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On Interconnections, Control, and Feedback

Jan C. Willems,Fellow, IEEE

Abstract—The purpose of this paper is to study interconnec-  Thus it is to be expected that in the behavioral approach a
tions and control of dynamical systems in a behavioral context. variety of system representations will appear. The classical
We start with an extensive physical example which serves to ones are the input-output representation, which suggest a
illustrate that the familiar input—output feedback loop structure : ' .
is not as universal as we have been taught to believe. This leads tocaljlselt?m:"Ct ;tructure, and th? input/state/output representation
a formulation of control problems in terms of interconnections. Which, in addition to suggesting a cause/effect structure, also
Subsequently, we study interconnections of linear time-invariant displays, through the state, the internal memory of the system.
systems from this vantage point. Let us mention two of the results |n control applications it has proven to be very convenient to
obtained. The first one states that any polynomial can be achieved adopt this input/state/output framework, to view the control
as the characteristic polynomial of the interconnection with a . ' ) .
given plant, provided the plant is not autonomous. The second and .the other exogenous signals (for example, tracking signals
result states that any subsystem of a controllable system can beOr disturbances) as inputs, and the measurements and the to-
implemented by means of a singular feedback control law. These be-controlled variables as outputs. In addition, it is often also

results yleld pole placement and Stabilizatipn of COﬂFI’O"ab'e easy to formulate the desired qua"tative properties of the
plants as a special case. These ideas are finally applied to theq|,5aq.100p response (as stability) in terms of input—output
stabilization of a nonlinear system around an operating point.

. - _ or state properties. Finally, the action of the controller and
Index Terms—Behaviors, controllability, feedback, intercon- jts cybernetic structure can sometimes be explained very
nection, invariant polynomials, linear systems, pole placement, otqctively in a state-space context. Think of the separation
regular interconnection, singular feedback, stabilization. . . .
theorem in LQG-control and of the elegant double-Riccati
equation solution of thed,, problem. Nevertheless, models
I. INTRODUCTION obtained from first principles will seldom be in input—output

NE OF THE MAIN features of the behavioral approact?” in input/state/output form,_and it_ is worth asking whether
Oas a foundational framework for the theory of dynamicd€y form a reasonable starting point for the development of
systems is that it does not take the input—output structure %&1€0ry which aims at treating physical models.
the starting point for describing systems in interaction with 1h€ behavioral point of view has received broad accep-
their environment. Instead, a mathematical model is simpi§nce as an approach for modeling dynamical systems. It is
viewed as any relation among variables. In the dynamic cdd@w generally agreed upon that when modeling a dynamic
this relation constrains the time evolution which a set Gomponent, it makes no sense to prejudice oneself (as one
variables can take. The collection of time trajectories which ti¢ould be forced to do in a transfer function setting) as
model declares possible is called thehaviorof the dynamical t© Which variables should be viewed as inputs and which
system. This basic definition proves to be a very conveniefiiiables should be viewed as outputs. There are a number
starting point for discussing dynamical systems in a varieﬁf reasons for this. A pragmatic one is that ultimately this
of applications. In the present paper we will scrutinize thigomponent will become part of an interconnected system.
aspect in the context of control. So, it will depend on the interconnection structure, which of

This behavior, hence a set of time functions, can be specifié§ variables interconnecting this component with the rest of
in many different ways. Often, as in Newton’s second laie system will act as inputs and which will act as outputs.
or in Maxwell's equations, the behavior will be given as th& more philosophical, simpler, but perhaps more convincing
solution set of a system of differential equations. Sometimé§ason is that when a physical system is not endowed with
as in Kepler's laws or in the theory of formal languages, tHd natural signal flow graph, it is asking for difficulties to
trajectories which the behavior declares feasible are descrifé@gest that it has one (even if mathematically there would
more directly, without the aid of behavioral equations. IR€ nothing wrong with doing this). As an illustrative example,
many other examples the behavior will be specified througensider the port behavior of aRLC circuit. Assume that
the intervention of auxiliary variables, which we will callthe current-to-voltage transfer function is biproper (proper
latentvariables, in order to distinguish them from timanifest With a proper inverse). Then it is possible, by any reasonable
variables, which are the variables whose time paths the mofthematical definition, to view the network both as being

aims at describing. The usual state-space model forms @frent-controlled or as being voltage-controlled. However,
example of such a model structure. from a system theoretic point of view it is not logical to do

either. An input—output, transfer function formulation has a
Manuscript received July 9, 1994; revised March 15, 1996 and August 2@&ndency to suggest a signal flow structure which is not present
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that there are no situations where the input—output :structurgxoge nous inputs
is natural—quite the contrary Whenever logic devices are
involved, the input—output structure is oftennaust Indeed, PLANT
when in a typical physical device (say an electrical circuit) ong==*ctvators g Sensors ==
variable (say the voltage at a port) is imposed, the other (s@y

to-be-controlled outputs

the current) will follow, but the situation can be turned around] controt measured
When the second variable is imposed, the first will followjj inputs outputs
However, the physics (or, better, the equivalent circuits acting: C‘:fﬁf:g&;l

as models) of logic devices will be such that this cannot be

done. Imposing the output voltage of an operational amplifiglr L Intellient control
will not lead to an input voltage that would correspond to that® ™ 9 '
output when that input voltage was imposed.

The behavioral approach has, until now, met with much lessitputs and which produces the actuator inputs through a
acceptance in the context of control. We can offer a numbd&everly devised algorithm involving a combination of feed-
of explanations for this fact. First, as already mentionebtliack, identification, and adaptation. The creation of such
there is something very natural in viewing controls as inputdgorithms is considered to be the core of control theory.
and measured variables as outputs. When, subsequentlyfhi picture is often completed by aA/D and aD/A
controller is regarded as a feedback processor, one endscapverter interfacing the sensor with the microprocessor and
with the feeling that the input—output structure is in fact athe microprocessor with the actuators. Also, loops expressing
essential feature of control. Second, since it is possible model uncertainty often are incorporated in the above. Of
prove that every linear time-invariant system always admitscaurse, many variations, refinements, and special cases of
componentwise input—output partition, one gets the impressithis structure are of interest, but the basic idea is that of a
that the input—output framework can be adopted withogtipervisor reacting in an intelligent way to observed events
second thoughts, that nothing is lost by taking it as the startingd measured signals.
point. The belief that the paradigm of Fig. 1 constitutes the essence

The purpose of this paper is to present a framework fof control has been prevalent ever since the beginning of
control which does not taketeering but which takednter- the subject, from the Watt regulator (or at least its modern
connectionas the basic aim of controller design. Téteering day interpretation), Black’s feedback amplifier, and Wiener’s
picture of afeedbacksensor/actuator structure then emerges agbernetics, to the ideas underlying modern adaptive and
an important special case. In the present paper we will tre@obust control. It is indeed a deep and very appealing paradigm
general control problems. In subsequent papers we will stugfich will undoubtedly gain relevance and impact as logic
the LQ and H, problem from this point of view. We will devices become ever more prevalent, reliable, and inexpensive.
now illustrate by means of a detailed example a situation irhis paradigm has a number of features which are important
which the classical signal flow graph approach in control for considerations which will follow. Some of these are as
inadequate. follows.

e There is an asymmetry between the plant and the con-
troller; it remains apparent what part of the system is
IIl. THE INTELLIGENT CONTROL PARADIGM the plant and what part is the controller. This asymmetry

Present-day control theory centers around the signal flow disappears to some extent in the closed loop.
graph shown in Fig. 1. The plant has four terminals (each* The intelligent control paradigm tells us to be wary
supporting variables which are typically vector-valued). There of errors and noise in the measurements. Thus it is
are two input terminals, one for the control input and one considered ill-advised to differentiate measurements, pre-
for the other exogenous variables (as disturbances, set-points, sumably because this will lead to noise amplification.
reference signals, etc.), and there are two output terminals, one The plant and the controller are dynamical systems which
for the measurements and one for the to-be-controlled vari- can be interconnected at any moment in time. If for one
ables. By using feed-through terms in the plant equations this reason or another the feedback controller temporarily fails
configuration accommodates, by incorporating these variables to receive a sensor signal, then the control input can be set
in the measurements, the possible availability to the controller to a default value, and later on the controller can resume
of set-point settings, reference signals, or disturbance mea- its action.
surements for feedforward control, and, by incorporating th&fe will now present an example of a common controller in
control input in the to-be-controlled outputs, the penalizinghich none of these features are present.
excessive control action in optimal control. The control inputs
are generated by means of actuators, and the measurements
are made available through sensors. Usually, the dynamics of
the actuators and of the sensors are considered to be part dh this section we will analyze a very mundane and wide-
the plant. spread automatic control mechanism, namely the traditional

