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Abstract—In this paper the authors formulate theH1-control
problem in a behavioral setting. Given a mathematical model,
say a set of higher order differential equations together with
some static equations, the vector of manifest variables (i.e., the
variables to be modeled) is partitioned into yet to be controlled
variables, unknown exogenous variables (called disturbances),
and interconnection variables. The interconnection variables are
available for interconnection, in the sense that they can be made
to obey certain differential or static equations, to be specified by
the designer. Such a system of differential equations and static
equations is called a controller. The design problem that we
consider is to find controllers such that (in theL2-sense) the size
of the to be controlled variables is less than a given tolerance, for
all disturbances in the unit ball, and such that the interconnection
is a stable system. We find necessary and sufficient conditions for
the existence of suitable controllers, under the hypothesis that
we have a full information problem. These conditions involve
indefinite factorizations of polynomial matrices and a test on a
given Pick matrix.

Index Terms—Behaviors, dissipativity,H1 control, linear sys-
tems, Pick matrices, quadratic differential forms, spectral factor-
ization, storage functions.

I. INTRODUCTION

PRESENT day control theory is centered around the prob-
lem of designing feedback loops around a given plant such

that in the closed-loop system certain design specifications
are satisfied. The plant under consideration typically has
control inputs, exogenous inputs, measured outputs, and to
be controlled outputs. The controller to be designed takes the
measured outputs of the system as its inputs, and generates,
on the basis of these inputs, control inputs for the plant. These
controllers should be designed in such a way that the resulting
closed-loop system meets the specifications. The above general
scheme of approaching control design problems has been
called the intelligent control paradigm(see [22]).

It is our conviction that in many cases it is more natural
to view controller design as the problem of designing for
a given plant an additional set of “laws” that the vari-
ables appearing in the system should obey. More specifically,
if a plant is modeled as a set of “behavioral equations,”
then, from our point of view, the controller design question
is to invent an additional set of equations—the controller
equations—involving the variables appearing in the system.
These additional equations should be such that the “controlled
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system” (i.e., the system consisting of those variables that
are compatible with both set of equations) satisfies the given
control specifications.

This point of view is, in our opinion, very natural. Suppose
we have a mathematical model obtained from first principles
modeling, say a set of higher order differential equations,
together with some static equations. The collection of all
(vector-valued) time trajectories satisfying these equations is
called the behavior. In general, this vector of time trajectories
(called the manifest variable) will consist of several types
of components. Typically, certain components are variables
that we want to keep small, as certain components represent
unknown exogenous variables, and other components are
variables that are still available for interconnection, in the
sense that we can make them obey certain differential or static
equations, to be specified by the control design. In the classical
control framework one proceeds as follows. The mathematical
model is put into some standard form, for example expressing
the laws that are satisfied by the various variables in terms of a
standard transfer matrix model or a standard state-space model.
Inherent in this procedure is that the manifest variable is split
up into input components and output components: some are
labeled exogenous inputs, some to be controlled outputs, some
control inputs, and some measured outputs. Next, one does a
controller design. In the classical framework, this results in a
controller description in the form of an input–output relation
between the measured outputs and the control inputs. As in
[22], in this paper we propose a more general way of looking at
controller design. Instead of putting the original mathematical
model into some standard form while specifying inputs and
outputs, we prefer to leave the model as it is and not bother
about the question which variables should be called inputs or
outputs. Instead, we simply specify some of the components
of the manifest variable to beinterconnection variables, i.e.,
variables that we can make to satisfy certain equations. Then,
depending on what properties one wants the controlled system
to satisfy, we do a controller design. This controller design
is now the determination of a set of additional equations
involving the interconnection variables.

In this paper, we reformulate and study the -control
problem from this vantage point. Starting from the dynamical
model, some components of the manifest variable are assumed
to be free, in the sense that they are not constrained by
the model. Hence, such a component can in principle be
any time trajectory. These components are the disturbances.
Other components of the manifest variable are variables that
we want to keep small (think of variables that measure the
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deviation from some desired time trajectory). These are called
to be controlled variables. A third group of components are
the interconnection variables (some of them are also free
of course) as explained above. The control problem that
we consider in this paper is to design a set of additional
dynamic constraints on the interconnection variables (differ-
ential equations involving these variables) such that, roughly
speaking, the to be controlled variables are “small” whatever
the disturbance that occurs. We want to stress that this point
of view generalizes the “classical” approach to In that
context, for the interconnection variableone would take the
composite vector with the control inputs and the
measured outputs. As also in some of the classical-theory,
one feature of our theory is then that the dynamic constraints
on need not be described by a proper transfer matrix.

This paper is concerned with a detailed formulation of the
problem and with a complete resolution of the full information
version of the problem. As other research in this area,
we mention the work of d’Andrea [3], [4], where a similar
problem formulation is considered from a state space point of
view.

This paper is organized as follows. In addition to the main
text, the paper contains an Appendix containing most of the
proofs. In Section II of this paper we formulate the suboptimal
and optimal -control problem in a representation-free,
behavioral context. We define the notions of (strictly)-
contracting controller and stabilizing controller. In Section III,
we discuss some material on the class of linear differential
systems, the class of systems that we will restrict ourselves
to in this paper. In this paper, we heavily use two-variable
polynomial matrices and quadratic differential forms (QDF’s).
These notions are briefly discussed in Section IV. For a
more extensive treatment, we refer to [23]. In Sections V
and VI, we study the -control problem for the class of
linear differential systems. We also explain what is meant by
a full information control problem. In Section VII we give
conditions for a controller to be (strictly)-contracting and
stabilizing. Before we formulate and prove the main results
of this paper, in Section VIII, we discuss dissipative systems.
Finally, in Sections IX and X we give a solution of the full
information suboptimal -control problem.

