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Abstract. In this paper we will prove that the system described by the delay-differential
equation R(d/dt,∆)w = 0 (with ∆ the unit delay operator) is controllable if and only if the rank of
R(λ, e−λ) is constant for all λ ∈ C. This condition is compared with the existing results obtained
both by the analytic approach and by the algebraic approach to delay-differential systems.
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1. Introduction. The aim of this paper is to analyze controllability for delay-
differential (d-d) systems. We will derive a concrete necessary and sufficient condition
for controllability of d-d systems in kernel representation. We will use the behavioral
approach to dynamical systems [12]. Thus a continuous-time dynamical system is a
triple Σ = (R,Rq,B) with behavior B being a set of trajectories w : R→ Rq. We will
assume that B is shift invariant, i.e., that (w(.) ∈ B)⇒ (w(t+ .) ∈ B ∀t ∈ R). Since
the behavior is the most intrinsic feature of a system, it is logical to define the system
properties in terms of the set B, i.e., at an external level. This applies in particular
for the notion of controllability.

DEFINITION 1.1. The system Σ is said to be controllable if for all w1, w2 ∈ B
there exist a w ∈ B and a T ≥ 0 such that

w(t) =
{
w1(t) for t < 0,
w2(t− T ) for t ≥ T.

Note that for shift-invariant behaviors the controllability condition of Definition
1.1 is equivalent to the following property. For all w1, w2 ∈ B, w1 is B-compatible with
w2, i.e., for all t1 ∈ R there exist t2 ≥ t1 and w ∈ B such that w∗ = w1∧t1w∧t2w2 ∈ B.
Here w∗ = w1 ∧t1 w ∧t2 w2 stands for the successive concatenation of w1, w, and
w2, respectively, at times t1 and t2 and is defined as follows: w∗(t) = w1(t) for
t < t1, w∗(t) = w(t) for t1 ≤ t < t2, and w∗(t) = w2(t) for t ≥ t2. In other words,
controllability requires that every past trajectory can be transferred to any future
trajectory. In order to distinguish this property from the classical state controllability
and to emphasize the fact that it concerns the system behavior we will refer to it as
behavioral controllability.

Behavioral controllability has been widely studied for both continuous- and dis-
crete-time systems, respectively, described by differential and difference equations, see
[12, 8]. In this paper we consider continuous-time systems described by differential
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equations with delays, i.e., d-d systems. More concretely, we will be concerned with
systems whose behavior B can be described as the kernel of a d-d operator R(d/dt,∆)
(where R(z1, z2) is a two-dimensional (2D) polynomial matrix in z1 and z2 and ∆ is
the delay). This is a very general description which can comprise both the polynomial
input-output equations and the pseudostate representations considered in the litera-
ture [11], [3]. We will show that B = kerR(d/dt,∆) is controllable if and only if (iff)
R(λ, e−λ) has constant rank for all λ ∈ C. It turns out that this condition reduces to
spectral controllability if one considers pseudostate representations as in [3], [6], and
[9].

This characterization of behavioral controllability has also been independently
obtained in [1], where the author develops an elegant theory for d-d systems in a be-
havioral framework based on the properties of a suitable ring of entire functions. Here
we follow a different approach based on the analysis of the exponential-polynomial
trajectories in the system.

2. Delay-differential systems. Let R(z1, z2) be a 2D polynomial matrix hav-
ing g rows and q columns. Now consider the equation

R

(
d

dt
,∆
)
w = 0,(1)

where ∆ denotes the unit delay operator: (∆f)(t) := f(t − 1). Equation (1) defines
the dynamical system (R,Rq,B) with B = ker(R(d/dt,∆)) and R(d/dt,∆) viewed as
a map from C∞(R,Rq) into C∞(R,Rg). In other words, the behavior consists of the
C∞-solutions of (1). We will call (1) a d-d system (even though it would be more
appropriate to refer to it as a d-d system in kernel representation).

