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Abstract 

It is shown that foi linear dynamical systems with quadratic supply rates, a storage function can always be written as a 
quadratic function of the state of an associated linear dynamical system. This dynamical system is obtained by combining 
the dynamics of the original system with the dynamics of the supply rate. @ 1997 Elsevier Science B.V. 
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1. Introduction 

The concept of dissipativeness is of much interest in 
physics and engineering. Whereas dynamical systems 
are used to model physical phenomena that evolve 
with time, dissipative dynamical systems can be used 
as models for physical phenomena in which also the 
energy or entropy exchanged with the environment 
plays a role. Typical examples of dissipative dynami- 
cal systems are electrical circuits, in which part of  the 
electric and magnetic energy is dissipated in the resis- 
tors in the form of heat, and visco-elastic mechanical 
systems in which fiiction causes a similar loss of  en- 
ergy. For earlier work on dissipative systems, we refer 
to [8, 4, 7]. 

In a dissipative dynamical system, the book-keeping 
of energy is done via the supply rate and a storage 
function. The supply rate is the rate at which energy 
flows into the system, and a storage function is a func- 
tion that measures the amount of energy that is stored 
inside the system. ~Fhese functions are related via the 
dissipation inequality, which states that along time 
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trajectories of  the dynamical system the supply rate is 
not less than the increase in storage. This expresses 
the assumption that a system cannot store more energy 
than is supplied to it from the outside. The difference 
between the supplied and the internally stored energy 
is the dissipated energy. 

The storage function measures the amount of  energy 
that is stored inside the system at any instant of time. 
It is reasonable to expect that the value of the storage 
function at a particular time instant depends only on 
the past of  the time trajectories through the memory 
of the system. A standard way to express the memory 
of a time trajectory of a system is by using the notion 
of state. Thus, we should expect that storage functions 
are functions of the state variable of the system. 

In this paper, we prove the general statement that for 
linear dynamical systems with quadratic supply rates, 
any quadratic storage function can be represented as 
a quadratic function of any state variable of  a linear 
dynamical system whose dynamics are obtained by 
combining the dynamics of  the original system and 
the dynamics of the supply rate. 

A few words on notation. ~°~(N, Rq) denotes 
the set of all infinitely often differentiable functions 
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w : N --~ Rq; ~(R,  ~q) denotes the subset of those 
w 6 (f ~ ( ~ ,  [~q) that have compact support; given two 
column vectors x and y, the column vector obtained 
by stacking x over y is denoted by col(x, y); likewise, 
for given matrices A and B with the same number 
of columns, col(A,B) denotes the matrix obtained by 
stacking A over B. 

2. Linear differential systems 

We will first introduce some basic facts from the 
behavioral approach to linear dynamical systems. For 
more details we refer to [9-11]. 

In this paper we consider dynamical systems de- 
scribed by a system of linear constant coefficient dif- 
ferential equations 

(d) 
R ~ w = O  (2.1) 

in the real variables wl,w2 . . . . .  wq, arranged as 
the column vector w; R is a real polynomial ma- 
trix with, of course, q columns. This is denoted as 
R cR°xq[~], where ~ denotes the indeterminate. 
Thus, if R(¢) = R0 +R1 ~ + . . "  + Rx~ 'v, then Eq. (2.1) 
denotes the system of differential equations 

dw dNw 
R 0 w + R l ~ -  + " ' + R x  d ~ 7  N =0 .  (2.2) 

Formally, Eq. (2.1) defines the dynamical system 
L '= (R ,  Rq,~),  with R the time axis, 0~q the signal 
space, and ~ the behavior, i.e., the solution set of  
Eq. (2.1). It is usually advisable to consider weak 
solutions. Since smoothness plays no role for the re- 
sults of this paper, we will consider only infinitely 
differentiable solutions: 

The family of dynamical systems E obtained in this 
way is denoted by 2 q. Instead of writing X E ~ q, we 
often write ~ ¢ ~ q. For obvious reasons we refer to 
Eq. (2.1) as a kernel representation of ~.  In this pa- 
per we will also meet other ways to represent a given 

C ~2 q, in particular using latent variable representa- 
tions and image representations. We will now briefly 
introduce these. The system of differential equations 

( d )  ( d )  
R ~ w = M  ~ / (2.3) 

is said to be a latent variable model. We will call w 
the manifest and ( the latent variable. We assume that 

there arc q manifest and d latent variables. R and M 
are polynomial matrices of  appropriate dimension. Of 
course, Eq. (2.3), being a differential equation as Eq. 
(2.1), defines the behavior 

~ f  { ( w , / ) ~ ( R , R  q × Rd)lEq. (2.3) holds}. 

~ r  will be called the Jhll behavior, in order to dis- 
tinguish it from the manifest behavior which will be 
introduced next. Consider the projection of ~ f  on the 
manifest variable space, i.e., the set 

{w c (g ~ ( ~ ,  ~q) I there exists ¢ E (g ~(R,  ~d) 

such that (w,d) C ~f}.  (2.4) 

This set is called the man('/bst behavior of Eq. (2.3). If, 
for a given ~ C E q, the manifest behavior, Eq. (2.4) 
of Eq. (2.3) equals ~ ,  then Eq. (2.3) is called a latent 
variable representation of ~.  The latent variable rep- 
resentation is called observable if the latent variable 
is uniquely determined by the manifest variable, i.e., 
if ( w , / 1 ) , ( w , / 2 ) d ~ f  implies that /I =/2. It can be 
shown that Eq. (2.3) is observable iffrank(M(2)) d 
for all ). C C. 

A system ~ E ~2 q is said to be controllable if for 
each Wl, w2 ~ ~ there exists a w ¢ ~ and a t' >~ 0 such 
that w ( t ) = w l ( t )  for t < 0 and w(t )=w2( t  t') for 
t ~>t ~. It can be shown that ~ is controllable iff its 
kernel representation satisfies rank(R(2))-- rank(R) 
for all 2 E C. Controllable systems are exactly those 
that admit image representatkms. More concretely, 

C ~2q is controllable iffthere exists an M E Rqx°[~] 
such that ~ is the manifest behavior of a latent vari- 
able model of  the form (d) 
w = M  ~ {. (2.5) 

For obvious reasons, Eq. (2.5) is called an image rep- 
resentation of ~.  An image representation is called 
observable if it is observable as a latent variable repre- 
sentation. Hence, the image representation, Eq. (2.5), 
is observable iffrank(M(2)) = d for all ). C C. A con- 
trollable system always has an observable image rep- 
resentation. 

