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Observer Synthesis in the Behavioral Approach
Maria Elena Valcher and Jan C. Willems,Fellow, IEEE

Abstract—This paper analyzes the observer design problem
in the behavioral context. Observability and detectability notions
are first introduced and fully characterized. Necessary and suf-
ficient conditions for the existence of an observer, possibly an
asymptotic or an exact one, are introduced, and a complete pa-
rameterization of all admissible observers is given. The problem
of obtaining observers endowed with a (strictly) proper transfer
matrix and the design of observer-based controllers are later
addressed and solved. Finally, the above issues are particularized
to the case of state-space systems, thus showing they naturally
generalize well-known theorems of traditional system theory.

Index Terms—Behaviors, latent variable models, observabil-
ity/detectability, proper transfer matrices.

I. INTRODUCTION

I N THE last decade, the behavioral point of view [11], [17],
[18] has received an increasingly broader acceptance as

an approach for modeling dynamic systems, and now it is
generally viewed as a cogent framework for system analysis.
One of the reasons for its success has to be looked for in the
fact that it does not start with the input/output point of view
for describing how a system interacts with its environment,
but focuses on the set of system trajectories, thebehavior,
and hence on the mathematical model describing the relations
among all system variables.

By assuming this point of view, important aspects of the
classical system theory have been translated and solved, thus
leading to interesting results, which are powerful generaliza-
tions of well-known theorems obtained within the input/output
or state-space contexts. In particular, recently, the control
problem has been posed in the behavioral setting [20], where it
can be naturally viewed as a problem of systems interconnec-
tion. Although several issues have already been analyzed in
some detail, the important question of estimating some system
variables, not available for measurements, from others, which
are measured, has not been treated yet.

The synthesis of an observer of the state for a (linear
time-invariant) state-space system has been the object of
considerable interest in classical system theory [1], [10]. The
original theory of state observers was concerned with the
problem of reconstructing (or estimating) the state from the
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corresponding inputs and outputs. This problem has been later
generalized in various ways, and in the last years, a great deal
of research has been aimed at state observers in the presence
of unknown inputs (disturbances) [2]–[4], [12]–[16].

In this paper, we will be interested in the observer problem
for linear, time-invariant (continuous-time) dynamic systems,
which are described in behavioral terms by means of a set
of differential equations. More precisely, we will consider
a dynamic system , whose trajectories

satisfy some set of differential equations

and we will assume can be measured and is unknown.
The natural goal is that of designing an estimator ofbased
on the knowledge of , such that its estimation error goes
to zero asymptotically.

To reach this goal, we shall first introduce, in Section II, the
notions of observability and detectability of from , and
then provide (Section III) necessary and sufficient conditions
for the existence of an (asymptotic) observer. This discussion
then leads to a complete parameterization of all possible
observers, in terms of the polynomial matrices involved in
the system description.

Section IV deals with the problem of determining under
what conditions it is possible to obtain (asymptotic) observers
with a proper transfer matrix. Of course, the estimate
produced by the observer can be used, together with the mea-
sured variable , to control the whole plant, thus obtaining,
in Section V, an “observer-based controller” for the original
plant.

Finally, in Section VI, the main definitions and results
provided in this paper are particularized to the case of state-
space models, thus showing they constitute natural extensions,
to the behavioral setting, of the analogous definitions and
results obtained in classic system theory.

In this paper, integers refering to dimensions of linear spaces
or sizes of matrices are always denoted in typewriter fonts.
For instance, denotes the linear space of real column
vectors with components, is the space of real
matrices, and is the identity matrix of size . We also
make the following convention: vectors and are
elements of and respectively. In keeping with
the usual notation, when dealing with state-space systems,
however, we will assume the state vectoris -dimensional,
the output vector is -dimensional, and the input vector
is -dimensional.
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II. OBSERVABILITY AND DETECTABILITY

Consider a dynamic system , with
trajectories , whose behavior is specified by the
set of differential equations

(1)

with and polynomial matrices,
and In the sequel, we will assume the
trajectories belong to , the space
of all measurable functions from to for which
the integral is finite for all and . Solutions

that are not smooth are considered to be solutions
in the distributional sense, with both the left- and right-hand
sides of (1) considered in the sense of distributions. The
interested reader is referred to [11] for details. The set of
trajectories satisfying (1) will be denoted, for short,
by .

