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Observer Synthesis in the Behavioral Approach

Maria Elena Valcher and Jan C. WillemBellow, IEEE

Abstract—This paper analyzes the observer design problem corresponding inputs and outputs. This problem has been later
in the behavioral context. Observability and detectability notions generalized in various ways, and in the last years, a great deal
are first introduced and fully characterized. Necessary and suf- of research has been aimed at state observers in the presence

ficient conditions for the existence of an observer, possibly an . .
asymptotic or an exact one, are introduced, and a complete pa- of unknown inputs (disturbances) [2]-{4], [12]-{16].

rameterization of all admissible observers is given. The problem  In this paper, we will be interested in the observer problem
of obtaining observers endowed with a (strictly) proper transfer for linear, time-invariant (continuous-time) dynamic systems,

matrix and the design of observer-based controllers are later which are described in behavioral terms by means of a set

addressed and solved. Finally, the above issues are particularizedof differential equations. More precisely, we will consider

to the case of state-space systems, thus showing they naturally, d . tent — ]R R+ 8 'h traiectori

generalize well-known theorems of traditional system theory. a dynamic sys e - ( ’ . ’ _)’ w osg rajectories
(w1, wa) satisfy some set of differential equations

Index Terms—Behaviors, latent variable models, observabil-
ity/detectability, proper transfer matrices.

d d
o (o= 2
I. INTRODUCTION

N THE last decade, the behavioral point of view [11], [17] d we will assumav, can be measured and, is unknown.

[18] has received an increasingly broader acceptance%se natural goal is that of desianing an estimatonefbased
an approach for modeling dynamic systems, and now it | urai goal| 'gning ! wo

generally viewed as a cogent framework for system analys?sr? the knowledgg ofw;, such that its estimation error goes
zero asymptotically.

ne of the r ns for i h looked for in ! . . .
One of the reasons for its success has to be looked fo {Rel'o reach this goal, we shall first introduce, in Section I, the

fact that it does not start with the input/output point of view . ! .
P put p notions of observability and detectability ef, from w;, and

for describing how a system interacts with its environme . ) .. o
g Y r%tr‘len provide (Section Ill) necessary and sufficient conditions

but focuses on the set of system trajectories, liebavior . ) . .
and hence on the mathematical model describing the relaticgﬁrg;hfez)é':tetgcz 0206:2 (éfgmrgf;rﬁ)egﬁgggg E?'ZI?'S%?;SQ
among all system variables. b P b

d . . . . gbservers, in terms of the polynomial matrices involved in
By assuming this point of view, important aspects of th% S
he system description.

classical system theory have been translated and solved, t : . -
leading to interesting results, which are powerful gjeneraliza—Lj§ect|0n IV deals with the problem of determining under

tions of well-known theorems obtained within the input/outpu% .Tﬁt gong)'t'(:str';:fs% C;S‘:’T'g 5 i)t(o cCJ)bftaclgu(;seyrrlﬁ'éotg:gti?:;ervers
or state-space contexts. In particular, recently, the conttd) prop ' ' e

problem has been posed in the behavioral setting [20], whergrif)duced by the observer can be used, together with the mea-

. ' sured variablew, to control the whole plant, thus obtaining,
can be naturally viewed as a problem of systems interconnéc-

tion. Although several issues have already been analyzed'rinifcuon V. an “observer-based controller” for the original
some detail, the important question of estimating some syst '

variables, not available for measurements, from others, which 'T‘a"y'. In _Secnon Vi, the main _deflnmons and results
are measured, has not been treated yet, provided in this paper are particularized to the case of state-

The synthesis of an observer of the state for a (”nespace models, thus showing they constitute natural extensions,

time-invariant) state-space system has been the object Q fthe behavioral setting, of the analogous definitions and

considerable interest in classical system theory [1], [10]. T Trlnjlttrfisb;alz(radinl';: Cé?:ilgfsgstetzl c;[ir;r?g%'ions of linear spaces
original theory of state observers was concerned with the Paper, 9 9 P

; N or sizes of matrices are always denoted in typewriter fonts.
problem of reconstructing (or estimating) the state from t ; s .
or instance R" denotes the linear space of real column

vectors withw; componentslR* " is the space of real x w;
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Il. OBSERVABILITY AND DETECTABILITY

Consider a dynamic systethi = (IR,IR" ™2 %), with

trajectories(wy, w2), whose behaviof$ is specified by the

set of differential equations

d d
(e = (s

(1)

with Ry € R[¢]7 and Ry € R[¢]7"2 polynomial matrices,
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we obtain the following equivalent description for the behavior
B of (2)

d
B = {(Wl,WQ) € (IRW1+W2)R : Dl <%>W1

d
=0andwy = Ny <%>W1}

which clearly provesw is observable fronw;.
On the other hand, iR; were not right prime, its kernel

(3)

andw; := dimw;,7 = 1,2. In the sequel, we will assume thewould include some nonzero trajectory[11]. So,(w, wa) €
trajectories(wy, w») belong to £°¢(IR, R™**2), the space B would also imply (wy,ws 4+ v) € B, thus ruling out

of all measurable functiong from IR to IR**™"2 for which

the integralfttf ||/ (#)]| dt is finite for all t; and¢,. Solutions

observability.
2) The proof follows the same lines as the previous one.

