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Abstract 

The purpose of this paper is to obtain a deterministic version of the Kalman filtering equations. We will use a be- 
havioral description of the plant, specifically, an image representation. The resulting algorithm requires a matrix spectral 
factorization. We also ';how that the filter can be implemented recursively. @ 1997 Elsevier Science B.V. 
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1. Introduction 

A frequently encountered problem in control and signal processing is to estimate the value of  one variable 
on the basis of  another related, observed one. When the to-be-estimated and the observed variables are time 
signals then we can view such problems as filtering questions. Both the Wiener and the Kalman filter approach 
this area by casting it in a stochastic setting: it is assumed that the signals involved are realizations of  stochastic 
processes with known statistics. The filter then produces the conditional expectation of  the to-be-estimated 
signal given the observations. 

What makes the Wiener and the Kalman filtering problem difficult, is the real-time aspect, the problem 
of  having to obtain an estimate of  the present value of  the to-be-estimated signal from only the past of  
the observations. The, algorithm underpinning the Kalman filter has, moreover, the important advantage that 
this real-time feature is implemented in a recursive fashion, in the sense that, by obtaining a state space 
representation of  the filter, the estimates can be automatically updated as new measurements become available. 

The purpose of  the present paper is to treat the filtering problem, as we have just defined it, in a deterministic 
setting. There is, of  course, a well-known deterministic interpretation of  the filtering problem, being that the 
optimal filter minimizes the H2-norm of  the transfer function from the driving variables to the estimation error 
over all non-anticipating linear filters. Our approach is a different one and will be more akin to the formulation 
of  the filtering problem given above. Other works which, though oriented towards a different goal, discuss 
deterministic Kalman filtering are [2, 3]. 
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2. Problem formulation 

Our formulation of  deterministic Kalman filter is rather subtle. It goes as follows. Assume that we observe 
a vector time signal y : ~ ~ (Rq. We would like to deduce from it a to-be-estimated vector time signal z. The 
estimate at time t, 2(0,  is allowed to depend only on the past of  y. Assume that we have a procedure to find 
the related vector signal 2 which optimally explains observed signal y up to time t. This yields a map from 
the past of  y to 2. In particular, it yields a map from the past of  y at time t to Z(t). This way we will obtain 
a mapping ~ (for 'estimate'),  8 : y  ~ d, having the property that 5 ( t ) =  d'(y)(t) .  It is this mapping 8 that 
we are looking for. 

In order to set up a rationale for constructing G ~ we have to assume that the observed signal y and the 
to-be-estimated signal z are somehow related. We do this by postulating that this relationship is formalized 
by a linear time-invariant differential system with behavior ?d. Now, consider two situations. First, assume 
that the observations y are compatible with ~ ,  i.e., that ~ could actually explain the observations exactly. 
We will refer to this case as exact observations (granted, a bit of  a misnomer). In this case our problem 
reduces to observer design: we have to derive, on the basis of  the specifications of  ~ ,  the differential equation 
relating y and z. 

However, the problem which we like to solve is the situation in which there is simply no element in :~d 
which could conceivably explain the observations. This case will be referred to (misnomed as) approximate 
observations. In this case we will replace the observation v by that element f that can be explained by the 
behavior and which approximates y optimally in the least-squares sense. Combining this with the observer 
then leads to the desired estimate of  z, from y, via f and the observer. However, this optimal 2) will in 
principle depend on the whole past and future of  y and so this procedure does not deal with the real-time 
aspect of  filtering. This real-time element is brought in as follows. We introduce ~ t ,  the behavior restricted 
to the half-line ( - o c ,  t] and look for the element fit in ?d t_ which approximates Yl(-~,tl optimally in the 
least-squares sense. The observer requires a number of  derivatives of  y. The filter is now obtained by replacing, 
at time t, these derivatives by those of  f t  at time t. 