If we assume can be exactly measured and is
completely unknown, it is natural to search for necessary and
sufficient conditions for the existence of an estimator of
based on the knowledge of , whose estimation error goes
to zero asymptotically. The first step toward this end is to
introduce the notions of observability [18] and detectability.

Definition 2.1: Consider a dynamic system
, whose behavior is described as follows:

(2)

with We say is

• observable from , if implies
;

• detectable from , if implies

Proposition 2.2: Consider the dynamic system
described by (2), with and

. Then,

i) is observable from if and only if is a right
prime matrix, or, equivalently, if and only if has
full column rank for all C;

ii) is detectable from if and only if is of full
column rank and the g.c.d. of its maximal-order minors
is Hurwitz, or, equivalently, if and only if has full
column rank for all C C .

Proof: 1) Assume is right prime, and let be an
unimodular matrix such that

Once we conformably partition as

we obtain the following equivalent description for the behavior
of (2)

and (3)

which clearly proves is observable from .
On the other hand, if were not right prime, its kernel

would include some nonzero trajectory[11]. So,
would also imply , thus ruling out

observability.
2) The proof follows the same lines as the previous one.

Indeed, is detectable from if and only if
is a stable autonomous behavior [11]; namely, it is the kernel
of a full column rank matrix, and all its trajectories go to zero
asymptotically. This amounts to saying is of full column
rank with g.c.d. of its maximal-order minors, which is Hurwitz.

III. A SYMPTOTIC OBSERVERSDESIGN

Consider the dynamic system described by (2), withas
the measured variable and as the to-be-estimated variable.
The problem we will now address is that of introducing a
sound definition of “observer.” As a first requirement, an
observer of from for system should “accept” every
sequence , which is part of a behavior trajectory ,
and correspondingly produce some (in general, not unique)
estimated trajectory . This process amounts to saying an
observer of should not introduce additional constraints on
the components of the system trajectories. We refer to such
a dynamic system as an “acceptor” of the signalfor . As
a further requirement, it is reasonable to assume the output of
an observer is consistent when tracking, meaning when the
trajectories and coincide for a sufficiently long time,
for instance in , then they coincide all over the time.
Therefore, an observer for is a system that, corresponding to
every in , produces an estimate of the trajec-
tory and does not lose track of the correct trajectory once it
has followed it over a sufficiently long time. Such an observer
is said to be asymptotic if the estimate it provides repre-
sents a good asymptotic estimate of; namely, the sequence

goes to zero as goes to . An asymptotic
observer for which produces an estimate of which
coincides with at each time instant, is an exact observer.

We may look for some intuition underlying these definitions.
An acceptor is merely a system that can “treat,” without any
specific aim, the signal produced by the plant. An observer
is a system that also allows us to follow a given unobserved
variable , provided the initial conditions of the observer
have been set well, in accordance with the initial conditions
of the plant.

With an asymptotic observer, no need exists to have the
intial conditions set properly, but the price that we pay
is that of achieving only an asymptotic tracking. An exact
observer, finally, keeps track of the unobserved variables in
an errorless way. The difficulty, however, is that this process
requires, in general, differentiating the observations. So, in
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a sense, asymptotic observers, provided they can be designed
within reasonable signal processing contraints (for example, no
differentiations), appear to be the most reasonable observers
to pursue.

From a theoretical point of view, the whole analysis can be
carried on (as it will be in this section) with no explicit refer-
ence to implementability issues. For this reason, no restriction
is here introduced on the class of dynamic systems we may
want to observe. In Section IV, this aspect will be taken into
account, by explicitly considering observers endowed with a
(strictly) proper transfer matrix.

The notions now discussed are formalized in the following
definitions.

Definition 3.1: Consider the dynamic system
, whose behavior is described by (2). The

set of differential equations

(4)

with and polynomial matrices of suitable dimensions, is
said to describe the following:

• an acceptor of for if for every
exists such that satisfies (4);

• an observer of from for if whenever
is in , and satisfies (4) with
for , for all ;

• an asymptotic observer, if for every in ,
and satisfying (4), we have

;
• an exact observer, if for every in and

satisfying (3.1), we have .