Note that this kernel representation is more general than the polynomial input-
output descriptions considered in [11], as well as than the pseudostate descriptions
of [3]. Indeed, any polynomial input-output d-d equation Py = Qu can be regarded
as a kernel representation with R(d/dt,∆) = [P (d/dt,∆) | −Q(d/dt,∆)] and with
w = col(y, u). In turn, the pseudostate description {dx/dt = A(∆)x + Bu y = Cx}
can also be viewed as a kernel representation with w = col(x, y, u) and R(d/dt,∆) =
col([d/dt−A(∆) | 0 | −B], [−C | I | 0]). Observe, however, that (1) is a broader class
of systems than those mentioned. For example, both the systems defined by

w1 =
d

dt
∆w2

and by

∆w1 = (1 + ∆2)w2

fit (1) but not the classical input/state/output frameworks.

3. Behavioral controllability of d-d systems. Our problem is to find con-
ditions on the 2D polynomial matrix R(z1, z2) such that (1) defines a system which
is controllable in the sense of Definition 1.1. The following is the main result of this
paper.

THEOREM 3.1. (1) defines a controllable d-d system iff the rank of the complex
matrix R(λ, e−λ) is constant for λ ∈ C.

The above theorem is a natural generalization of the well-known identical result
for differential systems R(d/dt)w = 0. However, the proof will show that from a
mathematical point of view Theorem 3.1 is a much deeper result.
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As an alternative to systems (1), consider the following d-d systems. LetM(z1, z2)
be a 2D polynomial matrix with q rows and l columns. Consider the equation

w = M

(
d

dt
,∆
)
a,(2)

where a ∈ C∞(R,Rl) corresponds to an auxiliary variable. Equation (2) defines a
dynamical system (R,Rq, im(M(d/dt,∆))) with M(d/dt,∆) viewed as an operator
from C∞(R,Rl) into C∞(R,Rq). We will call (2) a d-d system in image representa-
tion. It is easy to prove that (2) defines a dynamical system which is automatically
controllable. For differential systems, a system is controllable if and only if it admits
an image representation. This is, in fact, also the case for d-d systems (1).

THEOREM 3.2. A d-d system (1) is a controllable system iff there exists a 2D
polynomial matrix M(z1, z2) such that

kerR
(
d

dt
,∆
)

= imM
(
d

dt
,∆
)
.(3)

In order to give a further insight, it is useful to compare our result with the
existing results on state controllability for d-d systems. We will first focus on the
class of retarded d-d systems Σ considered in [3] which have a pseudostate description
of the form {

dx/dt = A(∆)x+Bu,
y = Cx,

where x is the (n-dimensional) pseudostate, u is the input, y is the output, and
A(z) = ANz

N + · · · + A1z + A0 is a polynomial matrix in z. For the system Σ, the
state at time t is defined in [3] as being z(t) = col(x(t), xt), where xt ∈ L2[(−N, 0],Rn]
is given by xt(τ) = x(t + τ) for all τ ∈ (−N, 0]. This yields the infinite-dimensional
state space Z = Rn × L2[(−N, 0),Rn]. Define, in this state space, the set Kt of all
attainable states in time t, and let K∞ := ∪t>0Kt. Then Σ is said to be approximately
controllable if K∞ is dense in Z. The next theorem, providing a characterization of
approximate controllability, has been derived in [3].

THEOREM 3.3. Σ is approximately controllable iff (1) rank[(λI − A(e−λ) | B] =
n ∀λ ∈ C and (2) rank[AN | B] = n.

The first condition of the theorem is known as spectral controllability.
Note that the pseudostate description that we have considered here can be re-

garded as a kernel representation with R(d/dt,∆) = col([d/dt−A(∆) | 0 | −B], [−C |
I | 0]) if Σ is viewed as a system with external variable vector w = col(x, y, u) and
with smooth signals. It turns out from Theorem 3.1 that the behavior of Σ is control-
lable iff rank[(λI −A(e−λ) | B] = n for all λ ∈ C. So behavioral controllability seems
to correspond to spectral rather than to approximate controllability. The situation
can be illustrated by the following example.