In intelligent control, the controller is thought of as alevice which ensures the automatic closing of doors. There is
microprocessor-type device which is driven by the sensnothing peculiar about this example. Devices based on similar

Il. AN EXAMPLE OF A COMMON CONTROLLER
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NSO, (1) and (2) leads to 2
d=6 de
hinges (M/—FM//)W—FD% + K6 = F,. 3
In order to ensure proper functioning of the door-closing
spring device, the designer can to some extent cha&é D, and

K (all of which must, for physical reasons, be positive). The
desired response requirements are: small overshoot (to avoid
banging of the door), fast settling time, and a not-too-low
door steady-state gain frorh; to 4 (in order to avoid having to use

an excessive force when opening the door). A good design will
be achieved by choosing a light mechanighd” small) with

a reasonably strong sprir{ds large), but not too strong so as

to avoid having to exert excessive force in order to open the

Fig. 2. A door-closing mechanism.

Y r DI | : door, and the value @b is chosen so as to achieve slightly less
; 1 M 4 than critical damping. In a sense, this is a perfect elementary
f——rmwm——— 5 example of a controller design. However, it does not fit many
f K MMM, £ : of the basic principles which are taught in control courses.
f o | T It is completely natural to view in this example the door
7 ' - as the plant and the door-closing mechanism as the controller.
f : ‘ Then, if we insist on interpreting the situation in terms of

: 2 5 control system configurations as Fig. 1, we will obtain the

: : following equations:

Fig. 3. A mass/spring/damper representation. 420
plant M’W:u—i-v; y=6; =46 4)

principles are used, for instance, for the suspension of cars, §fith +, the control input § = . in (1)], v the exogenous
the points which we will make through this example could alsapyt [y = £, in (1)], ¥ the measured output, and the
be made just as well through many temperature or pressgée-controlled output. The controller becomes
control devices. A typical automatic door-closing mechanism )

vy _ dy

is schematically shown in Fig. 2. controller w=—-M"2Y _ DY _ Ky, 5)
Although there exists a large variety of such automatic- dt? dt

door-closing mechanisms, they invariably consist of a spriRghjs yields the closed-loop system, described by

in order to force the closing of the door and a damper in

order to make sure that it closes gently. In addition, thes%losed—loop system (M’ +Mu)& +D% LKy —w.

mechanisms often have considerable weight so that their mass dt? dt

cannot be neglected as compared to the mass of the door itself. (6)

These mechanisms can be modeled as a mass/spring/damp&rbserve that in the control law (5), the measuremgnt

combination. In good approximation, the situation can b :

. . g s%uould be considered as the input and the contrshould be
analyzed effectively as the mechanical system shown in F'g'co'nsidered as the output. Thus (5) suggests that we are usin
We model the door as a free ma&§ (neglecting friction pu 99 9

what would be called @D? controller (a proportional twice

n the hinges) on which two forces are acting. T.he f'rSt.forC%iﬁerentiating controller), a singular controller which would
F,, is the force exerted by the door-closing device, while ttbe

second forcef., is an exogenous force (exerted for examplee thought_of as causing high noise ampllflcatlon. Of course,
by a person pushing the door in order to open it). The e Lating such noise amplification occurs in reality. Further, the plant
012/ mgtion fo? the d%or becomes P ' qUalisecond order, the controller is second order, and the closed-
loop system is also second order (thus unequal to the sum of

426 the order of the plant and the controller). Hence, in order to

M g F.+ ke (1)  connect the controller to the plant, we will have to “match” the

initial states of the controller and the plant. Thus in order to
where ¢ denotes the opening angle of the door amfi interconnect the plant and the controller, preparation of these

its mass. The door-closing mechanism, modeled as Systems and their initial states is required. In attaching the

mass/spring/damper combination, y|e|d5 door-closing mechanism to the door, we will indeed typlcally
make sure that at the moment of attachment the initial values
, A0 dé of 8 anddf/d¢ in (1) and (2) are zero for both the door and
MP—g + Do + Kb = —Fe. (@) the door-closing mechanism.

We now come to our most important point concerning this
Here,M" denotes the mass of the door-closing mechani®m, example. Let us analyze the signal flow graph. In the plant [(1)
its damping coefficient, an& its spring constant. Combining and (4)] it is natural to view the forceB, and F. as inputs
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and#@ as output. This input—output choice is logical both from
the physical and from the cybernetic, control theoretic point
of view. In the controller [(2) and (5)], on the other hand,
the physical and the cybernetic points of view clash. From
the cybernetic, control theoretic point of view, it is logical
to regard the anglé as input and the control forcé,. as Fig. 4.
output. From the physical point of view, however, it is logical
to regard (just as in the plant) the fordé. as input and systems withT = IR. The signal space denotes the set in
6 as output. It is evident that as an interconnection of twwhich the time trajectories, which the system generates, take
mechanical systems, the door and the door-closing mechanigmtheir values. In lumped systent¥ will be (a subset of)
play completely symmetric roles. However, the cybernetit}?, in distributed systems it is an infinite-dimensional function
control theoretic point of view obliges us to treat the situatioppace, and in discrete-event systems (DES), it is a finite set.
as asymmetric, making the force the cause in one mechanithe prescription of the behavidt can occur in many different
subsystem and the effect in another. ways, from the solution set of a system of differential equations
This simple but realistic example permits us to draw thia continuous-time systems, to a prescription via grammars and
following conclusions. Notwithstanding all its merits, thesubstitution rules in DES. In the present paper we will discuss
intelligent control paradigm of Fig. 1 gives an unnecessaritpainly systems with/ = R?.
restrictive view of control. In many important practical control Let ¥; = (T,W,B;) and £, = (T,W,5;) be two
problems, the signal flow graph interpretation of Fig. 1 idynamical systems with the same time axis and the same signal
untenable. The solution which we will propose to this dilemmspace. Thenterconnection ok; andX,, denoted ag; A X,
is the following. We will keep the distinction between plants defined asX; A Xy = (T, W, B; N Bs); the behavior of
and controller with the understanding that this distinction i1 AX2 consists simply of those trajectories T — W which
justified only from anevolutionarypoint of view, in the sense are compatible with the laws of both; (i.e., w belongs to
that it becomes evident onbfter we comprehend the genesis3;) and X, (i.e., w belongs also td3,).
of the controlled system, after we understand the way inThis definition stems from the mental picture shown in
which the interconnected system has come into existence dsig 4. In this picture, we view the signal space as a product
purposeful system. However, we will abandon the intelligelspace consisting of a Cartesian product of variables. We
control signal flow graph as a paradigm for control. We wilimagine that the components of this product space live on

Interconnection.

abandon the distinction between control inputs and measutbd terminals of¥; and X,. In the interconnected system,
outputs. Instead, we will put forward thieterconnection of a variables must bacceptableto bothX; andX,.
controller to a plantas the central paradigm in control theory. Two remarks are in order.

Other convincing examples of controllers in which the 1) Of course, in most applications, systems are intercon-

intelligent control paradigm is not suitable are car dampers
and operational amplifiers. Also, we put question marks by
the traditional feedback interpretation of this device. This is
explained in [13]. It is perhaps somewhat ironic that we do
not consider thdeedbackamplifier (since the logic device is
in the forward loop) as a good example fekedback as it is
usually viewed (we are not the first to point out this anomaly;
see, for instance, [5, pp. 145-163]).

However, we by no means claim that the intelligent control
paradigm is without merits. To the contrary, it is an extremely
useful and important way of thinking about many control
problems. Claiming that the input—output frameworknist
alwaysthe suitable framework to approach a problem does
not mean that one claims that it ieveris.

