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On Interconnections, Control, and Feedback
Jan C. Willems,Fellow, IEEE

Abstract—The purpose of this paper is to study interconnec-
tions and control of dynamical systems in a behavioral context.
We start with an extensive physical example which serves to
illustrate that the familiar input–output feedback loop structure
is not as universal as we have been taught to believe. This leads to
a formulation of control problems in terms of interconnections.
Subsequently, we study interconnections of linear time-invariant
systems from this vantage point. Let us mention two of the results
obtained. The first one states that any polynomial can be achieved
as the characteristic polynomial of the interconnection with a
given plant, provided the plant is not autonomous. The second
result states that any subsystem of a controllable system can be
implemented by means of a singular feedback control law. These
results yield pole placement and stabilization of controllable
plants as a special case. These ideas are finally applied to the
stabilization of a nonlinear system around an operating point.

Index Terms—Behaviors, controllability, feedback, intercon-
nection, invariant polynomials, linear systems, pole placement,
regular interconnection, singular feedback, stabilization.

I. INTRODUCTION

ONE OF THE MAIN features of the behavioral approach
as a foundational framework for the theory of dynamical

systems is that it does not take the input–output structure as
the starting point for describing systems in interaction with
their environment. Instead, a mathematical model is simply
viewed as any relation among variables. In the dynamic case
this relation constrains the time evolution which a set of
variables can take. The collection of time trajectories which the
model declares possible is called thebehaviorof the dynamical
system. This basic definition proves to be a very convenient
starting point for discussing dynamical systems in a variety
of applications. In the present paper we will scrutinize this
aspect in the context of control.

This behavior, hence a set of time functions, can be specified
in many different ways. Often, as in Newton’s second law
or in Maxwell’s equations, the behavior will be given as the
solution set of a system of differential equations. Sometimes,
as in Kepler’s laws or in the theory of formal languages, the
trajectories which the behavior declares feasible are described
more directly, without the aid of behavioral equations. In
many other examples the behavior will be specified through
the intervention of auxiliary variables, which we will call
latentvariables, in order to distinguish them from themanifest
variables, which are the variables whose time paths the model
aims at describing. The usual state-space model forms an
example of such a model structure.
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Thus it is to be expected that in the behavioral approach a
variety of system representations will appear. The classical
ones are the input–output representation, which suggest a
cause/effect structure, and the input/state/output representation
which, in addition to suggesting a cause/effect structure, also
displays, through the state, the internal memory of the system.
In control applications it has proven to be very convenient to
adopt this input/state/output framework, to view the control
and the other exogenous signals (for example, tracking signals
or disturbances) as inputs, and the measurements and the to-
be-controlled variables as outputs. In addition, it is often also
easy to formulate the desired qualitative properties of the
closed-loop response (as stability) in terms of input–output
or state properties. Finally, the action of the controller and
its cybernetic structure can sometimes be explained very
effectively in a state-space context. Think of the separation
theorem in -control and of the elegant double-Riccati
equation solution of the problem. Nevertheless, models
obtained from first principles will seldom be in input–output
or in input/state/output form, and it is worth asking whether
they form a reasonable starting point for the development of
a theory which aims at treating physical models.

The behavioral point of view has received broad accep-
tance as an approach for modeling dynamical systems. It is
now generally agreed upon that when modeling a dynamic
component, it makes no sense to prejudice oneself (as one
would be forced to do in a transfer function setting) as
to which variables should be viewed as inputs and which
variables should be viewed as outputs. There are a number
of reasons for this. A pragmatic one is that ultimately this
component will become part of an interconnected system.
So, it will depend on the interconnection structure, which of
the variables interconnecting this component with the rest of
the system will act as inputs and which will act as outputs.
A more philosophical, simpler, but perhaps more convincing
reason is that when a physical system is not endowed with
a natural signal flow graph, it is asking for difficulties to
suggest that it has one (even if mathematically there would
be nothing wrong with doing this). As an illustrative example,
consider the port behavior of an circuit. Assume that
the current-to-voltage transfer function is biproper (proper
with a proper inverse). Then it is possible, by any reasonable
mathematical definition, to view the network both as being
current-controlled or as being voltage-controlled. However,
from a system theoretic point of view it is not logical to do
either. An input–output, transfer function formulation has a
tendency to suggest a signal flow structure which is not present
in physical reality. We will not dwell here on the maneuvering
which is sometimes needed in order to treat a differentiator
in an input–output context. This is not to say, however,
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that there are no situations where the input–output structure
is natural—quite the contrary. Whenever logic devices are
involved, the input–output structure is often amust. Indeed,
when in a typical physical device (say an electrical circuit) one
variable (say the voltage at a port) is imposed, the other (say
the current) will follow, but the situation can be turned around.
When the second variable is imposed, the first will follow.
However, the physics (or, better, the equivalent circuits acting
as models) of logic devices will be such that this cannot be
done. Imposing the output voltage of an operational amplifier
will not lead to an input voltage that would correspond to that
output when that input voltage was imposed.

The behavioral approach has, until now, met with much less
acceptance in the context of control. We can offer a number
of explanations for this fact. First, as already mentioned,
there is something very natural in viewing controls as inputs
and measured variables as outputs. When, subsequently, a
controller is regarded as a feedback processor, one ends up
with the feeling that the input–output structure is in fact an
essential feature of control. Second, since it is possible to
prove that every linear time-invariant system always admits a
componentwise input–output partition, one gets the impression
that the input–output framework can be adopted without
second thoughts, that nothing is lost by taking it as the starting
point.

The purpose of this paper is to present a framework for
control which does not takesteering, but which takesinter-
connectionas the basic aim of controller design. Thesteering
picture of afeedbacksensor/actuator structure then emerges as
an important special case. In the present paper we will treat
general control problems. In subsequent papers we will study
the and problem from this point of view. We will
now illustrate by means of a detailed example a situation in
which the classical signal flow graph approach in control is
inadequate.