3. Quadratic differential forms 

An important role in this paper is played by 
quadratic differential forms and two-variable polyno- 
mial matrices. These are studied extensively in [12]. 
In this section we give a brief review. 



ILL. Trentelman, J.C Willems/Systems & Control Letters 32 (1997) 249 259 251 

We denote by ~qxq[ ( ,  ~]] the set o fq  x q, real poly- 
nomial matrices in the indeterminates ~ and r/, i.e., 
expressions of the form 

q~(~, ~I) = Z 4~k/~ r//, (3.1) 
k,/ 

The sum in Eq. (3.1) ranges over the non-negative 
integers and is assumed to be finite, and 4)kz~ ~qxq .  

Such a q~ induces a quadratic differentialJorm (QDF) 
Q~ : ~ oo(R ' ~q) _~ ~ oo([~, R) defined by 

( d k w )  T ( d/w ) 
Q,(w)(t) := Z ~ - ( t )  q~k/ ~7- ( t )  . (3.2) 

k,/ 

If ~ [ ~ q x q [ ~ , ~ / ]  satisfies 4~(~,t/) = @*(~,~I):= 
q~(r/, ~)T then q~ will be called symmetric. The sym- 
metric elements of [~qXq[ff, r/] will be denoted by 
[Rqxq[~, r/]. Clearly, Q ,  = Q, .  = Q(1/2)(4)+**). This 
shows that when considering quadratic differential 
forms we can restrict attention to (b's in qxq R~ [~, ~]. 
It is easily seen that 4)~ [~qxq[~,r/] is symmetric iff 
4~[/ = 4~/k for all k and (. 

Associated with ~b ~ [~qxq[~, t~] we form the sym- 
metric matrix 

= 4~04~°°.. ~bllq~°~ . . . . . .  " "  ~k~ / . (3.3) 

Note that, although q~ is an infinite matrix, all but a 
finite number of its elements are zero. We can factor 
q5 as q~ = M ZMM, with ~ '  an infinite matrix having 
a finite number o1' rows and all but a finite number 
of  elements equal ~o zero, and ZM a signature matrix, 
i.e., a matrix of the form 

ZM = 0 -I,. " 

This factorization leads, after pre-multiplication 
by (Iq Iq~ Iq~ 2. . . )  and post-multiplication by 
col(lq Iqq Iqtl 2.. ), to a factorization of 4~ as 
¢b(~, ~) = MT(~)ZuM(q). This decomposition is not 
unique but if we take M full row rank, then XM will 
be unique. Denote this XM as Xe. In this case, the 
resulting r+ is the number of positive eigenvalues 
and r_ the number of negative eigenvalues of ~. Any 
factorization 4~(~,r/)=MT(~)XcM(tl) will be called 
a canonicalfactorization of ~. In such a factoriza- 
tion, the rows of the polynomial matrix M(~) are 

linearly independent over ~. Of course, a canonical 
factorization is not unique. However, they can all 
be obtained from one by replacing M(~) by UM(~) 
with U C ~  rank(qS)xrank(qS) such that u T x e u = x ~ .  
Also note that if ~b(~, r l)= MT(~)ZeM(q) is a canon- 
ical factorization, and 4)(~, r /)= MrI(~)ZM, Mj (r/) any 
other factorization, then there exists a real constant 
matrix H such that M(~) = HM1 (~). 

The main motivation for identifying QDF's with 
two-variable polynomial matrices is that they allow 
a very convenient calculus. One example of this is 
differentiation. If Qe is a QDF, so will be (d/dt)Q4) 
defined by ((d/dt)Qq~)(w) :=dQq~(w)/dt. It is 
easily checked that (d/dt)Qq~ = Q~ with &(~,r/):= 

rv~qXqr~ (~ + rl)4)(~ , r/). Suppose now that ~b E ~s t~., ~1] 
is given. An important question is: does there ex- 
ist 7 j E Rqxq[~,q] such that @= q~, equivalently 
(d/dt)Q~ = Qe? Obviously, such 7 ~ exists iff 4) con- 
tains a factor ~ + ~I. Under this condition we can sim- 
ply take q~(~, t/) = ( 1/(~ + ~7))q~(~, q). It was shown in 
[12] that q~ contains a factor ~ + ~I iff ~ = 0, where 
~.4~ is the one-variable polynomial matrix defined by 
~@(~) := q~(-~, ~). It was also proven in [12] that 
~4~=0 iff f ~  Qe(w)dt=O for all w~ ~(R,  [Rq). 

For cb~Nqxq[~,~l], we call @ nonnegative (de- 
noted 4)>~0) if Q¢(w)>~O for all wE~°°(R,  Rq). 
It was shown in [12] that 4~>~0 iff there exists 
D ~ R*xq[~] such that 4~(~,q) =DT(~)D(r/), equiva- 
lently Qq)(w) = IID(d/dt)wll 2 for all w ~ I~ ~(R,  Rq). 
In addition, we need the concept of average 
non-negativity (denoted as f Q,  ~> 0). This is defined 
as f ~  Qe(w)dt>~O for all w ~ ~?(R, Rq). Again, it 

was shown in [12] that f Qe >~0 iff (~4~)(ico) >~0 for 
all co E JR. In turn, this condition is equivalent with 
the existence of polynomial spectral factorizations of 
~4~: (~q))(ico)>~0 iff there exists D ~  ~q×q[~] such 
that (~4~)(~) : D T ( ~ ) O ( ~ )  (see [1,2]). 