(w1, wy) that are not smooth are considered to be solutionsdeed,w- is detectable fronw if and only if ker( R, (d/dt))

in the distributional sense, with both the left- and right-hanid a stable autonomous behavior [11]; namely, it is the kernel
sides of (1) considered in the sense of distributions. Tl a full column rank matrix, and all its trajectories go to zero
interested reader is referred to [11] for details. The set agymptotically. This amounts to sayig, is of full column
trajectories(w,, w) satisfying (1) will be denoted, for short, rank with g.c.d. of its maximal-order minors, which is Hurwitz.

by ker([Ro(d/dt) | —Ri(d/dt)]).
If we assumew; can be exactly measured amnd, is

completely unknown, it is natural to search for necessary and

sufficient conditions for the existence of an estimatomof

based on the knowledge &f,, whose estimation error goes
to zero asymptotically. The first step toward this end is
introduce the notions of observability [18] and detectability

Definition 2.1: Consider a dynamic systerX = (IR,
IR"*t*2 8), whose behaviofB is described as follows:

B = {(wiw) € R Ry 5 o

dt
d
- ()]

with w; := dimw;, i = 1,2. We sayws is
+ observable fromwy, if (wyi, w2), (w1, ws2) € B implies
Wo = Wa,
* detectable fromwy, if (w1, ws), (w1, W2) € B implies

(2)

Wg(t) — Wg(t) t—TooO
Proposition 2.2: Consider the dynamic systent =
(R,IR"***2 98) described by (2), with?;, € IR[¢]**" and
Ry € R**™. Then,
i) wo is observable fromw, if and only if R, is a right
prime matrix, or, equivalently, if and only iR;(A) has
full column rank for allA € C;
i) wo is detectable fromw if and only if R, is of full

O

Il. ASYMPTOTIC OBSERVERSDESIGN

Consider the dynamic system described by (2), withas

the measured variable awd, as the to-be-estimated variable.
T'?he problem we will now address is that of introducing a
‘sound definition of “observer.” As a first requirement, an
observer ofw, from w; for system® should “accept” every
sequencevy, which is part of a behavior trajectofyw, w»),

and correspondingly produce some (in general, not unique)
estimated trajectoryw,. This process amounts to saying an
observer ofY should not introduce additional constraints on
thew; components of the system trajectories. We refer to such
a dynamic system as an “acceptor” of the sigwalfor 3. As

a further requirement, it is reasonable to assume the output of
an observer is consistent when tracking, meaning when the
trajectoriesw, and wo coincide for a sufficiently long time,
for instance in(—oo, 0], then they coincide all over the time.
Therefore, an observer far is a system that, corresponding to
every (wy,ws) in B, produces an estimatg, of the trajec-
tory wo and does not lose track of the correct trajectory once it
has followed it over a sufficiently long time. Such an observer
is said to be asymptotic if the estima#e, it provides repre-
sents a good asymptotic estimatevef; namely, the sequence
wa(t) — Wa(t) goes to zero as goes to+oo. An asymptotic
observer for¥, which produces an estimate, of w,, which
coincides withw, at each time instant, is an exact observer.
We may look for some intuition underlying these definitions.

column rank and the g.c.d. of its maximal-order minoran acceptor is merely a system that can “treat,” without any

is Hurwitz, or, equivalently, if and only if22(X) has full
column rank for all\ € €t := {\ € C: Re(A) > 0}.

specific aim, the signai; produced by the plant. An observer
is a system that also allows us to follow a given unobserved

Proof: 1) AssumeR; is right prime, and lefl/ be an variable w,, provided the initial conditions of the observer

r X r unimodular matrix such that
I,

v©R© = | |

Once we conformably partitiof/ R, as

o] vemne

have been set well, in accordance with the initial conditions
of the plant.

With an asymptotic observer, no need exists to have the
intial conditions set properly, but the price that we pay
is that of achieving only an asymptotic tracking. An exact
observer, finally, keeps track of the unobserved variables in
an errorless way. The difficulty, however, is that this process
requires, in general, differentiating the observations. So, in
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a sense, asymptotic observers, provided they can be desigted previous definitions can be paraphrasized by saying an
within reasonable signal processing contraints (for example, abserver forX is asymptotic (exact) if the set of its estimation
differentiations), appear to be the most reasonable observen®r trajectories

to pursue. B fo . ¢ %
From a theoretical point of view, the whole analysis can be ci=le=w2— Wa i w St (w1, wa) € B,
carried on (as it will be in this section) with no explicit refer- (w1, W) € B}

ence to implementability issues. For this reason, no restrictigﬁan autonomous and stable behavior (the zero autonomous
is here introduced on the class of dynamic systems we m5’t¥havior). Because autonomous behaviors can always be rep-

want to observe._ I_n SeCt'on IV_’ this aspect will be taken _'ml%sented as kernels of nonsingular square matrices [11], some
account, by explicitly considering observers endowed with Burwitz (unimodular) matrixA € R[E[“** exists, ie., a

(Stgﬁgy%ogirgr?srng\f\l/njifsgur;;atgxére formalized in the fonowinnonsingular matrix whose determinant is a Hurwitz polynomial
definitions. f}a nonzero constant _term), such thfﬁe = ker A. The
Definition 3.1: Consider the dynamic systen®: = characterlsnc polynomial of th? behavid.. n_ar.nely,detA,.
(R, R“+ %), whose behaviof is described by (2). The will be called theerror-dynamics characteristic polynomial
set of differential equations (see, also, [20]). .
Of course, an acceptor far always exists: one can choose,
0 d W= P d w ) for instance X itself. So, the existence of an acceptor is not
dt) ° dt) " an issue. Necessary and sufficient conditions for the existence
of (asymptotic or exact) observers, instead, are given in the
?ollowing proposition.

_ . Proposition 3.2: Consider a dynamic systei = (IR,
 an acceptor ofv; for X, if for every (wy, ws) € B, Wo R 9B), whose behaviof8 is described by (2).
exists such thatw,, w-) satisfies (4);

 an observer ofv; from w; for , if whenever(w;, ws)
is in B8, and(w;, W) satisfies (4) withwz(t) = wo(t)

for t € (—o0,0], wa(t) = wo(t) for all t € IR; . - iy .
- an asymptotic observer, if for evergw:, ws) in B, i) A necessary and sufficient condition for the existence

and (w1, w.) satisfying (4), we havéim;_ . wa(t) — of an asymptotic observer fat is thatw, is detectable
VAVQ(t) :7 0; from w1,
. an exact observer, if for everywi,w,) in B and iii) A necessary and sufficient condition for the existence of
(w1, W) satisfying ’(3_1) we havevs T Wo. an exact observer fot, is thatw, is observable from
Wi.

with P and @ polynomial matrices of suitable dimensions, i
said to describe the following:

i) A necessary and sufficient condition for the existence
of an observer fob is that Z, in (2) is a full column
rank polynomial matrix.