II. THE INTELLIGENT CONTROL PARADIGM

Present-day control theory centers around the signal flow
graph shown in Fig. 1. The plant has four terminals (each
supporting variables which are typically vector-valued). There
are two input terminals, one for the control input and one
for the other exogenous variables (as disturbances, set-points,
reference signals, etc.), and there are two output terminals, one
for the measurements and one for the to-be-controlled vari-
ables. By using feed-through terms in the plant equations this
configuration accommodates, by incorporating these variables
in the measurements, the possible availability to the controller
of set-point settings, reference signals, or disturbance mea-
surements for feedforward control, and, by incorporating the
control input in the to-be-controlled outputs, the penalizing
excessive control action in optimal control. The control inputs
are generated by means of actuators, and the measurements
are made available through sensors. Usually, the dynamics of
the actuators and of the sensors are considered to be part of
the plant.

In intelligent control, the controller is thought of as a
microprocessor-type device which is driven by the sensor

Fig. 1. Intelligent control.

outputs and which produces the actuator inputs through a
cleverly devised algorithm involving a combination of feed-
back, identification, and adaptation. The creation of such
algorithms is considered to be the core of control theory.
This picture is often completed by an and a
converter interfacing the sensor with the microprocessor and
the microprocessor with the actuators. Also, loops expressing
model uncertainty often are incorporated in the above. Of
course, many variations, refinements, and special cases of
this structure are of interest, but the basic idea is that of a
supervisor reacting in an intelligent way to observed events
and measured signals.

The belief that the paradigm of Fig. 1 constitutes the essence
of control has been prevalent ever since the beginning of
the subject, from the Watt regulator (or at least its modern
day interpretation), Black’s feedback amplifier, and Wiener’s
cybernetics, to the ideas underlying modern adaptive and
robust control. It is indeed a deep and very appealing paradigm
which will undoubtedly gain relevance and impact as logic
devices become ever more prevalent, reliable, and inexpensive.
This paradigm has a number of features which are important
for considerations which will follow. Some of these are as
follows.

• There is an asymmetry between the plant and the con-
troller; it remains apparent what part of the system is
the plant and what part is the controller. This asymmetry
disappears to some extent in the closed loop.

• The intelligent control paradigm tells us to be wary
of errors and noise in the measurements. Thus it is
considered ill-advised to differentiate measurements, pre-
sumably because this will lead to noise amplification.

• The plant and the controller are dynamical systems which
can be interconnected at any moment in time. If for one
reason or another the feedback controller temporarily fails
to receive a sensor signal, then the control input can be set
to a default value, and later on the controller can resume
its action.

We will now present an example of a common controller in
which none of these features are present.

III. A N EXAMPLE OF A COMMON CONTROLLER

In this section we will analyze a very mundane and wide-
spread automatic control mechanism, namely the traditional
device which ensures the automatic closing of doors. There is
nothing peculiar about this example. Devices based on similar
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Fig. 2. A door-closing mechanism.

Fig. 3. A mass/spring/damper representation.

principles are used, for instance, for the suspension of cars, and
the points which we will make through this example could also
be made just as well through many temperature or pressure
control devices. A typical automatic door-closing mechanism
is schematically shown in Fig. 2.

Although there exists a large variety of such automatic-
door-closing mechanisms, they invariably consist of a spring
in order to force the closing of the door and a damper in
order to make sure that it closes gently. In addition, these
mechanisms often have considerable weight so that their mass
cannot be neglected as compared to the mass of the door itself.
These mechanisms can be modeled as a mass/spring/damper
combination. In good approximation, the situation can be
analyzed effectively as the mechanical system shown in Fig. 3.

We model the door as a free mass (neglecting friction
in the hinges) on which two forces are acting. The first force,

is the force exerted by the door-closing device, while the
second force, is an exogenous force (exerted for example
by a person pushing the door in order to open it). The equation
of motion for the door becomes

(1)

where denotes the opening angle of the door and
its mass. The door-closing mechanism, modeled as a
mass/spring/damper combination, yields

(2)

Here, denotes the mass of the door-closing mechanism,
its damping coefficient, and its spring constant. Combining

(1) and (2) leads to

(3)

In order to ensure proper functioning of the door-closing
device, the designer can to some extent choose and

(all of which must, for physical reasons, be positive). The
desired response requirements are: small overshoot (to avoid
banging of the door), fast settling time, and a not-too-low
steady-state gain from to (in order to avoid having to use
an excessive force when opening the door). A good design will
be achieved by choosing a light mechanism small) with
a reasonably strong spring large), but not too strong so as
to avoid having to exert excessive force in order to open the
door, and the value of is chosen so as to achieve slightly less
than critical damping. In a sense, this is a perfect elementary
example of a controller design. However, it does not fit many
of the basic principles which are taught in control courses.

It is completely natural to view in this example the door
as the plant and the door-closing mechanism as the controller.
Then, if we insist on interpreting the situation in terms of
control system configurations as Fig. 1, we will obtain the
following equations:

plant (4)

with the control input [ in (1)], the exogenous
input [ in (1)], the measured output, and the
to-be-controlled output. The controller becomes

controller (5)

This yields the closed-loop system, described by

closed-loop system

(6)

Observe that in the control law (5), the measurement
should be considered as the input and the controlshould be
considered as the output. Thus (5) suggests that we are using
what would be called a controller (a proportional twice
differentiating controller), a singular controller which would
be thought of as causing high noise amplification. Of course,
no such noise amplification occurs in reality. Further, the plant
is second order, the controller is second order, and the closed-
loop system is also second order (thus unequal to the sum of
the order of the plant and the controller). Hence, in order to
connect the controller to the plant, we will have to “match” the
initial states of the controller and the plant. Thus in order to
interconnect the plant and the controller, preparation of these
systems and their initial states is required. In attaching the
door-closing mechanism to the door, we will indeed typically
make sure that at the moment of attachment the initial values
of and in (1) and (2) are zero for both the door and
the door-closing mechanism.