In the sequel, as will always represent the measured
variable and the unmeasurable variable, we will refer to
the acceptors of for and to the observers of from

for simply as acceptors and observers for.
Given an acceptor, described by (4), its behavioris the

set of all solutions of the differential equation (4),
and, by definition, it satisfies the following condition:

Among all of the trajectories of , however, we will be inter-
ested only in those produced corresponding to the trajectories
of , namely, in the set

So, by assuming this point of view, it seems reasonable
to regard asequivalent two acceptors, in particular, two
observers, for the same system, not if their behaviors
and coincide, but if their behaviors satisfy the following
condition:

For an observer described by (4), the difference variable
represents, of course, theestimation error. So,

the previous definitions can be paraphrasized by saying an
observer for is asymptotic (exact) if the set of its estimation
error trajectories

s.t.

is an autonomous and stable behavior (the zero autonomous
behavior). Because autonomous behaviors can always be rep-
resented as kernels of nonsingular square matrices [11], some
Hurwitz (unimodular) matrix exists, i.e., a
nonsingular matrix whose determinant is a Hurwitz polynomial
(a nonzero constant term), such that . The
characteristic polynomial of the behavior , namely, ,
will be called theerror-dynamics characteristic polynomial
(see, also, [20]).

Of course, an acceptor for always exists: one can choose,
for instance, itself. So, the existence of an acceptor is not
an issue. Necessary and sufficient conditions for the existence
of (asymptotic or exact) observers, instead, are given in the
following proposition.

Proposition 3.2: Consider a dynamic system
, whose behavior is described by (2).

i) A necessary and sufficient condition for the existence
of an observer for is that in (2) is a full column
rank polynomial matrix.

ii) A necessary and sufficient condition for the existence
of an asymptotic observer for is that is detectable
from .

iii) A necessary and sufficient condition for the existence of
an exact observer for is that is observable from

.

Proof: 1) Suppose an observer forexists, described by
(4). If would not be a full column rank matrix, some finite
support sequence would exist in its kernel, whose support
is included in . So, corresponding to the behavior
trajectory , the observer would produce
as a possible estimate of the sequence , which
coincides with in but not all over the time axis.
This result contradicts the assumption that (4) is an observer.

In order to show the converse, assumeis a full column
rank polynomial matrix. Then, a unimodular matrix exists
such that

with nonsingular. By conformably partitioning as

we obtain for the behavior the following equivalent descrip-
tion:

(5)

(6)

It is immediate to verify repre-
sents an observer for, with error-dynamics matrix .
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2) Assume, first, an asymptotic observer forexists. If
were not detectable from , two behavior sequences

and would exist such that
does not go to zero asgoes to . If is an estimate
provided by the asymptotic observer corresponding to, it
should be, at the same time

and

and, consequently,
should asymptotically extinguish, a contradiction.

The proof of the converse follows the same lines of that in
1). Indeed, by assuming that is detectable from , or,
equivalently, is of full column rank for every C ,
we can obtain for the behavior the description (5), (6), with

nonsingular Hurwitz. As a consequence,
represents an asymptotic observer for, with

error-dynamics matrix .
3) Follows the same lines as the proof of 2).
As our main interest in this paper is in asymptotic observers,

from now on we will assume the behavior is described by
(5) and (6), with nonsingular Hurwitz. Also, it entails no
loss of generality assuming is of full row rank . In order
to obtain a complete parameterization of the (asymptotic/exact)
observers of , we need the following technical lemma, in
which it is shown that, given any acceptor for(in particular,
an observer), it is possible to obtain an equivalent one [i.e.,
producing the same set of trajectories for every
in ] for which matrix is of full row rank.

Lemma 3.3: If is an acceptor
(in particular, an observer) for , an equivalent acceptor
(observer) exists, with of full
row rank.

Proof: Let be a unimodular matrix that reduces
to its (column) Hermite form with of full row rank.
Then, we get

and hence the acceptor can be equivalently described by the
set of equations

(7)

(8)

By definition of acceptor, for every ,
(7) and (8) have to be fulfilled for some sequence, and
therefore must be included in .
So, the acceptor can be equivalently described by (7).

Under the hypothesis that the matrix appearing in the
observer equation is of full row rank, we can obtain deeper in-
sights into the algebraic properties of the polynomial matrices

and involved in the observer description, and explicitly
relate them to the matrices and .

