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Dead beat observer synthesis
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Abstract

In the paper the observer design problem is investigated in the context of linear left shift invariant discrete behaviors, whose
trajectories have support on the positive axis. Observability and reconstructibility properties of certain manifest variables
from certain others, in the presence of latent variables, are de�ned and fully characterized. Necessary and su�cient conditions
for the existence of either a dead-beat or an exact observer are introduced, and a complete parametrization of all dead-beat
observers is given. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The last decade has witnessed an increasingly
broader interest in the behavioral approach to dynam-
ics systems modeling [3,6,7], which is now generally
recognized as a natural setting for describing and ana-
lyzing the trajectories that a system produces. Indeed,
modeling from �rst principles generally leads to a set
of di�erential (or di�erence) equations, relating the
time-evolution of the various variables involved in the
plant description. The collection of all time trajecto-
ries satisfying these equations is called the behavior.
Typically, the variables appearing in the mathemat-

ical model of the plant can be conceptually partitioned
into two groups: manifest variables and latent vari-
ables. While the former are fundamental to the system
description, and endowed with a physical interpreta-
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tion, the latter play a somehow “auxiliary role”, and
often, have only a mathematical meaning [3,6]. So, it
is natural to assume that latent variables are not mea-
surable.
In the last few years, important aspects of classi-

cal system theory have been translated and solved in
the behavioral setting, thus leading to powerful gen-
eralizations of well-known results obtained within the
input=output or state-space contexts. In particular, the
relevant issue of estimating some system variables,
not available for measurements, from others which
are measured, has been recently investigated for linear
time invariant (continuous time) systems [5].
The aim of this paper is that of addressing and

solving the observer design problem for linear left
shift invariant systems whose trajectories are de�ned
on Z+. We �rst provide necessary and su�cient
conditions for the existence of dead-beat (or exact)
observers, and then derive a complete parametriza-
tion of all possible dead-beat observers, based on
the polynomial matrices involved in the system
description.
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In this paper, all trajectories will be assumed de-
�ned on the set Z+ of nonnegative integers. The right
(forward) and the left (backward) shift operators on
(Fq)Z+ , the set of trajectories de�ned on Z+ and tak-
ing values in Fq, are de�ned as

� : (Fq)Z+ → (Fq)Z+ : (C0; C1; C2; : : :) 7→ (0; C0; C1; : : :);
� : (Fq)Z+ → (Fq)Z+ : (C0; C1; C2; : : :) 7→ (C1; C2; C3; : : :):

As we will deal with left shift invariant behaviors,
we will restrict our attention to the left shift operator
�, and correspondingly de�ne certain matrix shift op-
erators. In fact, if P(�) =

∑L
i=0 Pi�

i ∈ F[�]q×m is a
polynomial matrix, we associate with it the polynomial
matrix operator P(�) =

∑L
i=0 Pi�

i. It can be proved
that P(�) describes an injective map from (Fm)Z+ to
(Fq)Z+ if and only if P is a right prime matrix, and a
surjective map if and only if P is of full row rank.

2. Basic results about in�nite support behaviors in
(Fq)Z+

Before proceeding, it is convenient to brie
y sum-
marize some basic de�nitions and results about linear
left shift invariant behaviors, whose trajectories have
support in Z+. Further details on the subject can be
found in [4,8].
A behavior B⊆(Fq)Z+ is said to be linear if it

is a vector subspace (over F) of (Fq)Z+ , and left
shift invariant if �B⊆B. A linear left shift invari-
ant behavior B⊆(Fq)Z+ is complete if for every se-
quence w̃ ∈ (Fq)Z+ , the condition w̃|S ∈ B|S for
every �nite set S⊂Z+ implies w̃ ∈ B, where w̃|S
denotes the restriction to S of the trajectory w̃ and
B|S the set of all restrictions to S of behavior
trajectories.
Linear left shift invariant complete behaviors are

kernels of polynomial matrices in the left shift oper-
ator �, which amounts to saying that the trajectories
w= {w(t)}t∈Z+ of B can be identi�ed with the set of
solutions in (Fq)Z+ of a system of di�erence equations

R0w(t) + R1w(t + 1) + · · ·+ RLw(t + L) = 0;
t ∈ Z+; (2.1)

with Ri ∈ Fp×q, and hence described by the equation
R(�)w= 0; (2.2)

where R(�):=
∑L

i=0 Ri�
i belongs to F[�]p×q. In the

sequel, a behavior B described as in Eq. (2.2) will be
denoted, for short, as B = ker(R(�)).