In the sequel, asv; will always represent the measured ) )
variable andw, the unmeasurable variable, we will refer to  Proof: 1) Suppose an observer fbrexists, described by
the acceptors ofv, for ¥ and to the observers of» from (4). If R, would not be a full column rank matrix, some finite
w, for ¥ simply as acceptors and observers Yor support sequence would exist in its kernel, whose support

Given an acceptor, described by (4), its behadibiis the i included in(0,+o0). So, corresponding to the behavior
set of all solutions(wy, W) of the differential equation (4), trajectory(wy, w») = (0,v) € B, the observer would produce

and, by definition, it satisfies the following condition: as a possible estimate of; = v the sequencer; = 0, which
coincides withv in (—oo, 0], but not all over the time axis.
PiB = {wy : I(wi, w2) € B} This result contradicts the assumption that (4) is an observer.
C{wy :Iwy, W) € %} = P,'B. In order to show the converse, assufieis a full column

_ . _ _ rank polynomial matrix. Then, a unimodular matiix exists
Among all of the trajectories dB, however, we will be inter- g ch that

ested only in those produced corresponding to the trajectories

of 3B, namely, in the set U(&)Ry(¢) = [DQO(S)}

{(w1,%,) € B :wy € P,B}. with Dy nonsingular. By conformably partitioning R; as
So, by assuming this point of view, it seems reasonable [Nl(i)} = U(£)Ry(€)
to regard asequivalenttwo acceptors, in particular, two Dyi($)

observers, for the same systen not if their behaviors®; we obtain for the behavior the following equivalent descrip-
and %3, coincide, but if their behaviors satisfy the followingtion:

condition: d d
N D2<%>W2 INl <£>W1 (5)

{(Wl,VAVQ)E%l :Wlepl%} d
= {(Wl,WQ) € %2 IW1 € 7)1%} 0=D, <£>W1 (6)

For an observer described by (4), the difference variableis immediate to verifyDs(d/dt)Wws = Ni(d/dt)w; repre-
e ;= wy — Wy represents, of course, tlestimation error So, sents an observer fat, with error-dynamics matrixA = Ds.
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2) Assume, first, an asymptotic observer forexists. If Theorem 3.4:Consider a plant whose behavior8 is
wy were not detectable fronwv,, two behavior sequencesdescribed by (5) and (6), witth, Hurwitz and D, of full
(w1, wa) and(wy, Ww2) would exist such thatva(t) — wa(t) rowrankd;. If P and@ are polynomial matrices, witly of
does not go to zero asgoes to+oc. If Wwo is an estimate full row rank
provided by the asymptotic observer correspondingvtg it

should be, at the same time Q<%>W2 _ P<%)w1
(wa(t) — Wa(t)) — 0 and

(Walt) — Walt)) H_Jrfo 0 is an (asymptotic) observer f& if and only if a nonsingular
2 M e (Hurwitz) matrix Y € IR[¢{]=**> and a polynomial matrix

wo Xdy H
and, consequentlyys(£)—wa (£) = [wa(t)—wa(t)]—[wa(t)— -+ € TIE™" exist such that

wo(t)] should asymptotically extinguish, a contradiction. Da(8) —Ny(&)
The proof of the converse follows the same lines of that in [Q(¢) —P(£)] = [Y(€) X(g)][ 20 Dl } 9)
1). Indeed, by assuming that, is detectable fromw, or, —D1(§)

equivalently,R, () is of full column rank for every\ € C*,

we can obtain for the behavior the description (5), (6), witM.?r:el?ver’ tze;%G Or':.alrll pOSS|bI(te etr rortrg;ectones coincides
D, nonsingular Hurwitz. As a consequend®;(d/dt)wy = wi - er(Q(d/dt)), which amounts to saying we can assume

Ni(d/dt)w; represents an asymptotic observer ¥y with
error-dynamics matrixA = Ds.

3) Follows the same lines as the proof of 2). O

As our main interest in this paper is in asymptotic observe
from now on we will assume the behavi® is described by
(5) and (6), withD> nonsingular Hurwitz. Also, it entails no
loss of generality assumind, is of full row rankd;. In order
to obtain a complete parameterization of the (asymptotic/exa:
observers ofY, we need the following technical lemma, in
which it is shown that, given any acceptor f6r(in particular,
an observer), it is possible to obtain an equivalent one |i
producing the same set of trajectorigs;, w») for everyw;
in 18] for which matrix @ is of full row rank.

Lemma 3.3:If Q(d/dt)w, = P(d/dt)w, is an acceptor
(in particular, an observer) fok, an equivalent acceptor

(observenQ(d/dt)w, = P(d/dt)w; exists, with @ of full d d D, <%> —N1<%)
row rank. ker [Q( ) —P<%>} D ker d
o -a(3)

Proof: Let &/ be a unimodular matrix that reduce&3
Then, we get and thus polynomial matrice§ andY can be found such that

Proof: Suppose, firstQ(d/dt)w, = P(d/dt)w, with Q

of full row rank, is an (asymptotic) observer fa, and hence
r?e is an autonomous (and stable) behavior. Corresponding
t0 the behavior trajectoryw;,w2) = (0,0), the trajectory
(0,W2), Wo arbitrarily selected inker(Q)(d/dt)), must be
admissible for the observer, and henee= 0 — W, must
%5 in B.. This fact proves thaker(Q)(d/dt)) is included in

= and, hence, in turn, is autonomous (and stable). Because
Q is full row rank, it has to be also of full column rank and,
Qence, nonsingular square. Moreover, if the observer is an
"asymptotic one? must be Hurwitz.