A Few Words on Notation:In this paper, integers that re-
fer to dimensions of linear spaces and/or sizes of matrices
are always denoted in typewriter type style. For example,

w denotes the linear space of real column vectors with
components, p q p q is the space of real (complex)

matrices, z denotes the identity matrix of size
etc. We also use the following convention: vectors
and are always elements of w d z l and x

respectively. Given two column vectors and the col-
umn vector obtained by stacking over is denoted by

Likewise, for given matrices and with the same
number of columns, denotes the matrix obtained
by stacking over For a given complex matrix we
denote by the conjugate transpose of The complex
conjugate of the complex number is denoted by For
a given finite-dimensional Euclidean space we denote
by the space of all measurable functionsfrom

Fig. 1. Interconnection ofB1 andB2:

to for which is finite. We denote
The space consists

as usual of all infinitely often differentiable functions from
to and denotes the elements of

with compact support. If is a Hermitian matrix, i.e., a
square matrix with complex coefficients such that
then we define its signature as the ordered triple

where denotes the number
(counting multiplicities) of negative eigenvalues of
the multiplicity of the eigenvalue zero, and the number
of positive eigenvalues of If is a matrix of proper
rational functions, then its -norm is defined by

If has all its poles in the open left half
of the complex plane, then the

-norm of

II. CONTROL IN A BEHAVIORAL SETTING

In this section we first briefly recall our view of control in
the context of the behavioral approach to dynamical systems.
A dynamical system is a triple, with
the time axis, a set called thesignal space, and
the behavior. The behavior consists of a family of admissible
functions The variable is called themanifest
variableof the system. Since and are often apparent from
the context (in the present paper and w), we
identify the system simply with its behavior
Let and be two
dynamical systems with the same time axis. We assume that
the signal spaces of and are Cartesian products, with the
factor in common. Correspondingly, trajectories of are
denoted by and trajectories of by We define
the interconnectionof and as the dynamical system

with
there exists such that and

The interconnection takes place via the variablewhich
is called theinterconnection variable. Often, we denote the
interconnected system by This interconnection is
illustrated in Fig. 1.

In this context, a control problem is formulated as follows.
Assume that theplant, a dynamical system

is given. The signal space of the plant is given as the
Cartesian product where the second factor, denotes
the space in which the interconnection variable, takes its
values. is calledthe interconnection spaceof Consider
now a family of dynamical systems, all with common
time axis and with common signal space An element

of is called anadmissible controller. The
interconnected system is called thecontrolled system.
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Fig. 2. Bp controlled byBc:

Fig. 3. Bp controlled byBc:

The control problem for the plant is now to specify the
set of admissible controllers, to describe what desirable
properties the controlled system should have, and, finally, to
find an admissible controller such that has
the desired properties. Thus control is nothing more than a
special type of interconnection (see Fig. 2). This paper deals
with the -control problem. In this context, the main desired
property of the controlled system is that certain components
(called the to be controlled variables) of the system’s manifest
variable are small (in an appropriate sense), regardless of the
values that certain other components (called the disturbances)
take. In addition, the controlled system should be stable, in the
sense that if the disturbances happen to be zero, then the to be
controlled variables should converge to zero as time runs off
to infinity. Therefore, our starting point is that the manifest
variable of the plant consist of three components,

Here, is the to be controlled variable,
is the disturbance, and is the interconnection variable as
referred to above. The variable is available to attach a
controller (see Fig. 3). Accordingly, the signal space of
is the Cartesian product with and the sets
in which respectively and take their values. Thus, in the
terminology used above, we take The component

is interpreted as a free unknown disturbance. This is modeled
by assuming that “any” function can occur as the
second component of the manifest variableof In order
to formalize this, if, in general, we have a dynamical system

with manifest variable and if
is the projection then

the variable is called free if Thus, for the
plant under consideration, we assume that the variableis
free. Of course, for mathematical reasons we will need to put
some minor regularity conditions on (see Section V).

We now specify the set of admissible controllers. Consider
any dynamical system with the same time
axis as the plant whose signal space is equal to the
interconnection space of According to the above
definition, the interconnection is

with there exists

such that Now, in the controlled system,
is of course still interpreted as an unknown externally

imposed disturbance. Hence, again,any should be possible
as the second component of the manifest variable of
the controlled system. If this requirement holds, then we call
the controlleradmissible: is admissible if in the controlled
system the variable is free.

In the controlled system we want the signalto be small,
regardless of the disturbancethat occurs. This specification
can of course be formalized in many ways, and in this paper
we consider the performance. We assume thatthe time
axis, is equal to and that the signal spaces and are
finite-dimensional Euclidean spaces. The size of the signals
and is measured by their -norms and .

Definition 2.1: Let be an admissible controller. The
-performance of the controlled system is defined

as

for all

Given the controller is called -contracting if
equivalently, if for all

we have and strictly -
contracting if equivalently, if there exists
such that for all we
have

Definition 2.2: An admissible controller is called a
stabilizing controller if in the controlled system the signal
converges to zero whenever , i.e., if
implies that

Example 2.3:As an example, suppose that the controlled
system is given by a second-order linear differential equation

(with and given
constants). The behavior of this system consists of all
that satisfy this differential equation. Our notion of stability
requires that for all solutions with we have

Thus stability is equivalent to the require-
ment that all solutions of the homogeneous equation converge
to zero as

The -optimal control problem is to minimize the
performance of over the class of all admissible
stabilizing controllers, i.e., to calculate

admissible and stabilizing

and to determine, if one exists, all optimal controllers, i.e., all
admissible stabilizing controllers such that
Given (the tolerance), the -suboptimal control prob-
lem is to determine, if one exists, all-contracting stabilizing
controllers. Thestrict -suboptimal control problem is to
determine all strictly -contracting stabilizing controllers. The
present paper deals with the strict -suboptimal control
problem.

III. L INEAR TIME-INVARIANT DIFFERENTIAL SYSTEMS

We restrict our attention to systems described by linear
differential equations with constant coefficients. Letdenote
an indeterminate, and let w be the set of all real
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polynomial matrices with columns and any (finite) number
of rows. An element w can be written explicitly as

for given real matrices
Consider now the system of differential

equations
or, in compact notation

(1)

This defines a linear time-invariant differential system, i.e., a
dynamical system w with time axis signal
space w and behavior equal to the solution set of (1):

w satisfies (1) The class of all such
systems is denoted byw Equation (1) is called a kernel
representation of w

Remark 3.1: In order to avoid irrelevant smoothness issues,
in this paper we define the behavior of a linear differential
system with kernel representation (1) to be the set of all

-solutions (also calledstrongsolutions) of this polynomial
differential equation. We could also define the behavior to
be the set of all w (i.e., all measurable ’s
for which exists for all and ) that satisfy
(1) in the sense of distributions (also calledweaksolutions).
Temporarily denoting the set of strong solutions by
and the set of weak solutions by it can be proven that

w is dense in w i.e., for
every w there exists a sequence
in w such that in

w -sense. This implies that in the context of the
control problem there is no loss of generality in restricting
oneself to strong solutions: for all

iff this inequality holds for all

We will make heavy use of image representations, that
is, representations of the form The image
representation is called observable ifis uniquely determined
by i.e., if implies
It can be shown that this image representation is observable iff

has full column rank for all (see [14]). A system
w admits an image representation iff it is controllable

(see [14] and [21]). Furthermore, such image representation
can always be chosen to be observable.

