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shown in the top figure (the disturbance vector is actually a randomly
generated vector multiplied by the displayed variable). Note that the
system states are affected by the disturbances (bottom), but the state
vector remains inside the sliding surface (center). The sliding mode
controller performs optimalH2-guaranteed cost attenuation of the
nonmatching disturbances.

V. CONCLUSION

The design of sliding mode controllers for nominal systems may
lead to an unpredictable behavior of the closed loop in the case of
nonmatching disturbances. In order to take such disturbances into
account, anH2 guaranteed cost design of sliding surfaces has been
developed in this note for convex-bounded model uncertainties of
polytope type. The quadratic stability of the closed loop is guaranteed
by the method, and a performance level (defined in terms of anH2

norm) is assured. The design is performed via a convex optimization
method, using highly efficient algorithms, with assured convergence
to the global optimum.
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The Kharitonov Theorem with Degree Drop

Jan C. Willems and Roberto Tempo

Abstract—The purpose of this note is to present a proof of the
Kharitonov theorem based on Bezoutians. An interesting consequence
of this proof is that it shows the validity of Kharitonov’s result in the
presence of a degree drop.

Index Terms—Bezoutians, Kharitonov theorem.

I. INTRODUCTION

In the early proofs of the Kharitonov theorem [1]–[4], [11], it
is generally assumed that the degree of the interval polynomial
family is constant. The question thus arises if the Kharitonov result
remains valid with degree drop. In order to put the problem clearly
in perspective, it is convenient to estabish first the notation.

Let I � [�] denote the interval family of polynomials defined by
the coefficient intervals[ak; ak], k = 0; 1; � � � ; n, i.e.,

I = fp 2 [�]: p(�) = p0 + p1� + p2�
2 + � � �+ pn�

n
;

with ak � pk � akg:

The problem is to find conditions so that all of the elements ofI are
Hurwitz (a polynomial is said to beHurwitz if it has all of its roots
in the open left half of the complex plane). Define

E1(�) = a0 + a2�
2 + a4�

4 + a6�
6 + a8�

8 + a10�
10 + � � �

E2(�) = a0 + a2�
2 + a4�

4 + a6�
6 + a8�

8 + a10�
10 + � � �

O1(�) = a1� + a3�
3 + a5�

5 + a7�
7 + a9�

9 + a11�
11 + � � �

O2(�) = a1� + a3�
3 + a5�

5 + a7�
7 + a9�

9 + a11�
11 + � � � :

Define the polynomials

k1(�) = a0 + a
1
� + a2�

2 + a3�
3 + a4�

4 + a5�
5

+ a6�
6 + a7�

7 + � � �

k2(�) = a
0
+ a1� + a2�

2 + a3�
3 + a4�

4 + a5�
5

+ a6�
6 + a7�

7 + � � �

k3(�) = a0 + a1� + a2�
2 + a3�

3 + a4�
4 + a5�

5

+ a6�
6 + a7�

7 + � � �

k4(�) = a0 + a1� + a2�
2 + a3�

3 + a4�
4 + a5�

5

+ a6�
6 + a7�

7 + � � � :

The polynomialsk1; k2; k3; k4 are called theKharitonov polynomi-
als associated withI. In the classic paper [1], Kharitonov proved the
remarkable result that, under the assumption that the highest degree
coefficient of the interval family does not vanish (from which either
an > 0 or an < 0), then all elements ofI are Hurwitz if and only
if the four Kharitonov polynomialsk1; k2; k3; k4 associated withI
are Hurwitz.

In this paper, we study the following question: What is the situation
if the highest degree coefficient is allowed to vanish (from which, if
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either an = 0 or an = 0)? In order to examine this, observe that
it is easy to see that a real polynomialp with degree(p) = n � 1
and positive coefficients is Hurwitzonly if ��n+ p(�) is Hurwitz for
� > 0 sufficiently small. Theif version of this statement (which, if
correct, would prove the Kharitonov result with a vanishing leading
term) is, unfortunately, not correct. Indeed, as observed before in [5],
��n + p(�) may be Hurwitz for� > 0, but its roots may hit the
imaginary axis for� = 0. The following polynomial is an example of
such a situation:p(�) = 0:5�5+0:5�4+5�3+3�2+8�+4. It has roots
on the imaginary axis, but��6+0:5�5+0:5�4+5�3+3�2+8�+4 is
Hurwitz for � > 0 sufficiently small. To verify this, apply the Routh
test. (In [5], it is also shown thatn = 5 provides the lowest order
such example.)