4. Dissipative systems 

Let ~ ~ ~2q be a controllable linear differential 
system. Let R(d/dt)w--O and w=M(d/dt)~ be a 
kernel and an observable image representation, re- 
spectively, of ~ ,  with R ~ R,qxq[~] and M E ~qxd. In 
addition, consider the quadratic differential form Q~ : 
~°°(B~, Rq) -+ lg °~(~, ~) induced by the symmetric 
two-variable polynomial matrix ~b; Q~ is called the 
supply rate. Intuitively, we think of Q¢(w) as the 
power going into the physical system ~3. In many 
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applications, the power will indeed be a quadratic 
expression involving the system variables and their 
derivatives. For example, in mechanical systems, it is 
~-]~ F~ dqk/dt with Fk the external force acting on, and 
q~ the position of the kth pointmass; in electrical cir- 
cuits it is ~ V~I~ with Vk the potential and I~ the cur- 
rent into the circuit at the kth terminal. The system ~3 is 
called dissipative with respect to the supply rate Q¢ if 
along trajectories that start at rest and bring the system 
back to rest, the net amount of energy flowing into the 
system is non-negative: the system dissipates energy. 

Definition 4.1. (~3, Q , )  is called dissipative if 
f _ ~  Qe~(w)dt>~O for all w ~ ~3 ~ ~([~, ~q). 

Of course, at some times t the power Q(w)(t) might 
be positive: energy is flowing into the system; at other 
times, it might be negative, energy is flowing out of 
the system. This outflow is possible because energy 
is stored. However, because of dissipation, the rate of 
increase of the storage cannot exceed the supply. The 
interaction between supply, storage, and dissipation is 
formalized as follows: 

Definition 4.2. The QDF Q~ induced by T E ~.q×q 
[~, r/] is called a storagefimction for (~,  Q , )  if 

d 
~tQe(w) <~ Q,(w) 

for all w E ~ 3 N ~ ( N ,  Rq). (4.1) 

The QDF Q~ induced by A ~ Nqxq[~,q] is called a 
dissipation function for (~,  Q,~) if Q~(w)>~0 for all 
W ~ ~ ~ ff ~ ( ~ ,  []~q) and 

:" F Q,(w)dt = QA(w)dt 

for all w ~ ~3 N ~3([~, ~q). 

If the supply rate Q,~, the dissipation function Q~, and 
the storage function Qq, satisfy 

d 
~Qq,(w) = Q,(w) - Q~(w) 

for all w E ~3 A (~ ~ ( ~ ,  Rq), (4.2) 

then we call the triple (Q,,Qq,,QA) matched 
along ~B. 

Theorem 4.3. The following conditions are equiva- 
lent: 
1. (~3, Q, ) is dissipative. 
2. M(--ioo)Tq0(--ic~, ko)M(iog)>~O Jbr all ~o E ~. 

3. (~, Q~) admits a storage function. 
4. (~, Q~ ) admits a dissipation junction. 

Furthermore, for any dissipation function QA 
there exists a storage function Qq,, andjor any stor- 
age function Q~, there exists a dissipation function 
Q~ such that (Q~, Qq,, QA ) is matched along ~. 

Proof. See the Appendix. 

Example 4.4. Consider the system 

M - ~  + d2q D dqdt + Kq=F (4.3) 

with K , D , M ~  k×k, K=KT~O,  D + DT>~o, and 
M = M T >~ 0. The position vector q and force vector F 
take their values in ~k. Such second order equations 
occur frequently as models of (visco-)elastic mechan- 
ical systems. As manifest variable take w = col(q,F), 
and as supply rate take Q~(q, F) = F r dq/dt. This cor- 
responds to 

~'(~,~)  = ~ ~: 

An image representation of the system is given by 
col(q, F ) =  M(d/dt):, with M equal to 

( , ) 
M(~)=  M~ 2 + D ~ + K  " 

Obviously, due to damping, the system is dis- 
sipative. This indeed follows from the fact that 
MT(-iog)~(-ioo, ieo)M(ioo) = ½(D + DT)¢o 2 >t10. A 

storage function is given by Og,(q,F)= ½(dq/dt) T 
M(dq/dt ) + ½qT Kq. This corresponds to 

1 ( K + ~ r / M  O) 
~'(~, ,1) = ~ 0 o 

Indeed, for all (q,F) satifying Eq. (4.3) we have 

dt ( - d - [ ) m d [ + ~  qTKq) 

dt 2 \ ~ - }  (:It 

It also follows that a dissipation function is given by 

1 (dq~ ' (D+DV)~t t .  QA(q,F)= ~ \ ~ j 

This corresponds to taking 

1 
~ ( o  + O T) / " 
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Obviously, the triple (Qv, Q~, QA ) is matched on the 
behavior 23 of  Eq. (4..3). 

5. State representations 

A latent variable model R'(d/dt )w=M(d/dt )x  
(with the latent variable denoted by x this time) 
is said to be a state model if whenever (Wl,Xj) 
and (w2,x2) are elements of  the full behavior 23f, 
and x l (0 )=x2(0 ) ,  then the concatenation (w,x) :=  
(WI,X1)A(W2,X2) will also satisfy R'(d/dt)w= 
M(d/dt)x. Since this concatenation need not be g ~ ,  
we only require it to be a weak solution, that is, a 
solution in the sense o f  distributions. 

Let 23 E ~2 q. A latent variable representation o f  23 is 
called a state representation of  23 if it is a state model. 
Given wl, w2 E 23, to decide whether wl A w2 E 23, we 
can look at the value of  the state variables xl and x2 at 
time t = 0. IfXl(0) = x2(0), then Wl A w2 E 23. In other 
words, in order to decide whether a future continuation 
is possible within 23. not the whole past needs to be 
remembered, but only the present value of  the state 
is relevant. Thus x parametrizes the memory of  the 
system. 

An important role is played by latent variable 
models o f  the form 

Gw + Fx + E ~  = 0  (5.1) 

Here, E, F,  and G are real constant matrices. The 
important feature o f  Eq. (5.1) is that it is an (im- 
plicit) differential equation containing derivatives o f  
order at most one in x and zero in w. It was shown 
in [6] that any latent variable model of  the form 
Eq. (5.1) is a state model. Conversely, every state 
model R'(d/dt)w =M(d/dt )x  is equivalent to a rep- 
resentation o f  the form Eq. (5.1) in the sense that 
their full behaviors ~3f coincide. This means that state 
representations of  a given 23 of  the form Eq. (5.1) 
are in fact all state representations o f  23: given a state 
representation 23f of  23, it will have a kernel repre- 
sentation of  the type Eq. (5.1) and hence, without 
loss of  generality, we can assume that the associated 
differential equation is o f  this form. In the case of  
state models, we call x the state or the vector of state 
variables. The number o f  state variables, i.e., the size 
o f  x, is called the dynamic order of  the model. This 
number is denoted by n(23), or when 23 is obvious 
from the context, by .~. 