We now come to our most important point concerning this
example. Let us analyze the signal flow graph. In the plant [(1)
and (4)] it is natural to view the forces and as inputs
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and as output. This input–output choice is logical both from
the physical and from the cybernetic, control theoretic point
of view. In the controller [(2) and (5)], on the other hand,
the physical and the cybernetic points of view clash. From
the cybernetic, control theoretic point of view, it is logical
to regard the angle as input and the control force as
output. From the physical point of view, however, it is logical
to regard (just as in the plant) the force as input and

as output. It is evident that as an interconnection of two
mechanical systems, the door and the door-closing mechanism
play completely symmetric roles. However, the cybernetic,
control theoretic point of view obliges us to treat the situation
as asymmetric, making the force the cause in one mechanical
subsystem and the effect in another.

This simple but realistic example permits us to draw the
following conclusions. Notwithstanding all its merits, the
intelligent control paradigm of Fig. 1 gives an unnecessarily
restrictive view of control. In many important practical control
problems, the signal flow graph interpretation of Fig. 1 is
untenable. The solution which we will propose to this dilemma
is the following. We will keep the distinction between plant
and controller with the understanding that this distinction is
justified only from anevolutionarypoint of view, in the sense
that it becomes evident onlyafter we comprehend the genesis
of the controlled system, after we understand the way in
which the interconnected system has come into existence as a
purposeful system. However, we will abandon the intelligent
control signal flow graph as a paradigm for control. We will
abandon the distinction between control inputs and measured
outputs. Instead, we will put forward theinterconnection of a
controller to a plantas the central paradigm in control theory.

Other convincing examples of controllers in which the
intelligent control paradigm is not suitable are car dampers
and operational amplifiers. Also, we put question marks by
the traditional feedback interpretation of this device. This is
explained in [13]. It is perhaps somewhat ironic that we do
not consider thefeedbackamplifier (since the logic device is
in the forward loop) as a good example offeedback, as it is
usually viewed (we are not the first to point out this anomaly;
see, for instance, [5, pp. 145–163]).

However, we by no means claim that the intelligent control
paradigm is without merits. To the contrary, it is an extremely
useful and important way of thinking about many control
problems. Claiming that the input–output framework isnot
always the suitable framework to approach a problem does
not mean that one claims that it isnever is.

IV. CONTROL AS THE INTERCONNECTION

In this section we will describe mathematically how we can
view control as the interconnection of a plant and a controller.
We will do this in the context of the behavioral approach
to dynamical systems (see [8]–[10]). Recall that adynamical
system is defined as a triple, with
the time axis, a set called thesignal space, and
thebehavior. Thus denotes the set of time instances relevant
to the dynamical system under consideration. In the present
paper, we will almost exclusively deal with continuous-time

Fig. 4. Interconnection.

systems with The signal space denotes the set in
which the time trajectories, which the system generates, take
on their values. In lumped systems will be (a subset of)

, in distributed systems it is an infinite-dimensional function
space, and in discrete-event systems (DES), it is a finite set.
The prescription of the behavior can occur in many different
ways, from the solution set of a system of differential equations
in continuous-time systems, to a prescription via grammars and
substitution rules in DES. In the present paper we will discuss
mainly systems with

Let and be two
dynamical systems with the same time axis and the same signal
space. Theinterconnection of and denoted as
is defined as ; the behavior of

consists simply of those trajectories which
are compatible with the laws of both (i.e., belongs to

and (i.e., belongs also to
This definition stems from the mental picture shown in

Fig. 4. In this picture, we view the signal space as a product
space consisting of a Cartesian product of variables. We
imagine that the components of this product space live on
the terminals of and In the interconnected system,
variables must beacceptableto both and

Two remarks are in order.

1) Of course, in most applications, systems are intercon-
nected only through certain terminals and not along
others. For example, the controller of Fig. 1 is con-
nected to the plant only through the control input and
measured output terminals. This situation can easily
be incorporated in the definition of interconnection as
follows. Assume and

with their interconnection leading
to with

and This is illustrated in Fig. 5.
By redefining to

with and to
with it is easily seen

that this interconnection now becomes a special case
of our general definition. Note that the definition of the
behavior of leaves the variables free in while
that of leaves the variables free in

2) In many interconnections, following the mental picture
of Fig. 5, it is natural to suppress the interconnecting
variables after interconnection, yielding

with
such that and

This is illustrated in Fig. 6. This
situation can be formalized usingmanifestand latent
variables, one of the other central features of the behav-
ioral approach.
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Fig. 5. Interconnection along certain terminals.

Fig. 6. Elimination of interconnecting variables.

The problem of control can now be described as follows.
Assume that theplant, a dynamical system
is given. Let be a family of dynamical systems, all with

as common time axis and as common signal space.
We will call the set ofadmissible controllers. An element

is called anadmissible controller.
The interconnected system will be called thecontrolled
system. The controller should be chosen so as to make sure
that has certain desirable properties. The problems
of control theory are:first, to describe the set of admissible
controllers;second, to describe what desirable properties the
controlled system should have; and,third, to find an admissible
controller such that has these desired properties.

It may be tempting to callactive control what we have
referred to as intelligent control, andpassive controlour idea
of interconnection, implanting a device to act as a controller.
However, we like to use the term passivity as a more specific
property of devices which absorb energy. In fact, our approach
to control leads to the question of what can be achieved using
passive controllers, with passivity in the sense of dissipative
systems. In other words, what can be achieved with controllers
which function without an energy source? What systems can
be stabilized using such controllers? We believe that such
problems are of considerable practical importance.

In a sequence of papers, we will describe a number of con-
crete design philosophies following this point of view. They
are familiar ones. The present one is inspired by stabilization
and pole placement; the second will treat control, and
the third control. However, the underlying philosophy,
the problem formulations, and their solutions are sufficiently
different from their classical counterparts that they merit a
detailed coverage.