3. Differential systems 

We will use the behavioral approach to the theory of  dynamical systems as put forward, for example, in 
[5]. Let L/~q denote the family of  linear time-invariant differential dynamical systems in q real variables. Thus, 
each element of  (fq is a dynamical system X = ( R ,  Nq ,~)  with ~ the solution set of  a system of  linear 
constant coefficient differential equations, say 

(d) 
R w = 0  (1) 

with R E N'×q[~]. For simplicity we will consider, throughout this paper, only C ~ solutions. Hence, we assume 
that ~ C  C ~ ( R ,  Rq). The system of  differential equations, Eq. (1), is said to be a kernel representation of  
E'. There exist many other possible representations of  X. In particular, if X is controllable [5], then there will 
exist an M(~) E Rq×'[~] such that 

(d) 
w = M  l (2) 

is an image representation of  2;, where l is some other signal variable which is usually called latent. Equiv- 
alently, we can write 

(d) 
~ M ~ c~(R,~" ) ,  (3) 

where m denotes the number of  columns of  M. 
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The notion of observability refers to a situation with two types of variables, say 

w = (4) 
W2 

with wl E Rq' and w:: C Nq:, yielding the dynamical system (N, Nq' x Nq-', ~) .  We will say that wl is observable 
from w2 if (w'~,w2)E~ and (W~l',wz)E ~ together imply w~ =wt(. It can be shown that observability is 
equivalent to the exLstence of a kernel representation of the special form 

(d) 
wl = Rt  w2, (5) 

(d) 
R2 w2 = 0. (6) 

However, when discussing systems with latent variables, as Eq. (2), we will assume that observability refers 
to observability of the latent variable # from the manifest variable w. It can be shown, in fact, that in Eq. 
(2), M can always be chosen to be an observable image representation, equivalently, such that the matrix 
M(2) E C q×° is of full column rank for all 2 C C. 

4. The model 

We will assume that, as explained in Section (2), the to-be-estimated signal z and the optimal approximation 
)~ of the observation y obey the laws of a given differential system. In particular, in the case of exact 
observations, we will assume that (z, y) belongs to a given behavior. In the case of approximate observations, 
we want to find a 3~ such that (z, 3~) belongs to this given behavior. Assume that in this behavior z is observable 
from )~, and that the behavior is controllable. Whence the system can be represented as 

(d) 
) ~ = M  ~ t ~, (7) 

(d) 
z = P  ~ (8) 

with Eq. (7) an observable image representation. We will take Eqs. (7) and (8) as the model from which we 
start our analysis. Note that Eq. (8) shows how to obtain the estimate z once 3~ is known. We will, therefore, 
concentrate in this paper on the question of how to compute )? from the observation y. 

We will first briefly consider estimating .~ from both the past and the future of y (referred to as smoothing) 
and then consider the case that 3) can only depend on the past referred to as filtering). 

5. Smoothing 

In this section we take a look at the question how to obtain an estimate )3 using both the past and the 
future of y. Assume, for simplicity, that y E 2q (:= the elements of C~(E,  R q) with compact support). Then 
if ~ = M(d/dt){* is least-squares optimal, the associated (* will have to satisfy 

f v ~  ( ( d ) )  2 ( d )  2) 
y - M  ~ (f*+A - y - M  N 1. dt>~0 (9) 

, O O  

for all A C c~m (m equals again the column dimension of M). It is easy to prove that if {* obeys Eq. (9), 
then 

( d 5 ( d )  T ( d )  
M - ~  y = M  -dr M ~ d*, (10) 
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where T denotes transposition. Consider Eq. (10) as an equation for ¢*:N --+ A m with y C ~q given. It can 
be shown that, among the finite-dimensional linear variety of solutions to Eq. (10), there exists exactly one 
such that 

y - M  dt < oc. (11) 
OO 

This is the solution we are looking for. Actually, this solution is the unique solution to Eq. (10) which is in 
S2(R, Am). Hence, the optimal 33 is specified by 

( ) ( ) ( d )  v d T d ,/, - ~  
M - ~  M ~5 = M  y, (12) 

/* ~ S2(R, R";), (13) 

( d )  E*. (14) 
33=M ~5 

Various algorithms for computing #* and f' can be constructed. Some of these use the polynomial matrix 
factorizations which will be discussed later. 

6. Filtering 

It can be seen that the solution {* and 33 obtained from Eqs. (12)-(14) will be such that #*(t) and 
33(t) will depend on the future as well on the past of y. Hence, Eqs. (12)-(14) is an off-line algorithm. We 
will now formulate a real-time version of the problem at hand. Let y : R - +  Rq be given and assume, again 
for simplicity, that y E ~q. We will now compute, with t C [Ra fixed element, the element 33t E ~ (with .~ 
still given in image representation by Eq. (7)) such that 

f ; Ily - 33;112 dt (15) 
- - O G  

is minimized. Now define y* : R --, Rq by 

y*(t) := 33;(t). (16) 

Our problem is to find the map 8 : y  ~-+ y*. Obviously by its construction, y*(t) will depend on the past 
YI(-~,;] only. We view the map ~ as the deterministic Kalman filter. 