Let 23 be the manifest behavior of  any (not nec- 
essarily observable) state representation, Eq. (5.1). It 
turns out that there exists an observable state represen- 
tation of  23 with smaller dynamic order, such that the 
respective state variables are related by a linear map: 

Lemma 5.1. Let 23 E ~ q be the manifest behavior of 
Eq. (5.1). Then there exists an observable state rep- 
resentation G~w + Fix t + E ~ dx~/dt = 0 oJ'23 (its full 
behavior denoted by 23~f ) with dynamic order n' <~n, 
and a linear map L : Nn __~ ~,~ such that (w,x)E  23f, 
(w,x') E 23~ implies x' = Lx. 

Proof. See the Appendix. 

I f  Gw + Fx + E dx/dt = 0 is a state representation of  
23, then it is observable (i.e., x is observable from w, 
see Section (2)) iffthere exists X E [R'xq[(] such that 
for all wE23 we have (w,x)E 23f ¢:~ x = X ( d / d t ) w  
(see [ 1 1 ]). The differential operator X(d/dt)  is called 
a state map for 23. In general, if R(d/dt)w = 0 is a 
kernel representation of  23, then X(d/dt)  is called a 
state map for 23 if 

R(d/dt) 
X(d/dt)  j w =  ( ~ ) x 

is a state representation of  23. 
Assume now that 23 is controllable and let 

w = M ( d / d t ) (  be an observable image represen- 
tation. Let H be a permutation matrix such that 
I IM=col (U,Y) ,  with YU -1 a matrix of  proper 
rational functions (such H always exists, see [ l l ] ) .  
This corresponds to permuting the components of  w as 
IIw = col(u, y),  with u = U(d/dt){ and y = Y(d/dt)E, 
such that u is an input and y is an output. The number 
of  input components of  23, i.e., the size o f  u, is denoted 
by m(23), or when 23 is obvious from the context, by 
m. Consider the set o f  real polynomial row vectors 

:=  { f  E ~*xq[~]IfU-1 is strictly proper}. 

It is easily seen that ~ is a linear vector space over N. 
Le tX  E N° ×q[(]. It was shown in Ref. [6] thatX(d/dt) 
is a state map for 23 iff the rows of  the polynomial 
matrix XM span 5 ,  i.e., every element of  ~ is a real 
linear combination of  the rows of  XM. 

Suppose now that we have a system 23 E ~2 q, and 
suppose a state representation of  this system is given, 
with state variable, say x. Assume that to the manifest 
variable w we add an extra component, say f ,  i.e., 
we consider a new system 23ext with the property that 
w E 23 iff there exists f such that col(w, f )  E 23ext. In 
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the following theorem we establish conditions under 
which f can be written as a linear function of  the 
state variable of  the original system ~ ,  and as a linear 
function of  the state variable and input variable of  ~3. 

Theorem 5.2. Let ~ ~ £ q and let 

( u )  : ( U ( d / d t ) )  
y Y(d/d t )  ¢' 

be an observable image representation with YU I a 
matrix of  proper rational functions. Let 

G u + F x +  = 0  
y dt 

be an observable state representation of  ~ (with fidl 
behavior denoted by ~f) .  Let F ~ N'×d[~] and let 
~ext be the system with ima.qe representation 

= N (d/dt)  ¢. 
F (d/dt)  

Then there exists a real constant matrix H ~ R. xn 
such that f =  Hx for all f and x Jot which there 
exists col(u, y) ¢ ~ such that col(u, y, f )  ¢ ~e×t and 
col(u ,y ,x)¢fSf ,  (ff FD -~ is a matrix of  strictly 
proper rational fimctions. There exist real con- 
stant matrices H E  ~'×" and J ¢ ~°xm such that 
f =  Hx + Ju Jor all f ,  x and u for which there exists 
y such that co l (u ,y , f )  ~ ~3e×t and col(u,y,x) ~ 23t., 
iff FD ~ is" a matrix of  proper rational fimctions. 

Proof. See the Appendix. 

6. Main results 

In this section we show that storage functions can 
always be represented as quadratic functions of  a state 
variable, and that dissipation functions can always be 
represented as quadratic functions of  a state variable, 
jointly with the manifest variable of  a given system. 

We first treat the case that ~ is unconstrained, 
i.e., ~ = lg °~([R, Rq). Let ¢b ~ Nq×q[~, t/]. Assume that 
(~  "~ (N, [~q), Qe)  is dissipative. It turns out that every 
storage function is a quadratic function of  any state 
variable of  a particular system ~3~ obtained from the 
dynamics of  ¢/'. Also, every dissipation function is a 
quadratic function of  any state variable, jointly with 
the manifest variable of  this system ~3,~. We now ex- 
plain what we mean by ~ .  The system 2 ~  is de- 
fined as follows. Let (b(~,~)--MT(~)XeM(r/) be a 

canonical factorization of  cb, with X~ C N~×r. Now, 
consider the system ~q~ ~ ~2 ~ (with manifest variable 
v E ~") with image representation 

(d) 
v M ~ w. (6.1) 

Theorem 6.1. Let Gv + Fx + E cLv/dt 0 be a 
state representation of  ~ ,  with Jidl behavior ~f .  
Let Qq, be a storage fimction for ((g rv(~, ~q ), Q,  ). 
Then there exists K = K T C ~,Txn such that 
col(M(d/dt)w,x) C fSf implies Qq,(w) =xTKx. Fur- 
thermore, iJ" QA is a dissipation Junction Jor 
( ( £ ~ ( R , ~ q ) , Q , ) ,  then there exists L = L  T E 
~(n+q)x(n+q) such that col(M(d/dt)w,x) ¢ ~ f  implies 

Proof. See the Appendix. 

