N ker(R.XL)).
Note that (29) is equivalent withM ()Xt M.(n)
FT(O)Y| _ddF(n). In terms of the coefficient matrices
this reads M. "S7'M. = F'S) _qqF. As before, let
H be a Hurwitz factor of R(&’)EUWRT( £) so that
R.(— C)E RI(—n) = HY(¢)H(n). This is equivalent with
RX.R™ = H'H.

We claim that the following inclusion holds:

(39)

d d d d

() (7 () = 2 () (&)
(40)
To prove this, let F(d/dt)f = 0. Clearly, M, 7% !

M_(d/dt)¢ = 0, so for allt we have( M (d/dt)£)(t) € M n

ker(M. T 1). By (39) this yieldsX, *(M.(d/dt)¢)(t) € R.
Since R = im(R”), there exists ¢/, € (™
such that 7'M (d/dt)¢ =  RY(—(d/dt))¢1. Also

R.X.RT(—(d/dt))¢y = R. M.(d/dt)¢ = 0, so H(d/dt)t;
= 0. This proves the inclusion (40).

The proof that#" is Hurwitz is now completed by noting
that'(d/dt)¢ = 0 implies that there exist§ € ker(H(d/dt))
such thatM,(d/dt)¢ = RY(—(d/dt))¢;. Since H is Hurwitz,
/1 is a linear combination of product§ with stable exponen-
tialsc™. The same thus holds fd, (d/dt)¢ so for M (d/dt).
Since M is observable, there exists a polynomial matfix
such thatLM = I. Thus,? = L{d/dt)M (d/dt)¢ is a linear
combination of products® with stable exponentiale*. This
completes the proof. O

Proof of Lemma 10.1.The proof is based on the fol-

lowing matrix theoretical result, which is a special case of

Lemma 12.2.

Lemma 12.4:Let Q € C" " be a nonsingular Hermitian
matrix. Let £ ¢ C" be a linear subspace. Lét; and Lo
be full column rank matrices such tha#t = im(Z,) and
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Lt = im(Ly). Then LIQL, is nonsingular iff L;Q~'L,
is nonsingular. In that caseign(Q@) sign(L1QL1) +
sign(L3Q ™1 Lo).

Recall from Proposition 3.2 tha(d/dt)w = 0 is a kernel
representation oB iff RA =0 andrank(R(\))=z+d—1
for all A € C. Choose such® with z +d — 1 rows. Then
w' = RT(—(d/dt))¢' is an observable image representation
of B. The idea of the proof is to apply Lemma 12.4 with
Q=2%,+¢I, Ly = M(iw), and Ly, = R*(—iw). For each
w € R defineL(iw) c C%*Y by L(iw) := im(M (iw)). Since
dim(im(RT (—iw))) = z+d — 1 = z + d dim(im(M (iw))),
e havel (iw)t = im(RT(—iw)). Both M (iw) and RT (—iw)
have full column rank for all. € R. By applying the previous
lemma, we find that if eitheM/? (—iw)(X, + €2I)M (iw) or
R(iw)(X,+€2I)"RY (—iw) is nonsingular for allu, then for
all w € R we havesign(X., + ¢2I) = sign(M*(—iw)(Z, +
1M (iw)) +sign(R(iw)(E + 1) "' R (—iw)). Note that,
for ¢ > 0 sufficiently smallsign(X. +¢*I) = (d,0,z). Hence,
for all w € R we havesign(M* (—iw)(Z.,, + €2I)M (iw))
(4,0,1 — 4) iff for all w € R we havesign(R(iw)(X, +
e I)7'R"(—iw)) = (0,0,z — 1 + d) or, equivalently,

R(iw)(E, + 1) R (—iw

)> 0. (41)
Finally, there exists > 0 such that (41) holds iff there exists
>0 such thatR(iw)(X; ., — €I)R" (—iw) > 0 Indeed,

(2, +ent ( )
€2 fd

_72_’_
S0 (41) is equivalent taR(iw)X; /. RY (—iw) >0, with
v(e) := (4% — €2/1 4 ¢2)1/2. By defininge; := (¢/7), this is
equivalent toR(iw)(¥;,, — e 1)R* (—iw) > 0. The proof is
completed by noting that sueh > 0 exists iff B! is strictly
dissipative with respect tow’)"' %, /., w’.

Proof of Lemma 10.4:As in the proof of Lemma 10.1,
let R be such thatw’ = R¥(—(d/dt))¢ is an observ-
able image representation oBL. Define I'.,(¢,7)
R(={)Zy /R (—n). If B+ is strictly dissipative, therdI",
has no roots on the imaginary axis. L&t be the PICk
matrix associated witl',. It was shown in [23 Th 9.1] that
the smallest storage functlon @ is negative definite iff
Tt <0. Now, it can be shown that, in fact, the Pick matrices
associated witlp., andl’, are the same. The proof is omitted
due to space limitations.

1
1+¢2
0

Iz 0
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