Theorem 3.4:Consider a plant whose behavior is
described by (5) and (6), with Hurwitz and of full
row . If and are polynomial matrices, with of
full row rank

is an (asymptotic) observer for if and only if a nonsingular
(Hurwitz) matrix and a polynomial matrix

exist such that

(9)

Moreover, the set of all possible error trajectories coincides
with , which amounts to saying we can assume

.
Proof: Suppose, first, , with

of full row rank, is an (asymptotic) observer for, and hence
is an autonomous (and stable) behavior. Corresponding

to the behavior trajectory , the trajectory
, arbitrarily selected in , must be

admissible for the observer, and hence must
be in . This fact proves that is included in

and, hence, in turn, is autonomous (and stable). Because
is full row rank, it has to be also of full column rank and,

hence, nonsingular square. Moreover, if the observer is an
asymptotic one, must be Hurwitz.

As is an admissible error trajectory, every trajectory
satisfies . Therefore

and thus polynomial matrices and can be found such that
(9) holds true. As is nonsingular (Hurwitz), has
to be nonsingular (Hurwitz).

Assume, now, and satisfy (9) for suitable polynomial
matrices and , with nonsingular (Hurwitz). Then, for
every and every estimate , correspondingly
determined from the observer equations, we get

This equation immediately proves , as a subset of
, is a (stable) autonomous behavior, and

hence equation describes an
(asymptotic) observer. Moreover, as we have already proved

is also included in , then coincides with
.
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Remarks: For the problem analysis, it has been useful to
adopt the behavior description (5), (6). If we assume, however,
the behavior is described as in (2), with detectable
from , the asymptotic observers for are those and those
only described by (4) with and polynomial matrices,
nonsingular Hurwitz, satisfying

(10)

for some polynomial matrix .
Also, by assuming the matrix appearing in the ob-

server description is of full row rank, and hence nonsingular
square, we have obtained a complete parameterization of all
possible (asymptotic) observers. Loosening this constraint,
indeed, would only produce a wider set of representations,
not necessarily full row rank, for the same observers.

As a further result, we are now interested in analyzing
what performances can be achieved from the asymptotic
observers in terms of error dynamics. These performances can
be evaluated by error-dynamics characteristic polynomials, as
analyzed in the following corollary.

Corollary 3.5: Consider a dynamic system whose behavior
is described by (5) and (6), with Hurwitz and of

full row rank. Then,

i) for every (asymptotic) observer for , the error-
dynamics characteristic polynomial is a (Hurwitz)
polynomial satisfying the divisibility condition

(i.e., divides );
ii) for every (Hurwitz) polynomial with

, an (asymptotic) observer exists whose error-dynamics
characteristic polynomial coincides with.

Proof: Follows immediately from Theorem 3.4.

IV. PROPER ASYMPTOTIC OBSERVERS

Theorem 3.4 provides us with a useful parameterization of
the observers for a system described by (5) and (6). Indeed, all
observers for can be described by means of the differential
equation

(11)

with and polynomial matrices of suitable dimensions,
and the additional constraint that is Hurwitz if the observer
is asymptotic.

This parameterization can be fruitfully exploited to investi-
gate further relevant issues, in particular, that of determining
the existence of (strictly) proper asymptotic observers, en-
dowed with a (strictly) proper transfer matrix. Systems with
proper or strictly proper transfer functions have desirable
properties as signal processors, in the sense they smooth,
rather than differentiate, signals. Thus (strictly), proper transfer
functions can be expected to better noise immunity. Of course,
this property becomes less important when we can infer more
a priori smoothness for the observed signals.

From a mathematical point of view, we have to search for
conditions guaranteeing that a matrix pair exists, with

Hurwitz, such that

is (strictly) proper rational. As shown in the following proposi-
tion, autonomous behaviors described as in (5) and (6) always
admit strictly proper asymptotic observers.

Proposition 4.1: Let be a dynamic system whose behav-
ior is described by (5) and (6), with Hurwitz and
having full row . If is autonomous or, equivalently,

is a nonsingular square matrix, a strictly proper asymptotic
estimator of from exists.

Proof: Let denote the row degrees of
, and consider an Hurwitz matrix such that is

row reduced [5] with row degrees all greater to or equal to
1 By applying the matrix division algorithm, we can

express as

where and are polynomial matrices, and satisfies

th column of

Therefore

th row of th row of

which implies is a
strictly proper observer for .