As e = 0 is an admissible error trajectory, every trajectory
(w1, wy) € B satisfiesQ(d/dt)ws = P(d/dt)w;. Therefore

to its (column) Hermite fom{%?], with @ of full row rank.

Q) —P(&) (9) holds true. AS) = Y D5 is nonsingular (Hurwitz)y has
U©QeE) -POl=| 0 -v(© to be nonsingular (Hurwitz).
0 0 Assume, now,P’ and @ satisfy (9) for suitable polynomial

matricesX andY’, with Y nonsingular (Hurwitz). Then, for
and hence the acceptor can be equivalently described by #very (w;, ws) € B and every estimatér,, correspondingly

set of equations determined from the observer equations, we get
~(d _(d
Y =Pl 2 d .
Q(dt>w2 P<dt>wl 0 Q(%)(WQ — W2)
d
= —_— d o
0 V(dt>wl' ® - <YD2>(@)<W2 — )

By definition of acceptor, for everw,; € ker(D;(d/dt)),
(7) and (8) have to be fulfilled for some sequente, and
thereforeker(D1(d/dt)) must be included irker(V(d/dt)).
So, the acceptor can be equivalently described by (7). This equation immediately prove®., as a subset of
Under the hypothesis that the matrd} appearing in the ker(Q(d/dt)), is a (stable) autonomous behavior, and

observer equation is of full row rank, we can obtain deeper ihence equationQ(d/dt)w, = P(d/dt)w; describes an
sights into the algebraic properties of the polynomial matricéasymptotic) observer. Moreover, as we have already proved
P and @) involved in the observer description, and explicithker(Q(d/dt)) is also included 5., then®B. coincides with
relate them to the matrice®,, Dy, and V. ker(Q(d/dt)). O

= (YN1)<%>W1 — (YN, +XD1)<%>WI -
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Remarks: For the problem analysis, it has been useful tis (strictly) proper rational. As shown in the following proposi-
adopt the behavior description (5), (6). If we assume, howevégn, autonomous behaviors described as in (5) and (6) always
the behaviors is described as in (2), wittw, detectable admit strictly proper asymptotic observers.
from wy, the asymptotic observers fat are those and those Proposition 4.1: Let 3 be a dynamic system whose behav-
only described by (4) with) and P polynomial matrices(? ior 8 is described by (5) and (6), wit®, Hurwitz and D,
nonsingular Hurwitz, satisfying having full rowrank d;. If B is autonomous or, equivalently,

D is a nonsingular square matrix, a strictly proper asymptotic
[Q(&) —P(f)] = T(S)[RQ(g) _RI(S)] (10) estimator 0fW2 from wy exists.
for some polynomial matrixl’. Proof: Let pg,p2,- -, 1uq, denote the row degrees of

Also, by assuming the matrix) appearing in the ob- D, and consider an Hurwitz matri¥” such thatY D, is
server description is of full row rank, and hence nonsingul#®w reduced [5] with row degrees all greater to or equal to
square, we have obtained a complete parameterization ofallx; ;. By applying the matrix division algorithm, we can
possible (asymptotic) observers. Loosening this constraiggpressY N; as
indeed, would only produce a wider set of representations,
not necessarily full row rank, for the same observers. Y(&)N1(€) = A(€)D1(€) + R(€)

As a further result, we are now interested in analyzing
what performances can be achieved from the asymptoti . . -
observers in terms of error dynamics. These performances g\{ihereA and k are polynomial matrices, andl satisfies
be evaluated by error-dynamics characteristic polynomials, as
analyzed in the following corollary. deg ith column of R < max i, VjE {1,2,--,w1 }.

Corollary 3.5: Consider a dynamic system whose behavior !

B is described by (5) and (6), witlhh, Hurwitz and D; of
full row rank. Then,

i) for every (asymptotic) observer fod:, the error-
dynamics characteristic polynomiddt A is a (Hurwitz)
polynomial satisfying the divisibility conditiodet D, | Vie{1,2,--- w2}
det A (i.e., det D, dividesdet A);

i) for every (Hurwitz) polynomials € IR[£] with det D> | which implies (YD) *[Y N, — AD;] = (YD;) 'R is a
6, an (asymptotic) observer exists whose error-dynamisgictly proper observer foE. O
characteristic polynomial coincides with Remark: The above proposition not only proves au-
Proof: Follows immediately from Theorem 3.4. [0 tonomous behaviors admit strictly proper asymptotic esti-
mators, but also shows how to construct one. Indeed, under
IV. PROPERASYMPTOTIC OBSERVERS the (unrestrictive) assumption th&?; is row reduced with

. . ... row degreesuy, p2, - - -, tiq, , fOr every Hurwitz matrixt” such
Theorem 3.4 provides us with a useful parameterization 9 I S
P P that Y D, is row reduced with row degrees lower bounded

the observers for a system described by (5) and (6). Indeed, aff

) . .’y max; 11;, a polynomial matrixX can be found, such that
Zgﬁzggenrs fob: can be described by means of the dlﬁ‘erenna( Do)(d/dtysrs = (YNL + XDy)(d/dt)yw, represents a

strictly proper asymptotic estimator, havimy = Y D, as
d\.. d estimation error dynamics matrix