EXAMPLE 3.4. Let A(z) = A0 + A1z with A0 = col([0 | 1], [0 | 0]), A1 = col([0 |
0], [−1 | 0]), and B = col(0,−1). Then the corresponding system Σ is not approx-
imately controllable since rank[A1 | B] = 1 < 2. However, it is easy to check that
[λI − A(e−λ) | B] has rank 2 ∀λ ∈ C and hence the behavior of Σ is controllable.
What happens in this case is that the pseudostate components x1 and x2 are related
by dx1/dt = x2. This holds in particular in the interval [−1, 0); therefore, not all the
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elements in the state space R2 × L2([−1, 0),R2) are feasible, which prevents approx-
imate controllability. This obstacle does not arise for behavioral controllability since
this property exclusively regards admissible system signals (and hence one does not
take into account the signals which do not satisfy dx1/dt = x2).

The characterization of approximate controllability has been extended to neu-
tral d-d systems in [6] and [9] and later generalized in [13] to the case of (possibly)
noncommensurable delays. For systems with a pseudostate description of the form{

dx/dt = A(∆1, . . . ,∆N , D)x+Bu,
y = Cx

(4)

(where A(z1, . . . , zN , zN+1) = A0 +
∑N
i=1Ai(zN+1)zi, Ai(zN+1)zi = Ei + FizN+1,

and ∆i represents the delay by hi units of time, i = 1, . . . , N), the following result
has been derived (and formulated in slightly different terms).

THEOREM 3.5 (see [13]). The system described by (4) is approximately controllable
iff (a) rank[A(eh1λ, . . . , ehNλ, λ), B] = n ∀λ ∈ C and (b) rank[AN (λ), B] = n for some
λ ∈ C.

As before, the first condition corresponds to spectral controllability and coincides
with our characterization of behavioral controllability if the delays are commensurable.

Another interesting issue is the comparison of our notion of controllability with
the ones which have been studied in [5] and [2] within an algebraic approach. Here
the authors consider systems Σ with pseudostate-space representations of the form{

dx/dt = A(∆)x+B(∆)u,
y = C(∆)x+D(∆)u,(5)

where A(z2), B(z2), C(z2), D(z2) are polynomial matrices in z2. For such systems
the following two notions of controllability are introduced. Let R(z2) := [B(z2) |
A(z2)B(z2) | . . . | (A(z2))n−1B(z2)], where n is the size of A(z2). Σ is said to be
weakly controllable if R(z2) has full row rank over the field of fractions R(z2). If
R(λ2) has full row rank ∀λ2 ∈ C, Σ is said to be strictly controllable. Theorem 3.6 is
shown in [2].

THEOREM 3.6. With the previous notation, (1) Σ is weakly controllable iff [z1 −
A(z2) | B(z2)] is left prime, and (2) Σ is strictly controllable iff rank[λ1 − A(λ2) |
B(λ2)] = n ∀(λ1, λ2) ∈ C× C.

Regarding the pseudostate representation (5) as a kernel representation, it follows
from Theorem 3.1 that the behavior of Σ is controllable iff rank[λ−A(e−λ) | B(e−λ)] =
n ∀λ ∈ C. Thus strict controllability implies behavioral controllability. On the other
hand, if [z1 − A(z2) | B(z2)] has a left factor Φ(z1, z2) with nontrivial determinant
f(z1, z2), then Φ(λ, e−λ) will be a left factor of [λ− A(e−λ) | B(e−λ)], implying that
this matrix drops in rank when λ is a zero of f(λ, e−λ). Therefore we can conclude
that behavioral controllability implies weak controllability.

Summarizing the preceding considerations, we have that strict controllability im-
plies behavioral controllability, which in its turn implies weak controllability. The
next examples show that the converse implications do not hold true.