Remark: The above proposition not only proves au-
tonomous behaviors admit strictly proper asymptotic esti-
mators, but also shows how to construct one. Indeed, under
the (unrestrictive) assumption that is row reduced with
row degrees , for every Hurwitz matrix such
that is row reduced with row degrees lower bounded
by , a polynomial matrix can be found, such that

represents a
strictly proper asymptotic estimator, having as
estimation error dynamics matrix.

The general problem, when is an arbitrary (not necessar-
ily autonomous) behavior, is a little more involved. In order
to solve it, we refer to the original behavior description and
assume, without loss of generality, the behavioris described
by the differential equation

(12)

with a row reduced matrix [5]
with row degrees . Of course,
is assumed to be detectable from. The first step toward the
solution is given by the following lemma, in which conditions
for the existence of (strictly) proper observers for, not
necessarily asymptotic, are provided.

1A full row rank polynomial matrixM , with row degrees�1; �2; � � � ; is
said to berow reducedif the degree of at least one of its maximal-order
minors coincides with

i
�i.
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Lemma 4.2:Consider a dynamic system with behav-
ior described by (12) and detectable from . If

denotes the leading row coefficient matrix [5]
of

i) a necessary and sufficient condition for the existence of
an observer for with proper transfer matrix is that

has full column ;
ii) a necessary and sufficient condition for the existence

of an observer for with strictly proper transfer ma-
trix is that exists such that

.

Proof: i) Assume, first, an observer with proper transfer
matrix exists, and let be a polynomial matrix
such that the matrix pair , obtained as

provides a left matrix faction description (MFD) of , i.e.,
. It entails no loss of generality, assuming

is also row reduced, with row degrees and
leading row coefficient matrix . By the properness
assumption on is nonsingular. Moreover, as
is row reduced, it follows that

th row of

Let be the real matrix whose th entry
coincides with the leading coefficient of when

th row of and is zero
otherwise. Clearly, the identity holds true, thus
proving is of full column rank.

Conversely, suppose has full column rank, and let
be one of its left inverses. Set and

introduce the polynomial matrix . Then

is a row-reduced matrix (with all row degrees equal to),
and the first submatrix of its leading row coefficient
matrix coincides with . Consequently, is
proper rational.

ii) The proof follows the same lines as the previous one.
Theorem 4.3:Consider a dynamic system with behavior
described by (12) and detectable from . If a (strictly)

proper observer for exists, a (strictly) proper asymptotic one
exists.

Proof: Assume, as in the previous lemma,
is row reduced with row degrees

and leading row coefficient matrix . If a proper
observer for exists, has rank and, hence, a real
matrix exists, of suitable size, such that . If the
observer is strictly proper, in particular, can be chosen in
such a way that also holds true. Set, now,

...

Clearly, is an element of , and
if we regard it as a polynomial in the negative powers of

Fig. 1. Plant-controller connection.

Fig. 2. w1-based controller.

, with coefficients in , the coefficient matrix of
the constant term coincides with . Let

be a unimodular matrix (in ) that reduces
to its Hermite form (still in ):

If we denote by the constant term of , it entails no loss
of generality, assuming , coincides with .

Clearly, the coefficient matrix of the constant term in
, coincides with the identity matrix. Moreover, by the

detectability assumption, can be expressed
as , for some positive integer and some Hurwitz
polynomial of degree .

Corresponding to , the matrix
pair provides a left MFD (over

) of a (strictly) proper transfer matrix ,
with all stable poles.Therefore, some nonsingular diagonal
matrix exists, with all monomial entries, such
that the pair of polynomial matrices , obtained as

...

corresponds to a (strictly) proper asymptotic observer (4).
Remark: As a consequence of the above proposition and

lemma, once we reduce the matrix involved in the
behavior description to row-reduced form, the existence of a
proper asymptotic observer is immediately checked by simply
verifying has full column rank. When so, by following
the procedure described in the proof of Theorem 4.3, we can
explicitly construct such an observer.