V. LINEAR TIME-INVARIANT DIFFERENTIAL SYSTEMS

For the sake of concreteness, we will now restrict our
attention to a familiar class of dynamical systems, to systems
described by constant coefficient linear differential equations,
the analogues in a behavioral setting of the finite-dimensional
linear systems, or, in an input–output setting, the systems
described by rational transfer functions. In our earlier work
we have discussed mainly the discrete-time case, whereas in
the present paper we will be interested in the continuous-time
case. We will therefore describe the general background in
some detail.

Let be an indeterminate, and denote by the set of
real polynomial matrices with rows and any (of course, finite)
number of columns. Let written out explicitly,

and consider the system
of differential equations

(7 )

or, in shorthand notation

(7 )

Here denotes the row-vector with components
Each of the ’s is a mapping from to

whence Let denote the row
dimension, i.e., the number of rows, of As is apparent,
(7) consists of a system of scalar linear differ-
ential equations in variables with constant
coefficients (the entries of the matrices
System (7) defines a continuous-time dynamical system with
signal space whose behavior consists of the functions col

which satisfy (7). However, we
need to spell out what it means for such a trajectory to be a
solution to the set of differential equations (7).

We call a strong solutionof (7 ) if is
-times differentiable and if

(8)

for all However, for many applications in control, this
solution concept is too restrictive. For example, it would lead
to difficulties when discussing the step-response. We will call

a weak solutionof (7) if and if
for all functions of compact support there hold

with

Note that is a weak solution of (7) iff is zero as
a vector of distributions. We will define the behavior of (7) in
terms of weak solutions. Thus (7) defines the dynamical system

with , the set of weak
solutions of (7). It can be shown that
is dense (in the topology of in In this
sense every weak solution of (7) can actually be approximated
by a classical (strong) one. Intuitively, for the purposes of this
paper, one can therefore think of as simply consisting
of the collection of all solutions of (7).

Let us denote the family of dynamical systems obtained
this way by for linear and for the number of
variables). Thus each element of is parameterizedby a
polynomial matrix The notation used in the
previous paragraph shows that the map

associates with the “parameter” , the dynamical system
It is easy to see that each
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element of is a linear (its behavior being a linear subspace
of time-invariant (its behavior being shift-invariant)
dynamical system. We will refer to the elements of as
linear differential systemsand to (7) as akernel representation
of the dynamical system

The polynomial matrix obviously defines but
the converse is not true. For example, it is easily seen that
if is a unimodular polynomial
matrix, then We shall now see
that under a simple additional condition, the converse also
holds. We will call (7) (or briefly minimal if

and imply
Recall that is of full row rank if

(in should be viewed
as a matrix of polynomials, or, equivalently, as a matrix of
rational functions). The following proposition shows in how
far elements of define the associated system of differential
equations. This proposition is easily proven using the ideas
used in the discrete-time case in [10].

Proposition 1:

1) is minimal iff it is of full row rank.
2) If are both minimal or, by 1, both

of full row rank, then iff
there exists a unimodular polynomial matrixsuch that

3) More generally, if and only
if there exists such that
and

It is easily seen from 3) of Proposition 1 that
implies Let

Then by definition there exists a such that
It follows that depends only on Define

now the map by
( thus equals iff is minimal). Define also

by We shall later
see that and are equal to the number of input and output
variables.

One of the central notions in control theory is that of
controllability. It ensures the very existence of reasonable
controllers. This notion can be very nicely generalized to the
behavioral setting. As can be expected, controllability will be
of essential importance to us in the sequel.

We will call controllable if for each
there exists a and a such that

for
for

We will call stabilizable if for each there exists
such that for and as

In our previous work [9], we have discussed the merits of
this definition in much detail. It is a sweeping, but nevertheless
natural, generalization of the classical definition of controlla-
bility. There is an elegant condition for the controllability of
elements of in terms of the coefficients of the defining
differential equation (7).

Proposition 2: Let Then is con-
trollable iff the rank of the matrix

is the same for all equivalently, iff
for all It is stabilizable iff

for all with

Note that if (7) is minimal, then consequently it is control-
lable if and only if the complex matrix is of full row
rank for all

At the other extreme of controllability are the autonomous
systems. A system is said to be
autonomousif for

in other words, if the past of a trajectory in
uniquely defines its future. There are many equivalent

conditions for autonomy (see [10]).
Proposition 3: Let Then the

following conditions are equivalent.

1) is autonomous.
2) is finite-dimensional.
3) , i.e., there exists with

such that

Autonomous systems will be very important to us in the se-
quel. In particular, we will be interested in their characteristic
polynomial and stability properties.

Assume that is autonomous and that
with Obviously, for any nonsingular

diagonal matrix
Therefore, we can always choose the kernel representation

of a given system in such that is a monic
polynomial. We will denote this polynomial by and call
it the characteristic polynomialof It follows trivially from
Proposition 1 that depends only on (and not on
the matrix polynomial which we have used to define it).

A polynomial is called aHurwitz polynomialif
and if it has all its roots in the open left-half of the

complex plane. Similarly, we will call Hurwitz
if is.

Assume that is autonomous. We will
call stable if implies (Often
this would be calledasymptotic stability, but, in keeping with
usage which has become customary, we will simply refer to
this property asstability.) For the sake of completeness, let us
state the following well-known result.

Proposition 4: Let be autonomous. Then is
stable iff is Hurwitz. Equivalently, let have

Then is stable iff is Hurwitz.
We need a couple of minor refinements, related to control-

lability, before embarking on control questions. Let
Then, as we have just seen, is controllable if and only if

is constant for The set
is called the set ofuncontrollable

exponentsof They play the role of theuncontrollable
modesin state-space systems. More generally, assume that

is minimal. Then it can be factored as with
controllable, and having

Obviously, we can assume that is monic.
It can be shown that depends on only. We will call
it the characteristic polynomial of the uncontrollable part of

and denote it as This nomenclature can be justified
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as follows. Let Then there exists
and

such that i) is controllable; ii) is autonomous; and iii)
It can be shown that (called thecontrollable

part of is uniquely defined by However, whereas
the uncontrollable part, is not uniquely defined by its
characteristic polynomial, is. In terms of we have

It is clear from this that is stabilizable
iff the uncontrollable exponents of have negative
real parts, equivalently, iff , the characteristic polynomial
of the uncontrollable part, is Hurwitz.