IV. CONTROL AS THE INTERCONNECTION

In this section we will describe mathematically how we can 2)

view control as the interconnection of a plant and a controller.
We will do this in the context of the behavioral approach
to dynamical systems (see [8]-[10]). Recall thadymamical
system is defined as a triple} = (T, W, B), with T C IR

the time axis W a set called theignal spaceandB C W'
thebehavior ThusT denotes the set of time instances relevant
to the dynamical system under consideration. In the present
paper, we will almost exclusively deal with continuous-time

nected only through certain terminals and not along
others. For example, the controller of Fig. 1 is con-
nected to the plant only through the control input and
measured output terminals. This situation can easily
be incorporated in the definition of interconnection as
follows. AssumeX; = (T,W; x Wy, 5;) and ¥, =
(T,W2 x W3, By) with their interconnection leading
to X1 A Xy = (T,Wl x Ws x Wg,B) with B =
{(wl,wg,wg) T — W; x Wy x W3|(w1,w2) e By
and (w2, w3) € By}. This is illustrated in Fig. 5.

By redeflnngl to3; = (T Wi x Wy x Wg,Bl)
with Bl = leW andzg to 22 = (—ﬂ— W, x
Wo x Wg,BQ) with 15’2 = W/ x By, it is easily seen
that this interconnection now becomes a special case
of our general definition. Note that the definition of the
behavior of$; leaves the variables; free i in 21, while
that ofEQ leaves the variableg; free in 22
In many interconnections, following the mental picture
of Fig. 5, it is natural to suppress the interconnecting
variables(w-) after interconnection, yielding; A%, =
(T,Wl X Wg,B) with B = {(wl,wg) T — Wi x
Ws3|3ws: T — Ws such that(w;,w.) € B; and
(we,ws) € Bz}. This is illustrated in Fig. 6. This
situation can be formalized usinganifestand latent
variables, one of the other central features of the behav-
ioral approach.
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Let ¢ be an indeterminate, and denoteliy *?[¢] the set of
real polynomial matrices with rows and any (of course, finite)
number of columns. Lefz € R**?[¢], written out explicitly,
R(¢) = Ry + Ri& + -+ + Ryé&Y, and consider the system

Fig. 5. Interconnection along certain terminals. of differential equations
dw dNw
R Ri—+ --++Ry— =0 7
ow+Ri—e 4+ Ry 3 (7)
w, w, Or, in shorthand notation
d
R| — =0. 7
(%) )

Fig. 6. Elimination of interconnecting variables. .
9 9 Here w denotes the row-vector with components , wo,

) -+, w,. Each of thew's is a mapping fromR to IR,
The problem of control can now be described as followghence w: IR — IRY. Let rowdim(R) denote the row
Assume that thelant, a dynamical syster, = (T, W,5,),  dimension, i.e., the number of rows, &. As is apparent,
is given. LetC be a family of dynamical systems, all with(7) consists of a system ofowdim(R) scalar linear differ-
T as common time axis antl’ as common signal space.ential equations iy variablesw,, ws,- - -, w,, With constant
We will call C the set ofadmissible controllersAn element cqefficients (the entries of the matricegy, Ry, - - - Ry).
Xe € C, X = (T, W, B,) is called anadmissible controller gystem (7) defines a continuous-time dynamical system with
The interconnected system)AY. will be called thecontrolled — signal spacdr? whose behavior consists of the functions col
systemThe controllery.. should be chosen so as to make surg,, ., ... w,): R — R? which satisfy (7). However, we
that 2., A X has certain desirable properties. The problemyed to spell out what it means for such a trajectory to be a
of control theory arefirst, to describe the set of admissiblesoytion to the set of differential equations (7).
controllers;second to describe what desirable properties the e call 1: R — IR? a strong solutionof (7”) if w is
controlled system should have; atiiyd, to find an admissible n_times differentiable and if
controllerX, such thatt, A X, has these desired properties. N
It may b i i dw d"w
y be tempting to callctive controlwhat we have Row(t) + Ri— () + -+ Ry ——-(t) =0 (8)
referred to as intelligent control, anEhssive controbur idea dt ™
of interconnection, implanting a device to act as a controlldor all ¢ € IR. However, for many applications in control, this
However, we like to use the term passivity as a more specifiolution concept is too restrictive. For example, it would lead
property of devices which absorb energy. In fact, our approaghdifficulties when discussing the step-response. We will call
to control leads to the question of what can be achieved usiagIR — IR? aweak solutiorof (7) if w € £°°(IR,IR?) and if
passive controllers, with passivity in the sense of dissipatiVer all functionsf € C>=(IR, IR) of compact support there hold
systems. In other words, what can be achieved with controllers

which function without an energy source? What systems can <RT <_i)f7w> -0
be stabilized using such controllers? We believe that such dt
problems are of considerable practical importance. with
In a sequence of papers, we will describe a number of con- oo
crete design philosophies following this point of view. They (f1, f2) i= / FL @) f2(t) dt.
are familiar ones. The present one is inspired by stabilization —o0

and p_ole placement; the second will treEaQ. contrgl, and Note thatw is a weak solution of (7) iffR(d/dt)w is zero as

the third Ho control._ However, th_e unde_rlylng phllos_ophy,a vector of distributions. We will define the behavior of (7) in

th_e problem formL_jlat|ons,_ and their solutions are sufﬁmentbérms of weak solutions. Thus (7) defines the dynamical system

dlﬁerent from their classical counterparts that they merit i‘z‘gma(R) = (R, RY, ker(R)) with ker(R), the set of weak

detailed coverage. solutions of (7). It can be shown thktr(R) N C°(IR, RY)

is dense (in the topology of!¢(IR,R?)) in ker(R). In this

sense every weak solution of (7) can actually be approximated
For the sake of concreteness, we will how restrict odny a classical (strong) one. Intuitively, for the purposes of this

attention to a familiar class of dynamical systems, to systerpaper, one can therefore think kdr(R) as simply consisting

described by constant coefficient linear differential equationsf, the collection of all solutions of (7).

the analogues in a behavioral setting of the finite-dimensionalLet us denote the family of dynamical systems obtained

linear systems, or, in an input—output setting, the systenids way by £? (£ for linear and ¢ for the number of

described by rational transfer functions. In our earlier wonkariables). Thus each element 6f is parameterizedoy a

we have discussed mainly the discrete-time case, whereapafynomial matrix R € R**?[¢]. The notation used in the

the present paper we will be interested in the continuous-timeevious paragraph shows that the n@agma: R**?[¢] —

case. We will therefore describe the general background 4 associates with thegarametet R, the dynamical system

some detail. Yigma(R) = (IR,IRY, ker(R)). It is easy to see that each

V. LINEAR TIME-INVARIANT DIFFERENTIAL SYSTEMS
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element of£? is a linear (its behavior being a linear subspads the same for all\ € C, equivalently, iff rank(R()\)) =

of (R?)®), time-invariant (its behavior being shift-invariant)rank(R) = p(Zigma(R)) for all A € C. It is stabilizable iff

dynamical system. We will refer to the elements £f as rank(R()\)) = rank(R) = p(Zigma(R)) for all A € C with

linear differential systemand to (7) as &ernel representation Re()\) < 0.

of the dynamical systemXigma(R). Note that if (7) is minimal, then consequently it is control-
The polynomial matrix R obviously definesX(R), but lable if and only if the complex matrixz()) is of full row

the converse is not true. For example, it is easily seen thahk for all A € C.

if U is arowdim(R) x rowdim(R) unimodular polynomial At the other extreme of controllability are the autonomous

matrix, thenXigma(R) = Xigma(UR). We shall now see systems. A systent = (R,IRY,B) € L7 is said to be

that under a simple additional condition, the converse alg@tonomousf (w1, w2 € BY A (wr(t) = we(t) for t <0)) =

holds. We will call (7) (or briefly B) minimal if R € (w, = w,), in other words, if the past of a trajectory in