For a given real polynomial matrix we define as
the rank of considered as a matrix with elements in the field

of real rational functions. On the other hand, for a given
denotes the rank of the complex matrix

It is well known that
The following proposition gives conditions for given and
under which is a kernel representation of

the system with image representation .
Proposition 3.2: Let w l and let

w Then is a kernel representation
of the system with image representation iff

and for all (2)

The minimal number of rows over all ’s that yield a kernel
representation of the system with image representation

is thus equal to Hence, any with

rows that satisfies (2) yields a minimal kernel representation
of the system with image representation

Let w be controllable and let be an
observable image representation. There exists a permutation
matrix such that with a matrix of
proper rational functions (see [14] and [21]). This corresponds
to permuting the components of as with

and such that is an input and
is an output. The number of input components of i.e.,

the size of is denoted by and the number of output
components of i.e., the size of is denoted by A
polynomial matrix x w is said to define astate map
for if is a state variable for (see [16]). The
dimension of the state space of a state-minimal representation
of w is to be called theMcMillan degreeof and is
denoted by Often, is denoted by A state map

for is called a minimal state map if its number of rows
is equal to
We finally introduce the notion of duality for differen-

tial systems. Again consider a controllable system
w in image representation given by

and in kernel representation by Assume
that has rows. We definethe dual of to be the
system w with image representation

with latent variable l Thus,
the signal space of is equal to the signal spacew

of and the behavior of is equal to the image
of , i.e., l The
notation is motivated by the fact that, in an appropriate
sense, this is the set of trajectories orthogonal to; it can
be shown that for all w we have: iff

for all Also,
Since we will not use these facts in this paper, we omit the
proof.

IV. TWO-VARIABLE POLYNOMIAL MATRICES

AND QUADRATIC DIFFERENTIAL FORMS

An important role is played in this paper by two-variable
polynomial matrices. An extensive treatment was given in
[23]. In this section we give a brief review.

An two-variable polynomial matrix in the (commuting)
indeterminates and is an expression of the form

where are real matrices, and
where is an integer. With any such two-variable
polynomial matrix we can associate a bilinear functional

l l by defining
The

two-variable polynomial matrix is called symmetric
if for all In that case we also associate with

the QDF
The properties of the two-variable polynomial matrix

are completely determined by the real constant
matrix whose th block is equal

to This matrix is called thecoefficient matrixassociated
with Note that is symmetric if and only if
its coefficient matrix is a symmetric matrix. Factorizations of
the coefficient matrix immediately give rise to corresponding
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factorizations of the associated two-variable polynomial matrix
and QDF. In fact, we have the following.

Proposition 4.1: Let be a symmetric two-variable
polynomial matrix. Let be its coefficient matrix. Let

be integers such that Then the
following statements are equivalent.

1)
2) There exist real matrices l and l

such that .
3) There exist real polynomial matrices l l

and l l such that
.

4) There exist real polynomial matrices l l and
l l such that for all l for all

.

The QDF is called nonnegativeif in the
sense that for all It is easily seen
that is nonnegative iff the coefficient matrix satisfies

Let w be a differential system as (1) and
let be a symmetric two-variable polynomial
matrix. Then is callednonnegative on if
for all If is controllable and given in image
representation by then it is easily seen that
this holds iff the QDF associated with

is nonnegative (see also [23]). If
is constant, say and if then
the coefficient matrix of is equal to
with the coefficient matrix of the (one
variable) polynomial matrix Hence, the QDF is
nonnegative on the systemgiven by if and
only if the matrix

Any two-variable polynomial matrix gives rise to an
associated one-variable polynomial matrix in the indeterminate

by taking and The resulting polynomial
matrix plays an important role in the sequel. It is denoted by

V. LINEAR TIME-INVARIANT DIFFERENTIAL

SYSTEMS WITH DISTURBANCES

As already mentioned, we deal with differential systems
whose manifest variable consists of three components:

with the to be controlled variables,
the disturbances, and the interconnnection variables. Let

w (the plant) be such a system. We assume that
and take their values in z d and c respectively, so
the signal space of the plant equalsw z d c A
standing assumption will be that the plant is controllable.
Therefore, it admits an image representation
for some real polynomial matrix say with columns.
Without loss of generality, we assume moreover that this
image representation is observable, i.e., that has full
column rank for all Partition conformable the
partition of into

(3)

with and real polynomial matrices of appropriate
dimensions. is therefore equal to the set of signals

z d c for which there exists
a function l such that

and
Recall from Section II that the signal is interpreted as an

unknown disturbance. We have formalized this by assuming
that is free. In the present context of linear differential
systems this is formalized as follows. In general, if we have a
dynamical system w with signal space w w and
manifest variable and if w w w is
the projection then the variable is called

-free if w This is equivalent to saying
that every function can occur as the second component
of a trajectory of Let us now examine how this
notion translates into a property of an image representation. If

is given in image representation

then is -free iff the differential operator
l w is surjective. This is

the case if and only if the polynomial matrix has full
row rank. This equivalence is easily proven, for example,
via the Smith form of

We henceforth assume that in the plant the variable is
-free. Thus, in (3) we assume that the polynomial matrix

has full row rank equivalently, that the differential operator
is surjective.

We now specify the set of admissible controllers in the
context of linear differential systems. Any linear differential
system with manifest variable and signal space equal to
the interconnection spacec of the plant is a candidate
admissible controller. However, for obvious reasons, we re-
quire that in the interconnected system the variable

(as an externally imposed disturbance) should still be free.
In the context of linear differential systems we interpret this
in the sense that should remain -free.

Definition 5.1: The linear differential system is called
an admissible controllerfor our plant if in the
variable is -free.

We explain in the next section how the requirement of ad-
missibility translates into a condition involving the polynomial
matrices defining the plant and the controller.

VI. THE FULL INFORMATION -CONTROL PROBLEM

In this paper we restrict ourselves to a solution of thefull
information -control problem. Related material on this
issue can be found in [5]. In the present section we explain
the notion of full information control problem.