Next, we treat the general case. Let ~ E £ q be an 
arbitrary controllable system. Let ¢b¢ Rq×q[~]. As- 
sume that ( ~ , Q ~ )  is dissipative. Also in this case, 
every storage function turns out to be a quadratic 
function o f  any state variable, and every dissipation 
function a quadratic function of  any state variable, 
jointly with the manifest variable of  a system ~ .  
This time, however, the system ~ is obtained by 
combining the dynamics of  ~ and qs. Again, let 
~b(~, r/) -- MT(~)Z'~M(r/) be a canonical factorization 
of  q~, with X~ ~ R r×~. Now, consider the system 
~ e  E £ " (with manifest variable v C N") represented 
by 

v = M w, w C 

Theorem 6.2. Let G v + F x + E d x / d t = O  be a 
state representation of  ~ ,  with full behavior ~f .  
Let Qv, be a storage Junction for (~,  Q¢~). Then 
there exists K = K  T E R  "×n such that w c ~  and 
col(M(d/dt)w, x) E ~ f  implies Qq,(w) = xX Kx. I f  Q~ 
is a dissipation fimction for ( ~ , Q , ) ,  then there 
exists L = L  T E ~(n+d)x(n+d) such that w E ~ and 
col( M ( d/ dt )w,x ) E ~f. implies 

QA(W)= ( ; )TL ( ; )  " 

Proof. See the Appendix. 
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Finally, we discuss the special case that the supply 
rate Q2 is of order zero in w, i.e., Q2(w)= wTpw, 
with P =Pr E ~q×q. Let 23 E ~q be controllable, and 
assume that (23, Q2) is dissipative. In this case every 
storage function is simply a quadratic function of any 
state variable of 23, and every dissipation function is 
a quadratic function of any state variable of 23, jointly 
with the manifest variable of 23. 

Corollary 6.3. Let Gw + Fx + E dx/dt = 0 be a state 
representation of  23, with full behavior 23f. Let Q~ 
be a storage Junction for (23, Q2). Then there ex- 
ists K =KT E N,,xn ~uch that col(w,x)E ~3t implies 
Qq,(w)--xTKx. I f  QA is a dissipation Junction Jor 
(23, Q2 ), then there there exists L-- L T E ~(n+d)x(n+d) 
such that col(w,x) c 23~- implies 

system is dissipative (even lossless) with respect to 
the supply rate Q2(q, F) - F T dq/dt, and V(q) defines 
a storage function 

d ~V(q)=(gTV)(q)  T =F Tdq 
dt" 

The storage function V(q) is a function of the position 
q. The question is now: in what sense is V(q) a func- 
tion of the state? For the case that 23 is linear, equiv- 
alently V(q) = ½qTKq, (WV)(q) =Kq, with K = K T, 
the answer is provided by Theorem 6.2: storage func- 
tions of  23 are quadratic functions of state variables of 
the system 232 represented by 

( v l )  1 ( dq /d t+F  ) 
v2 = 2  -dq/dt  + F ' F = K q  

It is easily seen that q is indeed a state variable for 232. 

Proof. Follows immediately from Theorem 6.2. [] 

Example 6.4. Consider the mechanical system, Eq. 
(4.3), together with the supply rate Q2. A canonical 
factorization of q~(~, r/) is given by 

1 I 1 , , ,  , 

The corresponding system 232 (with manifest variable 
v = col(v j, v2)) is represented by 

v , )  l ( dq /d l+F  ) 
v2 = 2  -dq/ct  + Y J ' 

dZq + D~t + Kq=F. 

It is easily seen that col(dq/dt, q) is a state variable 
for 232. It was indeed shown that a storage function 
is given by 

1 (dq '~TMd q + ~qrK q 
Qe(q,F) = ~ k , ~  J dt 

and that a dissipation function is given by 

l ( d q )  r DT) dq 
Q~(q,F)= ~ ~ (D + + dt" 

Example 6.5. The relation between force F and po- 
sition q due to a potential field V(q) is given by 
F=(gTV)(q). This defines a (in general nonlinear) 
system 23 with manifest variable w = col(q,F). This 

Example 6.6. Consider a linear time-invariant 
RLC-circuit with Ne external ports with currents 
I1,12 . . . . .  Iu~ and voltages Vl, V2 . . . . .  VN~. Denote 
I=co1(I1,I2 .... ,IN~) and V=col(V1, V2 . . . .  , Vxe). 
The circuit contains resistors R l, Rz,...,RN< The cur- 
rent through and voltage across the kth resistor are 1R~ 
and VRz, respectively. Denote by IR and VR the vectors 
of resistor currents and voltages. The network con- 
tains Arc capacitors with capacitances C1, C2 . . . . .  CN~. 
The current through and voltage across the gth ca- 
pacitor are Ic, and Vc~, respectively; the vectors Ic 
and Vc are defined in the obvious way. Finally, the 
network contains N/ inductors L1,L2,...,LN,. The 
current through and voltage across the mth inductor 
are IL, ~ and VL,,~, respectively; the vectors IL and VL 
are defined in the obvious way. 

The network defines a system 23 with manifest 
behavior 

23 = {(V,I) ] there exists (VR, IR, Vc, lc, VL,IL) 
such that the laws of the constitutive elements, 
together with Kirchoff's laws are satisfied}. 

(6.3) 

If  one writes down the system equations explicitly, Eq. 
(6) yields a latent variable representation of ~3, with 
latent variable col( VR, IR, Vc, Ic, VL, IL ). Denote by 23r 
the full behavior of this representation. By applying 
Tellegens's theorem (see e.g. [3]), we obtain 

v[IR + + vZtL = vvI. 
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11 + r  
v1 - - I  

h + f  
½ 

m |  

+l 
m l  

This, together with the constitutive laws 

c dVc dlL VR = RIR, ~ -  = Ic and L ~ -  = VL 

yields 

1 T 2 IlTRRIR" d (~V~CVc+~V]LV~)  =vTI - -  (6.4) 

Here, the matrix C is defined by C := diag(C1, Cz . . . . .  
CN,), and R and L are defined similarly. Eq. 
(6.4) shows that ~ is dissipative with respect 
to the supply rate Q~(V,I)=VTI. It also fol- 
lows from Eq. (6.4) that any QDF Q~(V,I) 
such that (V, LVR,IR, VoIc, V L , I L ) ~ f  implies 
Q~,(V,I)= 1 T ~V~,CVc + ½V~LV~, is a storage func- 
tion of  (~3, O , ) .  Note that ½V~CVc + ½V~LV~ is 
the total electric energy stored in the capacitors plus 
the total magnetic energy stored in the inductors 
in the circuit. It can be shown that col(Vol~) is a 
state variable for the system ~3. Thus, this storage 
function is indeed a quadratic function of  a state 
variable of  the system, illustrating the result of  The- 
orem 6.1. It follows from Eq. (6.4) that any QDF 
Q~( V,I ) such that ( V,1, VR,]R, Vc,lc, VL,IL ) ~ ~-'~t" im- 
plies QA(V,I) l T 2IRRIR, is a dissipation function of  
( ~ ,  Q~). Note that this is exactly the electric energy 
dissipated in the resistors. According to Corollary 
6.3, ~ T gI~RIR can be written as a quadratic function of  
the variables Vc, IL, V and I.  