We include one final small notational element before we
proceed. Above, we defined the characteristic polynomial for
autonomous systems. If, however, is not autonomous,
then we will define as the zero polynomial. We will
consider the zero polynomial to bemonic and not Hurwitz.
This notation is consistent with our earlier one. Note that
if we take a such that and
make sure that is monic, then Also,
we will consider every polynomial to be a factor of the zero
polynomial.

VI. POLE PLACEMENT AND STABILIZATION

IN A BEHAVIORAL FRAMEWORK

In this section we will study our first control problem, with
control viewed as interconnection as explained in Section IV.
The plant is a given dynamical system We will
assume that the controller (and hence the controlled system)
is also a linear differential system. Let

We will call a subsystemof (denoted
) if It follows from Proposition 1

that if then iff there exists
such that This in particular

implies that then is a factor of Obviously, for any
will be a subsystem of Our first result

is the analogue of the classical placement result.
Theorem 5: Let and assume that is not au-

tonomous. Then for any monic there exists
such that If is autonomous, then there
exists such that if and only if is a
factor of

Proof: Assume first that is not autonomous. Let
be such that By Proposition 1, we

may as well assume that is of full row rank. Now, there
exist real unimodular polynomial matrices and such the

is in Smith form, i.e., such that

with for (Of course we
can make sure that is also a factor of but we will
not need this property.) Now define by

We will now show that
achieves

Let and be the behavior of and , respectively.
Observe that In fact, it is trivial to see that

from
where the implication

follows, using the unimodularity of It follows
that Therefore it suffices to show that

which, fortunately, is true, since
Whence for some

as desired.
Now consider the case that is autonomous. First observe

that whatever be will be a factor of
Thus it suffices to show that every such factor is achievable.
Repeat the above proof with
where and It is easily seen
that Further, since again , it follows
that as desired.

The result just obtained guarantees pole placement (and
hence stabilizability) for any which is not autonomous,
i.e., as long as in system (1) describing there are fewer
equations than variables (We shall later see that
this means that at least one of the variables
is an input variable.)Note that not even controllability or
stabilizability of is required for this to hold!In particular,
stabilizability thus holds by simple interconnection, regardless
of the location of the uncontrollable exponents of It holds
when is not autonomous. This result goes against the grain.
It invites protest. This result is due to the fact that the class of
admissible controllers was chosen to be all of In particular,
by taking stability is trivially obtained. We
will return later to the question of how such a control law
could be implemented.

VII. REGULAR INTERCONNECTION

We will now introduce an important type of interconnec-
tion (which, as we shall see later, corresponds to singular
feedback). Let We will call a regular
interconnectionif There are a
number of alternative equivalent ways of expressing this. In
particular, if and with
and of full row rank, then is a regular interconnection
iff col is also a full row rank polynomial matrix.

It is trivial to see that any subsystem of can be realized
through interconnection. Indeed if we take , then
obviously However, this special interconnection
is regular only in the trivial case The question thus
arises when can be achieved by regular interconnection.
Actually, we shall now see that any subsystem ofcan still
be realized through regular interconnection provided thatis
controllable!

Theorem 6: Assume that is controllable. Let
be a subsystem of Then there exists a such

that and such that this interconnection is regular.
Proof: Let with minimal. By control-

lability, its Smith form will yield
Let with minimal. Then, since
there will exist with and of the
form
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Note that we can always take of full row
rank (in fact, with Now choose

We shall soon see that a regular interconnection can be
implemented by means of singular feedback. The important
conclusion which may be drawn from the above theorem will
be that singular feedback control problems for controllable
systems amount to looking for a suitable subsystem.

One important variation of the above theorem worth stating
is the following.

Theorem 7: Assume that , and let be
monic. Then there exists such that is i) a
regular interconnection; and ii) if and only if
is a factor of

This theorem can be easily proven along the lines of our
proof of Theorem 6. In particular, Theorem 7 implies that
pole placement by means of regular feedback holds iffis
controllable, and there exists a such that is i) a
regular interconnection; and ii) stable, iff is stabilizable.

VIII. I MPLEMENTATION OF REGULAR

INTERCONNECTIONS BYSINGULAR FEEDBACK

As we have argued before, we view interconnection as the
basic idea of control. However, there remains the problem of
controller implementation. In this section we will study this
question for regular interconnections.

We have already encountered autonomous systems in
dynamical systems with a finite-dimensional behavior. If a
system is not autonomous, then certain components of the
signal vector are free. We will now formalize this.

Let Let the signal be partitioned
into two subvectors Assume that has

components and that has components, with
We will call free if for all

there exists such that
We will call it maximally free if no further free compo-
nents are left in , equivalently, it turns out, iff the set

is finite-dimensional.
In addition to a component of being free in we are
also interested in components which are free in As we
shall see, this constitutes a slightly different notion. We will
call -free if for all there exists

such that The notion of
maximally -free now follows.

Let us see how these notions translate into properties of a
kernel representation. Write the minimal kernel representation

in terms of and yielding

(9)

Then is maximally -free iff is square (i.e.,
) and It is maximally -) free iff in

addition thetransfer function

(10)

is proper. Obviously, If
is as in (9), then we will call this aninput–output

Fig. 7. A signal flow interpretation of�1 ^ �2:

partition with input and output If in addition is
proper, we will speak of aproper input–output partition.

Now return to a given Consider all
minors of and assume that the

minor formed by the last columns has maximal degree
among all the minors of This can always
be achieved by permuting the columns of Note that this
column permutation can be interpreted as a reordering of the
components of Assuming now that this permutation has
been done, partition as with , the
first and the last elements of Now the
maximal degree property of implies that the corresponding
transfer function (10) will be proper. The conclusion (of
this reordering) is that every system in is actually a
proper input–output system. Note that the number of inputs
in an input–output partition always equals , and that the
number of outputs always equals but that we may have a
choice as to which components are actually taken to be inputs
and which are taken to be outputs.