V. THE CONTROL PROBLEM

The control problem that will be considered is that of
designing a suitable device (controller), modeled as a dynamic
system , that can be applied to the plant thus producing
a resulting system with desired properties. As recently em-
phasized in [20], the control problem is naturally stated as
an interconnection problem, and the behavioral framework is
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Fig. 3. Observer-based controller.

very convenient for this. So, we have to look for some system
that, once connected to as shown

in Fig. 1, results in acontrolled system

(13)

with a desired behavior.
The control problem, under the assumption that all system

variables are available for control, has been considered in [20].
In this paper, instead, we shall be concerned with the case in
which not all variables are accessible for control purposes,
namely with the situation in which the set of system variables

can be partitioned into two subvectors
of which only is available for control. Such a controller,
which operates by restricting the set of admissible trajectories
for the variable , will be called a -based controller.

In order to investigate what possibilities are offered by a
controller of this kind, we start by assuming (without loss
of generality) the plant behavior is described by the set of
differential equations

(14)

(15)

with and both of full row rank, and consider a -based
controller defined by the following representation:

(16)

where is a polynomial matrix (see Fig. 2).
As in [8] and [19], the problem we aim to address is that

of designing a controller that makes the resulting controlled
system autonomous and possibly stable (sometimes with a pre-
assigned characteristic polynomial). This problem represents a
reasonable extension of the classic regulation problem, and it
allows us to focus immediately on the core of the problem,
namely, on the autonomous part of the resulting connected
system, for the controllable part plays no role in the stability
analysis.

A -based controller that achieves these results is said to
be stabilizing. The possibility of obtaining these properties is
strictly related to the properties of, as shown in the following
theorem.

Theorem 5.1:Consider the dynamic system whose be-
havior satisfies the differential equations (14) and (15). A
necessary and sufficient condition for the existence of a-
based controller that makes the resulting controlled system
autonomous is that an observer for exists; i.e., is
nonsingular square. When so

i) if is autonomous, namely, if is also nonsingular
square, every -based controller makes the controlled
system autonomous with its characteristic polynomial

satisfying

(17)

and, conversely, for every polynomial satisfying
(17), a -based controller exists such that the resulting
autonomous system has characteristic polynomial;

ii) if is not autonomous , for every
-based controller that makes the controlled system

autonomous, the characteristic polynomial satisfies

(18)

and, conversely, for every polynomial satisfying
(18), a -based controller exists that makes the result-
ing system autonomous with characteristic polynomial

, consequently;
iii) a stabilizing -based controller exists if and only if

is detectable from ;
iv) a -based controller exists that makes the resulting

connected system autonomous with an arbitrarily chosen
characteristic polynomial if and only if is observable
from .

Proof: The behavior of the resulting controlled system is
described by the following set of differential equations:

(19)

and hence some polynomial matrix exists such that the
matrix describing the resulting behavior has full column rank
if and only if is already of full column rank, and hence
nonsingular square.

i) If is autonomous, i.e., and are both nonsingular
square, for every choice of the resulting system matrix
is of full column rank, and hence the controlled system is
still autonomous. Condition (17) follows immediately from the
structure of the system matrix as given in (19). Conversely,
assume is a polynomial satisfying (17), and express it as

, with . By resorting to the Smith
form of , for instance, (see [5]), we can factorize as a
product of polynomial matrices , with .
Consequently, is the desired -based controller.

ii) Assume, now, is nonautonomous. Again, condition
(18) follows immediately from the structure of the system
matrix as given in (19). For the converse part, express, again,

as , and consider the Smith form of
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Then, holds true, for suitable uni-
modular matrices and . Because is of full row rank,

is nonsingular square, and it is easy to see that the g.c.d. of
the maximal-order minors of

is . So, corresponding to the controller matrix

we obtain an autonomous controlled system with characteristic
polynomial . (iii) and (iv) follow immediately from (i) and
(ii).

As we have just seen, the possibility of achieving certain
results by means of a -based controller depends, indeed,
on how much information about the “missing variable,” ,
can be deduced from . In particular, the possibility of
stabilizing by constraining only depends on the fact that
the information about is “asymptotically correct,” namely,
that is detectable from . If this is the case, a reasonable
approach to the problem solution could be that of exploiting an
asymptotic estimate of , obtained from by means of
a suitable observer, and of designing a controllerthat makes
use of the pair as if it was . The advantage
of such a control structure is that the controller outs in evidence
the estimation aspect that is part of a dynamic controller. So,
from a theoretical point of view, it is much more significant
than a -based controller, in which this aspect is completely
hidden. Moreover, this structure seems to be more suitable for
addressing implementability issues, that, however, will not be
explicitly taken into account here.