In general, if is a dynamical system with manifest variable
then we call observable from if is

completely determined by in the sense that if
and are in and if then If

is observable from then we call a full information
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variable for : in this case the whole manifest variablecan
actually be determined from the component and observing

alone still gives full information about Suppose that we
have a linear differential system given by an observable
image representation

We claim that is a full information variable for if
and only if the system is observable,
equivalently, has full column rank for all
Indeed, let Then, by observability
of from we must have
Since the representation itself is observable, we conclude that

The converse is immediate.
Consider now, as before, a plant w with manifest

variable In this paper, we restrict attention to
the case that the interconnection variableis a full information
variable for In other words, is observable from

If this is the case, then we call the corresponding
optimal and suboptimal control problemsfull information
problems. We now investigate how the property that is
a full information variable translates into conditions on the
defining polynomial matrices in case that the plant is a linear
differential system in image representation. Consider the plant

with image representation

(4)

Then we arrive at the following.
Proposition 6.1: Assume that the representation (4) is ob-

servable. Then the interconnection variableis a full informa-
tion variable for if and only if is observable,
equivalently, iff for all

Thus we will henceforth assume that the plant is described
by (4), with of full column rank for all

We now specify the admissible controllers in the full in-
formation case. As a differential system, a controller imposes
a restriction on the interconnection variablesof the form

Such a controller can of course always also
be viewed as imposing a condition on the latent variableof
the plant (4). Indeed, imposing is equivalent
to imposing with However, in the
full information case the converse also holds: any polynomial
matrix with columns can be written as (define

with a polynomial left inverse of ). Hence, if
in the plant the representation is observable,
i.e., in the full information case, the set of controllers of the
form

(5)

and the set of controllers of the form

(6)

yield one and the same set of controlled systems. Therefore,
we may without loss of generality restrict ourselves to the set
of all controllers given by (6), where ranges over the set
of all polynomial matrices with columns. Without loss of
generality we further restrict ourselves to polynomial matrices

with full row rank.
In the following lemma we deal with the question under

what conditions a controller (6) is admissible.
Lemma 6.2:Consider the plant with observable image

representation (6). Assume thatis a full information variable.
Then the controller (6) with of full row rank is admissible
if and only if has full row rank.

Proof: See the Appendix.
In the sequel we simply write instead of
To summarize, we consider the plant given by the

observable image representation (4), witha full information
variable. This means that is also observable.
We consider controllers given by

(7)

with a polynomial matrix with columns. Assuming,
without loss of generality, that has full row rank then such
a controller is admissible iff has full row rank. The
class of all admissible controllers given by equations of the
form (7) is be denoted by Note that if is admissible and

has full row rank, then can at most have rows. Thus
an admissible controller can impose at most differential
relations on the latent variable

In the following proposition, the properties of being sta-
bilizing, -contracting, and strictly -contracting (as defined
in Definitions 2.1 and 2.2) are formulated in terms of the
polynomial matrices defining the plant and the controller. A
proof follows immediately from the definitions.

Proposition 6.3: Let be an admissible controller, i.e.,
Then:

1) is stabilizing iff for all l such
that and we have

2) for a given is -contracting iff for all
l such that

d and z we have

3) is strictly -contracting iff there exists such
that for all as in 2) we have

VII. W HEN IS A CONTROLLER STABILIZING

AND STRICTLY CONTRACTING?

In this section we derive conditions for a controller
to be stabilizing and strictly -contracting. Consider again the
plant with observable image representation (4), and with
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a full information variable (equivalently, has full column
rank for all ). In the sequel we denote

(8)

Throughout this paper, as an additional assumption on the plant
we assume that has full column rank for all

equivalently that is observable as an
image representation (see Section III).

For a given define the diagonal
matrix by

z
d

(9)

Associated with the plant and we consider the
symmetric two-variable polynomial matrix
defined by

(10)

This two-variable polynomial matrix induces a one-variable
polynomial matrix (in the indeterminate) defined

as discussed in Section IV by
For z d define its squared -norm

by and for
z d we define its squared -

norm by Of course,

Lemma 7.1:Let be represented by
with full row rank. Let Then the

following statements are equivalent.

1) is -contracting.
2) For all l such that we have

3) For all such that and
for all we have

4) The polynomial matrix is nonsingular, and the
matrix of rational functions

d (11)

is proper and satisfies

Proof: See the Appendix.
Remark 7.2:The controlled system is governed by

and If is -
contracting, then because of the nonsingularity of we can
(formally) solve for using standard transfer function notation,
yielding d . Hence, the rational matrix (11)
can be interpreted as the transfer matrix fromto Thus,
as a consequence of the above result,is a -contracting
controller iff in the controlled system the variables

and are related by a proper rational matrix with -norm
less than or equal to In particular, this implies that in the
controlled system the variablesand must have the usual
properties of input and output, respectively (see [21]).

Next, we derive the analogue of Lemma 7.1 forstrictly
-contracting controllers. If is a strictly -contracting

controller, then by Proposition 6.3 there exists such
that for all l satisfying and

we have
By taking sufficiently small and by

taking this is equivalent to
Next, by defining

this, in turn, is equivalent to
We can

restate this in terms of as follows.
Lemma 7.3:Let is strictly -contracting

iff there exists such that for all l with
and z d we have

(12)

By defining and by noting that
we have that (12) is equivalent

with Thus, we can immediately apply
Lemma 7.1, to obtain the following.

Lemma 7.4:Let be represented by
with full row rank. Let Then the

following statements are equivalent.

1) is strictly -contracting.
2) There exists such that for all l

with we have

3) There exists such that for all such that
and for all we

have

4) The polynomial matrix is nonsingular, and the
matrix of rational functions

d (13)

is proper and satisfies

Remark 7.5:A remark similar to Remark 7.2 holds. This
time, however, the transfer matrix from to has to have

-norm strictly less than
Remark 7.6:Consider a controller represented by

with full row rank. We can
always factor with and

for all The controller
given by is the controllable
part of It is easily verified that is admissible iff
is. It also follows easily from Lemmas 7.1 and 7.4 that
is (strictly) -contracting iff is (strictly) -contracting.
Thus, in this sense we may as well restrict our attention to
controllable controllers.