It can be shown that ker(R1(�))⊆ ker(R2(�)) if and
only if R2 = PR1 for some polynomial matrix P.
A complete behaviorB=ker(R(�))⊆(Fq)Z+ is said

to be autonomous if there exists m ∈ Z+ such that
if w1;w2 ∈ B and w1(t) = w2(t) for t ∈ [0; m], then
w1 = w2. Of course, this amounts to saying that B is
a �nite dimensional vector subspace of (Fq)Z+ , whose
dimension is not greater than q(m+ 1).

Proposition 2.1. A complete behaviorB=ker(R(�));
with R ∈ F[�]p×q; is autonomous if and only if R has
rank q.

Proof. Consider �rst the case p = q = 1. Given any
nonzero polynomial r ∈ F[�]; ker(r(�)) is an au-
tonomous behavior. Indeed, if r ∈ F \ {0} then it
is the zero behavior. If r =

∑L
i=0 ri�

i, with rL 6=
0; L¿ 0, then for every choice of the �rst L samples,
i.e. w(0);w(1); : : : ;w(L − 1), the remaining samples
of w are uniquely determined by means of the recur-
sive scheme w(t+L)=−(1=rL)

∑L−1
i=0 riw(t+i); t¿0.

This implies that B is autonomous.
Consider, next, the matrix case. Let r be the rank of

R and let U and V be unimodular matrices, of suitable
sizes, such that


i ∈ F[�]\{0} and 
i|
i+1, is the Smith form of R over
F[�]. Of course, as U (�) de�nes an injective map,
ker(R(�)) = ker(�(�)V−1(�)). On the other hand,
due to the unimodularity of V , ker(�(�)V−1(�)) and
ker(�(�)) are isomorphic. By the analysis carried
on in the scalar case, ker(�(�)) (and hence B) is
�nite-dimensional if and only if r = q.

Every autonomous behavior in (Fq)Z+ can be ex-
pressed as ker(R(�)) for some nonsingular square
polynomial matrix R. Among all possible autonomous
behaviors, special attention deserve the nilpotent au-
tonomous behaviors, namely autonomous behaviors
for which there exists some � ∈ N such that all
their trajectories have (compact) supports included
in [0; � − 1]. Nilpotent autonomous behaviors are
kernels of polynomial matrix operators R(�) corre-
sponding to full column rank matrices, with a nonzero
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monomial as g.c.d. of their maximal (i.e., qth) order
minors.

Proposition 2.2. Let B = ker(R(�)); with R ∈
F[�]p×q of rank q ; be an autonomous behavior. B

is nilpotent if and only if the g.c.d. of the qth-order
minors of R is a nonzero monomial.

Proof. If p = q = 1, the result is obvious. Consider,
now, the matrix case. If the g.c.d. of the maximal order
minors of R is a nonzero monomial, then there exists
P ∈ F[�]q×p such that PR = c�N Iq, for some c ∈
F\{0} and some N ∈ Z+. As an immediate extension
of the scalar case, it is easily seen that ker(c�N Iq) is
a nilpotent autonomous behavior. So, being included
in a nilpotent autonomous behavior, B is nilpotent
autonomous, too.
Conversely, suppose that B is nilpotent, and let

with U and V unimodular matrices, 
i ∈ F[�]\{0}
and 
i|
i+1, be the Smith form of R over F[�]. If the
g.c.d. of the maximal order minors of R (which coin-
cides with 
1 · · · 
q) would not be a monomial, neither
would be 
q. But then, there would be some sequence
vq ∈ FZ+ , whose support extends inde�nitely in Z+,
satisfying rq(�)vq=0. Consequently,w:=V−1(�)eqvq,
with eq the qth canonical vector, would be an in�nite
support sequence in B, thus contradicting the nilpo-
tency assumption on B.