7. Quadratic differential forms 

Let ~PE ~'~xn2[~,t/], i.e., ~P is a two-variable polynomial matrix, say 4~(~,q)= ~ . ;  4~kl~k;l t with 4~k/E 
~,, xn:. Associated with ~P there is the bilinear differential form 

Le : C°¢(R, N n' ) x C~(R,  R n2 ) --~ C°~(R, R) (17) 

defined by 

k~; {d~w ' ~T (d'w2~ 
Le(wl,w2):= , \ d t  k j @k;\ dt; J "  (18) 

If nl - n2, we also define the quadratic differential form 

Q, : C~(N,N n' ) ~ C:'C(R, N) (19) 
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by 

Qq~Cw) := Lq~(w, w). (20) 

We will make use a f  special quadratic differential forms which can be obtained by differentiating another 
quadratic differential form. It is easy to see that if  ¢b, tp 6 E"' ×"+[~,r/], then 

d 
Q* = wTQ~ (21) 

( i t  

if and only if 

<b(~, tl) = (~ + +1)~(~, r/). (22) 

This shows that </> is such that Qe is the derivative of  another quadratic differential form if and only if 

¢b(-~, ~) = 0. (23) 

This is equivalent te requiring that 

~b(~, 17) (24) 
~ +  17 

is again a two-variable polynomial matrix. More details on this sort of  use of  two-variable polynomial matrices 
may be tbund in [6]. We recall the following result proved in [6, 7]. 

Lemma  1. Let  Z = (R,  Eq, .~)  ~ 5£q and let ( , )  be a bilinear Jorm on Rq. Le t  • C Eq×q[~,~']. Assume that 

d 
dtQ¢(w)~< (w,w) Vw E :~. (25) 

Let  now X ( d / d t ) w  be a minimal  state map [6] Jor Z. Then there exists  a symmetr ic  matr ix  S c R q×q such 

that 

((d))' (d) 
Q e C w ) =  X ~ w S X  dt w. (26) 

8. Polynomial factorization 

Let M ~ ~qxm[~] be such that M()o) is full column rank for all )+ E C (observability of  Eq. (7)). Assume 
also that M has the property that it can be partitioned as 

with D square, N D - l  a matrix of  proper rational functions, and D-1 a matrix of  strictly proper rational 
functions. It is easy to see that, up to permutation of  its rows, any M can be partitioned such that ND-~ is 
proper. The assumption that D -1 is strictly proper is a restriction. We will not dwell on the significance or 
the reason of  this assumption. 

Consider the polynomial matrix q)E []~m×m[~] defined by @(~) :-- M ( - ~ ) T M ( ~ ) .  Then, of  course, q~(ico) > 0 
for all co E R. This implies that the matrix factorization equation 

,p(~) = f ( ~ ) F ( - ~ )  + (28) 
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has a solution F ~ N,,,×m[~]. In fact, it has many solutions. Among these, there will be one such that F is a 
Hurwitz polynomial matrix (meaning that de tF  has its roots in the left half of  the complex plane). We will 
denote this solution by H. Hence, H ~ Nm×m[~] is a Hurwitz polynomial matrix that satisfies 

M ( - ~ ) T M ( ~ )  = H ( ~ ) H ( - ~ )  v. (29) 

Using the results of  Section (7), it follows that 

M(~)TM01) H(-~)H( ~/)T ~(~, ~7) : (30) ~+~ 

is a two-variable polynomial matrix. There holds 

We now want to study in more detail the structure of  this quadratic differential form Q~,. First we need a 
preliminary result: 

Lemma 2. M ( ~ ) H ( - ~ )  -T and H ( - ¢ )  -T are both proper rational matrices ( v means inverse o f  the trans- 
pose). 