EXAMPLE 3.7. Consider the delay-differential system Σ described by{
dx/dt = (−∆ + 1)x+ (2−∆)u,
y = x.

Letting w := col(u, y, x) and R(z1, z2) := col([z2−2 | 0 | z1 +(z2−1)], [0 | 1 | −1])
this description becomes R(d/dt,∆)w = 0. Since R(λ, e−λ) = col([e−λ − 2 | 0 |
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λ + (e−λ − 1)], [0 | 1 | −1]) has rank 2 ∀λ ∈ C, the behavior of Σ is controllable.
However, [λ1− (1−λ2) | 2−λ2] clearly drops in rank for (λ1, λ2) = (−1, 2), and hence
Σ is not strictly controllable.

EXAMPLE 3.8. Let Σ be described by the following equations:{
dx/dt = (−∆ + 1)u,
y = x.

Proceeding as in the previous example, we have that R(λ, e−λ) = col([1 − e−λ |
0 | λ], [0 | 1 | −1]), which drops in rank for λ = 0. So the behavior of Σ is not
controllable. However [z1 | z2 − 1] is left prime and hence Σ is weakly controllable.

EXAMPLE 3.9. Consider the system described in image representation by[
w1
w2

]
=
[

1−∆
d
dt

]
a.(6)

This is a system with transfer function w2 → w1:

ŵ1

ŵ2
=

1− e−s
s

.(7)

Obviously, since it is an image representation, it defines a controllable system.
The logical candidate for the kernel representation is

d

dt
w1 = (1−∆)w2.(8)

However, (8) is not controllable and hence not a faithful representation of (6). This
shows that the d-d system (6) cannot, in fact, be represented as a kernel representation
(1). In particular, this implies that what we call the latent variable elimination
theorem [12] does not hold for d-d systems!

4. Proofs. We will show Theorems 3.1 and 3.2 in three main steps, respectively,
corresponding to Propositions 4.1, 4.5, and 4.6 below. In the first step we prove
that the rank constancy of R(λ, e−λ) implies that (1) has an image representation.
In the second step we prove that the existence of an image representation implies
controllability. Finally, in the third step we show that if (1) defines a controllable
system then R(λ, e−λ) must have constant rank over C. For a question of simplicity
in the notation, in this section we will write D = d/dt for the differentiator.

PROPOSITION 4.1. With the previous notation, if rankR(λ, e−λ) = r ∀λ ∈ C
then there exists a 2D polynomial matrix M(z1, z2) such that B := kerR(D,∆) =
imM(D,∆), with the operator M(D,∆) acting on C∞(R,Rl) for a certain integer l.

Proof. Under the hypothesis, the 2D polynomial matrix R(z1, z2) has rank r (over
the field of fractions R(z1, z2)). Suppose first that R(z1, z2) has q = r columns. Then
R(λ, e−λ) has full column rank ∀λ ∈ C, and hence kerR(D,∆) does not contain any
element with components of the form tkeλt. By [10, Theorem 5] this implies that
kerR(D,∆) = {0}, and the equality kerR(D,∆) = imM(D,∆) is trivially satisfied
with M(z1, z2) being the q × 1 zero matrix. Suppose now that R(z1, z2) has q > r
columns. Then Lemma 4.2 follows.

LEMMA 4.2. R(z1, z2) can be factored as F (z1, z2)R̄(z1, z2), where F and R̄ are
2D polynomial matrices of sizes g × r and r × q, respectively, such that F (z1, z2) has
full column rank (over R(z1, z2)) and R(z1, z2) is left prime (i.e., R̄ has full row rank
and all its left factors are invertible in Rr×r[z1, z2]).
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Proof. Without loss of generality we may assume that R(z1, z2) = [−Q(z1, z2) |
P (z1, z2)], where P (z1, z2) is a full rank matrix with r columns. Moreover, there
exists a rational matrix G(z1, z2) such that PG = Q. Let G = Q̂P̂−1 and G = P̄−1Q̄
be, respectively, a right coprime and a left coprime factorization of G [4]. Then the
matrix R̄ = [−Q̄ | P̄ ] is a minimal left annihilator of H := col(P̂ , Q̂) (cf. [7]); i.e.,
R̄H = 0 and for every 2D polynomial matrix S(z1, z2) such that SH = 0 there exists
a 2D polynomial matrix L(z1, z2) satisfying S = LR̄. Since, obviously, also RH = 0,
there exists a polynomial matrix F (z1, z2) such that R = FR̄. Further, since R̄ is a
full rank polynomial matrix with r rows, F must have column rank.