7. Conclusions 

We have shown (in the context of  linear systems 
and quadratic functionals) that any storage function 
of  a dissipative system is a function of  the state. This 
state involves the dynamics of  the dissipative system 
as well as those of  the supply rate. 

Appendix A. Proofs 

Proof of Theorem 4.3. We will prove (4) 
(3) ~ (1) ::F (2) ~ (4). To show that (4) 

(3), let Q~ be a dissipation function. Define 
A'((,~I) :-- MT(()A(~,q)M(q) and eb'(~,q) := 
MT(()cb(~, q)M(q). For all w C ~ N ~ ( R ,  [Rq ) we have 
f ~  QA(w)dt j '~ ,Q,(w)dt ,  and hence for all 

# E 0 ~ ( ~ , R  d) w e h a v e  J-~Q~, , , ( { ) d t = 0 .  This 
is equivalent with the condition that ~?(A ~ q / )  = 0. 
Thus, @~ A ~ contains a factor ~+~7. Define 7~'((, r/) :-- 
(1/(~ + ~l))(qb'((,q) - A'((,~I)), and let ~(~ ,q)  := 
Mtr (~ ,  q)7~((,  r/)Mt(q). Here M t is any polynomial 
left-inverse of  the polynomial matrix M: M tM = I. It 
is easily checked that ( d/ dt )Q~( w ) : Q ~( w ) - Q3 ( w ) 
for all w ~ 3  N ~o~([~,~q),  so Q~e is a storage 
function. To prove (3) ~ (1), Let Qq, be a stor- 
age function. Then for all w ~  N g ~ ( R ,  Rq) we 
have (d/dt)Qq,(w)<~Qc~(w). Taking w to have com- 
pact support and integrating this inequality, we get 
. ~  Q,(w)dt >10, proving that ( ~ ,  Qe)  is dissipa- 
tive. Next we prove (1) ==~ (2). We will silently switch 
from Rq as signal space to cq. Assume that there 
exists a ~ cq and COo ~ R such that ffTq~(--ie30, iw0)a 
< 0. Now consider the function #,v ~ ~ ( R , C  d) for 

N = 1,2 . . . . .  defined by / Itl ~< 2rc__NN, 
(O0 

2r~N ) 2rcN 
{ N ( t ) =  7 t +  W0 t / ,  t < W0 ' (A. 1) 

( 2rcN'] 27rN, 
t , t >  

~o / ~0 

where ~ is chosen such that {N ~ ( [ ] ~ , c d )  • Note 
that ~ is and can be chosen to be independent of  
N. Next evaluate J~+~ Q ¢ , ( ( x ) d t  and observe that 
this integral can be made negative by taking N suffi- 
ciently large. Finally, we prove (2) =~ (4). (2) holds 
iff there exists D I E  NJxd[~] such that q~'(-~, ~) = 
D~(-~)DI(~). Define A'(( ,r/)  := D~(()Dr(rl) and 
A(~,q):=Mtr(~)A'(~,~l)Mt(q). Then we have 
3(q)' - A ' ) = 0 ,  and hence f_~ooQA, ~ , ( { ) d t = 0 .  

This implies J'-~o~ Q3_,(w)dt = 0 for all w E ~3 N 
~ ( R ,  Rq). Since also QA(W)>/O for all wC~3, Q3 
is a dissipation function. Note that in this proof, for 
any dissipation function Q~ we constructed a stor- 
age function Qq,, and for any storage function Q~ 
we constructed a dissipation function QA such that 
(Qe, Qq,, Q3 ) is matched. [] 
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Proof of Lemma 5:.1. Consider the state represen- 
tation, Eq. (5.1), of  ~3. Consider the matrix pencil 
~E + F. It was shown in Ref. [5] that there exist non- 
singular matrices S and T such that 

S ( ~ E + F ) T =  (~E,~+F,~o ~.E22~EI2 -- FI2 ) - -  F22 

with ~E22 + F22 a full column polynomial matrix, 
and E~l full row rank. Let £ :=  T - I x  and partition 

£ =  col(x~,x2). Partition SG = col(Gl, G2). Clearly, 
SGw + S(F + E d/dt)T£ = 0 is a state representation 
of  ~3, which, writter out in components, becomes 

dx~ dx2 
G l W - - F l l x  1 +FI2x 2 +Ell ~ -  + EI2~- =0, (A.2) 

dx2 
Gzw 4- F22x2 -[- g22-~- = 0. (A.3) 

Using the fact that EI~ has full row rank, it is eas- 
ily seen that the state model, Eq. (A.3) is already 
a state representation of  ~3. Denote its full behav- 
ior by ~ .  Since ~£22 + F22 has full column rank, 
this state representation is observable. Now define 
L :=  (0 I )T  -1. Now assume that ( w , x ) ~ 3 f  and 
(w, x2) ~ ~ .  Then (w, Lx) ~ ~ ,  and by observability 
we must have x2 = Lx. [] 

Proof of Theorem 5.2. Denote col (u ,y)  by w, 
and col(U, Y) by M. Since the state representation 
is observable, there exists X E R~xq[~] such that 
x =X(d /d t )w .  Thus, X defines a state map so the 
rows of X M  span the linear space ~ .  

( ~ )  Assume tha| FU -1 is strictly proper. Let fi  
be the ith row of  F.  Then f .  E ~ ,  so f i  =hiXM 
for some constant row vector hi. Define H to be 
the constant matrix whose ith row is equal to hi. 