Proof.  The fact that M ( ~ ) H ( - ~ )  T is proper is an immediate consequence of  Eq. (29). Consider now the 
partition, Eq. (27), and put G(~) :=  N(~)D(~)  ]. It follows from Eq. (29) that 

H(--~)  TH(~)- I  = O ( ~ ) - l [ / - F  G(-~)TG(~)]  ID(--~)-T.  (32) 

Since G is proper, for ~ --~ +oc ,  G(~) will converge to G(oc). Since I +  G(oc)TG(oc) is obviously invertible, 
this shows that [I + G(-~)TG(~)]  -1 is proper. Since D(~) -1 is also proper, we have the result. [] 

Before stating the next lemma, we need to introduce few more concepts which have been introduced in 
[1]. First define the so-called 'shift and cut' operator 

a+ : N[~] ~ R[~], (33) 

a + p  :=  ~ J(p(~) - p(0)).  (34) 

Of  course, we can extend the action of  a+ to vectors of  polynomials by making it act on each component. 
Consider 

MI(~)] 
: " . (35) 

M(~) kM.i~) 
We define EM(¢) as the vector space spanned by {ak+M~ i k C t~, i = l . . . .  ,g}. It is proved in [1] that i fX(~ )  
is a matrix whose rows form a basis o f  ~M(~), then X ( d / d t ) {  is a minimal state map for the system 

(d) 
y = M  E (36) 

Lemma 3. 

~M(~) ~"H( ~)T. (37) 
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Proof. Consider the partition, Eq. (27). Since Y(~)D(~) -1 and D(~) -I are both proper, it follows that 

,VM(~) = ~D(~) = {r(~) ~ ~[~]1 xp i r(~)D(~)-I is strictly proper}. (38) 

Similarly, since H(--~) "r is proper, 

~ H ( - J  = {r(~) C ~[~]l×p i r (~)H(_~)  T is strictly proper}. (39) 

Now, since M(~)/-[(-~) T is proper, it follows that D(~)H(-~)  -T is proper. This immediately yields 
2M(~) _C 31t(-~)T. On the other hand, from Eq. (32) we easily see that H( ~)TD(~)-I is also proper. Hence, 
2M(~) _D-~H( ~)v. Therefore, they must be equal and the result is proved. [] 

Consider the behavior :~ described by the relation 

(d) 
y = M (~. (40) 

We have the following: 

Proposition 4. There exists a minimal state map X(d /d t ) {  for ~ such that 

q'(~, q) = X(~)Tx(q).  (41) 

Proof. It follows from Eq. (31) that Qq, is a storage function [6] for ~.  Fix a minimal state map X(d /d t ) {  
for .~. Hence, by Lemma 1 there exists a symmetric matrix S such that 

~P(~, ~1) = X ( ~ ) T s x ( q )  • (42) 

We now prove that S > 0. Eq. (41) then follows by taking as new state map x/~X(d/dt)#. 
Consider the behavior ,N~ described by the equations 

( d )  HT ( _ ~ )  /. (43) y = g ~ < f d 

It follows from Lcmma 3 that X(d /d t ) (  is also a minimal state map for :~'. Notice now that f is the input 
in .N'. lndeed, 

( I  M ( ~ ) ) - '  ( 0 ) =  ( :  - M ( ~ ) H ( - ~ )  T )  ( ~ )  ( - M ( ¢ ) H ( - ~ )  T )  (44) 
0 H ( - ~ )  r I H ( - ~ )  -T H ( - # )  -T ' 

which is proper by Lemma 2. Fix now f E C~C(~, ~")  and let x0 := X(d/dt){~(O). It follows that there must 
exist an {I ~ C°°( R, ~m) such that 

( d )  ( d )  
H T - - ~  {;1 = 0 ,  Y ~ / l ( 0 ) = x 0 .  (45) 

Since H ( - ~ )  T is anli-Hurwitz, it follows that [11(-~,0] and all its derivatives are in L/2. Hence, 

f [ '  M ( d ) '  2 Q~(¢)(0) = Q~({~ )(0) = ~ dt >~ 0. (46) 
o ~  

Notice, moreover, that 

Q~(~) (0 ) - -0  +* ~ = 0 + * X  ( d )  ~ =  0. (47) 

This clearly yields 5 > 0. The result is thus proved. [] 
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Next, consider two further two-variable polynomial matrices: 

M(-~)  - M07) 
O(~, q) :=  , (48)  ~+~ 

-Hv(~) + HT(-q) 
~b(~, ~/) := (49) ~+~ 

Of course, just as X, both O and @ are immediately related to M and H. This has the following consequence: 

Proposition 5. There exist polynomial matrices Y E R*×q[~] and F E N°×'[~] such that 

o(~,~l) = Y(~)Vx(~) + x(~)TY(~), (50) 

q~(~, r/) = F(~)Tx(,/) + X(~)TFOI). (5 1 ) 