YD) — W2 = (YN +XD1)( — 11 L

(¥Y'D2) <dt>w2 (YN ) <dt>w1 (1) The general problem, whel is an arbitrary (not necessar-

ily autonomous) behavior, is a little more involved. In order

0 solve it, we refer to the original behavior description and

Therefore

deg ith row of R < degith row of Y D5,

with X and Y polynomial matrices of suitable dimensions

and the additional constraint thitis Hurwitz if the observer _ X X )
assume, without loss of generality, the beha®bis described

is asymptotic. . ; )
This parameterization can be fruitfully exploited to investity the differential equation

gate further relevant issues, in particular, that of determining

the existence of (strictly) proper asymptotic observers, en- Ry <i>W2 = Rl(i)wl (12)

dowed with a (strictly) proper transfer matrix. Systems with dt dt

proper or strictly proper transfer functions have desirable

properties as signal processors, in the sense they smodtith [z —Ri] € R[¢7(=+") a row reduced matrix [5]

rather than differentiate, signals. Thus (strictly), proper transféfth row degreesy, ha, - -+, by, r = w; + d;. Of course,w,

functions can be expected to better noise immunity. Of courée assumed to be detectable fram. The first step toward the

this property becomes less important when we can infer mayelution is given by the following lemma, in which conditions

a priori smoothness for the observed signals. for the existence of (strictly) proper observers for not
From a mathematical point of view, we have to search f@ecessarily asymptotic, are provided.

conditions guaranteeing that a matrix péif, X') exists, with

Y Hurwitz, such that 1A full row rank polynomial matrixAZ, with row degrees/;, v, - - -, is
said to berow reducedif the degree of at least one of its maximal-order

W(S) = [Y(O) DO HY (ON1(E) + X(&)D1(6)] minors coincides witt)_; v;.
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Lemma 4.2:Consider a dynamic systeth with behav- w=w,
ior %6 described by (12) andwv, detectable fromw;. If
[Ron —Rinr] denotes the leading row coefficient matrix [5]
of [ 2 —Rl]

i) a necessary and sufficient condition for the existence of

an observer fob: with proper transfer matri%V is that Fig. 1. Plant-controller connection.
R5;,- has full columnrank wo;

i) a necessary and sufficient condition for the existence
of an observer fo with strictly proper transfer ma-
trix W is that § € R"™*(2T4) exists such that w2 Plant w1
S[RQhr _thr] = [Iwz 0]

Proof: i) Assume, first, an observer with proper transfer
matrix W exists, and letl’ = [ti;] be a polynomial matrix Fig. 2. w,-based controller.
such that the matrix paif@?, P), obtained as

[Q(E) | =P(&)] :=T(&)[Ra(&) | —Ra1(E)] ¢, with coefficients inIR¥* 27" the coefficient matrix of

provides a left matrix faction description (MFD) &7, i.e., the ff)?fzant term coincides Wittty _i””’]' Let U ¢
W = Q~'P. It entails no loss of generality assum|(@ | 4 € ] be a unlmodula_lr matrix (R[¢~7]) that reduces
' R5 to its Hermite form (still inR[¢1]):

Controller

—P] is also row reduced, with row degreks k2, - - -, k., and R
leading row cogfficient matrik?;,,. —PF..]. By the properness UR, — Do
assumption oV, ;.- is nonsingular. Moreover, &8, —R;] 2700 |

is row reduced, it follows that If we denote byl the constant term o/, it entails no loss

k; = ma {deg t;; + deg(jth row of [Re —Ri])}. of generality, assumingf,, 0]/, coincides withsS.
Jitig# Clearly, the coefficient matrix of the constant termfna,
Let S be the real matrix whose (i,j)th entry D,,, coincides with the identity matrix. Moreover, by the
coincides with the leading coefficient oft;; when detectability assumptionlet D, € IR[¢™!] can be expressed

degt;; + deg(jthrow of [R, —Ri1]) = k; and is zero asd,(£)/¢%, for some positive integeK and some Hurwitz
otherwise. Clearly, the identit§;,. = 5 Ry, holds true, thus polynomiald, € IR[¢] of degreek.
proving Ry, is of full column rank. Corresponding td = [Ly, 0JU € R[¢™H">~, the matrix

Conversely, suppos;;,,. has full column rank, and let pair [Q | —P] = T[R2 | _Rl] provides a Ieft MED (over
S = [si;] be one of its left inverses. Sét:= max; h;, and R[¢~1]) of a (strictly) proper transfer matrixy := Q—'P,

introduce the polynomial matri’(¢) := [s;;6"~"/]. Then  with all stable poles.Therefore, some nonsingular diagonal
_ o _ matrix D € IR[{]*2%¥2 exists, with all monomial entries, such
Q) [ =P = TOUE) | ~Fa (O] that the pair of polynomial matrices), P), obtained as
is a row-reduced matrix (with all row degrees equalifp h
and the firstwo x wo submatrix of its leading row coefficient § e
matrix coincides withl,,. Consequently,W = QP is Q@ —P]:= DT ¢
proper rational. .
ii) The proof follows the same lines as the previous dne. g
Theorem 4.3:Consider a dynamic systed with behavior [Ry —Ry]e R[¢xFtm)

B described by (12) andr, detectable fronw, . If a (strictly) . _
proper observer foE. exists, a (strictly) proper asymptotic onecorresponds to a (strictly) proper asymptotic observer (4).

exists. Remark: As a consequence of the above proposition and
Proof: Assume, as in the previous lemni&, —R;] ¢ lemma, once we reduce the matfis —R;] involved in the
R[¢]7*(211) is row reduced with row degreés, ho,---, h, Dehavior description to row-reduced form, the existence of a

and leading row coefficient matrifyy,, —Riz.]. If a proper Proper asymptotic observer is immediately checked by simply
observer fory exists, Rop,. has rankws, and, hence, a real Verifying R, has full column rank. When so, by following
matrix S exists, of suitable size, such th&Ry;,,. = I,,. If the the procedure described in the proof of Theorem 4.3, we can
observer is strictly proper, in particula$, can be chosen in explicitly construct such an observer.
such a way thaSR;;,. = 0 also holds true. Set, now,