R**[¢] andXigma(R') = Xigma(R) imply rowdim(R’) > B uniquely defines its future. There are many equivalent

rowdzm(R) Recall thatR € IR.Xq[g] is of full row rank if conditions for autonomy (See []_O])

rank(R) = rowdim(R) (in rank(R),R should be viewed  proposition 3: Let = = (RR,IR%,B) € £%. Then the

as a matrix of polynomials, or, equivalently, as a matrix gbjlowing conditions are equivalent.
rational functions). The following proposition shows in how 1) ¥ is autonomous

far elements ofL¢ define the associated system of differential 2) B is finite-dimensional.

equations. This proposition is easily proven using the ideas3 Y — 4 ie. th ist axq ith d
used in the discrete-time case in [10]. ) g(sgcg ?H;,{ez"igmearagxi g; € A with det(R) #

Proposition 1: _ _ _
Autonomous systems will be very important to us in the se-

1) R e R**[¢] is minimal iff it is of full row rank. . . . . . -
oxq - quel. In particular, we will be interested in their characteristic
2) If Ry, Ry € R**?[¢] are both minimal or, by 1, both polynomial and stability properties.

of full row rank, thenXigma(R,) = Yigma(Ey) iff Assume thaty e £¢ is autonomous and that =

there exists a unimodular polynomial matfixsuch that Sigma(R) with R € R7*4[¢]. Obviously, for any nonsingular
Ry = Uk . diagonal matrixae € IRY*? Yigma(R) = Yigma(aR)
3) More generallyXigma(R;) = Xigma(Rz) if and only ’ o
. : oxe - Therefore, we can always choose the kernel representation
if there existsFy, Iy, € IR***[¢] such thatR; = FyR, ; : . .
and Ry — F\R,. R of a given system inf? such thatdet(R) is a monic
it i ; 3) of P ition 1 tHa R — polynomial. We will denote this polynomial bys and call
is easily seen from 3) of Proposition fgma(R1) = it the characteristic polynomiabf . It follows trivially from

Yigma(Ry) implies rank(R,) = rank(R3). Let 3 € L4. -
Then b(y (QjZefinition there (ex?s)tsﬁ € IR'(X‘IQ[%] such that: = Proposm_on 1 tha‘;@ depends only ok € L1 (and not on
oY Y. It foll that rank(R) d d v ofL. Defi the matrix polynomialR which we have used to define it).
néivmt%(e )rﬁa o.ozxgs _}a{glﬁ () (;psn S&;;‘ y_o ’ ]f(g)e A polynomial p € RR[¢] is called aHurwitz polynomialif
Pp: W4y DY P = ran p # 0 and if it has all its roots in the open left-half of the
(p(2) thus equalsrowdim(R) iff R is minimal). Define also . . gxq .
ms £1 — {0.1,+++,q} by m(X) i= q — p(%). We shall later pomplex plane. Similarly, we will calk € IR?*9[¢] Hurwitz
sée thatn a;1d7 ar’e equal to thé number o'f input and out u'{ det() is.
variables p g P PUL Assume thats = (R,R?, B) € £% is autonomous. We will
One of the central notions in control theory is that o?a" > Stlzb:)e i uljl ;B |mi:)||te_:s lilnt;-l_ftoobz‘;.}(t.) k: 0._(Ofte_?h
controllability. It ensures the very existence of reasonabﬁ'é”S would be calle@symplolic Stabilitybut, in keeping wi
age which has become customary, we will simply refer to

controllers. This notion can be very nicely generalized to the, . tability.) For th ke of let let
behavioral setting. As can be expected, controllability will b IS property astaol ity.) For the sake of completeness, let us
state the following well-known result.

of essential importance to us in the sequel.

We will call £ = (R, IR%, B) € £7 controllableif for each ~_ Proposition 4: Let . € L1 be autonomousq.x;l'heE is
wi,ws € B there exists @\ € [0, 00) and aw € B such that stable iff yx is Hurwitz. Equivalently, leti € IR?*?[£] have
’ ’ det(R) # 0. ThenXigma(R) is stable iff R is Hurwitz.

w(t) = {wl(t) for¢ <0 We need a couple of minor refinements, related to control-
wp(t — A) fort > A lability, before embarking on control questions. ete £9.
We will call ¥ stabilizableif for eachw € B there exists Then, as we have just seeh, is controllable if and only if
w' € B such thatw(t) = w'(t) for t <0, andw'(t) — 0 as rank(R()\)) is constant for\ € C. The setA(X) = {\ €
t — oo Clrank(R(\)) <rank(R)} is called the set ofincontrollable
In our previous work [9], we have discussed the merits @xponentsof X. They play the role of theuncontrollable
this definition in much detail. It is a sweeping, but neverthelessodesin state-space systems. More generally, assume that
natural, generalization of the classical definition of controllak is minimal. Then it can be factored & = FR’ with
bility. There is an elegant condition for the controllability offigma(R') € £ controllable, and” € RPE*PE)[¢] having
elements of£? in terms of the coefficients of the definingdet(£’) # 0. Obviously, we can assume thddt(£) is monic.
differential equation (7). It can be shown thadet(F") depends ort only. We will call
Proposition 2: Let R € R**?[¢]. ThenZigma(R) is con- it the characteristic polynomial of the uncontrollable part of
trollable iff the rank of the matrixR()\) € Crewdim(®)xa 3 and denote it agx«-. This nomenclature can be justified
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as follows. Let¥ = (IR,IR?,B) € L% Then there exists 0)} follows, using the unimodularity ofV. It follows

Y1 = R,RY,By) € L7 and Xy = (R,R?,B2) € L9 that xgsasr = xs. Therefore it suffices to show that
such that i)%; is controllable; i), is autonomous; and iii) xs+ = = which, fortunately, is true, since = det(CV) =

B = B; & B,. It can be shown thaf; (called thecontrollable det(V) det(C). Whencedet(C) = wr for some0 # « € R,

part of 3J) is uniquely defined by:. However, whereagl;, as desired.

the uncontrollable part, is not uniquely defined By its Now consider the case thatis autonomous. First observe
characteristic polynomialyy,, is. In terms ofX, we have that whatever be&&’ € L7 xsas will be a factor of xs.

Xs, = xsue. Itis clear from this thakigma(R) is stabilizable Thus it suffices to show that every such factor is achievable.

iff the uncontrollable exponents dfigma(R) have negative Repeat the above proof with'V = diag(ry,ra,---,7q),

real parts, equivalently, iff=«., the characteristic polynomial wherery, := gcd(dy, r/rr—1) andrg := 1. It is easily seen

of the uncontrollable part, is Hurwitz. that ry7s - - -7, = 7. Further, since agais’ C 5, it follows
We include one final small notational element before wihat xs x = xs = 7, as desired. [ ]

proceed. Above, we defined the characteristic polynomial forThe result just obtained guarantees pole placement (and
autonomous systems. If, howeveér,e £? is not autonomous, hence stabilizability) for ani. € £¢ which is not autonomous,
then we will defineyy as the zero polynomial. We will i.e., as long as in system (1) describidgthere are fewer
consider the zero polynomial to bonic and not Hurwitz. equations than variableg(3) < ¢). (We shall later see that
This notation is consistent with our earlier one. Note thahis means that at least one of the variabl@sws, - -, wq

if we take aR € IRY*[¢] such that¥igma(R) = ¥, and is an input variable.)Note that not even controllability or
make sure thatlet(R) is monic, thenys = det(R). Also, stabilizability of X is required for this to hold!in particular,

we will consider every polynomial to be a factor of the zerstabilizability thus holds by simple interconnection, regardless

polynomial. of the location of the uncontrollable exponents3afit holds
whenX is not autonomous. This result goes against the grain.
VI. POLE PLACEMENT AND STABILIZATION It invites protest. This result is due to the fact that the class of

IN A BEHAVIORAL FRAMEWORK admissible controllers was chosen to be alléf In particular,

by taking >’ = (IR,IR?,0) stability is trivially obtained. We

In this section we will study our first control problem, withyjy yetym later to the question of how such a control law
control viewed as interconnection as explained in Section I\ 14 pe implemented.

