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shown in the top figure (the disturbance vector is actually a randomly The Kharitonov Theorem with Degree Drop
generated vector multiplied by the displayed variable). Note that the

system states are affected by the disturbances (bottom), but the state Jan C. Willems and Roberto Tempo
vector remains inside the sliding surface (center). The sliding mode

controller performs optimaH--guaranteed cost attenuation of the

nonmatching disturbances. Abstract—The purpose of this note is to present a proof of the

Kharitonov theorem based on Bezoutians. An interesting consequence
of this proof is that it shows the validity of Kharitonov’s result in the

presence of a degree drop.
V. CONCLUSION

. - . Index Terms—Bezoutians, Kharitonov theorem.
The design of sliding mode controllers for nominal systems may

lead to an unpredictable behavior of the closed loop in the case of

nonmatching disturbances. In order to take such disturbances into . INTRODUCTION

account, anﬂz guaranteed cost design of sliding surfaces h.as. beenIn the early proofs of the Kharitonov theorem [1]-[4], [11], it
developed in this note for_ convg>_<-bounded model un_certalnnes igf generally assumed that the degree of the interval polynomial
polytope type. The quadratic stability of the clqsed I_oop IS guarante%qn"y is constant. The question thus arises if the Kharitonov result
by the.method, and a perf.orm.ance level (defmed In terms df{@m remains valid with degree drop. In order to put the problem clearly
norm) is as§ureq. The dg;lgn IS per_formed via a convex Opt'm'zat'f?{‘perspective, it is convenient to estabish first the notation.
method, using highly efficient algorithms, with assured convergence, o r ~ R[¢] denote the interval family of polynomials defined by

to the global optimum. the coefficient interval$ay, ax], ¥ =0, 1, ---, n, i.e,
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eithera,, = 0 or @, = 0)? In order to examine this, observe that Il. THE BEZOUTIAN

it is easy to see that a real polynomjalwith degreép) = n — 1 Let p € R[¢]. Definep™ € R[] by p™(€) = p(—¢). The Bezoutian
and positive coefficients is Hurwitanly if e¢" +p(¢) is Hurwitz for (see, e.g., [8]) associated withis a two-variable polynomiaB, €

¢ > 0 sufficiently small. Theif version of this statement (which, if g ) defined by
correct, would prove the Kharitonov result with a vanishing leading ; o
term) is, unfortunately, not correct. Indeed, as observed before in [5], By(C,n) = p(Qp(n) —p (Qp*(n)

e€" 4+ p(¢) may be Hurwitz fore > 0, but its roots may hit the C+m

imaginary axis for = 0. The following polynomial is an example of It is easily verified that, since(&)p(—¢) — p™(§)p™ (=€) = 0,

such a situationp(€) = 0.5¢° +0.56*+563 4362 4-8¢+4. Ithas roots  p(QO)p(n) — p*(¢)p*(n) has a factor¢ + », and soB, is indeed
on the imaginary axis, but® +0.5¢% 4-0.5¢* 4+ 5¢% +3¢2 4-8¢+4is  polynomial. In terms of the even and odd partgpE, = (p+p*)/2

Hurwitz for ¢ > 0 sufficiently small. To verify this, apply the Routhand O, = (p — p*)/2, B, is equal to

test. (In [5], it is also shown that = 5 provides the lowest order L E(O0,(n) + 0O E,(n)

such example.) By(¢,n) =2 tn .
This is relevant for the generalization of Kharitonov's result in . )

the case of a vanishing leading term. Assume fbatz,] is the NOW. By is of the form

coefficient range of the highest coefficient of the interval poynomial, degree(p)—1

and that the four usual Kharitonov polynomidls, k-, k3, ks are By(¢, ) = Z ApeCn’

Hurwitz. Does it follow that a polynomiap in the interval family k, £=0

with vanishing leading coefficient is Hurwitz? Of course, it follow:
from the usual Kharitonov theorem that* +p(¢) will be Hurwitz for

e > 0 sufficiently small, but, as we have just seen, this simply do
not imply thatp itself is Hurwitz. One way around this is to consider,
in addition to the four usual Kharitonov polynomidls, k-, ks, k4,
the polynomials

Swith Ay, = A,.. Denote the real symmetric matrﬁ)ék,g]jl‘fizg(”)_1

B,. Define the rank of3, to be equal to that of3,, and define
', to be positive definite ifB,, is.
The following classical result relates the stabilitypdfl /dt)w = 0
with the BezoutianB,.