£l V. THE CONTROL PROBLEM

R R g The control problem that will be considered is that of
(B —Ri]:= . [Rz  —Ri]. designing a suitable devicedntroller), modeled as a dynamic
' I systemX., that can be applied to the plaht thus producing
a resulting system with desired properties. As recently em-
Clearly, [R, —Ry] is an element oflR[¢~!|"*(+") and phasized in [20], the control problem is naturally stated as
if we regard it as a polynomial in the negative powers an interconnection problem, and the behavioral framework is



VALCHER AND WILLEMS: OBSERVER SYNTHESIS IN BEHAVIORAL APPROACH 2303

Theorem 5.1:Consider the dynamic systel whose be-
. havior %6 satisfies the differential equations (14) and (15). A
Plant Observer necessary and sufficient condition for the existence &f;a
based controller that makes the resulting controlled system
autonomous is that an observer f&r exists; i.e., Dy is
nonsingular square. When so

i) if X is autonomous, namely, iD; is also nonsingular
square, everyi-based controller makes the controlled

Controller system autonomous with its characteristic polynomial
Yres Satisfying
Fig. 3. Observer-based controller. det Dy | xres | det Dy det Dy a7

and, conversely, for every polynomial..s satisfying
(17), aw;-based controller exists such that the resulting
autonomous system has characteristic polynomjal;
ii) if ¥is notautonomou&ank Dy =: d; < wy), for every
LAY, = (R,R:, B N B,) (13) wi-based controller that makes the controlled system
autonomous, the characteristic polynomyal, satisfies

very convenient for this. So, we have to look for some system
Y. = (R,IR"* 98,) that, once connected t8, as shown
in Fig. 1, results in aontrolled system

with a desired behavior.

The control problem, under the assumption that all system det Dy | Xres (18)
variables are available for control, has been considered in [20]. i o
In this paper, instead, we shall be concerned with the case in @nd, conversely, for every polynomigk., satisfying
which not all variables are accessible for control purposes, (18), @wi-based controller exists that makes the result-
namely with the situation in which the set of system variables N9 System autonomous with characteristic polynomial
w can be partitioned into two subvectovs! = [wi wi], _ Xres c_o_n_sequently; o _
of which only w, is available for control. Such a controller, ') @ stabilizing w,-based controller exists if and only if

which operates by restricting the set of admissible trajectories W2 IS detectable fromw,; ,
for the variablew,, will be called aw,-based controller v) a wi-based controller exists that makes the resulting

In order to investigate what possibilities are offered by a ~ connected system autonomous with an arbitrarily chosen
controller of this kind, we start by assuming (without loss  Ccharacteristic polynomial if and only it-; is observable

of generality) the plant behavior is described by the set of ~ TOM Wi.
differential equations Proof: The behavior of the resulting controlled system is

described by the following set of differential equations:

RO LI O P

d 0 -D; —
0=2D <—>W1 (15) 0 -

dt
_based and hence some polynomial matr; exists such that the
matrix describing the resulting behavior has full column rank
if and only if D, is already of full column rank, and hence

(19)

Wi

with D, and.D; both of full row rank, and considerw;
controller defined by the following representation:

d nonsingular square.
0=0C1 <%)W1 (16) i) If ¥ is autonomous, i.el), and D, are both nonsingular
square, for every choice af; the resulting system matrix
whereC is a polynomial matrix (see Fig. 2). is of full column rank, and hence the controlled system is

As in [8] and [19], the problem we aim to address is thajtjll autonomous. Condition (17) follows immediately from the
of designing a controller that makes the resulting COﬂtrO'leiructure of the system matrix as given in (19) Converse|y,
system autonomous and possibly stable (sometimes with a pf§sumey,.. is a polynomial satisfying (17), and express it as
assigned characteristic polynomial). This problem representg a, = det D, - p, with p | det D;. By resorting to the Smith
reasonable extension of the classic regulation problem, angoitm of D, for instance, (see [5]), we can factorizg as a
allows us to focus immediately on the core of the problemyoduct of polynomial matrice®; = ST, with det T}, = p.
namely, on the autonomous part of the resulting connecte@nsequentlyC; = T, is the desiredw, -based controller.
system, for the controllable part plays no role in the stability jj) Assume, now,X is nonautonomous. Again, condition
analysis. (18) follows immediately from the structure of the system

A wi-based controller that achieves these results is Saidrﬁatrix as given in (19) For the converse part, express, again,

be stabilizing The possibility of obtaining these properties i, .. asy,., = det D5 - p, and consider the Smith form dp;
strictly related to the properties &f, as shown in the following

theorem. L) :=[[(¢) 0] € R[EJ&>*.
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Then, D1 (&) = ULV () holds true, for suitable uni- the behavior of the whole connected system in Figt3; =
modular matriceg/ and V. BecauseD; is of full row rank, (R, IR“’1+2"2,%reS), is described by

I' is nonsingular square, and it is easy to see that the g.c.d. of D, 0 -—N,
the maximal-order minors of 0 0 -D d\ |2
() 0 0 0 O —C w1
Iy, 0 0 2 L
0 ly-—g,-1 O As ‘B, can be expressed as the kernel of the polynomial
0 0 P matrix
, _ _ Ds(€) 0 —Ni(§)
is p. So, corresponding to the controller matrix M(E) = 0 0 —D1(¢)
0 QK -P©
I, 0 0 0 Cy(8) —Cu(§)
Ci(€) = 8 I“’l—(;il—l 01V(©) to make it autonomous, we have to cho@geandC, so that
P

M is of full column rank. If this is the caséB.. is stable if

] ] . and only if the g.c.d. of the maximal-order minors &f, the
we obtain an autonomous controlled system with characteristic, racteristic polynomiak . of Bie., is Hurwitz
res res» .

polynomialx.e,. (iii) and (iv) follow immediately from (i) and  theqrem 5.2: Consider the controlled system described in