Let We will now study the structure and the
resulting implementation of the interconnection from
an input–output point of view. Assume that and admit
the following kernel representations:

(11)

with and square and

(12)

Let us first interpret these conditions. The condition
means that in serves as input

and as output. The condition means that in
serves as input and as output. The condition

implies two things: first, that is a regular inter-
connection, and second, that in serves as input,
while serves as output. This interpretation can be
illustrated nicely in a signal flow graph as shown in Fig. 7.

An interconnection in which the variables
(perhaps after reordering of the components)

admit the kernel representation (11) with the conditions (12)
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satisfied will be called afeedback interconnection. Note that
in this interconnection we have not assumed that the transfer
functions

are proper. If they are all proper, then we will call the
interconnection a regular feedback interconnection.
If a feedback interconnection is not regular, then it will be
called singular.

We will now prove two results regarding interconnections.
The first states thatevery regular interconnection can be
viewed as an, in general,singular, feedback interconnection.
The second states that every subsystem of a controllable
system can be implemented as a (in general, singular) feedback
interconnection with a proper input–output structure for the
plant.

Theorem 8: Let , and assume that
is a regular interconnection. Then the signal vectoradmits
a componentwise partition as such that

is a feedback interconnection. Moreover, this partition
can be chosen such that in is a
proper input–output partition.

Proof: Write minimal kernel representation for and

Since is a regular interconnection

will also be of full row rank. Now write in proper
input–outputform to yield

with and proper. Observe that the theorem
follows if there exists an ordering of its columns such that
can be written as

with

Such an ordering exists, since , by Lagrange’s
formula, in which is written as the sum of the product
of its minors from its first rows multiplied
by the complementary minors from its last

rows.

The above theorem tells us that we can always choose
the variables in a regular interconnection so as to achieve a
feedback interconnection. The next theorem tells us that if we
want to achieve a given subbehavior of a controllable system,
then we can even start from a given input–output structure for
the plant.

Theorem 9: Let and assume that ,
i.e., is a subsystem of Assume, moreover, that
is controllable. Let be a componentwise
partition of having the following properties.

1) is an input–output partition for
2) is an input–output partition for

(Note that consequently both these input–output partitions
may be chosen to be proper.)

Then there exists a such that and
such that is a feedback interconnection relative to the
partition

Proof: Choose the partition such that
is a proper input–output partition in and

such that is a proper input–output partition
in Now write a minimal kernel representation for

(13)

whence Complete (13) so that, together with
(14), they form a minimal kernel representation for

(14)

That such a representation exists follows from the controlla-
bility of and Theorem 6. Hence

(15)

It is easy to see that (15) implies that there exists an
such that Now

consider the behavioral equation

(16)

and define as the system which has (16) as its kernel
representation. It is now easily verified that has the
properties required in Theorem 9.

Theorem 9 is, in our opinion, an important one in that it
reduces the issue of the design of a feedback control law
(provided that we allow it to be a singular feedback control
law) to that of finding a suitable subsystem. Let us explain
this in the case that the desired “closed-loop” systemis
autonomous in a bit more detail. We can start from any given
input–output partition of the plant This partition could, for
example, be imposed by the actuator/sensor structure of
or it could ensure that this input–output partition is (strictly)
proper. Theorem 9 states that the desired controlled system
can be achieved by means of a feedback controller. In general,
this feedback controller will, of course, need to be singular.
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However, the example in Section III serves to illustrate that
singular controllers need not be objectionable.

IX. I NVARIANT POLYNOMIAL ASSIGNMENT

The remainder of this paper is devoted to some refine-
ments of our main results. These state: in a nonautonomous
system every characteristic polynomial can be obtained by
interconnection; for a controllable system this can be done
by a regular interconnection and this is equivalent to a feed-
back interconnection. In the present section we consider the
question which invariant polynomials can be achieved by
interconnection, a sharpening of the characteristic polynomial
assignability.

Let us first define the invariant polynomials of an element
Introduce an equivalence relation on by calling

equivalent to if there
exists a unimodular such that
Note that is a bijective differential operator, which
gives this equivalence relation a very natural interpretation. In
view of this we will call it differential equivalence. We will
now construct a complete set of invariants for this equivalence
relation, that is, a mapping from into a space such
that and are differentially equivalent if and only if

For we will take the space of ordered-tuples of
monic real polynomials such that is a
factor of for Now associate with

the element of formed by taking the diagonal
elements of the Smith form of any such that

Let be the resulting map. This
map is a complete invariant under differential equivalence.
Let Then

is controllable iff
The polynomials will be called the invariant
polynomialsof Now introduce a partial ordering on by
taking

is a factor of for
Let with Then it can be shown that

This leads to the following result.
Theorem 10:Let Then for all

Conversely, if satisfies there
will exist a such that

We will not give the proof. Since equals the product
of the elements of this theorem is a generalization of
Theorem 5. Specializing to the controllable case yields the
following corollary.

Corollary 11: Let be controllable. Then
with zeros and ones. Then for

each set of real polynomials
there exists a such that is a regular

interconnection with
Corollary 11 and Theorem 9 thus imply that for a

controllable plant every set of invariant polynomials
will hence be achievable by

a (singular) feedback interconnection. Theorems 5 and 10
provide useful generalizations of the classical pole placement
results. Further results on linear systems and interconnections

from the behavioral point of view may be found in [2] and
[3]. This last reference is particularly relevant for the purposes
of the present paper. In it, stabilization from the behavioral
point of view is related to the more classical input–output
feedback definitions.