A complete behaviorB=ker(R(�))⊆(Fq)Z+ is said
to be controllable if there exists some positive inte-
ger L such that for every t ∈ Z+ and every pair of
trajectories w1;w2 ∈ B, there exists w ∈ B such that
w|[0; t] = w1|[0; t] and w|[t+L;+∞) = w2|[t;+∞). Control-
lable behaviors are endowed with very strong proper-
ties. In particular, for a controllable behavior B there
exist an m ∈ N, an ‘ ∈ Z+, and matrices Gi ∈ Fq×m,
for i=0; 1; : : : ; ‘, such thatB coincides with the set of
all trajectories w ∈ (Fq)Z+ generated by the di�erence
equation

w(t) = G0u(t) + G1u(t + 1) + · · ·+ G‘u(t + ‘);
t ∈ Z+; (2.3)

where u ∈ (Fq)Z+ is an arbitrary driving sequence [8].
This amounts to saying that there is a polynomial ma-
trix G ∈ F[�]q×m; G(�):=∑‘

i=0 Gi�
i, such that w ∈

B if and only if w=G(�)u, for some u ∈ (Fm)Z+ . The
set of trajectories, will support in Z+, thus obtained
is denoted by im(G(�)). Also, it is possible to prove,
by resorting to the Smith form and to the fact that full
row rank matrices de�ne surjective operators (on the
set of sequences with support in Z+), that the polyno-
mial matrix G involved in the image description of B
can always be chosen to be of full column rank and
even right prime.

3. Observability and reconstructibility

Given a linear left shift invariant system with
latent variables �‘ = (Z+; Fw ; Fd ;Bf), every tra-
jectory in Bf can be viewed as a pair, (w; d) =
({w(t)}t∈Z+ ; {d(t)}t∈Z+), where w (dimw=w) repre-
sents the manifest variable vector and d (dim d = d)
the latent variable vector. Often the manifest vari-
able vector can be split into two subvectors, i.e.
w=

[w1
w2

]
; dimwi= wi ; w1 + w2 = w, where w1 consists

of those variables which can be (exactly) measured,
while w2 is completely unknown. In this situation,
it is natural to investigate under what conditions the
knowledge of w1 is su�cient to obtain a “good esti-
mate” of w2. The preliminary step toward this goal is
that of introducing the notions of observability and
reconstructibility.

De�nition 3.1. Given a (linear left shift invari-
ant) dynamic system with latent variables �‘ =
(Z+; Fw1 × Fw2 ; Fd;Bf), with trajectories (w1;w2; d),
we say that w2 is �-reconstructible from w1, if
(w1;w2; d); (w1; �w2; �d) ∈ Bf implies w2(t)− �w2(t) =
0; ∀t¿�. Also, w2 is reconstructible from w1 if it is
�-reconstructible for some �¿0. In particular, when
�= 0, w2 is said to be observable from w1.

Consider a dynamic system �‘ endowed with a lin-
ear left shift invariant complete behaviorBf, and sup-
pose that Bf is expressed as the set of all trajectory
triples (w1;w2; d) satisfying the di�erence equation

R2(�)w2 = R1(�)w1 + D(�)d ; (3.1)

for suitable polynomial matrices R1; R2 and D. In
order to obtain a characterization of reconstructibil-
ity and observability for a system �‘ endowed with
these properties, it is convenient to modify the above
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description (3.1) and assume that Bf is represented
in the form

R22(�)w2 = R21(�)w1 + D2(�)d ; (3.2)

0 = R11(�)w1 + D1(�)d ; (3.3)

with R22; R21; R11; D2 and D1 polynomial matrices, R22
and [R11|D1] of full row rank. We can always reduce
a �rst-principles model of the behavior to this form
by means of suitable elementary transformations, per-
formed on the set of di�erence equations.