Let then F and R̄ be as in the previous lemma. Note that due to the fact that
rankR(λ, e−λ) = r ∀λ ∈ C neither F (z1, z2) nor R̄(z1, z2) can have zeros of the form
(z1, z2) = (λ, e−λ). Now, since R̄ is left prime, there exists a polynomial matrix W
such that

R̄(z1, z2)W (z1, z2) = N(z1),

with N(z1) = diag(d(z1), . . . , d(z1)) for a suitable (nonzero) 1D polynomial d(z1). Let
M(z1, z2) be a right-prime 2D polynomial matrix such that R̄M = 0 (we can take
M = H as in Lemma 4.2) and define the matrix U(z1, z2) := [W (z1, z2) |M(z1, z2)].

LEMMA 4.3. The operator U(D,∆) : C∞(R,Rq)→ C∞(R,Rq) is surjective.
Proof. We start by showing that detU = detN = dr(z1) =: n(z1). Without

loss of generality we may assume that R̄(z1, z2) can be partitioned as R̄(z1, z2) =
[P (z1, z2) | −Q(z1, z2)], with P (z1, z2) square and nonsingular. Consider the corre-
sponding partitions [ X

Y ] =: W and [ Q̄
P̄ ] =: M of W and M . It is well known (see

[4]) that det P̄ (z1, z2) = detP (z1, z2). Now,

detU = det
[
X Q̄
Y P̄

]
= det

([
X Q̄
Y P̄

] [
I 0

−P̄−1Y I

])

= det
[
X − Q̄P̄−1Y Q̄

0 P̄

]
= det P̄ · det(X − Q̄P̄−1Y )

= det P̄ · det(X − P−1QY ),

since Q̄P̄−1 = P−1Q (due to the fact that M is a dual basis of R̄). Thus,

detU = det P̄ · det(P−1(PX −QY )
= det P̄ . detP−1 · det(PX −QY )
= det P̄ .(detP )−1 · det(PX −QY )
= det(PX −QY ),

and as N = PX −QY , we conclude that

detU = detN = det(diag(d(z1), . . . , d(z1))) = dr(z1) =: n(z1).

Consider now the equation

U(D,∆)α = β.

Given β ∈ C∞(R,Rq), define ᾱ such that

N̄(D)ᾱ = β,
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with N̄(z1) := diag(n(z1), . . . , n(z1)). Note that N̄(D) is a surjective operator in
C∞(R,Rq). Define α := V̄ (D,∆)ᾱ ∈ C∞(R,Rq), where V̄ (z1, z2) is such that

U(z1, z2)V̄ (z1, z2) = N̄(z1).

Then

U(D,∆)α = U(D,∆)V̄ (D,∆)ᾱ = N̄(D)ᾱ = β,

showing that U(D,∆) is a surjective operator in C∞(R,Rq).
This implies that ∀w ∈ B = kerR(D,∆) there exists w̄ such that w = U(D,∆)w̄

and hence R(D,∆)U(D,∆)w̄ = 0, i.e., w̄ ∈ kerR(D,∆)U(D,∆). So,

B ⊆ U(D,∆) ker(R(D,∆)U(D,∆)).

On the other hand, if w = U(D,∆)w̄ and R(D,∆)U(D,∆)w̄ = 0, then R(D,∆)w = 0,
i.e.,

B ⊇ U(D,∆) ker(R(D,∆)U(D,∆)).