Proposition 2 [8]: The polynomialp € R[¢] is Hurwitz if and
only if B, is positive definite.

In order to make this note self contained, a Lyapunov proof of this
proposition has been included in the Appendix.

An interesting immediate consequence of Proposition 2 is the

n—4

I\S(E) :Qn71£n71 + an2£niz + En73£n73 + 571—45
+ 171—5577’_5 + Qn—GSn_G + ﬁ77,—7£n_7

+@s" following result on the stability of linear systems whose defining
Bo (&) = 16" + an9" 24 an_ 5" A g polynomial is a convex combination of even and odd polynomials. Let
s - et Ey. Es. -, Ex € Rl¢] be even polynomialsKy(€) = Ew(—£);
@58 "+ an—6" "+ an-7¢ hence, only even powers appear). l@t, Os, ---, Onr» € R[]
NI Y S N be odd polynomials®@; (¢) = —0Ox(—£); hence, only odd powers
appear).
) ) . Proposition 3 [9]: Assume that the polynomialgy, = Ejx +
Notice that ks and ks are not Kharitonov polynomials. It now O k=1,2, -, Nst=1,2, ---, N are Hurwitz. Assume that
follows directly from the classical Kharitonov result (using, in th (lk: > 0. ; -1, 2 SN énd e > 0.{=1.2. ---. N". Then

case where the leading coefficient is zeko, ks, ks, ks for n odd
andks, k4, ks, ke for n even) that the interval family is Hurwitz if . »

and only if the six extreme polynomials,, ko, ks, k4, ks, ke are a —
Hurwitz. This is indeed the result obtained in [5]. p= Z ar bk + Z BeO

the polynomial

However, surprisingly, it turns out thdt;, ko, k3, ks Hurwitz _ k=1 =t
implies thatks, ks are also Hurwitz, and so there is no need to modif{ also Hurwitz.
Kharitonov’s theorem in any way in the case where the leading term Proof: Note that
vanishes! This is what we will prove in this note. This result is not N’ N
new. In fact, it was demonstrated in [6], using Nyquist-like complex B, = Z Z arBeBy, -
function analysis. There are also other, shorter proofs [7] of this result. k=1 (=1

Our method of proof, however, is new. It provides a short proof th@fence, B, is nonnegative definite, and its rank is equal to the
encompasses the vanishing leading coefficient case without havifiiximum of the degrees of the polynomials. Since this maximum
to pay special attention to it. Moreover, this proof is based onig in fact, also the degree gf it follows from Proposition 2 that
Lyapunov function argument, an aspect that by itself has some meyits Hurwitz.
in its own right.
The result that we want to prove is the following. i
Theorem 1: All elements of I are Hurwitz if and only if the
four Kharitonov polynomialsks, k2, ks, k4 associated withl are
Hurwitz.

. PROOF OF THEOREM 1

Assume thatki, ko, k3, ks are Hurwitz and, without loss of
generality, assume that, > (. Note that this implies that, > 0 for

Assume, without loss of generality, that > 0. Since, obviously, k=0, 1_’ AL 1. Hencep € I implies that all of its coefficients
ki, k2, ks, ks C I, it suffices to prove the “if” part. The “if” part are positive.
is the classical Kharitonov result [1]-[4] when, > 0. In Section 1) First, we prove that every convex combination =
Ill, we prove that this result also holds for the case = 0 and a1k + aoke + asks + aaka, With a1, oo, ag, as > 0
@ > 0. We remark that a degree drop of more than one immediately ~ @nd3_;_, a; = 1, is also Hurwitz. In order to see this, write
implies that one of the Kharitonov polynomials is not Hurwitz, and k as

thereforea,—, > 0. E=(ai+az)Er+(az+aq)Er+ (a1 +a3)O01 +(az+a4) Oz
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and use Proposition 3. Thus, all polynomials in the convex
hull of {k1, k2, ks, ka} are Hurwitz.