A polynomial matrix is called Hurwitz if it is square,
if and if has all its zeroes in the open
left-half of the complex plane. As an easy consequence of
Proposition 6.3, the following lemma gives a necessary and
sufficient condition for a controller to be stabilizing.
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Lemma 7.7:Let be represented by
with full row rank. Then is stabilizing

iff is Hurwitz.
Remark 7.8: If is a stabilizing, strictly -contracting

controller, then in the controlled system the variables
and are related by the proper rational matrix with

Furthermore, has now all its poles in
so the -norm of is in fact equal to the -norm of
Thus, we see that is a stabilizing and strictly -contracting
controller iff is Hurwitz and in the controlled system the
variables and are related by a proper rational matrix with

-norm less than
Remark 7.9:The assumption that should have full

column rank for all is made as a standing assumption
in order to improve readability. However, at many places
in this paper it is possible to relax this assumption. For
example, Lemmas 7.1 and 7.4 already hold under the weaker
assumption that has full column rank for

Also, Lemma 7.7 already holds under the assumption
that has full column rank for Indeed,
already under this assumption an admissible controller

with full row rank, is stabilizing
iff is Hurwitz, or, equivalently, and

implies as In particular,
this implies that for any state variable we have

VIII. D ISSIPATIVE SYSTEMS AND STORAGE FUNCTIONS

In this paper, our aim is to establish conditions on the
plant for the existence of stabilizing, strictly-contracting
controllers, and to provide algorithms for calculating such
controllers. An important role in our development is played
by the notions of dissipativeness, strict dissipativeness, and
storage function. These notions have been studied before in
[18], [8], and [17]. We also refer to [13]. In the present section
we introduce and study these notions in the framework of
linear differential systems.

Consider, in general, a controllable differential system
given by the observable image representation

(14)

with w l In addition, let w

be the QDF associated with a given
two-variable polynomial matrix w w is called
the supply rate. System (14) is calleddissipativewith respect
to the supply rate if for all w there holds

(15)

System (14) is calledstrictly dissipativewith respect to the
supply rate if there exists such that for all

w

(16)

Given the image representation (14) and the polynomial
matrix define l l by

It is easily verified that if and
are related by (14), then Therefore, the
system is dissipative iff for all l we have

and strictly dissipative iff there exists
such that for all l we have

These conditions are equivalent to

for all (17)

and

for all (18)

respectively (see [23]). It is well known (see [1], [2], [15],
and [10]) that if (17) holds then we can factorize

with l l If (18) holds,
then can be chosen Hurwitz, and also anti-Hurwitz (a
polynomial matrix is calledanti-Hurwitz if it is square, if

and if has all its zeroes in the open right
half of the complex plane). Introduce now the two-variable
polynomial defined by
Since the two-variable polynomial must contain a
factor (see [23, Th. 3.1]), and therefore we can define
the new two-variable polynomial by

(19)

Consider now the QDF’s and associated with and
respectively. We have

Furthermore, (19) is equivalent to for
all l Thus we obtain

(20)

for all l for all If we interpret
as the amount of supply (e.g., energy) stored inside the system
at time then (20) expresses the fact that the rate at which
the internal storage increases does not exceed the rate at
which supply flows into the system. Inequality (20) is called
the dissipation inequality. Any QDF l

that satisfies this inequality is called astorage
function. It can be shown that is dissipative if and only
if there exists a symmetric two-variable polynomial matrix

such that the corresponding QDF satisfies (20).
In general, storage functions are not unique. In fact, we quote
[23, Th. 5.7].

Proposition 8.1: Assume is dissipative with respect to
Then there exist storage functions and such

that any other storage function satisfies
If is strictly dissipative then and may be

constructed as follows. Let and be, respectively, Hurwitz
and anti-Hurwitz factorizations of Then

and
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If a storage function is a positive semidefinite (negative
semidefinite) QDF, then we call it a positive semidefinite
(negative semidefinite) storage function.

We now review a basic result from [23], which says that if
the system is dissipative, then storage functions can always
be represented as quadratic functions of any state variable of

We now make this precise.
Theorem 8.2:Let be dissipative with respect to

and let be a storage function, i.e., assume that (20)
holds. Let x l define a state map of Then
there exists a real symmetric matrix x x such
that Equivalently,

for all l In
particular this implies that for all

l

Proof: For a proof of this, we refer to [23].
A storage function for is called positive (negative)

definite if there exists a state map for and a matrix
such that for all

l

In the remainder of this section we consider the case that
is constant, with the nonsingular

signature matrix

r
r

(21)

Here, and are given positive integers. The corre-
sponding supply rate is then given by
corresponds to the number of positive squares inand
to the number of negative squares. In this case the property
that is a storage function for can
be expressed in terms of nonnegativeness of a certain constant
QDF on an auxiliary system associated with We explain
this now.

Let be a state map of given in image represen-
tation by (14). Define w x l by

(22)

The system with image representation is
denoted by This system will be called theextensionof
Denote the coefficient matrix of (see Section IV) by
The following lemma holds.

Lemma 8.3:Let x x Define w x w x

by

(23)

Then is a storage function for the system
with supply rate iff the QDF is nonnegative
on equivalently, iff

Proof: See the Appendix.
In addition to the notion of strict dissipativity of which

requires strict positivity of the integral over
the whole real line, we also need the notion of stricthalfline

positivity. We call strictly -halfline -positive if there
exists such that for all w we have

(24)

Likewise we can define the notion ofstrict -halfline -
positivity, which requires the inequality over integrals from

to zero. The following theorem states that a controllable
system is strictly dissipative with respect to and has a
negative definite storage function iff is strictly -halfline

-positive.
Theorem 8.4:Let n l define a minimal state map

for The following statements are equivalent.

1) is strictly dissipative with respect to and there
exists a negative definite matrix n n such that

is a storage function.
2) is strictly -halfline -positive.

Proof: The analogue of this theorem for the case of strict
-halfline -positivity was proven in [23, Th. 9.3]. The proof

for the positive halfline counterpart is completely analogous.

Again consider system (14). Let w l l be such
that is a kernel representation of it. Recall
from Section III that the dual of is given in image
representation by The McMillan degree

of is equal to the McMillan degreeof We now
recall the following result from [23].

Lemma 8.5:Assume that n l defines a minimal
state map for i.e., defines a minimal state of

Then there exists a n w l defining a minimal
state map for such that for all l

and w l we have

(25)

If a pair of minimal state maps of and satisfies
(25), then it is called amatched pairof state maps.

We also recall the following result from [23], which relates
dissipativeness of with that of .