The plant is a given dynamical systelm € £2. We will
assume that the controller (and hence the controlled system)
is also a linear differential system. L&Y, = (R, IR?, B;) € VII
L4k = 1,2. We will call X, a subsystenof ¥; (denoted ) ) _ ]
Y, < %) if B, C Bi. It follows from Proposition 1 We will now introduce an important type of interconnec-
that if Y = Ez‘gmr;(Rk) then X, < ¥, iff there exists tion (which, as we shall see later, corresponds to singular
F, € R**[¢] such thatR, — F2§2. This in particular feedback). Let:, " € £2. We will call ¥ A X’ a regular
H H H ! _ !

implies that thenys,, is a factor ofxs, . Obviously, for any interconnectionif p(x A ¥') = p(¥) + p(¥'). There are a
%,% € £24,% AY will be a subsystem oF. Our first result number of alternative equivalent ways of expressing this. In
is the analogue of the classical placement result. particular, if %X = Yigma(R) and ¥’ = Yigma(R'), with R

Theorem 5:Let 3 € £7 and assume that is not au- and R’ of full row rank, then>:AY. is a regular interconnection
tonomous. Then for any monice IR[¢] there exists! € L4 iff collR|R’] is also a full row rank polynomial matrix.
such thatysasy = 7. If 3 € £2 is autonomous, then there Itis trivial to see that any subsystenf of 3 can be realized
existsY’ € £4 such thatysasy = + if and only if = is a through interconnection. Indeed if we tak& = X’, then
factor of ys. obviously> AY = X, However, this special interconnection

Proof: Assume first that] is not autonomous. Lek ¢ IS regular only in the trivial casg(¥) = 0. The question thus

R**“[¢] be such thabigma(R) = ¥. By Proposition 1, we arises when>”” can be achieved by regular interconnection.
may as well assume that is of full row rank. Now, there Actually, we shall now see that any subsystenboéan still
exist real unimodular polynomial matricés and V' such the be realized through regular interconnection provided

. REGULAR INTERCONNECTION

URYV is in Smith form, i.e., such that controllable! _
Theorem 6: Assume thab: € £7 is controllable. Let>”
URV = [diag(dy,d2,+,dpisy))  Opmyxm(z)] L7 be a subsystem dE. Then there exists &’ € £7 such
that > AY = ¥ and such that this interconnection is regular.
with 0 # d;, € R[¢] for & = 1,2,---,p(X). (Of course we Proof: Let ¥ = Zigma(R) with R minimal. By control-

can make sure that,., is also a factor ofdy, but we will japility, its Smith form will yield U RV = [1,,(5|Op(s)xm(s)]-
not need this property.) Now defir€ € R?*?[{] by CV = et = Sigma(R") with R’ minimal. Then, sinc&” < ¥,
diag(1,1,---,1,7). We will now show that™ = Xigma(C)  there will existR” with 3 = Yigma(R”) and RV of the
achievesys sy = 7. form

Let B and B’ be the behavior ob. and ¥/, respectively.
Observe thatB C B. In fact, it is trivial to see that
{{evi({d/dtyw = 0) = ((URV)(d/dt)w = 0)}, from R'V =

Ls) | Opsyxmes)
where the implicatiof(C(d/dt)w = 0) = ((UR)(d/dt)w = 5| 52
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Note that we can always takéRj,|R5,] of full row

rank (in fact, with Rj; = 0). Now chooseY¥ = X — 2
igma([Ry, [Ry,]V ™). u “

We shall soon see that a regular interconnection can be A Y,
implemented by means of singular feedback. The important
conclusion which may be drawn from the above theorem will 5 Y,

be that singular feedback control problems for controllable
systems amount to looking for a suitable subsystem. Fig. 7. A signal flow interpretation of}; A Zy.
One important variation of the above theorem worth stating

is the following. partition with input w; and outputw,. If in addition G is

) 4 )
Theor;rr 7.tﬁssume. tthgtz eﬁqﬁ ' z:]n?hlettg AGE}R.[S]. be proper, we will speak of @roper input—output partition
monic. -Then there exista < such tha Is i) a Now return to a givenX = Xigma(R). Consider all

regular interconnection; and ij » = r if and only if x%° ;
< ga factor ofr Wsnw =7 yihxs p(¥) x p(X) minors of R and assume that the(X) x p(¥)
. ) . . minor formed by the lasp(3) columns has maximal degree
This theorem can be easily proven along the lines of Ogrnong all thep(X) x p(X) minors of R. This can always

pr(I)of (I)f Theorterg] 6. In par?cular,l Tr]:eo(rjebm Zr:mﬁlgigthage achieved by permuting the columns &f Note that this
pole placement by means of reguiar feedback Nolds.| column permutation can be interpreted as a reordering of the

. j AN
coctae, e i Bt 1) 5 SO R o bt h st o
’ ’ ’ been done, partitiony as w = col(wy,we) with wy, the
first m(2) and we the lastp(3) elements ofw. Now the
VIIl. | MPLEMENTATION OF REGULAR maximal degree property @ implies that the corresponding
INTERCONNECTIONS BY SINGULAR FEEDBACK transfer function (10) will be proper. The conclusion (of
As we have argued before, we view interconnection as tHéis reordering) is that every system ifi? is actually a
basic idea of control. However, there remains the problem pfoper input-output system. Note that the number of inputs
controller implementation. In this section we will study thidn an input-output partition always equaig(>), and that the
question for regular interconnections. number of outputs always equal§:), but that we may have a
We have already encountered autonomous systent® in choice as to which components are actually taken to be inputs
dynamical systems with a finite-dimensional behavior. If and which are taken to be outputs.
system is not autonomous, then certain components of thd-et X1,%, € £2. We will now study the structure and the
signal vector are free. We will now formalize this. resulting implementation of the interconnectinin A 3 from
Let ¥ = (IR,IR?, B) € £4. Let the signalw be partitioned an input—output point of view. Assume that andX, admit
into two subvectoraw = col(wy, wy). Assume thatw; has the following kernel representations:

g1 components and thabs has ¢, components, withy; + d d d
. . /
g2 = q. We will call w, freeif for all w; € £°°(R,R™) g P1<%>y1 = Q1<%>92 +Q1<%)U
there existsw, € L£°°(IR,IR%) such thatcol(w;,ws) € B. y g g
We will call it.maximally freeif no further freg compo- Yo Py <d—>y2 = <d—>y1 + @ <d_>u (11)
nents are left inw,, equivalently, it turns out, iff the set t t t

{UJQ € E{OC(IR, IR,(IZ)|COI(O, WQ) € B} is finite-dimensional. with Pl and P2 square and
In addition to a component af being free in£l°c, we are

also interested in components which are free’fty. As we Py —Q1

shall see, this constitutes a slightly different notion. We will det(P1) # 0, det(Py) #0,  det [_ ) P, 7 0.

call wy,C>-free if for all w; € C*(IR,IR*") there exists (12)
wy € C°(IR,IR*) such thatcol(w;,ws) € B. The notion of

maximally C°-free now follows. Let us first interpret these conditions. The condition

Let us see how these notions translate into properties oflé(F;) # 0 means that inX;,col(u,y2) serves as input
kernel representation. Write the minimal kernel representatiand y; as output. The conditiodet(P,) # 0 means that in

R(d/dt)w = 0 in terms ofw; andws., yielding Yo, col(u,y1) serves as input angh as output. The condition
d d P, -
P<£)U}2 = Q(a)ﬂ]l (9) det ! Ql
—Q2 Py

Then wy is maximally C>°-free iff P is square (i.e.go =
p(¥)) and det(P) # 0. It is maximally (Llc-) free iff in
addition thetransfer function

implies two things: first, that:; A X, is a regular inter-
connection, and second, that ¥y A X, 1 serves as input,
while col(y,y2) serves as output. This interpretation can be

G(&) = P_I(S)Q(ﬁ) (10) illustrated nicely in a signal flow graph as shown in Fig. 7.
An interconnection¥; A ¥, in which the variablesy =
is proper. Obviously, G € RF®>*™E (&) If w = col(u,y1,y2) (perhaps after reordering of the components)

col(wy,w9) is as in (9), then we will call this amput—output admit the kernel representation (11) with the conditions (12)
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satisfied will be called deedback interconnectiomote that The above theorem tells us that we can always choose
in this interconnection we have not assumed that the transfiee variables in a regular interconnection so as to achieve a

functions feedback interconnection. The next theorem tells us that if we
p-1 / p-1 / want to achieve a given subbeh_awor_ of a controllable system,
1 (@@, 31 (@2]C), then we can even start from a given input—output structure for
P - Q) the plant.
Q, Theorem 9:Let X, € £?¢ and assume that’ < X,
-2 P 2

i.e., X’ is a subsystem of:. Assume, moreover, that
are proper. If they are all proper, then we will call thas controllable. Letw = col(w,y1,y2) be a componentwise
interconnection®; A ¥, a regular feedback interconnection partition of w having the following properties.