2) Next, observe (see [10] and [11]) that gmy [ satisfies the
following relations forw > 0:

Re(ki(iw)) =Re(kz(iw)) = E (iw)
Es(iw) =Re(ks(iw)) = Re(ky(iw))
Im(k; (iw)) =Im(ks(iw)) = —iO; (iw)
—i0s(iw) =Im(ke(iw)) = Im(ka(iw))

and
Eq(iw) <Re(p(iw)) < Eq(iw)

—i0, (iw) <Im(p(iw)) < =10z (iw).

From these relations, it follows thatiw) belongs to the convex
hull in C of

{k1(iw), k2(tw), k3(iw), ka(iw)}.

3) By 1), no convex combinatioh of ki, k2, k3, k4 can have
a root on the imaginary axis. By 2), this implies that, also, no
element ofl can have a root on the imaginary axis.

4) Note that sinceék, k2, ks, ks are Hurwitz anda, > 0, all
of the coefficients of, k2, ks, k4 are positive. Hence, two
situations can occur: either, > 0, in which case all elements
of I have degree:, or a,, = 0, in which case two elements
of {ki1, ko, k3, ka} have degreer and two elements have
degreen — 1 and, moreover, all elements éfhave degree
n orn — 1.

5) Letp € I.Letk € {k1, ko, ks, ka} be such that degrek) = (1]
degreép). Now, consider the convex combinatign, =
ap + (1 — a)k, 0 < a < 1, of p and k. Obviously, 2]
pa € I. Hence, by 3),p. has no root on the imaginary
axis for0 < a < 1. Furthermorep, = k is Hurwitz and  [3]
degreép.) = degreék) for 0 < o < 1. Hence,p1 = p is
also Hurwitz. [4]

This ends the proof of Theorem 1. Note that we proved the theorens)
both fora, > 0 and fora, = 0.

In closing, we pose as an open problem the question to provide a
direct, matrix proof of the implication that positive definiteneness of, 6]
the four matricesBy.,, Bi,, Bu,, By, implies positive definiteness
of B,.

[7]

(8]
APPENDIX
PROOF OF PROPOSTION 2 [9]

1) (if): Let degreép) = n. Consider the (Lyapunov) function [10]
induced by B,:

v dw A" lw nil 4 d*uw dlw
7w, - = Ay —_—.
t’ =1 R T

[11]

Using the definition of the Bezoutian, we obtain

iV’ dw artw
at \"" a7

NEAWEN YT AW
~P\ar Pae )

Hence, along solutions qf(d/dt)w = 0, this derivative is
equal to—|p*(d/dt)w|*. SinceB, is symmetric and positive-
definite, V' is a positive-definite Lyapunov function for
p(d/dt)w = 0 with a nonpositive-definite derivative. Hence,
by the invariance principle, all solutions efd/dt)w = 0
approach, fort — oo, the set wherep*(d/dt)w = 0

2

or, in other words, the set where boi{d/dt)w = 0
and p*(d/dt)w = 0. We claim that, since ranB,) =
rank(Bp) = degreép), p andp™ are coprime. lf{p = f¢ and
p" = fq" with f = f*, thenB,(C. n) = f(Q) By (¢, ) f(n),
which is easily seen to imply that rafiR,) < rank B,) <
degreéq). This allows us to conclude that all solutions of
p(d/dt)w = 0 converge to zero as — oo.

2) (only if): Assume thap is Hurwitz. From the definition of the

Bezoutian, it follows that, for any solutiom of p(d/dt)w =
0, there holds

This equation shows tha,, is nonnegative definite. Further-
more, sincep is Hurwitz, p andp™ are coprime, from which

the right-hand side cannot be zero unless- 0, which shows

that the rank ofB,, is indeed equal to degrge.
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