(ii). _ - o O Fig. 3, and seti; := rank D;. If ¥ is autonomous, namely,
As we have just seen, the possibility of achieving certagp1 coincides withw;

results by means of &-based controller depends, indeed, . .
on how much information about the “missing variableys, 1) for every coniroller (21).’ th_e resulting C(.)mm”ed systgm
can be deduced fromw;. In particular, the possibility of res 1S ?“t9”°m°“5 with its characteristic polynomial
stabilizing: by constraining onlyw; depends on the fact that Xres SAUISTYiNg

the information aboutv, is “asymptotically correct,” namely, det Dy | Xres | det Dy det Q@ det Dy (23)
thatw, is detectable fronw;. If this is the case, a reasonable
approach to the problem solution could be that of exploiting an
asymptotic estimatév, of wo, obtained fromw; by means of

a suitable observer, and of designing a contrdllethat makes
use of the paifw, w») as if it was(w;, wo). The advantage Ifdy < w,

of such a control structure is that the controller outs in evidencdii) for every controller (21) that makes the whole system
the estimation aspect that is part of a dynamic controller. So,  Zres autonomous, the characteristic polynomials is
from a theoretical point of view, it is much more significant a multiple of det D»;

than aw;-based controller, in which this aspect is completely iv) for every polynomialy,. that is multiple ofdet D>, a
hidden. Moreover, this structure seems to be more suitable for ~ controller exists (21) such that the resulting system is
addressing implementability issues, that, however, will not be ~ autonomous with characteristic polynomsal..

ii) for every polynomialy... that satisfies (23), a controller
(21) exists such that the resulting autonomous system
has characteristic polynomigl,..s.

explicitly taken into account here. Proof: i) and iii) follow immediately from the structure
The situation just described represents the generalizatimnd/ and from the fact that whe® is autonomous, the matrix

of the analogous.one.for state-space models, and we will Ds(€) 0 N (€)

call a controller with this structure, connected to the original 0 0 ~Dy(€)

plant, as shown in Fig. 3, aobserver-based controllelOur 0 Q) —P©)

interest, as before, is in observer-based controllers that make

the resulting connected system autonomous and stable dfic@lready of full column rank.

hence, are stabilizing. ii) and iv) are proved along the same lines followed in the
Once again, we assume the system beha¥ids described Proof of Theorem 5.1, upon replacing matrixD, with the

by (14) and (15), withD, Hurwitz and D; of full row rank, full row rank matrix

and introduce an asymptotic observer or () = [ 0 —Dl(g)}
Q) —P©)
Q<i>w2 = P<i>w1 (20) and, hence, applying t& all previous reasonings, based on the
dt dt Smith form, to explicitly construct the required controlles.

) o N . Necessary and sufficient conditions for the existence of
with @ anfi P satifying condition (9) for some polynomial g¢4pilizing observer-based controllers are immediately derived,
matrices X' and Y, with Y Hurwitz. If we introduce a 55 5 straightforward consequence of the previous result.
controller whose behavio®. is described by the following Corollary 5.3: Given a plants whose behaviof8 is de-
set of differential equations: scribed by (14) and (15), witl, nonsingular square anf,

of full row rank, a necessary and sufficient condition for the
Cy <i)W2 -0 <i>w1, (21) existence of a stabilizing observer-based controller is #hat
dt dt is detectable fromw;; namely, D» is Hurwitz.
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Remarks: It is worthwhile to note the gap existing between i) [Q(¢) —P.(§) —F,(&)]
the results achieved (in terms of characteristic polynomials) — (&) X(0)] [SIH -F -G 0
by an observer-based controller and bygbased controller H J =1
in case of detectability, is only apparent, and motivated Wgr suitable polynomial matrice¥” and X.
the fact that the characteristic polynomial we refer to in the Among these asymptotic observers, in particular, a Luen-
case of an observer-based controller also takes into accobetger (full-order feedback) state observer exists. Indeeld, if
the observer dynamics. If we considered just the behaviorisfanyn x p real matrix such thaf” + LH is asymptotically
the plant, namely, the projection oB,.; onto the variables stable, it is sufficient to assuné(¢) = I, and X (¢) = —L
wi and w,, we would obtain the same results, as, indeet ii), thus obtaining the state observer
observer-based controllers and-based controllers, under the d
detectability assumption, are completely equivalent. <—In —F - LH)?( =Gu- Ly (27)
Also, the development of observer-based controllers can of dt
course be combined with the notions of singular and regulghich satisfies condition i), and whose estimation error dy-
(w-based) controllers extensively discussed in [20]. We prefgamics matrixA coincides withél, — F — LH.
not to enter into these ramifications here, however. Also, upon assuming detectability, we can look for (strictly)
proper asymptotic state estimators, namely, observers de-
VI. STATE-SPACE MODELS scribed by

To conclude, we aim to show the observer theory, here d\ . d d 5
developed within the behavioral approach, is consistent with Q Py Py dt u+ by dt (28)

the classic one for state-space systems [9]. For sake of brevny,
we will explicitly consider only the main definitions and result¥/Ith _ .
presented in Sections II-IV and skip the control problem, i) @ nonsingular Hurwitz;

which is, nonetheless, of noteworthy interest. i) [Q(€) —Pu(é) —g(ﬁ)]F o o
Given an f-dimensional) state-space model, withinputs _ n— -
and p outpufls, ie. : P P =IO XNy J —IJ’
dx for suitable polynomial matrice¥” and X;
P Fx(t) + Gu(t), f5 0 (24) iy Q71[P, | B,] (strictly) proper rational.
=7 The Luenberger observer is endowed with a strictly proper
y(t) = Hx(t) + Ju(?), rational transfer matri®tV (¢) := (¢I, — F — LH)™'[G —1J.

the set of its trajectories is equivalently described, in beha®0, the existence of a proper state observer is not an issue. It

ioral terms, as the sé6 of all sequencesx, u,y) satisfying Can be interesting, instead, to determine what matiizesd,
hence A possibly describe the estimation error dynamics. The

[%In - F} x = [ O } [“} (25) first step toward the solution is given by the following lemma,

H —J I ' which proves that, to fulfill condition iii) above, it is sufficient
Q~'P, is proper rational.