X. REGULAR FEEDBACK

In this section we will discuss the “classical” notion of
feedback in our setting. First, however, we introduce the
dimension of the state space of an element of

Let , and assume that these
matrices all have the same number of rows. Now consider
the system of differential equations

(17)

Let denote all , which satisfy
(17) in the distributional sense. Now define the external
behavior of (17) as such that
It can be shown that systems described by equations such as
(17) (first order in zeroth order in ) are state systems
[10]. Further, for each element there
exist matrices such that Among all such
representations there are some for which the dimension of the
state space, , is as small as possible. This minimal number
will be denoted as It is also equal to the minimal
state-space dimension in an input/state/output representation
of

It is possible to relate to a minimal kernel representa-
tion of List all minors of
Since has full row rank, at least one of these will be nonzero.
The maximum of the degrees of all these minors is called the
McMillan degreeof It can be shown that it equals

Let Recall that we call the interconnection
regular if We

will call it a regular feedback interconnectionif in addition
We now state a theorem which

explains this nomenclature.
Theorem 12:Let and be a regular

feedback interconnection. Then the signal vectoradmits a
componentwise partition as such that:

1) in is input, is output, and the transfer
function is proper;

2) in is input, is output, and the transfer
function is proper;

3) in is input, is output, and the transfer
function is proper.

Proof: Follow the proof of Theorem 8, and observe that
in this case it is possible to obtain (again by Lagrange’s
formula):

Regular feedback interconnections can be shown to be
equivalent to a number of other statements in addition to the
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one of Theorem 12. In [3] regular feedback is shown to be
equivalent to what is usually calledwell-posedness. Another
equivalent condition is: let Then

is a regular feedback connection iff for all
and there exists such that
and (recall that for time functions denotes
concatenation at ). In words, whatever past trajectory
has occurred in and it is possible to continue these
trajectories in accordance simultaneously with the laws of
and

This consideration allows us to interpret clearly the dis-
tinction between regular interconnection and regular feedback
interconnection. The first requires preparing (the state of) both
systems before interconnection; while in the second the control
can start acting at any time. The second type of control action
is the one which is usually pursued in control theory. However,
our example in Section II indicates that regular interconnec-
tions which are not regular feedback interconnections have
many applications in engineering practice. Moreover, Theorem
6 indicates that from a theoretical point of view they reduce
the question of control design for a controllable system to that
of finding a subsystem. In follow-up papers, we will exploit
this in the context of and control.

The question of what can be achieved by regular feedback
interconnection and which subsystems of a given
system can be implemented by means of a regular
feedback interconnection remains a largely unexplored one.
The problem promises to be unsolvable as it stands, since it
has the pole placement problem by memoryless feedback as
a special case. In the next section we will mention, without
proof, some results which can be obtained on this problem for
controllable systems.

XI. REMARKS

1) The observability and controllability indexes of a system
can be defined on the level of behaviors. However, it is
much more insightful to do this for discrete-time than
for continuous-time systems. Let
where denotes the discrete time analogue of, i.e.,
the class of systems described by difference equations

analogous to (8) but with the shift oper-
ator instead of differentiation. Define theobservability
index as the smallest such that
and

imply ( denotes concatenation).
Define thecontrollability indexas the smallest such
that for all there exists such
that for and
for These indexes (in continuous—as well as
in discrete-time systems) can be related to kernel and
image representations, as follows. Consider the degrees
of all the polynomial matrices which induce a kernel
representation of The observability index is the
lowest of these degrees. Consider next the degrees of all
the polynomial matrices such that
induces an image representation [10] of The
controllability index is the lowest of these degrees.

Let denote the controllability index of Then
given any of degree , there
exists a such that is a regular feedback
interconnection with , an analogous result
with replaced by the observability index.

2) Up to now we have considered the case in which all the
variables are available for interconnection. However,
in applications there will be many situations where this
will not be feasible, leading to the structure depicted in
Fig. 8 in which the controller can impose only laws on
the plant variables to the right.

This situation can be formalized in the context of
systems with latent variables [10], leading to

(18)

Since we assume (see Fig. 8) that only the variables
are available for interconnection, it is natural to view
them asmanifestvariables, while viewing the variables

which are not available for interconnection aslatent
variables. Control of (18) is very similar to the case
treated earlier, provided we assume that (18) is an ob-
servable [10] latent variable system. Since observability
is equivalent to the existence of a representation

(19)

which is equivalent to (18), it follows that any control
law for (18), based on both and , e.g.,

(20)

can actually be implemented (as far as the manifest
behavior of the controlled system is concerned) by
following control law:

(21)

The latter involves only the variables. Hence, if we
assume observability and if we do not worry about im-
plementability by regular feedback, the theory changes
little, in case only a limited number of variables are
available for control interconnection. Note, however,
that the usual additive disturbances in the measurements
already obstruct observability.

3) Here are a few words about how state feedback fits in
our framework. In [10] the notion of state (as a special
type of latent variable) has been described in full detail.
Let be described by Then
there exists a such that
is a minimal state for (see [4] for algorithms for
constructing such an ). Hence, a control law acting
on the state, say , will lead to a control
law of a special form

We describe one particularly important situation in a
bit more detail. Let

(22)
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be a controllable input–output system with proper trans-
fer function Since this system is con-
trollable, it admits an observable image representation
[10]

(23)

Now assume that we try to implement by means of an
interconnection a given subsystem of In this case
a subsystem always comes down to adding to (23) a
constraint on

(24)

Now, it can be shown that (24) can be implemented [in
the sense that (25) together with (23) will yield (24)] by
a memoryless input-state law

(25)

if (or with unimodular) is such that
is proper. In fact, a suitable will be given by

Hence, if this limit is square
and nonsingular (24) can be implemented in the familiar

(26)

fashion.
4) Rather complete results concerning subsystem imple-

mentability by (regular) interconnection can be obtained
when is a single-input/single-output

controllable system and when the subsystem
is autonomous

a) There always exists a such that
with a regular interconnection.

b) If then this interconnection can
be taken to be a regular feedback interconnection. If

then this interconnection cannot be
taken to be a regular feedback interconnection.

c) If , then can be taken to be a
memoryless regular state feedback law

d) If , then can be taken to be a
dynamic state feedback law

with and proper.