Proofl It follows from the definition of O, Eq. (48), that 

Denote by ,~ the behavior described by the image representation 

(dj 
2 = M - ~  ~ (53) 

and let 3[(d/dt){ be a minimal state map for ,~. Hence, 

X ( d / d t ) ~  ] 

X(d/dt)Z] (54) 

is a minimal state map for the direct sum system :~ @ .~. It follows from the definition of O, Eq. (48), that 

By Lemma 1 that there exist a real matrix 

Q SII SI2 ) (56) 
S :=  sT 2 $22 

with S~1 = Sll and sT = $22, such that 

LX(C ) \sT $22 [ Y ( / / )  " (5"7) 

We now show that Sjl and $22 must both be equal to O. Indeed, assume that ~ and { have compact support. 
By integrating Eq. (55), we obtain 

/ f t / d T ) t ( ( d )  ~)(s)ds,  (58) 
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which shows that 

( . (d))  (d) (:) 
@3) SllX dt r(O)=Qo (0 )=0 .  (59) 

On the other hand, since ?~ is controllable, for every x0 there exists ( E C ~ with compact support such that 
X(d/dt)¢(O) Xo. ~Fogether with Eq. (59) this implies that Sll = 0. Analogously we can prove that $22 = 0. 
This yields 

O(~, r/) = 2(,~)TsT:x(r/) + X(~)Tst22(~/). (60) 

Hence, Eq. (50) holds with Y(~) := Sj2X(~). Eq. (51) can be proved in exactly the same way, using 
Lemma 3. [] 

Relations of Eqs (41), (50) and (51) imply 

ddt X ( ; ) (  2=  M ( d )  g 2 H (  d ) T /  2, (61, 

d { ) 
ddt I F ( d )  f ' X  ( d ) { , ) = - ( H  ( d ) r E ) +  ( f H  ( - d ) I { ) .  (63) 

9. B a s i c  ident i ty  

We will now derive the basic identity which will let us obtain our deterministic version of the Kalman 
filter. 

The observation y ¢ ~q is assumed to be given. Let H be the polynomial matrix obtained in Eq. (29). 
Next, define f E C~([~, R m) as the unique 5D2(~, ~m) solution of 

( d )  ( d )  ~ 
H ~-~ f = M  ~ y. (64) 

Note that f is welt defined because H is assumed to be Hurwitz and that it will have left compact support. 
Henceforth, we car~ thus assume that both y and f are given. 

Denote by At the subset of C~((-oc, t],R m) consisting of the functions which are of class £/~2 together 
with all their deriwatives. 

T h e o r e m  6. 

4 y ( 6 )  2 

f ~ - M dt ( 6 5 )  

assumes its minimum value over At in the unique point {t which satisfies the Jollowing conditions: 

f = H ( - d  ~ lt on (-.vc, t], (66) 

( x ( d ) ( t ) ( t ) + ( Y ( d ) y ) ( t ) + ( F ( d ) f ) ( t ) = O .  (67) 
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Proofl A straightforward calculation yields the following identity: 

2 f v# 2 d f 2 

+([[yll2-11fll2) ~ Y -dtt y + F 

If ~ E At, integrating Eq. (68) from - v c  to t, yields 

t y  ( d )  f 2 dt / ~ - M  dt 

(d) 

+ (llyll 2 -  I l f l l2 )d t -  Y at y + F  ~ (t). 
- - 0 0  

(683 

(69) 

We are trying to find an ~/which minimizes the left-hand side of the above expression with y given. Recall 
that we may also consider that f is given by Eq. (64). Now, the third and fourth term on the right-hand 
side of Eq. (69) depend on y and f only. Therefore, they cannot be changed by choosing {. Hence, if there 
exists an #t satisfying conditions Eqs. (66) and (67), it will clearly minimize Eq. (65). The fact that there 
exists a unique /t which satisfies conditions Eqs. (66) and (67) is a straightforward consequence of the fact, 
that X(d/dt){ is a minimal state for the dynamical system 

(d) 
f=HT - d t  r (70) 

with input f (see Lemma 3). [] 

Remark. It may seem not natural to minimize Eq. (65) over At since # is only latent variable, while the 
external variable is M(d/dt)(. It would be thus more natural to impose that only M(d/dt)¢ is in cS2. However, 
in [4] it is proven that M(d/dt)[ E 502 automatically implies that # and X(d/dt)# are also in Y2. Thus, Eq. 
(69) will remain valid if only M(d/dt)? is assumed to be in 502. From this, straightforward considerations 
would show that the unique minimum is again given by the {t found above. 