Theorem 8.6:Assume that i.e., the number of
positive squares in is equal to the number of inputs
of Then is strictly dissipative with respect to
iff is strictly dissipative with respect to
Assume this to be the case. Let be a matched pair
of minimal state maps for and and let define a
storage function for By Theorem 8.2, is a quadratic state
function, i.e., there exists a real symmetric matrixsuch that

Assume that is nonsingular. Then
is a storage function of

Proof: See [23, Th. 10.2].
Remark 8.7:Theorem 8.6 can be easily extended to the

case that the supply rate is given by with
and with

Then is dissipative w.r.t. iff is
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dissipative w.r.t. If is a matched pair
of minimal state maps for and and if
is a storage function of w.r.t. (with )
then is a storage function of w.r.t.

To conclude this section, we discuss the relationship be-
tween the existence of positive semidefinite storage functions
and stability.

Theorem 8.8:Assume that Partition

compatible with the partitioning of Then square. Assume
that Let n l and define a minimal
state map for If is dissipative with respect to

then is proper, and the following statements
are equivalent.

1) is Hurwitz.
2) There exists a positive semidefinite storage function.
3) There exists a positive definite matrix n n such

that is a storage function.

Proof: See [23, Th. 6.4].

IX. EXISTENCE OF STABILIZING ,
STRICTLY CONTRACTING CONTROLLERS

We now return to the plant with image representation
(4). Assume that has full column rank for all In
the sequel, an important role is played by the system obtained
by taking the and components of the plant

(26)

This system is denoted simply by Recall the Definition 7.1
of We assume that has full column
rank for all equivalently, that the representation (26)
is observable. We also denote simply by

In this section we consider factorizations of the polynomial
matrix [see (9) and
(10)]. A factorization r r with

l l is called asymmetric factorizationof
Here, and are nonnegative integers such that

and r r denotes the signature matrix (21). If
then the factorization is said to benonsingular. The integers

and are called thepositivity indexandnegativity index,
respectively, of the factorization. A nonsingular factorization is
called aregular factorizationif is a matrix of proper
rational functions. The factorization is calledHurwitz if the
factor is Hurwitz.

In the following, in accordance with (9), let be given
by

z

d

We now formulate the main result of this section. It turns out
that there exists a stabilizing, strictly-contracting controller

for the plant iff the dual of [given by (26)] is strictly
dissipative with respect to the supply rate and,
in addition, has anegative definitestorage function.

We also show that the existence of stabilizing, strictly-
contracting controllers is equivalent to the existence of certain
regular Hurwitz factorizations of the polynomial matrix
These factorizations yield explicit formulas for the controllers
that we are seeking. This result is strongly related to earlier
work on the polynomial approach to control by Meinsma
(see [12] and [11]). In particular, the equivalence between
the existence of a stabilizing, strictly-contracting controller
and the existence of a regular Hurwitz-spectral factor was
already established in [12]. Related results can also be found
in [7], [6], and [9].

Theorem 9.1:Let Then the following statements are
equivalent.

1) There exists a stabilizing, strictly-contracting con-
troller.

2) is strictly dissipative with respect to the supply
rate and there exists a negative definite
storage function for it.

3) There exists a polynomial matrix l l such that

a) l d d

b) is proper;

c) is Hurwitz;

d) is Hurwitz.

Here, is obtained by partitioning into

(27)

where has rows, and has rows. If is a
polynomial matrix such that (3) is satisfied, then has full
row rank, and the controller represented by

is admissible, stabilizing, and strictly-
contracting.

In the remainder of this section we prove this theorem.
We first show that the existence of a stabilizing, strictly-
contracting controller implies that has a negative definite
storage function.

Lemma 9.2:Let If there exists a stabilizing, strictly
-contracting controller, then is strictly dissipative with

respect to the supply rate and for every minimal
state map n l of there exists a negative definite
matrix n n such that is a
storage function.

Proof: See the Appendix.
Clearly, Lemma 9.2 immediately yields a proof of the

implication (1) (2) in Theorem 9.1. We now formulate a
lemma that will enable us to prove the implication (2) (3).

Lemma 9.3:Let Let be a matched pair of
minimal state maps for and Let be strictly dissipa-
tive with respect to and let n n

be such that is the smallest storage
function of Assume that Then there exist
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l l such that

l d d (28)

Under these assumptions, for everysuch that (28) holds we
have and the rational matrix is proper.
If, in addition, then for any such that (28) holds,

and are Hurwitz. Here, is obtained by taking
the first rows of Consequently, any such yields
a regular Hurwitz factorization of with positivity index

l d d (29)

with Hurwitz.
Proof: See the Appendix.
Proof of (2) (3): Assume that is strictly dissipa-

tive and has a negative definite storage function. Then there
exists a minimal state map of and

n n such that is a storage
function. Now let be the smallest storage function
of According to Theorem 8.2, there exists

n n such that Clearly,
so Now take a minimal state map of such

that is a matched pair. Then according to Lemma 9.3
there exists l l such that (28) holds and such that

Any such has the properties that are required
in condition (3) of Theorem 9.1.

The proof of the implication (3) (1) is now straightfor-
ward.

Proof of (3) (1): Since
has full row rank and yields an admissible controller. Since

is Hurwitz, this controller is stabilizing (see
Lemma 7.7). Next we show that is a strictly -contracting
controller. Consider the linear polynomial matrix equation

in the unknown Clearly, is
a proper rational solution without poles on the imaginary
axis. Hence Now, for all and

we have
Hence there exists such that

This yields that for all
we have

Apply Lemma 7.4 to
conclude that is strictly -contracting. This completes the
proof of Theorem 9.1.

X. A PICK MATRIX TEST FOR THEEXISTENCE OF

STABILIZING STRICTLY CONTRACTING CONTROLLERS

In Section IX we have shown that there exists a stabilizing,
strictly -contracting controller for the plant iff the dual
system of [given by (26)] is strictly dissipative and has
a negative definite storage function. Of course, we would like
to express these conditions in terms of theoriginal system

In this section we obtain a test in terms of the original
system to decide whether the dual is strictly dissipative.
We also obtain a test in terms of the original systemto
decide whether has a negative definite storage function. It
is shown that such negative definite storage function exists iff

a certain Pick matrix associated with the systemis negative
definite. At the end of the section these results are applied to
the control problem.

We first express strict dissipativity of in terms of a
condition on the original system. Recall the definition (10) of
the two-variable polynomial matrix It turns out that

is strictly dissipative iff satisfies a strict signature
condition along the imaginary axis.