5) When an interconnection satisfies
(a regular interconnection), then we have

seen that it can always be implemented by feedback
structure with in general a nonproper transfer functions.
Such structures are common in control engineering (e.g.,
the example in Section III, or control). Hence
singular feedback interconnections are useful in practice,
need not cause noise amplification, and cannot be dis-
missed for that reason. Much more attention should be
paid to these situations in present day control theory. It
is when in addition to
there holds that we are

Fig. 8. Interconnection along control variables.

in the realm of the usual intelligent control structure
implementation.

The issue of implementing a general interconnection
which does not satisfy
as a control law remains unsettled: is it or is it not
reasonable to allow such interconnections as control
law? For example, it does not seema priori unreasonable
to allow as a control law for a mechanical
system. This could be achieved by pinning down the
mass at a fixed position. Also, it does not seema priori
unreasonable to allow as the control law
for an electrical circuit. In fact, there exist (active) one-
ports whose external behavior is precisely
(such one-ports are callednullators (see [1], p. 75) for
a realization of it). Terminating a passive (impedance
or admittance) one-port with such a circuit will indeed
result in an interconnection which is not regular.

6) One notoriously difficult problem in linear control theory
is the question of generic eigenvalue assignment by
memoryless output feedback. Consider a multivariable
state-space system with

input, state, and output variables. Then it is
easily seen that is a necessary condition
for generic closed-loop pole assignability by memoryless
linear output feedback. In [7] it is shown by analyzing
the case that is not
sufficient. Recently, Wang [6] has proven that
is sufficient—one mere extra degree of freedom suffices!
In [14] we have given a remarkable simple proof of
this result. This proof is based on the idea of the
present paper; by considering interconnection instead of
feedback, we were able to get a much better handle on
this theoretical problem.

XII. STABILIZATION OF NONLINEAR SYSTEMS

In this section we will apply the ideas of this paper to the
stabilization of a nonlinear system around an equilibrium point.

Consider a nonlinear differential dynamical system de-
scribed by

(27)

with Equation (27) in-
duces the nonlinear time-invariant dynamical system

with

for all

(28)
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Now assume that is an equilibrium point of (27), i.e.,

(29)

Linearizing (27) around this equilibrium yields

(30)

where denote the partial derivatives of evaluated at
Specifically

(31)

with viewed as the map from to
Intuitively, (29) describes the behavior

of In [11] and [12] we have derived
conditions under which (29) is indeed a linearization of
(27) around the equilibrium We henceforth assume that
this is the case.

Moreover, assume that (29) is minimal and stabilizable.
Then there exists a such that
the controller

(32)

stabilizes (30), i.e., such that is Hurwitz.

Now it can be shown that the control law

(33)

will be such that is a stable equilibrium of the nonlinear
system described by (27) and (32). Note that the controller (32)
has been derived without having to put (27) in input–output
or in input/state/output form.

XIII. E XAMPLE

We will now work out a very simple example in order
to illustrate how the behavioral approach would proceed in
modeling and stabilizing a very simple mechanical system
around an equilibrium. Consider a rod of lengthwith a mass
connected at one end. The problem is to stabilize this system
as a vertical inverted pendulum in a particular position, as one
would do when balancing a stick on one’s hand. The relevant
geometry is shown in Fig. 9.

Equations of motion for this system are

(33a)

(33b)

(33c)

These three equations describe the situation completely: (33a)
are the equations of motion of the mass, withthe force
exerted by the rod on the mass; (33b) tells us that the force

must act in the rod; (33c) guarantees that the rod is rigid.
The positions of the mass and of the base of the rod
remain a distance apart.

Fig. 9. An inverted pendulum.

Our purpose with (33) is to describe the relation between
and For the case at hand these are ourmanifestvariables.
Note that it was essential to introduce the forceand the
proportionality factor These are ourlatent variables. The
constants and are to be viewed as systemparameters,
while the gravitational constant is a universal constant.

Note that is an equilibrium point,
associated with Linearizing
around this equilibrium yields (in the obvious notation)

(34a)

(34b)

(34c)

Next, eliminate and from (34). This leads to

(35a)

(35b)

(35c)

as the relation between the and components of
and

We should now stabilize this system around the equilibrium

1) Imposing and corresponds to
nailing down the base of the rod and the mass in their
desired positions. It is an example of an interconnection
which is not regular. It is a harsh measure to arrive at
stabilization.

2) Imposing the control law

(36a)

(36b)

(36c)

with chosen such that
is Hurwitz, leads to a regular interconnection corre-
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sponding to singular feedback (with as input and
as output or memoryless state feedback).

3) Imposing the control law

(37a)

(37b)

(37c)

with chosen such that
is Hurwitz, leads to a stabilizing

regular feedback interconnection.

These control laws will lead to (locally) stabilizing control
laws for the nonlinear system by replacing by by

by by by and by
Observe that these stabilizing control laws were arrived at
without having to write the (non)linear system in state form,
without having to examine what the inputs and outputs are.
Also, they could be implemented in various ways, using
physical (springs, etc.) devices or through sensor/actuator
feedback connections.

XIV. CONCLUSIONS

In this paper, we have examined control from a behavioral
point of view. Contrary to the classical picture which involves
signal flow graphs processing inputs and outputs, we view
control purely as imposing new additional laws on the system
variables. We provided a physical example in order to convince
the reader of the rationale of this view. Within this “intercon-
nection” setting we studied the problems of stabilization, pole
placement, and invariant factor assignment. Also various types
of interconnections (regular, regular feedback) were introduced
and related to classical signal flow graph feedback structures.
The results were finally applied to the stabilization of nonlinear
systems around an equilibrium. The moral of this paper can
be captured in the maxim: “It is vain to do with more what
can be done with less.” This faded age-old wisdom, known
as Occam’s Razor, warns us not to introduce unnecessary
structure, as inputs and outputs.
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