The optimal estimation of y at time t is thus given by 

(71) 

10. Recursive implementation 

Similarly as in the stochastic Kalman filter, it is possible to implement the deterministic Kalman filter 
recursive way. The key fact is the following: 

Proposition 7. Let Y and F be polynomial matrices sati,~fyin9 Eqs. (50) and (51). Then 

(d) (d) 
- Y  ~ t Y - X ~  f 

is a minimal state map for the ~Tstem, Eq. (64). 

in a 

(72) 
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Proof. Consider 

~2(~, q ) : =  X(~)V[YO1),F01)] + [Y(~),F(~)]VXOI). (73) 

It follows from the definition of Y and F that 

= l{ ,  M " d"Ty) d ( / +  d)r{.)  I{,H d f )  ( - ~ ) - l y ,  M ( ~ ) ( . f , H ( -  ( ~ )  . (74) 

If X(d/dt)(y, f )  T i,s a minimal state map for the system, Eq. (64), it follows from Lemma 1 that there exists 
a symmetric matrix 

$12 ) 

such that 

(75) 

(X(dJd ,  
(76) 

X(d/dt)(y,f) T) S[2 &2 J k£(d/dt)(Y,f) T)/" 

By integrating along compact support trajectories, similar considerations as in the proof of Proposition 5, show 
that $11 and $22 must be equal to 0 and, moreover, that 

(d) (d) (d) Y ~ y+F ~ f=S12X ~ (y,f)T.  (77) 

We now complete the proof by showing that Sl: is square and invertible. It follows from Lemma 2 that the 
Mc-Millan degree ~f system, Eq. (64), is equal to the degree of detH(~) which is obviously equal to the 
degree of detH(-! i~.  This last is, again by Lemma 2, equal to the Mc-Millan degree of the system 

f = H - ~  {. (78) 

By Lemma 3, X(d/dt)~ is a minimal state map for this system. It follows that $12 must indeed be a square 
matrix. Assume now that 

((d) Y ~ y ÷ F  ~ f ( 0 ) = 0  (79) 

and let 

(d) 
~o := 2 ~ (v, f)r.  (80) 

Since y acts as an input in system, Eq. (64), it follows that there exists f such that 

(d) 
H ~ f = 0, (81) 

( d )  
2 d5 ( 0 ' f ) r ( 0 ) = ~ °  (82) 
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Take now { compact support and integrate Eq. (74). We obtain 

f , H  - 7  { d s = 0 .  (83) 
• O O  

Since as ( varies among the maps with compact support the image H ( - d / d t ) ' r ~  covers all the compact support 
maps, it follows from Eq. (83) that f = 0 .  Hence, £0 = 0 and this proves that S12 is non-singular. This proves 
the result. [] 

Proposition 7, combined with the fact that y acts as input to Eq. (64), implies that there exist matrices A 
and B of  suitable dimensions such that 

is governed by 

d 
~,~ = A2~ + By. (85) 

Moreover, there exist matrices GI and Li such that 

f = GtS:+L~y.  (86) 

On the other hand, since X(d/dt)•  is a state map for Eq. (70) and M ( ~ ) H ( - ~ )  -T is a matrix of  proper 
rational functions (see Eq. (29)),  there exist matrices G2 and L2 such that 

y~ = G2£ + L2 f .  (87) 

Combined with Eq. (86) this yields the existence of  matrices G and L such that 

y* = G2~ + Ly.  (88) 

Eqs. (85) and (88) yields a recursive implementation of  the deterministic Kalman filter. 

11. Summary 

Let us close by summarizing our deterministic Kalman filtering algorithm. 
1. The model is specified by the polynomial  matrix M (see Eq. (7)).  
2. The observations consist of  a vector time signal y. 
3. The factorization equation, Eq. (29), yields a Hurwitz polynomial  matrix H. 
4. Equations (41), (50) and (51) deliver the polynomial  matrices X,  Y, F .  
5. The filter is determined by Eqs. (64), (66), (67) and (71). 
6. The filter can be implemented recursively through Eqs. (85) and (88). 
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