Proposition 3.2. Let�‘=(Z+; Fw1×Fw2 ; Fd;Bf) be a
dynamic system with latent variables; whose behavior
Bf is described by (3:2)–(3:3). Then
(i) w2 is reconstructible from w1 if and only if R22

is nonsingular square with det(R22) a nonzero
monomial; and there exists some nonsingular
square matrix T; with det T a monomial; such
that

ker(D1(�))⊆ ker(T (�)D2(�)): (3.4)

(ii) w2 is observable from w1 if and only if R22 is
unimodular and ker(D1(�))⊆ ker(D2(�)).

Proof. (i) Assume that w2 is reconstructible from w1.
Clearly, ker(R22(�)) must be a nilpotent autonomous
behavior, otherwise for every in�nite support se-
quence w2 ∈ ker(R22(�)), both (0; 0; 0) and (0;w2; 0)
would be behavior trajectories, thus contradicting
the reconstructibility assumption. Since R22 is of
full row rank, this implies that it must be nonsingu-
lar square with det R22 a nonzero monomial. Also,
(w1;w2; d); (w1; �w2; �d) ∈ Bf implies

R22(�)e2 = D2(�)C; (3.5)

0 = D1(�)C; (3.6)

where e2:=w2 − �w2 and C:=d − �d . By the recon-
structibility assumption, the projection of the behavior
B∗:={(e2; C) satisfying (3.5)–(3.6)} over the vari-
able e2 [6] must be a nilpotent autonomous behavior.
Let U be a unimodular matrix that reduces

[D2
D1

]
to its

(column) Hermite form [2], i.e.

U
[
D2
D1

]
=
[
U11 U12
U21 U22

] [
D2
D1

]
=
[
D∗

0

]
; (3.7)

where D∗ is of full row rank. Correspondingly, we get[
U11 U12
U21 U22

] [
R22
0

]
=
[
U11R22
U21R22

]

and hence B∗ is equivalently described by the set of
equations

(U11R22)(�)e2 = D∗(�)C;
(U21R22)(�)e2 = 0:

Clearly, the projection of B∗ over the variable e2 co-
incides with ker((U21R22(�)), and therefore U21 must
be a full column rank matrix with g.c.d. of its maximal
order minors which is a nonzero monomial. Moreover,
by (3.7), one gets U21D2 =−U22D1. So, once we fac-
tor U21 as U21 = �U 21T , with �U 21 right factor prime
and T nonsingular square, det T a monomial, and we
introduce a left polynomial inverse �U

−1
21 of �U 21, we

get TD2=− �U
−1
21 U22D1, thus proving that (3.4) holds.

The converse is easily proved along the same lines.
(ii) Suppose that w2 is observable from w1. By the

same kind of reasonings we resorted to in part (i),
R22 has to be right prime and hence, being of full row
rank, unimodular. On the other hand, if ker(D1(�))
would not be included in ker(D2(�)), there would be
some nonzero sequence d such that D1(�)d = 0 but
D2(�)d 6= 0, and hence we would have (0; 0; 0) ∈ Bf

and (0;w2; d) ∈ Bf, for some w2 6= 0. This contra-
dicts observability.
The proof of the converse follows using the same

reasonings.

Since reconstructibility, and hence condition (3.4),
is very relevant in the observer analysis that follows,
it is convenient to search for further insights into the
inclusion relation (3.4). To this end, we can resort to
a di�erent but equivalent description of the behavior
Bf with respect to the one given in (3.2)–(3.3). As-
suming, without loss of generality,

[R11 D1] =
[
R1A D1A
R1B 0

]
;

with R1B and D1A full row rank matrices, Bf can be
represented by means of the following set of di�erence
equations:

R22(�)w2 = R21(�)w1 + D2(�)d ; (3.8)

0 = R1A(�)w1 + D1A(�)d ; (3.9)

0 = R1B(�)w1; (3.10)

with R22; R1B and D1A of full row rank. From now
on, we will assume that the behavior is given by this
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representation. Within this setting, the inclusion re-
lation (3.4), which can be equivalently stated as
TD2 =MD1, with M a suitable polynomial matrix [6],
becomes

TD2 =MD1 = [M1 M2]
[
D1A
0

]
=M1D1A;

with M1 a polynomial matrix.
We are, now, in a position to derive a necessary and

su�cient condition for the existence of a nonsingular
matrix T , with det T a monomial, such that (3.4) holds.