If a feedback interconnection is not regular, then it will be 1) col(u, (y1,12)) is an input—output partition fok’.

called singular. 2) col(col(u,y2),y1) is an input—output partition foE.

We .Wi|| now prove two results regarding inte'rconnections. (Note that consequently both these input—output partitions
The first states thakvery regularinterconnection can be may be chosen to be proper.)

viewed as an, in generaingular, feedback interconnection.  Tnep there exists & € £¢ such thatyy = X A %" and

The second states that every subsystem of a controllablg:h that A 52 is a feedback interconnection relative to the
system can be implemented as a (in general, singular) feedbﬁﬁhition w = col(u,y1, )
- ) ) N

interconnection with a proper input—output structure for the  p.oof Choose the partitioncol(w, y1,») such that
plant. _ col(u, col(y1, y2)) iS a proper input-output partition ¥’ and
Theorem 8:Let ¥y, %, € L9, and assume thaly A %> gych thatol(col(u, y2), 41 ) is a proper input-output partition

is a regular interconnection. Then the signal veatoadmits , 5= Now write a minimal kernel representation f&r
a componentwise partition as = col(u,y1,y2) such that

Y1 1Y, is a feedback interconnection. Moreover, this partition P, <£>y1 = <i>y2 +Q, <i>u (13)
can be chosen such that ¥y A X, col(u, col(yy,y2)) is a dt dt dt
proper input-output partition. _ whencedet(P;) # 0. Complete (13) so that, together with
Proof: Write minimal kernel representation fat; and (14), they form a minimal kernel representation
2o
d d d
Bl — = — M= Ju. 14
R1<%>w:0 2<dt>y2 Q2<dt>yl+Q2<dt>u (14)
d That such a representation exists follows from the controlla-
Ry <%>w =0. bility of ¥ and Theorem 6. Hence
. . . . Py -1
Since¥; A X5 is a regular interconnection det # 0. (15)
—Q2 P
R
R:= {R_J It is easy to see that (15) implies that there existsSar

RPEI-PEDXPE)[¢] such thatdet(P, + SQ1) # 0. Now
will also be of full row rank. Now writeX; A 3, in proper consider the behavioral equation

input—outputform to yield d
(P +5Qq) <—)y2
o(i)r=eli) !

dt d d
— (@51 (g Jm+ @ - sa)( 5 )u o
with det(P) # 0 and P~1() proper. Observe that the theorem

follows if there exists an ordering of its columns such that and defineX” as the system which has (16) as its kernel
can be written as representation. It is now easily verified thal’ has the
P, O, properties required in Theorem 9. [ |
Theorem 9 is, in our opinion, an important one in that it

—Q: Py reduces the issue of the design of a feedback control law
with (provided that we allow it to be a singular feedback control
law) to that of finding a suitable subsystem. Let us explain
P e RREDPEDE] . det(Py) £ 0 this in the case that the desired “closed-loop” sysfefmis
P, GIRP(Ez)XP(Ez)[gL det(P») # 0. autonomous in a bit more detail. We can start from any given

input—output partition of the plar¥. This partition could, for
Such an ordering exists, sinek:t(P) # 0, by Lagrange’s example, be imposed by the actuator/sensor structurg, of
formula, in whichdet() is written as the sum of the productor it could ensure that this input—output partition is (strictly)
of its p(31 ) xp(X1 ) minors from its firsp(3; ) rows multiplied proper. Theorem 9 states that the desired controlled system
by the complementary(3,) x p(X2) minors from its last can be achieved by means of a feedback controller. In general,
p(X2) rows. m this feedback controller will, of course, need to be singular.
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However, the example in Section Il serves to illustrate thtom the behavioral point of view may be found in [2] and
singular controllers need not be objectionable. [3]. This last reference is particularly relevant for the purposes
of the present paper. In it, stabilization from the behavioral

point of view is related to the more classical input—output
IX. INVARIANT POLYNOMIAL ASSIGNMENT feedback definitions.

The remainder of this paper is devoted to some refine-
ments of our main results. These state: in a nhonautonomous X. REGULAR FEEDBACK

system every characteristic polynomial can be obtained by, this section we will discuss the “classical” notion of

interconnection; for a controllable system this can be doRg.gpack in our setting. First, however, we introduce the

by a regular interconnection and this is equivalent to a feeginension of the state space of an elementef

back interconnection. In the present section we consider thg ot p c R*™.G e IR**?. and assume that these
7 k) 1

question which invariant polynomials can be achieved Byarrices all have the same number of rows. Now consider
interconnection, a sharpening of the characteristic polynomjgl, system of differential equations
assignability.

Let us first define the invariant polynomials of an element Ed_“j +Fz+Guw =0. (17)
> € L4, Introduce an equivalence relation d@l¥ by calling dt
¥ = (R, RY, B;) equivalent to¥, = (IR, R?, B;) if there | et B, denote all(w, z) € £I°°(IR,IR? x R™), which satisfy
exists a unimodulat/ € IR?*?[¢] such thatB; = U(d/dt)Bi. (17 in the distributional sense. Now define the external
Note thatl/(d/dt) is a bijective differential operator, which pehavior of (17) asBex; = {w|Jz such that(w,z) € B;}.
gives this equivalence relation a very natural interpretation. jican be shown that systems described by equations such as
view of this we will call it differential equivalenceWe will  (17) (first order inz, zeroth order inw) are state systems
now construct a complete set of invariants for this equivalenggy]. Further, for each elemei = (R,IR?, B) € L there
relation, that is, a mapping from £? into a spacel” such exist matricesk, F, G such thatB. = /. Among all such
that X, and X, are differentially equivalent if and only if representations there are some for which the dimension of the

f(E) = f(22)-. state spacep, is as small as possible. This minimal number

For F* we will take the space of ordereg-tuples of will be denoted asn(X). It is also equal to the minimal
monic real polynomial{d,,ds,---,d,) such thatdk:-l-l IS @ state-space dimension in an input/state/output representation
factor of di, for £ = 1,2,.--,¢ — 1. Now associate with of 3.

¥ € L? the element off" formed by taking the diagonal |t is possible to relate,(:) to a minimal kernel representa-
elements of the Smith form of anfg € IR**?[¢] such that tion R(d/dt)w = 0 of 3. List all p() x p(X) minors of X.
Yigma(R) = X. Let f: L7 — I" be the resulting map. This SjnceR has full row rank, at least one of these will be nonzero.
map is a complete invariant under differential equivalencghe maximum of the degrees of all these minors is called the
Let f(¥) = (di,dz,---,dg). Thend, = dy = --- = McMillan degreeof R. It can be shown that it equals(¥).
dm(zy = 0;X is controllable iff d,,sy41 = -+ = dy = 1. Let 1,5, € £%. Recall that we call the interconnection
The polynomialsdy, dz, -+ -, dq will be called theinvariant y, A 53, regular if p(E1 A Sy) = p(Z1) + p(T2). We
polynomialsof ¥. Now introduce a partial ordering off by il call it a regular feedback interconnectiaifi in addition
taking ((g1,9%, . 9¢) = ¢ < 9" = (91,99, :9¢)) &  n(SLA%,) = n(S1)+n(S.). We now state a theorem which

(9, is a factor ofg;’ for k = 1,2,---,q). explains this nomenclature.
Let 3,37 € L7 with &' < ¥. Then it can be shown that  Theorem 12:Let 3,5, € £2, and¥; A ¥, be a regular
f(E) < f(¥'). This leads to the following result. feedback interconnection. Then the signal veetoadmits a

Theorem 10:Let X, € £7. Then for allX; € £9, f(X1) < componentwise partition as = col(u, y1,2) such that:
f(Z1 A Xs). Conversely, ifd € F satisfiesd > f(3;), there 1) in %1, (u, ) is input, 1 is output, and the transfer
will exist a ¥, € £ such thatf(Z; A Xy) = d. functié)n ’is proper;

We will not give the proof. Sinceyy equals the product 2) in %, (u,y1) iS iNPUt, y2 is output, and the transfer
of the elements off(X), this theorem is a generalization of functi(;n ’is proper:
Theor_em 5. Specializing to the controllable case yields the3) in X, A X, u iS input, (y1, y2) is output, and the transfer
following corollary. function is proper.