Therefore B = U(D,∆) ker(R(D,∆)U(D,∆)). Taking into account that U = [W |M ]
and that RU = [FN | 0], this yields B = [W (D,∆) |M(D,∆)](ker[F (D,∆)N(D,∆) |
0]). Thus

B = W (D,∆) ker(F (D,∆)N(D,∆)) + imM(D,∆).

Finally, it turns out that Lemma 4.4 follows.
LEMMA 4.4. W (kerFN) ⊆ imM .
Proof. Recall that F (λ, e−λ) has full column rank ∀λ ∈ C. This implies that

kerF (D,∆) = {0}, and hence kerFN = kerN . Therefore, in order to prove the
lemma we will show that W (kerN) ⊆ imM . As is well known,

kerN(D) = span{tjeλitek : i = 1, . . . , p, j = 0, . . . , µ(λi)− 1, k = 1, . . . , r},

where λ1, . . . , λp are the distinct roots of d(z1), µ(λi)(i = 1, . . . , p) are the corre-
sponding multiplicities, and ek is the kth vector in the canonical basis of Rr. So,
W (kerN) ⊆ imM iff for every root λ of d(z1), for every m subject to 0 ≤ m ≤ µ(λ)−1,
and for every k ∈ {1, . . . , r}, W (tmeλtek) ∈ imM ; i.e., there is a C∞ trajectory x such
that

Mx(t) = W (tmeλtek).(9)

Let then λ be a root of d(z1) and let m be a positive integer not greater than
µ(λ)−1. Without loss of generality we may assume that R̄ = [P | −Q] with P (λ, e−λ)
invertible. Consider the corresponding partitions of M and W as defined in the proof
of Lemma 4.3. Note that in this case, P̄ (λ, e−λ) is also invertible. Now, (9) can be
rewritten as

Q̄ x = X(tmeλtek),(10)
P̄ x = Y (tmeλtek).(11)

It is not difficult to see that

Y (D,∆)(tmeλtek) = Y (λ, e−λ)ektmeλt + (Ym−1t
m−1 + · · ·+ Y0)ekeλt
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for some suitable matrices Ym−1, . . . , Y0. Take x to be of the form x(t) = (ξmtm +
· · ·+ ξ0)eλt. Then

(P̄ (D,∆)x)(t) = {P̄ (λ, e−λ)ξmtm + [P̄ (λ, e−λ)ξm−1 +Gm−1
m ξm]tm−1

+ · · ·+ [P̄ (λ, e−λ)ξ0 +G0
1ξ1 + · · ·+G0

mξm]}eλt,

and x satisfies (11) iff
P̄ (λ, e−λ)ξm = Y (λ, e−λ)ek,
P̄ (λ, e−λ)ξm−1 = Ym−1ek −Gm−1

m ,
...
P̄ (λ, e−λ)ξ0 = Y0ek − (G0

1ξ1 + · · ·+G0
1ξ1).

(12)

As P̄ (λ, e−λ) is invertible, there is a (unique) solution (ξm, . . . , ξ0) to (12), showing
that (11) has a C∞ solution x(t) = (ξmtm + · · ·+ ξ0)eλt. It remains to prove that this
solution x(t) also satisfies (10). It follows from (11) that

QP̄x = QY (tmeλtek) ⇔
PQ̄x = QY (tmeλtek) ⇔
PQ̄x = (PX −N)(tmeλtek) ⇔

0 = P (Q̄x−Xtmeλtek),(13)

since QP̄ = PQ̄, PX + QY = N , and tmeλtek ∈ kerN . Note that Q̄(D,∆)x −
X(D,∆)tmeλtek = E(t)eλt, where E(t) is a polynomial column in t containing powers
of t of order not greater than m. Assume that E(t) = Em̄t

m̄ + · · ·+E0, where Em̄ is
a nonzero column and m̄ ≤ m. Then (13) becomes

[P (λ, e−λ)Em̄tm̄ + (Gm̄−1t
m−1 + · · ·+G0)]eλt = 0,

which implies that P (λ, e−λ)Em̄ = 0. This is absurd, since P (λ, e−λ) is an invertible
matrix and Em̄ is assumed to be nonzero. Thus, E(t) must be zero, i.e.,