Lemma 3.3. Consider the dynamic system with la-
tent variables �‘; whose behavior Bf described by
(3:8)–(3:10); with R22 nonsingular square; R1B and
D1A of full low rank. Assume that

[ D2
D1A

]
has rank �d

and is expressed as[
D2
D1A

]
=
[
�D2
�D1A

]
L;

with
[ �D2
�D1A

]
of full column rank �d and L left prime. Let

r be a g.c.d. of the �dth order minors of
[ D2
D1A

]
. A nec-

essary and su�cient condition for the existence of a
nonsingular square matrix T; with det T a monomial;
such that

ker(D1A(�)) = ker(D1(�))⊆ ker(T (�)D2(�)); (3.11)
is that �D1A is nonsingular square of size �d with
det �D1A = r(�)�‘; for some ‘ ∈ Z+.

Proof. Let rA denote the rank of D1A, which coin-
cides, by the full row rank assumption, with the num-
ber of its rows. Let [V2 − VA] be a left prime (w2 +
rA − �d)× (w2 + rA) polynomial matrix satisfying

[V2 − VA]
[
D2
D1A

]
= 0;

and hence being a minimal left annihilator of
[ D2
D1A

]
.

Notice that [V2 − VA] is also minimal left annihila-
tor of

[ �D2
�D1A

]
. As we have seen, the existence of some

w2 × w2 matrix T , with det T a monomial, such that
condition (3.11) holds, is equivalently restated by say-
ing that there are polynomial matrices T andM1, det T
a monomial, such that TD2 =M1D1A. This amounts to
saying that [T −M1] =P[V2 −VA], for some matrix
P ∈ R[�]w2×(w2+rA−d). Consequently, (3.11) holds if
and only if there exists a polynomial matrix P, of suit-
able size, such that T = PV2 is nonsingular square,
with determinant which is a monomial.
As �d=rank

[ D2
D1A

]
¿rA; then w2+rA− �d6w2. So, T=

PV2 is the nonsingular square if and only if rA= �d and

P and V2 are both nonsingular square. Furthermore,
detT is a monomial if and only if both det P and det
V2 are. Finally, it is well known [1] that when two ma-
trices are mutually related as [ V2 − VA ] and

[ �D2
�D1A

]
are, then every maximal order minor of [ V2 − VA ]
coincides with the “complementary” maximal order
minor of

[ �D2
�D1A

]
, (obtained by selecting rows of com-

plementary indices with respect to the indices of the
columns selected if [ V2 − VA ]), divided by r. In
particular, detV2=det �D1A=r. Therefore, det V2 can be
a monomial if and only if det �D1A= r(�)�l;∃l ∈ Z+.
This completes the proof.

4. Dead-beat observers design

Consider the dynamic system described by
(3:8)–(3:10), with w1 the measured variable, w2 the
to-be-estimated variable and d the latent one. The
problem we now address is that of introducing a sound
de�nition of “observer” of w2 from w1 for system �l.
As a �rst natural requirement, an observer should “ac-
cept” every sequence w1, which is part of a trajectory
(w1;w2; d) of the plant, and correspondingly produce
some (in general, not unique) estimated trajectory
ŵ2. This means that an observer of �l should not in-
troduce additional constraints on the w1 components
of the system trajectories in addition to those already
imposed by the plant. As a further requirement, it is
reasonable to assume that the output of an observer
should be “consistent” whilst tracking w2. By this
we mean that when the trajectories ŵ2 and w2 coin-
cide for a su�ciently long time interval [0; m], then
they should coincide over all of [0;+∞). Therefore,
an observer for �l is a system that, corresponding
to every (w1;w2; d) in Bf, produces an estimate ŵ2
of the trajectory w2, and does not lose track of the
correct trajectory once it has followed it over a suf-
�ciently long time interval. Such an observer is said
to be “dead-beat” if any estimate ŵ2 that it provides
coincides with the sequence w2 except, possibly, for
a �nite number of time instances, or, equivalently, if
the sequence w2(t) − ŵ2(t) equals zero after a �nite
number of steps. In particular, an observer for �l

which produces an estimate ŵ2 of w2 which coincides
with w2 at each time instant t ∈ Z+ (and hence is not
a�ected by any “estimation error”) is an “exact” ob-
server. These notions are formalized in the following
de�nition.
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Fig. 1. Observer-system connection.