Lemma 6.1: Consider an asymptotic state observer de-
scribed as in (28), with matrice§, P, and P, satisfying
conditions i) and ii). Such an observer is (strictly) proper, i.e.,
] ) fulfills iii), if and only if Q=P is (strictly) proper.
and detectable fronfu,y) if and only if Proof: Because matrix

rank PIH N F} =n, VieCT . &L—-F -G 0
H H J —I

These equations represent the well-know observab|llty a&dof full row rank, the pair(Y, X) appearlng in i) can be

for state-space mode's [3]. . _ Moreover,X(¢) = P, () andY (¢) = [Q(&)~ P, (O HI(cL, -
Under the detectability assumption, an asymptotic staje—1, Consequently,

observer exists (see Proposition 3.2), based on the knowledge

of the inputs and the outputs of the system. More precisely.(§) = Y ()G — X(§)J

all possible asymptotic state estimators can be described by = Q&I — F)—la — P (&)(H(¢L — F)—la+ J)
the following set of differential equations:

By Proposition 2.2x is observable fronfu, y) if and only if

rank

MHH;F} —n, VAEC,

and therefore

Q(i) ‘P@)”P@) (26) Q7P = (L - F)7'G - Q HE)P,(9)

, . . : L H(L — )t )
with (Q, P, P,) a triple of polynomial matrices satisfying the x (H(& )G+ )
following constraints: So, Q' P, is (strictly) proper wheneve® ' P, is.
i) @ is nonsingular Hurwitz; The converse is obvious. O
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As an immediate consequence of the above lemma, tieedback compensator, in which, instead, the reachability
search for proper asymptotic state observers is equivalentiridexes are involved [6], [7].
the problem of determining proper asymptotic state observersThe characterization of strictly proper state observers is

for the autonomous system much simpler than the characterization of general proper state
d observers, as shown by the following proposition.
Zh g = [0 }y_ (29)  Proposition 6.3: Let
H I
o Nazr( DNasp (2
This result is rather intuitive, because it expresses the fact that ae )T e\ )T v e )Y

affecting the solution of the proper observer problem. Furth € an asymptotic state observer, whose matrige#,,, and

more, it allows us to reduce ourselves to the special case dfsatlsfy conditions i) and ii) for some (uniquely determined)

autonomous behaviors, previously analyzed matrix pair (Y, X). Such an observer is strictly proper if and

PR
We are now interested in getting some flavor of what can ggly;f Yf_ ‘;‘( IS protp;]er. totic ob is strictl
the minimal complexity (in terms of realization dimension and, roof. _Assume the asymplolic ObSETVeris strictly proper,

hence, of McMillan degree [5]) a proper (strictly proper) stat@nd letV” be a unimodular matrix such that

observer can exhibit. The following proposition shows every V(©)QE) —V(&)P,(&)]

row-reduced matrix}, with row degrees lower bounded by ¢L—F 0

max; h; — 1 (by max; h;), for which the diophantine equation =[V(Y(§) V(ﬁ)X(ﬁ)]{ " _J }

Q&) = Y(&)(¢I, — F) + X(¢)H is solvable, can appear as P

“denominator matrix” of some proper (strictly proper) statés row reduced. IfQy,. —F,.] denotes the leading row coeffi-

observer. cient matrix of [V (£)Q(&) —V(£)P,(£)], Q. is nonsingular,
Proposition 6.2: Let D;lN[ be a left coprime MFD of and P, = 0. We, first, show

H(¢L, — F)~', with D, row reduced with row indexes , , ,

hi,ha, ..., h,. For every polynomial paifY, X) such that degith row of (VY') > degith row of (V.X), Vi. (30)

Q(E) := Y(O)(EL — F) + X(§)H is row reduced with row i not, some row, say, thgth, in V.P, would exist with degree

degrees lower bounded byax; h; — 1 (max; h;), @ new pair greater to or equal to the degree of the corresponding row in

(¥, X) exists such thal (§)(¢1n — ) + X(O)H = Q(§) and v, thus contradicting the strict properness assumption on

the forced state evolution could be easily removed Withoe%[

d d (VQ)"Y(VP,) = Q=*P,. Then, however
o(3)-s(2)
dt dt deg ith row of (VQ)
is a proper (strictly proper) state observer for (6.6), and hence = degith row of (VY) + 1,
> degith row of (—-VYF+ XH), Vi
Q(%)&:[YG—XJ](%)u—i—X(%)Y ! ( FAE

This fact implies, alsof?;,. coincides with the leading row
is a proper (strictly proper) state observer for the state modslefficient matrix oft’Y, and hencd’Y is row reduced. So,

(25). asVY is row reduced and (30) holds trug/Y)~}(VX) =
Proof: It is sufficient to observe the set of possiblé ~1X is proper.
solutions of the matrix equation Conversely, ifY "X is proper, some unimodular matrix

_ . U exists that leads[Y(¢) X(¢)] to row-reduced form.
Q6) =Y (&)(¢h — F) + X(OH If [Ya. Xp-] denotes the leading row coefficient ma-
can be expressed as trix of [U(S)Y(S) U(S)X(S)], Y. is nonSingUIar, and
_ _ [(6HQE) —U(E)F,(&)]is, inturn, row reduced, with leading
V(&) | X(O] = [Y(&) | X+ TEO[=Ne(€) | De(€)]: row coefficient matrixY3,, 0], thus proving7Q)~"L(I/P,) =
O

T € R[¢]**P Q 1P, is strictly proper.
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