This is relevant for the generalization of Kharitonov’s result in
the case of a vanishing leading term. Assume that[0; an] is the
coefficient range of the highest coefficient of the interval poynomial,
and that the four usual Kharitonov polynomialsk1; k2; k3; k4 are
Hurwitz. Does it follow that a polynomialp in the interval family
with vanishing leading coefficient is Hurwitz? Of course, it follows
from the usual Kharitonov theorem that��n+p(�) will be Hurwitz for
� > 0 sufficiently small, but, as we have just seen, this simply does
not imply thatp itself is Hurwitz. One way around this is to consider,
in addition to the four usual Kharitonov polynomialsk1; k2; k3; k4,
the polynomials

k5(�) = an�1�
n�1 + an�2�

n�2 + an�3�
n�3 + an�4�

n�4

+ an�5�
n�5 + an�6�

n�6 + an�7�
n�7

+ an�8�
n�8 + � � �

k6(�) = an�1�
n�1 + an�2�

n�2 + an�3�
n�3 + an�4�

n�4

+ an�5�
n�5 + an�6�

n�6 + an�7�
n�7

+ an�8�
n�8 + � � � :

Notice that k5 and k6 are not Kharitonov polynomials. It now
follows directly from the classical Kharitonov result (using, in the
case where the leading coefficient is zero,k1; k3; k5; k6 for n odd
andk3; k4; k5; k6 for n even) that the interval family is Hurwitz if
and only if the six extreme polynomialsk1; k2; k3; k4; k5; k6 are
Hurwitz. This is indeed the result obtained in [5].

However, surprisingly, it turns out thatk1; k2; k3; k4 Hurwitz
implies thatk5; k6 are also Hurwitz, and so there is no need to modify
Kharitonov’s theorem in any way in the case where the leading term
vanishes! This is what we will prove in this note. This result is not
new. In fact, it was demonstrated in [6], using Nyquist-like complex
function analysis. There are also other, shorter proofs [7] of this result.
Our method of proof, however, is new. It provides a short proof that
encompasses the vanishing leading coefficient case without having
to pay special attention to it. Moreover, this proof is based on a
Lyapunov function argument, an aspect that by itself has some merit
in its own right.

The result that we want to prove is the following.
Theorem 1: All elements of I are Hurwitz if and only if the

four Kharitonov polynomialsk1; k2; k3; k4 associated withI are
Hurwitz.

Assume, without loss of generality, thata
n
� 0. Since, obviously,

k1; k2; k3; k4 � I, it suffices to prove the “if” part. The “if” part
is the classical Kharitonov result [1]–[4] whenan > 0. In Section
III, we prove that this result also holds for the casean = 0 and
an > 0. We remark that a degree drop of more than one immediately
implies that one of the Kharitonov polynomials is not Hurwitz, and
thereforean�1 > 0.

II. THE BEZOUTIAN

Let p 2 [�]. Definep� 2 [�] by p�(�) = p(��). TheBezoutian
(see, e.g., [8]) associated withp is a two-variable polynomialBp 2

[�; �] defined by

Bp(�; �) =
p(�)p(�)� p�(�)p�(�)

� + �
:

It is easily verified that, sincep(�)p(��) � p�(�)p�(��) = 0,
p(�)p(�) � p�(�)p�(�) has a factor� + �, and soBp is indeed
polynomial. In terms of the even and odd parts ofp, Ep = (p+p�)=2
andOp = (p � p�)=2, Bp is equal to

Bp(�; �) = 2
Ep(�)Op(�) +Op(�)Ep(�)

� + �
:

Now, Bp is of the form

Bp(�; �) =

degree(p)�1

k; `=0

Ak`�
k�`

with Ak` = A`k. Denote the real symmetric matrix[Ak`]
degree(p)�1
k; `=0

by ~Bp. Define the rank ofBp to be equal to that of~Bp, and define
Bp to be positive definite if~Bp is.

The following classical result relates the stability ofp(d=dt)w = 0
with the BezoutianBp.

Proposition 2 [8]: The polynomialp 2 [�] is Hurwitz if and
only if Bp is positive definite.

In order to make this note self contained, a Lyapunov proof of this
proposition has been included in the Appendix.

An interesting immediate consequence of Proposition 2 is the
following result on the stability of linear systems whose defining
polynomial is a convex combination of even and odd polynomials. Let
E1; E2; � � � ; EN 2 [�] be even polynomials (Ek(�) = Ek(��);
hence, only even powers appear). LetO1; O2; � � � ; ON 2 [�]
be odd polynomials (Ok(�) = �Ok(��); hence, only odd powers
appear).

Proposition 3 [9]: Assume that the polynomialspk` = Ek +
O`; k = 1; 2; � � � ; N 0; ` = 1; 2; � � � ; N 00 are Hurwitz. Assume that
�k > 0; k = 1; 2; � � � ; N 0 and �` > 0; ` = 1; 2; � � � ; N 00. Then
the polynomial

p =

N

k=1

�kEk +

N

`=1

�`O`

is also Hurwitz.
Proof: Note that

Bp =

N

k=1

N

`=1

�k�`Bp :

Hence,Bp is nonnegative definite, and its rank is equal to the
maximum of the degrees of the polynomialspk`. Since this maximum
is, in fact, also the degree ofp, it follows from Proposition 2 that
p is Hurwitz.