The situation just described represents the generalization
of the analogous one for state-space models, and we will
call a controller with this structure, connected to the original
plant, as shown in Fig. 3, anobserver-based controller. Our
interest, as before, is in observer-based controllers that make
the resulting connected system autonomous and stable and,
hence, are stabilizing.

Once again, we assume the system behavioris described
by (14) and (15), with Hurwitz and of full row rank,
and introduce an asymptotic observer for

(20)

with and satifying condition (9) for some polynomial
matrices and , with Hurwitz. If we introduce a
controller whose behavior is described by the following
set of differential equations:

(21)

the behavior of the whole connected system in Fig. 3,
, is described by

(22)

As can be expressed as the kernel of the polynomial
matrix

to make it autonomous, we have to chooseand so that
is of full column rank. If this is the case, is stable if

and only if the g.c.d. of the maximal-order minors of, the
characteristic polynomial of , is Hurwitz.

Theorem 5.2:Consider the controlled system described in
Fig. 3, and set . If is autonomous, namely,

coincides with

i) for every controller (21), the resulting controlled system
is autonomous with its characteristic polynomial
satisfying

(23)

ii) for every polynomial that satisfies (23), a controller
(21) exists such that the resulting autonomous system
has characteristic polynomial .

If ,

iii) for every controller (21) that makes the whole system
autonomous, the characteristic polynomial is

a multiple of ;
iv) for every polynomial that is multiple of a

controller exists (21) such that the resulting system is
autonomous with characteristic polynomial .

Proof: i) and iii) follow immediately from the structure
of and from the fact that when is autonomous, the matrix

is already of full column rank.
ii) and iv) are proved along the same lines followed in the

proof of Theorem 5.1, upon replacing matrix with the
full row rank matrix

and, hence, applying to all previous reasonings, based on the
Smith form, to explicitly construct the required controllers.

Necessary and sufficient conditions for the existence of
stabilizing observer-based controllers are immediately derived,
as a straightforward consequence of the previous result.

Corollary 5.3: Given a plant whose behavior is de-
scribed by (14) and (15), with nonsingular square and
of full row rank, a necessary and sufficient condition for the
existence of a stabilizing observer-based controller is that
is detectable from ; namely, is Hurwitz.
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Remarks: It is worthwhile to note the gap existing between
the results achieved (in terms of characteristic polynomials)
by an observer-based controller and by a-based controller
in case of detectability, is only apparent, and motivated by
the fact that the characteristic polynomial we refer to in the
case of an observer-based controller also takes into account
the observer dynamics. If we considered just the behavior of
the plant , namely, the projection of onto the variables

and , we would obtain the same results, as, indeed,
observer-based controllers and-based controllers, under the
detectability assumption, are completely equivalent.

Also, the development of observer-based controllers can of
course be combined with the notions of singular and regular
( -based) controllers extensively discussed in [20]. We prefer
not to enter into these ramifications here, however.

VI. STATE-SPACE MODELS

To conclude, we aim to show the observer theory, here
developed within the behavioral approach, is consistent with
the classic one for state-space systems [9]. For sake of brevity,
we will explicitly consider only the main definitions and results
presented in Sections II–IV and skip the control problem,
which is, nonetheless, of noteworthy interest.

Given an ( -dimensional) state-space model, withinputs
and outputs, i.e.,

(24)

the set of its trajectories is equivalently described, in behav-
ioral terms, as the set of all sequences satisfying

(25)

By Proposition 2.2, is observable from if and only if

C

and detectable from if and only if

C

These equations represent the well-know observability and
detectability Popov–Belevitch–Hautus (PBH, for short) tests
for state-space models [5].

Under the detectability assumption, an asymptotic state
observer exists (see Proposition 3.2), based on the knowledge
of the inputs and the outputs of the system. More precisely,
all possible asymptotic state estimators can be described by
the following set of differential equations:

(26)

with a triple of polynomial matrices satisfying the
following constraints:

i) is nonsingular Hurwitz;

ii)

for suitable polynomial matrices and .
Among these asymptotic observers, in particular, a Luen-

berger (full-order feedback) state observer exists. Indeed, if
is any real matrix such that is asymptotically
stable, it is sufficient to assume and
in ii), thus obtaining the state observer

(27)

which satisfies condition i), and whose estimation error dy-
namics matrix coincides with .