Then we have F=:HXM. Thus, if f = F ( d / d t ) [ ,  
u = U(d/dt)( ,  y = Y(d/dt){,  and x =X(d /d t )w ,  then 
we have f =  Hx. 

( ~ )  i f  f =  F(d/dt)~, u = U(d /d t f f  , y : Y (d /d t f f  , 
and x : X ( d / d t ) w ,  Ihen we have f = H x .  Thus, for 
all g' we have F ( d / d t f f = H X ( d / d t ) M ( d / d t ) #  so 
F = HXM. This implies that every row of  F is in ~ ,  
so FU-1 is strictly proper. 

We now prove the second part o f  the theorem. 
( ~ )  Assume that FU - l  is proper. Define J : :  

l iml2l - - -~ocF(2)U-l (2) .  Then (F - J U ) U  -1 is 
strictly proper, so the rows of  F - JU are elements 
o f  ~ .  This implies that there exists a constant matrix 
H such that F JU =HXM.  Thus, if f = F(d/dt ) ( ,  
u = U(d/dt)( ,  y = Y(d/dt)( ,  and x = Y ( d / d t ) w ,  then 
we have f = Hx + Ju. 

(=~) I f f  = F(d/dt ) ( ,  u = D(d/dt)( ,  y = Y (d /d t f f  , 
and x =X(d /d t )w ,  then we have f = Hx + Ju. Thus, 
for all ( we have F(d/dt)~ = HX(d /d t )M(d /d t ) (  + 
JU(d /d t ) (  so F = HXM +JU. This implies that every 
row o f F  - J U  is in ~:, so (F - J U ) U  1 is strictly 
proper. Hence F U - I  is proper. [] 

Proof of Theorem 6.1. Assume that the statement 
about storage functions has been proven for observ- 
able state representations. Assume now we have 
an arbitrary one. According to Lemma 5.2, there 
exists an observable one with state variable, say 
x t, and a constant matrix L such that (v ,x )E ~ f  
and (v, x t ) c ~  implies x~=Lx. Now, there ex- 
ists K = K  T such that (M(d/dt)w, x t ) E ~ f  implies 
Q ~ ( w ) =  xIX lCr I. Assume now (M(d/dt )w,x)  E ~ f .  
Let (M(d/dt)w, x t ) E ~ f .  We have x~=Lx. Hence 
Q~(w) = xxLrKLx. Thus, in the rest of  this proof we 
will assume that we have an observable state repre- 
sentation. The proof is split up into two parts. First 
we give a proof for the lossless case, and next for the 
general case. 

The Iossless ease. First assume (d/dt)Q~, = Q ¢ ,  
equivalently @ = @. 

1. M observable. Assume that in the canonical 
factorization @(~,tl)=MT(~)ZeM(tl) ,  M(2)  has 
full column rank for all 2 c C. This means that 
v = M ( d / d t ) w  is an observable image representa- 
tion of  ~ e .  After permuting the components of  v, if 
need be, M = col(U, Y), with det(U) ¢ 0 and YU l 
a matrix of  proper rational functions. Accordingly, 
write v = col(u, y). Let 7J(~, q) = F~(~)Z~F(tl)  be a 
canonical factorization o f  ~P. We have 

(~ + tl)FV(()Z~F(tl)U l(t/) 

= MT(~)Z¢M(tl)U-l( t l ) .  (A.4) 

Interpreted as a matrix of  rational functions in the inde- 
terminate r/, the right-hand side ofEq.  (A.4) is proper. 
Now, we claim that FU J is a matrix of  strictly proper 
rational functions. Suppose it is not. Let Fk t/k be the 
term of  degree k in the polynomial part of  FU -1. 
By equating powers of  t/ in Eq. (A.4), we obtain 
FT(~)Zq, Fk -- O. Since the columns of  the polynomial 
matrix F T are linearly independent over E, this im- 
plies that Zq, Fk = 0, so Fk = 0. This proves the claim. 
According to Theorem 5.1, there exists a constant 
matrix H such that if col(v,x)C ~3f, v = M ( d / d t ) w ,  
and f = F ( d / d t ) w ,  then f = H x .  This implies that 
Q~,(w) = IlF(d/dt)w[[~,,, = x T K x  with K :=  HTZ~uH. 
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2. GeneraI M. In general, the representation 
v=M(d/d t )w need not be observable. There 
exist however polynomial matrices M1 and N, 
with M~(2) full column rank for all 2 ~ C ,  and 
with N full row rank, such that M--MIN.  This 
amounts to representing ~ as v=M~(d/dt) t l ,  
/51 =N(d/dt)w. In fact, v=Ml(d/dt)d~ is already 
an (observable) image representation of  Ne. De- 
fine c~((,,q):=MT((,)S~M~(tl). Then qq is ob- 
servable and we have 4~(~,r/)= Nt(~)ebl({,~l)N(tl). 
Clearly, 4~1 contains a factor { + tl. Indeed, O=  
@( g, ~) = NTc--~)qO1 (--~, ~)N(~),  so qbl ( - ~ ,  ~) = 0. 
Define ~ ( ~ , ~ i ) = ( 1 / ( ~  + r/))qq(~,~l). Then we 
have ~/'~=q~ and ~g(~,~l)=NV(~)~ul(~,rl)NO1 ). 
According to part 1 of  this proof, there exists a ma- 
trix K = K  t such that (Ml(d/dt)#l ,x)~ 23f implies 
Qq,, ( { ~ ) - xr Kx. Now let ( M ( d/ dt )w,x ) ~ ~ .  Define 
#1 :=  N(d/dt)w. Then M(d/dt )w-Ml(d /d t ){ ' l .  We 
conclude that Q,¢(w) - Qq,, (¢~) = xVKx. 

The general ease. We now treat the general, possibly 
non-lossless, case. 