III. PROOF OF THEOREM 1

Assume thatk1; k2; k3; k4 are Hurwitz and, without loss of
generality, assume thatan > 0. Note that this implies thatak > 0 for
k = 0; 1; � � � ; n�1. Hence,p 2 I implies that all of its coefficients
are positive.

1) First, we prove that every convex combinationk =
�1k1 + �2k2 + �3k3 + �4k4, with �1; �2; �3; �4 � 0
and 4

`=1 �i = 1, is also Hurwitz. In order to see this, write
k as

k=(�1+�2)E1+(�3+�4)E2+(�1+�3)O1+(�2+�4)O2
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and use Proposition 3. Thus, all polynomials in the convex
hull of fk1; k2; k3; k4g are Hurwitz.

2) Next, observe (see [10] and [11]) that anyp 2 I satisfies the
following relations for! � 0:

Re(k1(i!)) =Re(k2(i!)) = E1(i!)

E2(i!) =Re(k3(i!)) = Re(k4(i!))

Im(k1(i!)) = Im(k3(i!)) = �iO1(i!)

�iO2(i!) = Im(k2(i!)) = Im(k4(i!))

and
E1(i!) �Re(p(i!))� E2(i!)

�iO1(i!) � Im(p(i!))� �iO2(i!):

From these relations, it follows thatp(i!) belongs to the convex
hull in of

fk1(i!); k2(i!); k3(i!); k4(i!)g:

3) By 1), no convex combinationk of k1; k2; k3; k4 can have
a root on the imaginary axis. By 2), this implies that, also, no
element ofI can have a root on the imaginary axis.

4) Note that sincek1; k2; k3; k4 are Hurwitz andan > 0, all
of the coefficients ofk1; k2; k3; k4 are positive. Hence, two
situations can occur: eitheran > 0, in which case all elements
of I have degreen, or a

n
= 0, in which case two elements

of fk1; k2; k3; k4g have degreen and two elements have
degreen � 1 and, moreover, all elements ofI have degree
n or n � 1.

5) Letp 2 I. Letk 2 fk1; k2; k3; k4g be such that degree(k) =
degree(p). Now, consider the convex combinationp� =
�p + (1 � �)k, 0 � � � 1, of p and k. Obviously,
p� 2 I. Hence, by 3),p� has no root on the imaginary
axis for 0 � � � 1. Furthermore,p0 = k is Hurwitz and
degree(p�) = degree(k) for 0 � � � 1. Hence,p1 = p is
also Hurwitz.

This ends the proof of Theorem 1. Note that we proved the theorem
both for an > 0 and for an = 0.

In closing, we pose as an open problem the question to provide a
direct, matrix proof of the implication that positive definiteneness of
the four matrices~Bk ; ~Bk ; ~Bk ; ~Bk implies positive definiteness
of ~Bp.

APPENDIX

PROOF OF PROPOSTION 2

1) (if): Let degree(p) = n. Consider the (Lyapunov) functionV
induced byBp:

V w;
dw

dt
; � � � ;

dn�1w

dtn�1
=

n�1

k; `=0

Ak`

dkw

dtk
d`w

dt`
:

Using the definition of the Bezoutian, we obtain

d

dt
V w;

dw

dt
; � � � ;

dn�1w

dtn�1

= p
d

dt
w

2

� p�
d

dt
w

2

:

Hence, along solutions ofp(d=dt)w = 0, this derivative is
equal to�jp�(d=dt)wj2. Since ~Bp is symmetric and positive-
definite, V is a positive-definite Lyapunov function for
p(d=dt)w = 0 with a nonpositive-definite derivative. Hence,
by the invariance principle, all solutions ofp(d=dt)w = 0
approach, fort ! 1, the set wherep�(d=dt)w = 0

or, in other words, the set where bothp(d=dt)w = 0
and p�(d=dt)w = 0. We claim that, since rank(Bp) =
rank( ~Bp) = degree(p), p andp� are coprime. Ifp = fq and
p� = fq� with f = f�, thenBp(�; �) = f(�)Bq(�; �)f(�),
which is easily seen to imply that rank(Bp) � rank(Bq) �
degree(q). This allows us to conclude that all solutions of
p(d=dt)w = 0 converge to zero ast ! 1.

2) (only if): Assume thatp is Hurwitz. From the definition of the
Bezoutian, it follows that, for any solutionw of p(d=dt)w =
0, there holds

n�1

k; `=0

Ak`

dkw

dtk
(0)

d`w

dt`
(0) =

1

0

p�
d

dt
w

2

dt:

This equation shows thatBp is nonnegative definite. Further-
more, sincep is Hurwitz, p andp� are coprime, from which
the right-hand side cannot be zero unlessw = 0, which shows
that the rank ofBp is indeed equal to degree(p).
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