Also, upon assuming detectability, we can look for (strictly)
proper asymptotic state estimators, namely, observers de-
scribed by

(28)

with

i) nonsingular Hurwitz;
ii)

for suitable polynomial matrices and ;

iii) (strictly) proper rational.

The Luenberger observer is endowed with a strictly proper
rational transfer matrix .
So, the existence of a proper state observer is not an issue. It
can be interesting, instead, to determine what matricesand,
hence, possibly describe the estimation error dynamics. The
first step toward the solution is given by the following lemma,
which proves that, to fulfill condition iii) above, it is sufficient

is proper rational.
Lemma 6.1:Consider an asymptotic state observer de-

scribed as in (28), with matrices and satisfying
conditions i) and ii). Such an observer is (strictly) proper, i.e.,
fulfills iii), if and only if is (strictly) proper.

Proof: Because matrix

is of full row rank, the pair appearing in ii) can be
uniquely recovered from the observer matrices and .
Moreover, and

Consequently,

and therefore

So, is (strictly) proper whenever is.
The converse is obvious.
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As an immediate consequence of the above lemma, the
search for proper asymptotic state observers is equivalent to
the problem of determining proper asymptotic state observers
for the autonomous system

(29)

This result is rather intuitive, because it expresses the fact that
the forced state evolution could be easily removed without
affecting the solution of the proper observer problem. Further-
more, it allows us to reduce ourselves to the special case of
autonomous behaviors, previously analyzed.

We are now interested in getting some flavor of what can be
the minimal complexity (in terms of realization dimension and,
hence, of McMillan degree [5]) a proper (strictly proper) state
observer can exhibit. The following proposition shows every
row-reduced matrix , with row degrees lower bounded by

(by ), for which the diophantine equation
is solvable, can appear as

“denominator matrix” of some proper (strictly proper) state
observer.

Proposition 6.2: Let be a left coprime MFD of
, with row reduced with row indexes

. For every polynomial pair such that
is row reduced with row

degrees lower bounded by , a new pair
exists such that and

is a proper (strictly proper) state observer for (6.6), and hence

is a proper (strictly proper) state observer for the state model
(25).

Proof: It is sufficient to observe the set of possible
solutions of the matrix equation

can be expressed as

and to apply the matrix division algorithm of Proposition 4.1 to
the pair , thus getting ,
where has all row degrees smaller than .

This result admits a rather interesting interpretation. As the
row indexes are the well-knownobservability
indexesof the pair [5]–[7], the previous proposition
states it is always possible to obtain a state observer (28)
where , and hence the error dynamics matrix(see Theorem
3.4), is row reduced with row degrees lower bounded by
the maximum of the observability indexes. So, these indexes
somehow provide a constraint on the minimal complexity the
asymptotic state observers can possibly exhibit. This situation
strictly reminds us of an analogous one for the classical output

feedback compensator, in which, instead, the reachability
indexes are involved [6], [7].

The characterization of strictly proper state observers is
much simpler than the characterization of general proper state
observers, as shown by the following proposition.

Proposition 6.3: Let

be an asymptotic state observer, whose matrices and
satisfy conditions i) and ii) for some (uniquely determined)

matrix pair . Such an observer is strictly proper if and
only if is proper.

Proof: Assume the asymptotic observer is strictly proper,
and let be a unimodular matrix such that

is row reduced. If denotes the leading row coeffi-
cient matrix of , is nonsingular,
and . We, first, show

th row of th row of (30)

If not, some row, say, theth, in would exist with degree
greater to or equal to the degree of the corresponding row in

, thus contradicting the strict properness assumption on
. Then, however

th row of

th row of

th row of

This fact implies, also, coincides with the leading row
coefficient matrix of , and hence is row reduced. So,
as is row reduced and (30) holds true,

is proper.
Conversely, if is proper, some unimodular matrix
exists that leads to row-reduced form.

If denotes the leading row coefficient ma-
trix of , is nonsingular, and

is, in turn, row reduced, with leading
row coefficient matrix , thus proving

is strictly proper.
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