Lemma 10.1: is strictly dissipative with respect to the
supply rate iff there exists such that

for all (30)

Proof: See the Appendix.
Remark 10.2:It can be proven that there exists such

that (26) holds iff there exists such that (26) holdsfor
all In particular, this implies that a necessary
condition for a stabilizing, strictly -contracting controller to
exist is that already for all

.
In the following definition we consider a general symmetric

two-variable polynomial matrix We associate
with a Pick matrix to be defined below. Since the expression
is much simpler in that case, we restrict ourselves here to
the case that is semisimple. Due to space limitations, the
general case will be omitted. However, the results below are
still valid in that case. A polynomial matrix q q

is called semisimpleif for all the
dimension of is equal to the multiplicity of as
a root of the polynomial

Definition 10.3 (Semisimple Case):Assume that
has no roots on the imaginary axis. Let k be
the roots (counting multiplicity) of with negative real
part and let k

l be such that
and such that the ’s associated with the same form a
basis of Then we define k k to be the
Hermitian matrix with

(31)

Next, we express the existence of a negative definite storage
function for as a condition on the Pick matrix associated
with the original problem data .

Lemma 10.4:Assume that is strictly dissipative with
respect to the supply rate Then it has a negative
definite storage function iff the Pick matrix is negative
definite.

Proof: See the Appendix.
Thus, summarizing, we immediately obtain the following

theorem giving necessary and sufficient conditions (in terms
of the original problem data summarized in the two-variable
polynomial matrix ) for the existence of a stabilizing,
strictly -contracting controller.

Theorem 10.5:Let There exists a stabilizing, strictly
-contracting controller iff the following two conditions are

satisfied.
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1) There exists such that
for all .

2) .

This theorem yields a test for the existence of stabilizing,
strictly -contracting controllers and an algorithm to calculate
one. We start with a plant in image representation (4) and
a required tolerance Hence, our data are the polynomial
matrices and and We assume that and

have full column rank for all
Step 1: Calculate Check if there exists

such that for all we have
If not, then stop:

no stabilizing, strictly -contracting controller exists. If yes,
then go to Step 2.

Step 2: Calculate the roots of in the open left-
half of the complex plane, and calculate the Pick matrix
Check if If not, then stop: no stabilizing strictly

-contracting controller exists. If yes, a stabilizing strictly
-contracting controller exists. Go to Step 3.
Step 3: Factor l d d with

Hurwitz, Hurwitz, and proper. Here, is
obtained by taking the first rows of The controller
represented by is admissible,
stabilizing, and strictly -contracting.

XI. CONCLUSIONS

In this paper we formulated the -control problem from a
behavioral perspective. We focused on the strictly suboptimal,
full information case. It was shown that a stabilizing, strictly-
contracting controller exists for the plant under consideration,
iff a given one-variable polynomial matrix associated with the
plant has a certain regular, indefinite spectral factorization. The
required controller can be obtained directly from the spectral
factor. We also showed that such a regular, indefinite spectral
factorization exists iff the polynomial matrix associated with
the plant satisfies a given strict signature condition along the
imaginary axis, and a given Pick matrix is negative definite.
Future research will be dedicated to a treatment of the general,
not full-information problem. Also, in a forthcoming paper we
develop algorithms to obtain the required indefinite spectral
factorizations.

APPENDIX

PROOFS

Proof of Lemma 6.2:We need to prove that in (4) com-
bined with (6), is -free iff has full row rank. If this is
the case, then the differential operator is surjective.

Let d be arbitrary. There exists l

such that Define
Then This

proves that in is indeed -free. Conversely, if
does not have full row rank then there exists a polynomial

row vector such that Since
has full row rank, Now let be
a function,
and Then there must hold

In other words, necessarily satisfies a nontrivial differential
equation, so it can not be -free.

Proof of Lemma 7.1:Factor with
and for all Note

that iff Furthermore,
for at most finitely many Also, there

exists l l r such that and such that
for all Hence has

full column rank for all
(1) (2): This implication follows immediately from

Proposition 6.3.
(2) (3): Let be such that Let

Then so there exist
such that Define l r by

Here is chosen such that l r Note that is
(and can) be chosen to be independent ofDefine

Then Now, an easy calculation
shows

Since the integral on the
left is we must have

(3) (4): First note that has full row rank. We show
that it also has full column rank. Let be such that

and assume From (3)
we get By observability of this yields

Hence has full column rank. Define a matrix

of rational functions where denotes the
identity matrix. Note that and

Again let be such that Then is

nonsingular. For all d we have
and hence Thus

This inequality holds for all but
finitely many We conclude that is proper and

(4) (1): Consider the system

Using that is
a proper rational matrix, it can be shown thatis an input
and an output. Hence, there exist constant matrices
and such that and satisfy

for some absolutely continuous function
Also, We can choose and

such that the pair is observable. Using that
has no poles on the imaginary axis, we can choosesuch
that for every eigenvalue Our proof is now
completed by applying the following well-known result.

Lemma 12.1:Assume that z and
d are related by

where is observable with such that
for every eigenvalue Then with
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Proof of Lemma 8.3: is a storage function
for with supply rate iff

for all l This can be
seen to hold iff for all

l equivalently iff the QDF is nonnegative
on the extension

Proof of Lemma 9.2:Let be such that and
for all so that is

a minimal kernel representation of Assume that there exists
a stabilizing, strictly -contracting controller

. We may assume that has full row rank
and that is controllable. Let be such that

and for all Then
is an observable image representation of

Denote the system
by Obviously, It is easily verified that
is Hurwitz since is Hurwitz, and that the system is
strictly dissipative with respect to the supply rate
Let define a minimal state map for and let define a
minimal state map of such that is a matched pair.
Note that the number of positive eigenvalues of is equal
to the number of inputs of Since is Hurwitz,
it follows from Theorem 8.8 that there exists a positive definite
matrix such that is a storage function for

By applying Theorem 8.6, is strictly dissipative with
respect to and is a storage
function which denotes the latent variable of Now
apply Theorem 8.4 to find that is strictly -halfine -
positive. Since, however, the same holds for
which, again by Theorem 8.4, completes our proof.

Proof of Lemma 9.3:In the proof of Lemma 9.3 we need
the following general matrix theoretical lemma.

Lemma 12.2:Let r r be nonsingular and Hermi-
tian. For given integers and let r m and

r m be such that and
Define the matrix by

(32)

Then the following holds.

1) and

2) For any integer we have
iff

Consequently, there exists an integer such that
i.e., in forming the product matrix

the loss of rank (compared to the rank of the nonsingular
matrix is always even.