. q —
Corollary 11: Let & € £1 be controllable. Thery(%) Proof: Follow the proof of Theorem 8, and observe that

((a%chs’,gé t,f-;ééll)p;\igzoﬁ(ii)gzg?;a'th'i)(dE)(;nels.' T_helr)] feor in this case it is possible to obtain (again by Lagrange’s

I, there exists &’ € L% such thatX A X' is a regular formula):

interconnection withf (X A X') = d'. degree (det(Pr)) =n(21)
Corollary 11 and Theorem 9 thus imply that for a degree (det(Py)) =n(Es)

controllable plantX every set of invariant polynomials degree (det(P)) =n(S1 A Ss).

(di,dz2,- -+ dpn(sy,1,--+,1) will hence be achievable by
a (singular) feedback interconnection. Theorems 5 and 10 [ |

provide useful generalizations of the classical pole placementRegular feedback interconnections can be shown to be
results. Further results on linear systems and interconnecti@givalent to a number of other statements in addition to the
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one of Theorem 12. In [3] regular feedback is shown to be
equivalent to what is usually calledell-posednessAnother
equivalent condition is: leE; = (R, IR, B),i = 1,2. Then

31 A g is a regular feedback connection iff for all, € 13,
andws, € Bs, there existav € B, N By such thatw; Aw € By
andws A w € By (recall that for time functions\ denotes
concatenation at = 0). In words, whatever past trajectory
has occurred ir2; and X, it is possible to continue these
trajectories in accordance simultaneously with the laws of
and X,.

This consideration allows us to interpret clearly the dis-
tinction between regular interconnection and regular feedback
interconnection. The first requires preparing (the state of) both
systems before interconnection; while in the second the control
can start acting at any time. The second type of control action
is the one which is usually pursued in control theory. However,
our example in Section Il indicates that regular interconnec-
tions which are not regular feedback interconnections have
many applications in engineering practice. Moreover, Theorem
6 indicates that from a theoretical point of view they reduce
the question of control design for a controllable system to that
of finding a subsystem. In follow-up papers, we will exploit
this in the context ofL@Q and H,, control.

The question of what can be achieved by regular feedback
interconnection and which subsysterfi§ < X of a given
systemX € L% can be implemented by means of a regular
feedback interconnection remains a largely unexplored one.
The problem promises to be unsolvable as it stands, since it
has the pole placement problem by memoryless feedback as
a special case. In the next section we will mention, without
proof, some results which can be obtained on this problem for
controllable systems.

2)

XI.

1) The observability and controllability indexes of a system
can be defined on the level of behaviors. However, it is
much more insightful to do this for discrete-time than
for continuous-time systems. L& = (Z,R?,B) € £,
where£? denotes the discrete time analoguelsf i.e.,
the class of systems described by difference equations
R(c)w = 0, analogous to (8) but witlr the shift oper-
ator instead of differentiation. Define trabservability
index as the smallesf. such thatw; € B,ws; € B,
and wl(O) = wQ(O),wl(l) = UJQ(].), s ,wl(L - 1) =
wo(L—1) imply wy Aws € B (A denotes concatenation).
Define thecontrollability indexas the smallesL, such
that for allw; € B,w; € B, there existsw € B such
that w(t) = w(t) for t <0, and w(t + L) = wa(t)
for £ > 0. These indexes (in continuous—as well as
in discrete-time systems) can be related to kernel and
image representations, as follows. Consider the degrees
of all the polynomial matriceg: which induce a kernel
representation ot € £¢. The observability index is the
lowest of these degrees. Consider next the degrees of all
the polynomial matrices\{ such thatw = M(d/dt)¢
induces an image representation [10]Xfc £9. The
controllability index is the lowest of these degrees.

REMARKS

3)
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Let x(X) denote the controllability index af. Then
given anyy € R[¢] of degreen(3;) +x(%1) — 1, there
exists aXs, such that¥; A X, is a regular feedback
interconnection withys, Ax, = x, an analogous result
with x replaced by, the observability index.

Up to now we have considered the case in which all the
variablesw are available for interconnection. However,
in applications there will be many situations where this
will not be feasible, leading to the structure depicted in
Fig. 8 in which the controller can impose only laws on
the plant variables to the right.

This situation can be formalized in the context of
systems with latent variables [10], leading to

()= (a)

Since we assume (see Fig. 8) that only the variahles
are available for interconnection, it is natural to view
them asmanifestvariables, while viewing the variables

£ which are not available for interconnection lasent
variables. Control of (18) is very similar to the case
treated earlier, provided we assume that (18) is an ob-
servable [10] latent variable system. Since observability
is equivalent to the existence of a representation

R(L)o=o w(L)u=r

which is equivalent to (18), it follows that any control
law for (18), based on bothy and/, e.g.,

d d
Cy <%>w+02<%>£— 0

can actually be implemented (as far as the manifest
behavior of the controlled system is concerned) by
following control law:

d
N _
(Cl + C>R )<dt>w 0.

(18)

(19)

(20)

(21)

The latter involves only they variables. Hence, if we
assume observability and if we do not worry about im-
plementability by regular feedback, the theory changes
little, in case only a limited number of variables are
available for control interconnection. Note, however,
that the usual additive disturbances in the measurements
already obstruct observability.
Here are a few words about how state feedback fits in
our framework. In [10] the notion of state (as a special
type of latent variable) has been described in full detail.
Let X € L% be described byR(d/dt)w = 0. Then
there exists a¥ € R**?[¢] such thatr = X (d/dt)w
is a minimal state forX (see [4] for algorithms for
constructing such aX). Hence, a control law acting
on the state, safw = K(d/dt)z, will lead to a control
law C(d/dt)w = 0 of a special formC = L — K X.

We describe one particularly important situation in a
bit more detail. Let

(2)-o(s)

(22)
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4)

5)

be a controllable input—output system with proper trans- iatent
fer function G = P~1Q. Since this system is con- variables

trollable, it admits an observable image representation

[10]
d d

Now assume that we try to implement by means of an
interconnection a given subsystet of X. In this case
a subsystem always comes down to adding to (23) a

constraint on¢
d
—J4=0.

Now, it can be shown that (24) can be implemented [in
the sense that (25) together with (23) will yield (24)] by
a memoryless input-state law

(23)

(24)

Hu+Fx =0 (25)

if S (or VS with V' unimodular) is such that D!

is proper. In fact, a suitablé/ will be given by H =
lime oo S(E)(D(€))~L. Hence, if this limit is square
and nonsingular (24) can be implemented in the familiar

u=Fz

fashion.

Rather complete results concerning subsystem imple-

mentability by (regular) interconnection can be obtained

whenX is a single-input/single-outpulyy = 2, m(¥) =

p(2) = 1) controllable system and when the subsystem

Y/ < ¥ is autonomougq = p(¥') = 2, m(¥') = 0).

a) There always exists A’ such thaty = ¥ A X"
with X A X7 a regular interconnection.

b) If n(¥’) > 2n(X) — 1, then this interconnection can
be taken to be a regular feedback interconnection. If
n(X’) <n(X), then this interconnection cannot be
taken to be a regular feedback interconnection.

c) If n(X) = n(X), thenX” can be taken to be a
memoryless regular state feedback law: Fx.

d) If n(¥) > n(X), thenX” can be taken to be a
dynamic state feedback law

()= ()

with 0 # H € R[¢] and H 1 F proper.
When an interconnection; A3, satisfieg (X AXs) =
p(X1)+p(32) (a regular interconnection), then we have
seen that it can always be implemented by feedback

structure with in general a nonproper transfer functiongith f: IRY x R? x ---

Fig. 8.