1. M full column rank. We first assume that in 
the canonical factorization 4~(~, ~1) = Mv(~)ZeM(q), 
M has full column rank. After permuting the com- 
ponents of  v, if need be, M=col (U,Y) ,  with 
det(U) ¢; 0 and YU ~ a matrix of  proper rational 
functions. Accordingly, write v = c o l ( u , y ) .  The dis- 
sipation inequality says that for all w ~ ffo~(N, Nq) 
we have (d/dt)Q~e(w)<~Qe(w), equivalently ~b-  
~b>~O. Thus there exists D ~ [ ~ ' x q [ ~ ]  such that 
(~ + r / )T(~, t / )=  q~(~,t/) - DT(~)D(r/). This can be 
restated as 

(~ + ~)v,(~,,~)= (M(~)'~ ~ 
D(,?) ] (z'+' 

Introduce the new system ~'~ext with image rep- 
resentation v = M ( d / d t ) w ,  d=D(d/dt)w.  Since 
MT(-~)SeM(~)=DT(-d )D(~) ,  DU -~ is a matrix 
of  proper rational functions. Thus, there exist constant 
matrices H and J such that d = Hx + Ju = Hx + J1 v 
(take Jl :=  (J 0)). It is then easily seen that 

G 0 dx 

is a state representation of  ~3ext with full behavior, 
say, ~ext. f. We are now back in the lossless case. 
There exists K - - K  t such that col(M(d/dt)w, 
D(d/dt)w, x) ~ ~ t ,  f implies Qq,(w) = xVKiv. Hence, 
col(M(d/dt)w,x) ~ ~ f  implies Q~(w) =xVKx. 

2. General M. Finally, we treat the general case. 
In general, M need not have full column rank, but 
there exist a unimodular V and a full column rank 
Mi such that M = (MI 0)V. This amounts to repre- 
senting 2~q, as v=Ml(d/d t )[ l ,  ge l ([ O)V(d/dt)w. 
In fact, v Ml(d/dt){t is .already an image rep- 
resentation of  $~ .  Let t / ,<~ .  Let D be such 
that (~ + q)ku(~,j1)=@(~,q) - DT(~)D(~/). Par- 
tition DV ~=(D1 D2). It is easily verified that 
D~(-~_)D2(~) = 0 so D2 = 0. Now define qh(~, ~/):= 

T ~" m 1 (~)X~M1 01). Then 

(~ +'7)v-r(~)7'(~,~)Z '(~) 
= ( d&(~''tl)- DT(~-)DI(rl)O 00) 

Consequently, 

V T(~)III(~'tl)V-I(")= ( tlJl(~'l')O 00) 

for some qq, with ~n ~< ~PL. Since det(451) ¢ 0, we 
are back in the situation of  part 2 above. Hence there 
exists K = K T such that (Mr (d/dt)¢l ,x) E ~ f  implies 
Q~, ((~) = xTKx. Now let (M(d/dt)w,x) ~ ~3f. Define 
dl :=  (10)V(d /d t )w .  ThenM(d/dt)w = M~(d/dt)/~. 
Hence Q~,(w) = Q,e, ( f l )  = xTKx. 

The proof o f  the statement about dissipation func- 
tions is much easier. Again, we may as well assume 
that we have an observable state representation. We 
will only do the case that M is observable. Let QA 
be a dissipation function. There exists D such that 
A(~,q) DT(~)D(r/). Since ?(q~ - A ) = 0  we have 
MT(-~)Sq~M(~)=DT(-~)D(~).  Since MU 1 is a 
matrix of  proper rational functions, the same holds 
for DU ~. Consequently, if d =D(d/dt)w, we have 
d - H x  + Ju=Hx + J~v (take JI :=  (J  0)). This 
yields O~(w) = ][D(d/dt)w[I 2 = ]]Hx +Jt vH 2. The case 
that M is not observable is left to the reader. [] 

Proof of Theorem 6.2. Let w = W(d/dt)¢ be any im- 
age representation of  ~ ,  with f c ~ ~ ( ~ ,  Rd). De- 
fine 4/(~,q) :=  wT(~)~(~,rl)WOI) and ~'(~,~1) : 
wT(~)~P(~,q)W(q). Clearly we are then hack in the 
situation of  Theorem 6.1: ((£o~(N, Rd),Qe,)  is dis- 
sipative and Qw is a storage function. According to 
Theorem 6.1, Qw is a quadratic function of  any state 
variable of  the system ~ ,  obtained from a canonical 
factorization of  4~': 

cb'(~,tl) M'(~)Zq~,M'OI). (A.5) 

The system ~ ,  is represented by v' = M'(d/dt) / .  The 
idea of  the proof is now, that the state of  ~ e  (given by 
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Eq. (6 .2))  is also a state of  ~ , , .  We first investigate 
the relation be tween Ne,  and ~ e .  Clearly, the canoni-  
cal factorization 4)(~, t / ) =  MT(~)XeM(tl) yields a (in 
general non-canonica l )  factorization 

~P'(~, ~1) : wT(~)MT (~)Xc~M(rl)W(q) (A.6)  

of  q~'. Combin ing  Eqs. (A.5)  and (A.6),  there exists a 
real contant  matrix, ';ay H ,  such that M ~ = HMW (see 
Section (3)) .  In terms of  the behaviors ~ ,  and 2 ~ .  
this says that ~3~, = H~3e.  Consider  n o w the equations 
Gv + Fx + E &r/dt : :  0, v ~ = Hv, equivalent ly 

( E d / d t + F  O ) ( x ) ( - H  G )  
0 I \ v' = v (A.7)  

We interpret this as a system with manifest  variable 
col(x, v ' )  and latent variable v. It is easily seen that 
after e l iminat ing the variable v, the manifest  behavior  
of  Eq. (A.7)  is represented by a first-order model  o f  
the form 

E ' ~ -  : : 0  (A.8)  G~ v~ + F~x + dt 

in the sense that (v~,x) satisfies Eq. (A.7)  for 
some v, iff it satisfies Eq. (A.8).  This shows that 
Eq. (A.8)  is a state representation of  ~3e,. De- 
note the full behavior  of  Eq. (A.8)  by ~3~. Now 
apply Theorem 6.1: there exists K = K  r such that 
( M' ( d/ dt )f ,x ) C ~ .  implies Q~,( f ) = xY Kx. Now let 
w C ~ and (M(d/dt)w,x)E ~3f. There exists f such 
that M(d/dt)w - M(d/dt)W(d/dt) f .  Hence,  

M'(d/d t ) f  = HM(d/dt)W(d/dt) f ,  

so (M'(d/dt) f ,x)  ~ ~f.  

This implies Qq,(w)=Q~,( f )=xVKx.  The claim 

on dissipation functions is proven along the same 
lines. 
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