Q̄x−Xtmeλtek = 0,

which shows that x satisfies equation (10) and hence also (9).
As a consequence of this lemma we have that B = imM(D,∆), i.e., (1) has an

image representation, proving the proposition.
Now, it is not difficult to come to the following conclusion.
PROPOSITION 4.5. If (1) has an image representation, then it defines a control-

lable system.
Proof. Suppose that (1) has an image representation, i.e., B = imM(D,∆), and

let w1 and w2 be two arbitrary signals in B. Then, there exist a1 and a2 in C∞(R,Rl)
such that wi = Mai, (i = 1, 2). Now, it is possible to construct a smooth signal a∗

which coincides with a1 in the past and with a2 in the (sufficiently far) future. Such
signal yields an element w∗ = Ma∗ in B which coincides with w1 in the past and
with w2 in the future. Thus w1 is B-compatible, with w2 showing that B is control-
lable.

Finally, if R(z1, z2) is a 2D polynomial matrix of rank r and rankR(λ, e−λ) < r
for some λ0 ∈ C we can show that there exists a signal associated with the frequency
λ0 which is not B-compatible with the identical zero signal and hence B is not con-
trollable.
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PROPOSITION 4.6. Let B := kerR(D,∆), where R(z1, z2) is a 2D polynomial
matrix of rank r. If B is controllable then rankR(λ, e−λ) = r ∀λ ∈ C.

Proof. We start by noting that, formally, e−z1 =
∑+∞
k=0

(−1)k

k! zk1 . Thus, if z2 =
e−z1 , R(z1, z2) = Π̃(z1), where Π̃(z1) is a matrix over the ring R[[z1]] of formal power
series in z1. Suppose now that rankR(λ, e−λ) < rankR(z1, z2) = rankR(z1, e

−z1) = r
for a certain λ0 ∈ C. We consider first the case where λ0 = 0; so rankR(0, 1) <
rankR(z1, e

−z1). This means that rankΠ̃(0) < rankΠ̃(z1) = r, and therefore we may
assume without loss of generality that

Π̃(z1) = diag(zk1
1 , . . . , zkr1 , z

kr+1
1 , . . . , zks1 )Γ̃(z1),

where k1, . . . , ks are integers, k1 ≥ 1, and

Γ̃(0) =
[
Ir×r 0

0 0

]
(with the zero rows possibly void).

Let

Γ(z1) =
[
Ir×r 0

0 0

]
+ z1Γ1 + z2

1Γ2 + · · ·+ zk1−1
1 Γk1−1

be such that

Γ̃(z1) = Γ(z1) + higher-order terms.

Then, using the same kind of arguments as in the proof of Lemma 4.4, it is possible
to show that there exists a trajectory w∗(t) = αk1−1t

k1−1 + · · ·+ α0 such that

Γ(D)w∗(t) =


1
0
...
0

 tk1−1

(k1 − 1)!
.

Now, this trajectory w∗ is clearly such that

R(D,∆)w∗ = diag(Dk1 , . . . , Dks)Γ(D)w = Dk1tk1−1 = 0,

and hence it belongs to B.
LEMMA 4.7. With the previous notation, w∗ is not B-compatible with the zero

trajectory.
Proof. Suppose that w∗ is B-compatible with the zero trajectory, yielding a

trajectory v∗ ∈ B such that v∗|(−∞,τ1) = w∗|(−∞,τ1) and v∗|[τ2,+∞) = 0|[τ2,+∞) for
some τ1 < τ2. Since v∗ ∈ B, R(D,∆)v∗ = 0 and therefore also∫ T2+1

T1

[R(D,∆)v∗]dt = 0.