(26)  6)
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control
variables

Interconnection along control variables.

in the realm of the usual intelligent control structure
implementation.

The issue of implementing a general interconnection
which does not satisfyp(3; A X2) = p(Z1) + p(E9)
as a control law remains unsettled: is it or is it not
reasonable to allow such interconnections as control
law? For example, it does not se@rpriori unreasonable
to allow ' = ¢ = 0 as a control law for a mechanical
system. This could be achieved by pinning down the
mass at a fixed position. Also, it does not seaipriori
unreasonable to allow” = 0,1 = 0 as the control law
for an electrical circuit. In fact, there exist (active) one-
ports whose external behavior is precisély= 1 = 0
(such one-ports are callatlllators (see [1], p. 75) for
a realization of it). Terminating a passive (impedance
or admittance) one-port with such a circuit will indeed
result in an interconnection which is not regular.
One notoriously difficult problem in linear control theory
is the question of generic eigenvalue assignment by
memoryless output feedback. Consider a multivariable
state-space systenc/dt = Az + Bu,y = Czx, with
m input, n state, andp output variables. Then it is
easily seen that, < m % p iS a necessary condition
for generic closed-loop pole assignability by memoryless
linear output feedback. In [7] it is shown by analyzing
the casen = 4,m = p = 2 thatn < m * p is not
sufficient. Recently, Wang [6] has proven thet m xp
is sufficient—ene mere extra degree of freedom suffices
In [14] we have given a remarkable simple proof of
this result. This proof is based on the idea of the
present paper; by considering interconnection instead of
feedback, we were able to get a much better handle on
this theoretical problem.

XIl. STABILIZATION OF NONLINEAR SYSTEMS

In this section we will apply the ideas of this paper to the
stabilization of a nonlinear system around an equilibrium point.

Consider a nonlinear differential dynamical system de-
scribed by

dw dfw
f<w7%7"'7 dtL> =0

x IR? — IR?. Equation (27) in-

(27)

Such structures are common in control engineering (e.@uces the nonlinear time-invariant dynamical systegy, :=
the example in Section IIPD or P1D control). Hence (R,IR?, Byr) with

singular feedback interconnections are useful in practice,

need not cause noise amplification, and cannot be diByr, := {w € CH(R,IRY)|f

missed for that reason. Much more attention should be
paid to these situations in present day control theory. It
is when in addition top(X1 A X2) = p(Z1) + p(X2),
there holdsn (%) A %) = n(X1) + n(39), that we are

dEw
,dt—L(t)> =0forallte IR}.

(28)

(v, G0
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Now assume that* € R? is an equilibrium point of (27), i.e.,

f(a*vov"'vo):()' (29)
Linearizing (27) around this equilibrium yields L % z
dA dEA
A — 4 — =0 30
Ry +Rldt+ +RLdtL (30)
where R;, denote the partial derivatives of evaluated at A
(a*,0,---,0). Specifically S q,
af , . -
with f viewed as the map from(cg,01, +,0%) 1O 1]

,or). Intuitively, (29) describes the behavior_

floo, 01,5+ Fig. 9. An inverted pendulum.

of w(t) — w* = A(¢). In [11] and [12] we have derived

conditions under which (29) is indeed a linearization of

(27) around the equilibriunz*. We henceforth assume that Our purpose with (33) is to describe the relation betwgen

this is the case. and ¢>. For the case at hand these are mﬁnifesyariables.
Moreover, assume that (29) is minimal and stabilizabl&lote that it was essential to introduce the forkeand the

Then there exists &y, Cy,---,Cf, € R~9*¢ sych that proportionality factora. These are outatent variables. The

the controller

constantsl, and M are to be viewed as systeparameters
while the gravitational constant is a universal constant

L 7,
COA_FCI%JF...JFCL,# -0 (32) Note thatg; = 0,45 = L1, is an equilibrium point,
dt dt associated withF* = Mgl,,o* = —(Mg/L). Linearizing
- ) ) ) around this equilibrium yields (in the obvious notation)
stabilizes (30), i.e., such th g is Hurwitz. .
2
Now it can be shown that the control law Mdd??qz =Ap (34a)
. dw dE . . Mg - .

Co(w —a )+01E+"'+CL’W =0 (33 AF:—leAa—T(Aql —Ag)  (34b)
will be such thate* is a stable equilibrium of the nonlinear {1z 8¢ — Ag,) =0. (34c)
system described by (27) and (32). Note that the controller (Eﬁ - e .
has been derived without having to put (27) in input—outpu %Xt’ eliminateA p and A, from (34). This leads to
or in input/state/output form. 9nx d?AZ 9 ae (35a)

T2 d2 L@
XIIl. EXAMPLE 9y  PAL g, (35b)

. . . s d2 L@

We will now work out a very simple example in order AF = A (350)
to illustrate how the behavioral approach would proceed in @2 Ta

modeling and stabilizing a very simple mechanical systeQy the relation between the y, and » components Of&ql

around an equilibrium. Consider a rod of lendttwith a mass

: " ; g2
connected at one end. The problem is to stabilize this SysteMyq o6 now stabilize this system around the equilibrium

as a vertical inverted pendulum in a particular position, as o

would do when balancing a stick on one’s hand. The relevanf*

geometry is shown in Fig. 9.
Equations of motion for this system are

sl - ~
2= —F— Mgl, 33a
72 g (33a)
F=olgi — @) (33b)
¢ — @l =L. (33¢)

These three equations describe the situation completely: (3
are the equations of motion of the mass, withthe force

e}erted by the rod on the mass; (33b) tells us that the force
F must act in the rod; (33c) guarantees that the rod is rigid.

The positionsg; of the mass and; of the base of the rod
remain a distancd. apart.

=04, =0

) Imposing &,, = 0 and &,, = 0 corresponds to
nailing down the base of the rod and the mass in their
desired positions. It is an example of an interconnection
which is not regular. It is a harsh measure to arrive at

stabilization.

1

2) Imposing the control law
d T
A7 =alAl, + 7 dtq2 (36a)
%) PO\
A7 =0 (36¢)

with a, 8 chosen such thadty—1)(g/L)+ 3(g/L)¢ + &2
is Hurwitz, leads to a regular interconnection corre-
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sponding to singular feedback (wi'rﬁq1 as input and
&12 as output or memoryless state feedback).

3) Imposing the control law g

(2]
AT AT
al? + dtql =BAT, + dtqz (37a) [3]
alAy + % :/3Ay + 7% (37b) 4l
q1 dt q2 dt 5]
AZ =0 (37¢)

6]
with («, 3,7) chosen such tha3 — «)(g/L) + (v — 7
1)(g/L)¢ + af? + &3 is Hurwitz, leads to a stabilizing

regular feedback interconnection.

These control laws will lead to (locally) stabilizing control
laws for the nonlinear system by replacing by ¢i', A7, , by
g, A, by qf ,AY,, by ¢§, Az, by ¢f, andAZ by g5 + L. [9]
Observe that these stabilizing control laws were arrived at
without having to write the (non)linear system in state forn{1
without having to examine what the inputs and outputs argi]
Also, they could be implemented in various ways, usin
physical (springs, etc.) devices or through sensor/actuaﬁ
feedback connections.

(8]

2
(0]

(13]

XIV. CONCLUSIONS -

In this paper, we have examined control from a behavioral

point of view. Contrary to the classical picture which involves
signal flow graphs processing inputs and outputs, we view
control purely as imposing new additional laws on the syst
variables. We provided a physical example in order to convin
the reader of the rationale of this view. Within this “intercon
nection” setting we studied the problems of stabilization, po
placement, and invariant factor assignment. Also various ty,
of interconnections (regular, regular feedback) were introdu
and related to classical signal flow graph feedback structur|
The results were finally applied to the stabilization of nonline
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