De�nition 4.1. Consider the dynamic system with la-
tent variables �l=(Z+; Fw1 ×Fw2 ; Fd;Bf), whose be-
havior Bf is described by (3:8)–(3:10). The system
represented by the di�erence equations

Q(�)ŵ2 = P(�)w1; (4.1)

with P and Q polynomial matrices of suitable dimen-
sions, is said to de�ne

• an observer of w2 from w1 for �l if (a) for every
(w1;w2; d) ∈ Bf there exists ŵ2 such that (w1; ŵ2)
satis�es (4.1), and moreover (b) there exists m ∈
Z+ such that whenever (w1;w2; d) is in Bf and
(w1; ŵ2) satis�es (4.1) with ŵ2(t) = w2(t) for t ∈
[0; m]; then ŵ2(t) = w2(t) for every t ∈ Z+.

The observer (4.1) of w2 from w1 for �l is said to be

• a dead-beat observer if there exists � ∈ Z+ such that
for every (w1;w2; d) in Bf and (w1; ŵ2) satisfying
(4.1), we have w2(t)−ŵ2(t)=0 for every t¿�; and

• an exact observer if for every (w1;w2; d) inBf and
(w1; ŵ2) satisfying (4.1), we have w2(t)= ŵ2(t) for
every t¿0 (see Fig 1).

In the sequel, as the roles ofw1;w2 and d will always
be the same, we will refer to the observers of w2 from
w1 for �l simply as to the observers for �l.
Given an observer, described by (4.1), its behav-

ior B̂f is the set of all solutions (w1; ŵ2) of the
di�erence equation (4.1), and, by de�nition, sat-
is�es the constraint P1Bf:={w1: ∃ (w1;w2; d) ∈
Bf}⊆{w1: ∃(w1; ŵ2) ∈ B̂f}= : P1B̂f: Among the
trajectories of B̂f, however, we will be interested only
in those produced corresponding to the trajectories of
Bf, namely in the set {(w1; ŵ2) ∈ B̂f : w1 ∈ P1Bf}.
So, it is reasonable to regard two observers for the
system �l as equivalent, provided that their behaviors
B̂1 and B̂2 (not necessarily coinciding) satisfy the
identity {(w1; ŵ2) ∈ B̂1: w1 ∈ P1Bf}= {(w1; ŵ2) ∈
B̂2 : w1 ∈ P1Bf}.
For an observer described by (4.1), the di�erence

variable e2:=w2 − ŵ2 represents the estimation er-
ror. So, the previous de�nitions can be paraphrased
by saying that an observer is dead-beat (exact) if

the set of its estimation error trajectories constitutes
an autonomous behavior, denoted by Be, which is
nilpotent (the zero behavior). As we have seen in
Section 2, this amounts to saying that there exists
some matrix � ∈ F[�]w2×w2 , whose determinant is a
nonzeromonomial c�n (a nonzero constant term), such
that Be=ker(�(�)). � will be called error-dynamics
matrix.
Necessary and su�cient conditions for the existence

of dead-beat or exact observers are given in Proposi-
tion 4.2.

Proposition 4.2. Consider a dynamic system with la-
tent variables �l=(Z+; Fw1×Fw2 ; Fd;Bf); whose be-
haviorBf is described by (3:8)–(3:10); with R22; R1B
and D1A full row rank polynomial matrices.
(i) A necessary and su�cient condition for the ex-

istence of a dead-beat observer for �l is that w2
is reconstructible from w1;

(ii) a necessary and su�cient condition for the ex-
istence of an exact observer for �l is that w2 is
observable from w1.