In particular, if r(z1, z2) denotes the first row of R(z1, z2), we have that∫ T2+1

T1

[r(D,∆)v∗]dt = 0.(14)
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Note further that r(λ, e−λ) becomes zero for λ = 0, and hence r(z1, z2) = r(z1, e
−z1)

must be of the form

r(z1, z2) = r(z1, e
−z1) = z1r0(z1) + (e−z1 − 1)r1(z1, e

−z1),

where r0(z1) and r1(z1, z2), respectively, are 1D and 2D polynomial rows. So equation
(14) is of the form ∫ T2+1

T1

[(∆− 1)r1(D,∆) +Dr0(D)]v∗dt = 0.

This is equivalent to∫ T1

T1−1
r1(D,∆)v∗dt+

∫ T2+1

T2

r1(D,∆)v∗dt+ [r0(D)v∗]

∣∣∣∣∣
T2+1

T1

= 0,

which is still equivalent to∫ T1

T1−1
r1(D,∆)w∗dt+

∫ T2+1

T2

r1(D,∆)0dt

+(r0(D)0)(T2 + 1)− (r0(D)w∗)(T1) = 0

if T2 + 1 � τ2 and T1 � τ1 so that in a sufficiently big interval around T2 + 1,
v∗ coincides with the zero trajectory, and in a sufficiently big interval around T1, it
coincides with w∗. This yields∫ T1

T1−1
r1(D,∆)w∗dt− (r0(D)w∗)(T1) = 0.(15)

Let η = col(η1, . . . , ηq) be a trajectory such that η(t) = αk1−1

k1
tk1 + · · ·+α0t; then

Dη = w∗ and we may write (15) as∫ T1

T1−1
r1(D,∆)Dη dt− (r0(D)Dη)(T1) = 0,

which is equivalent to having

[((∆− 1)r1(D,∆) + r0(D)D)η](T1) = 0

or still

(r(D,∆)η)(T1) = 0.

Now, it follows from our previous considerations that

r(D,∆)η)(T1) = (Dk1 [1 0 . . . 0]η)(T1) = [1 0 . . . 0]αk1−1(k1 − 1)! = 1,

since [1 0 . . . 0]Γ(D)w∗ = tk1−1

(k1−1)! . In this way we obtain that 0 = 1, which
is absurd. Consequently the hypothesis that w∗ is B-concatenable with the zero
trajectory cannot hold true.

It follows from this result that if R(λ, e−λ) drops in rank for λ = 0, then B is not
controllable. It remains to show that if rankR(λ, e−λ) < rankR(z1, z2) for λ = λ∗ 6= 0
then B is not controllable.
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Assume now that R(λ, e−λ) drops in rank for λ = λ∗ 6= 0, and consider the system
Σ∗ with behavior B∗ := expλ∗ B, where expλ∗ is defined by expλ∗(t) = e−λ

∗t ∀t ∈ R.
Then B∗ is described by a polynomial matrix R∗(z1, z2) such that R∗(λ, e−λ) = R(λ+
λ∗, e−(λ+λ∗)). As rankR(λ, e−λ) drops for λ = λ∗, R∗(λ, e−λ) drops for λ = 0. Thus,
by the foregoing arguments, B∗ is not controllable. This implies that B is also not
controllable, completing the proof of the proposition.

5. Conclusion. We have presented a necessary and sufficient condition for the
controllability of the behavior of d-d systems with kernel representations. Moreover,
we have compared the notion of behavioral controllability with the notions of approx-
imate and spectral controllability considered in [3] as well as with other controllability
properties (namely, weak and strict controllability) that have been introduced within
an algebraic approach to d-d systems [5]. Contrary to what happens with the results
of [3], [6], [9], and [5], our results hold for all types of systems with commensurable
delays and not only for retarded or neutral systems in pseudostate form.
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