3) Let be such that Then the signature
of is given by

(33)

In particular this implies that if in forming the prod-
uct matrix the loss of rank is then negative
eigenvalues and positive eigenvalues will be lost.

Proof: Statement 1) is obvious. Now first assume that
and have full column rank. Then

To prove 2), use that Using this it can eas-
ily be verified that
Since and have full column rank, this implies that

which proves
2). Next we prove 3). Let and

Then clearly
We show now that and

This will be done using a perturbation
argument. For sufficiently small we have

Also, for sufficiently small we
have Also

The right-hand side of this equation is nonsingular, so all three
factors on the left-hand side are nonsingular as well. For
sufficiently small this implies that

This proves
the claim.

To prove the lemma for general and (not necessarily
of full column rank), let and be such that

and and such that
with and full column rank. Then

apply the previous data using and and note that rank
and signature are invariant under premultiplication byand
postmultiplication by

We now proceed with the proof of Lemma 9.3. In addition
to the extension of we consider the extension of

Let be a state map of We define to be the
system with image representation with

defined by

(34)

Lemma 12.3:Let be a matched pair of minimal
state maps for and Define subspaces z d n

z d n by

z d n l such that

(35)

z d n l such that

(36)

Then and
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Proof: For a proof, we refer to [23, Lemma 12.4].
We now give a proof of Lemma 9.3. is a

matched pair of minimal state maps. Consider the extensions
of and of Define

z d n z d n by

(37)

Then condition (28) is equivalent to

l d d Let and be the coefficient ma-
trices associated with the extensions and
According to Lemma 12.3 Also,

and Let and denote
the number of columns of and respectively. Note
that and Now consider
the product

Since we have
for some integer We prove

that, in fact, Indeed, we have
Now, is

the smallest storage function of with respect to the
supply rate Since there exists such that

for all
is obtained from a Hurwitz spectral factorization, in the sense
that if we factor with
Hurwitz, then

(see Proposition 8.1). Evidently, this is equivalent to
by definition. Thus we

find where is the coefficient matrix of
Since must have full row rank

This implies that has rank so that
as claimed. According to Lemma 12.2 we then have

and We
also have

Since has storage function the QDF

is nonnegative on Equivalently,
Of course, this is equivalent to

According to Lemma 12.2, this is
equivalent to It then
follows from Proposition 4.1 that there exists l l

such that (28) holds. It is easily seen that ifsatisfies (28)
then Note that its coefficient matrix then
automatically has full row rank.

Next we prove that if satisfies 9.3, then is a
proper rational matrix. There exists a permutation matrix
such that with l l

and such that is a proper rational matrix. De-
fine We first show that

Note that, by construction, has full
column rank. Next, as before, let z d l z d be
such that and such that
for all Since is strictly dissipative, there exists
such that for all

Let z d l z d l be such that
has full row rank. Then

we have so is
nonsingular. We claim that this implies that is
nonsingular. Indeed, consider the square matrix
Obviously, since this matrix is nonsingular.
Consider the product

Since we have that is nonsingular
iff is nonsingular. This holds iff

is nonsingular. This implies that is nonsingular
as claimed.

We now show that is a proper rational matrix. To
prove this, postmultiply (28) with to obtain

l d d (38)

Assume that is the term of degree in the polynomial
part of the rational matrix Since the left-hand
side of (38) is proper in and equating powers of yields

l d d Expressing as
we obtain l d d Since

has full row rank, this yields Thus we proved that
is proper. Define By

putting in (28), and premultiplying the result
by and postmultiplying by and by finally
letting we obtain l d d
This implies that is nonsingular. Therefore, is
in fact biproper, i.e., has a proper inverse. Thus

is proper as claimed.
Now assume that We first prove that

is Hurwitz. Clearly, it is square. To prove that it is non-
singular, we show that for
all Indeed, assume to the contrary that satisfies

and Then it follows from
(29) that also This contradicts observability
of We conclude from this that
Consider now the system with defined
by Since (28) is equivalent with
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for all l we
have

for all l Thus is

a storage function for the system This storage
function is positive semidefinite. It follows from Theorem 8.8
that so also is Hurwitz.

Finally, we prove that the factor itself is Hurwitz. As
before, let and be the coefficient matrices of the
extensions and respectively. Let and
be the subspaces defined by (35) and (36). Note that

and According to Lemma 12.3,
and From this, it is easily

verified that

(39)

Note that (29) is equivalent with

l d d In terms of the coefficient matrices
this reads l d d As before, let

be a Hurwitz factor of so that
This is equivalent with

We claim that the following inclusion holds:

(40)

To prove this, let Clearly,
so for all we have

By (39) this yields
Since there exists
such that Also

so
This proves the inclusion (40).

The proof that is Hurwitz is now completed by noting
that implies that there exists
such that Since is Hurwitz,

is a linear combination of products with stable exponen-
tials The same thus holds for so for
Since is observable, there exists a polynomial matrix
such that Thus, is a linear
combination of products with stable exponentials This
completes the proof.

Proof of Lemma 10.1:The proof is based on the fol-
lowing matrix theoretical result, which is a special case of
Lemma 12.2.

Lemma 12.4:Let r r be a nonsingular Hermitian
matrix. Let r be a linear subspace. Let and
be full column rank matrices such that and

L Then is nonsingular iff
is nonsingular. In that case

Recall from Proposition 3.2 that is a kernel
representation of iff and
for all Choose such with rows. Then

is an observable image representation
of The idea of the proof is to apply Lemma 12.4 with

and For each
define z d by Since

we have Both and
have full column rank for all By applying the previous
lemma, we find that if either or

is nonsingular for all then for
all we have

Note that,
for sufficiently small, Hence,
for all we have

iff for all we have
or, equivalently,

(41)

Finally, there exists such that (41) holds iff there exists
such that Indeed,

z

d

so (41) is equivalent to with
By defining this is

equivalent to The proof is
completed by noting that such exists iff is strictly
dissipative with respect to

Proof of Lemma 10.4:As in the proof of Lemma 10.1,
let be such that is an observ-
able image representation of Define

If is strictly dissipative, then
has no roots on the imaginary axis. Let be the Pick
matrix associated with It was shown in [23, Th 9.1] that
the smallest storage function of is negative definite iff

Now, it can be shown that, in fact, the Pick matrices
associated with and are the same. The proof is omitted
due to space limitations.
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