Proof. (i) Assume, �rst, that there exists a dead-beat
observer for �l, whose estimation error goes to zero
within � steps. If w2 were not �-reconstructible from
w1, then there would be two behavior sequences
(w1;w2; d) and (w1; �w2; �d) such that w2(t) − �w2(t) is
not identically zero for t¿�. If ŵ2 is an estimate pro-
vided by the dead-beat observer corresponding to w1,
then it should be, at the same time, w2(t)− ŵ2(t) = 0
and �w2(t) − ŵ2(t) = 0;∀t¿�, and, consequently,
w2(t) − �w2(t) = [w2(t) − ŵ2(t)] − [ �w2(t) − ŵ2(t)]
should be zero for t¿�, a contradiction.
To prove the converse, assume that w2 is recon-

structible from w1, or, equivalently, by Proposition
3.2, that R22 is nonsingular square, with detR22 a
nonzero monomial, and there exist polynomial ma-
trices T and M1, with detT a monomial, such that
TD2 = M1D1A. We aim to show that (TR22)(�)ŵ2 =
(TR21 −M1R1A)(�)w1 is a dead-beat observer for �l.
Actually, by applying (3:8)–(3:10), we get

(TR22)(�)(w2 − ŵ2)
= (TR21)(�)w1 + (TD2)(�)d

−(TR21 −M1R1A)(�)w1
= (M1D1A)(�)d + (M1R1A)(�)w1 = 0;

thus proving that e=w2−ŵ2 belongs to some nilpotent
autonomous behavior,
(ii) Follows the same lines as the proof of (i).
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From now on, we will restrict our attention to
dead-beat observers. The analogous results for the
case of exact observers can be easily derived by suit-
ably modifying those obtained for the dead-beat ones.
In order to obtain a complete parametrization of the
dead-beat observers of �l, we need a technical result.
Lemma 4.3 shows that, given any observer for �l, it
is possible to obtain an equivalent one, (i.e. produc-
ing the same set of trajectories (w1; ŵ2) for every w1
in P1Bf), for which Q is of full row rank.

Lemma 4.3. If Q(�)ŵ2 = P(�)w1 is an observer for
�l; there exists an equivalent observer �Q(�)ŵ2 =
�P(�)w1 with �Q of full row rank.

Proof. Let U be a unimodular matrix that reduces Q
to its (column) Hermite form

[ �Q
0

]
, with �Q of full row

rank. Then we get

U [Q − P] =
[
�Q − �P
0 −V

]
;

and hence the observer can be equivalently described
by the set of equations

�Q(�)ŵ2 = �P(�)w1; (4.2)

0 = V (�)w1: (4.3)

As an observer must accept every sequence w1 which
is part of a behavioral trajectory, for every w1 ∈
ker(R1B(�)) equations (4:2)–(4:3) have to be ful�lled
for some sequence ŵ2, which implies, in particular,
ker(R1B(�))⊆ ker(V (�)). So, the observer can be
equivalently described by (4.2).

If it is assumed that the matrix Q appearing in the
observer equation is of full row rank, we can obtain
deeper insight into the algebraic properties of the poly-
nomial matrices P and Q involved in the observer de-
scription, and explicitly relate them to the matrices
appearing in (3:8)–(3:10).

Theorem 4.4. Consider a system �l; with latent
variables; whose behavior Bf is described by (3:8)–
(3:10); with R22; R1B and D1A of full row rank. As-
sume that w2 is reconstructible from w1; (and hence;
in particular; that
[
D2
D1A

]
=
[
�D2
�D1A

]
L;

with
[ �D2
�D1A

]
of full column rank �d; L left prime; and

�D1A nonsingular square of size �d with det �D1A =
r(�)�l; r:=g:c:d: { �dth− order minors of [ D2

D1A

]} and
l ∈ Z+). Let [T -M1] be a minimal left annihilator of[ D2
D1A

]
; i.e. a left prime w2× (w2 + �d) matrix such that

[T −M1]
[
D2
D1A

]
= 0: (4.4)

If P andQ are polynomial matrices;withQ of full row
rank; then Q(�)ŵ2 =P(�)w1 is a dead-beat observer
for �l if and only if there exist polynomial matrices
Y ∈ F[�]w2×w2 ; with det Y a monomial; and X; of
suitable size; such that

[Q − P] = [Y X ]
[
TR22 −TR21 +M1R1A
0 −R1B

]
:

(4.5)

Moreover; the set Be of error trajectories coincides
with ker(Q(�)); which is equivalent to state that we
can take Q as error-dynamics matrix.

Proof. Assume, �rst, that P and Q satisfy (4.5) for
suitable polynomial matrices X and Y , with detY a
monomial. Notice that, by the reconstructibility and
the assumption on Y; Q=YTR22 is nonsingular square,
with detQ a monomial. If (w1;w2; d) is any trajectory
in Bf, and ŵ2 is an estimate of w2 correspondingly
provided by the observer, by exploiting (3.9), (3.10)
and (4.4), one gets

Q(�)(w2 − ŵ2)
= (YTR22)(�)w2 − P(�)w1 = (YTR21)(�)w1
+ (YM1D1A)(�)d − [Y (TR21 −M1R1A)
+XR1B](�)w1

= (YM1D1A)(�)d + (YM1R1A − XR1B)(�)w1 = 0:

This immediately proves that Be is included in
ker(Q(�)), a nilpotent autonomous behavior, and
hence the observer is a dead-beat one.
Suppose, now, that Q(�)ŵ2 = P(�)w1, with Q of

full row rank, is a dead-beat observer for �l. We aim
to show thatQ and P satisfy (4.5) for suitable matrices
X and Y , with detY a monomial. To this end, observe,
�rst, that if U is a unimodular matrix that reduces[ D2
D1A

]
to its (column) Hermite form, i.e.

U
[
D2
D1A

]
=
[
U11 U12
U21 U22

] [
D2
D1A

]
=
[
D∗

0

]
; (4.6)
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with D∗ of full row rank, correspondingly, we get[
U11 U12
U21 U22

] [
R22 −R21
0 −R1A

]

=
[
U11R22 −(U11R21 + U12R1A)
U21R22 −(U21R21 + U22R1A)

]
:

Thus, a description of the external behavior B of Bf

(the projection of Bf over its external variables w1
and w2), is easily obtained from (3:8)–(3:10) as

(U21R22)(�)w2 = (U21R21 + U22R1A)(�)w1; (4.7)

0 = R1B(�)w1: (4.8)

Since, w2 is reconstructible from w1, by the same rea-
sonings adopted in the proof of Proposition 3.2, part
(i), U21 must be of full column rank with a monomial
as g.c.d. of its maximal order minors. Moreover, by
(4.6), one has U21D2 =−U22D1A:
Corresponding to the behavior trajectory (w1;w2; d)

=(0; 0; 0), the trajectory (0; ŵ2); ŵ2 arbitrarily selected
in ker(Q(�)), must be admissible for the observer,
and hence e2 = 0 − ŵ2 must be in Be. This proves
that ker(Q(�))⊆Be and that the full row rank matrix
Q is also of full column rank, and hence nonsingular
square. Moreover, as the observer is a dead-beat one,
Be must be a nilpotent behavior, which implies that
detQ is a monomial. Also, as the zero error trajectory
possibly occurs, every pair of trajectories (w1;w2) be-
longing to the external behavior B of Bf must sat-
isfy the observer equations. Consequently, matrices P
and Q are related to the matrices of the behavior B in
(4:7)–(4:8) as

[Q − P] = [ �Y �X ]
[
U21R22 −U21R21 + U22R1A
0 −R1B

]
;

for suitable polynomial matrices �Y and �X . Since, of
course, [U21 − U22] = P[T −M1];∃P polynomial,
then (4.5) holds for Y = �YP and X = �XP. The fact that
detQ is a monomial ensures that det Y is a monomial
too. This also implies Be⊆ ker(Q(�)), and hence, by
the �rst part of the proof, Be = ker(Q(�)):
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