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The Contact Problem for Linear Continuous-Time
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Abstract—In this paper linear time-invariant dynamical sys-
tems described by a combination of differential equalities and
static inequalities in state-space formulation are investigated. Of
special interest is the contact problem: the effect of the boundary
of the constraint set on the behavior of the system. This effect
is studied by dividing the state-space in a number of disjunct
subsets. It is shown that these subsets are invariant under linear
state feedback. In our framework, a specific place is reserved
for modeling the laws of collision, i.e., physical modeling, which
are regarded as external factors. Our main results are a system
theoretical framework in which we describe what happens upon
contact and a definition of the constrained state-space system in
terms of its restricted behavior. The results presented here can
be considered as an extension for restricted linear systems of the
classic positive invariance theory for linear systems.

Index Terms—Constrained behaviors, constrained linear sys-
tems, contact problem, hybrid systems, inequality constraints.

I. INTRODUCTION

T HE PURPOSE of this paper is to contribute to a better
understanding of the influence of obstacles on the be-

havior of a physical system. Methods for physical modeling
generally follow from certain principles, such as setting up
the motion equations in the case of mechanical systems by
use of the Lagrangian formalism. Since in many practical
control problems geometric unilateral constraints enter the
problem formulation, the resulting system of equations will in
general contain both differential equalities as well as algebraic
(in)equalities. For instance, during operations with a robotic
arm, situations will occur where the manipulator is, or comes,
in contact with its environment. In this setting the differential
equations model the unconstrained behavior of the manipula-
tor, whereas the algebraic equalities and inequalities model the
environment. In a more general system theoretical framework
the algebraic equations may model interconnections between
subsystems [28] or general restrictions on the system imposed
by the environment [26]. In this context we will be concerned
with the preparation of the state to allow for a successful
interconnection or tearing [28]. We also investigate what will
happen if systems interconnect (or tear) while the state(s) of
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these systems have not been (or cannot be) prepared properly.
And it is the latter that can be seen as the contact problem
proper.

The contact problem is investigated from a system theo-
retical point of view: the effect of the presence of inequal-
ity constraints on the behavior of a linear continuous-time
dynamical system. Inequality constraints can be found in,
for instance, models for economic systems, thermal control
systems, and biological systems. But perhaps the best known
class of systems where inequalities arise is that of mechanical
systems, where the contact problem can be discussed in terms
of collisions and collision avoidance.

It is well known that control of constrained mechanical
systems is much harder than control of unconstrained systems.
One also has to ensure that impact forces remain within
specified bounds and that bouncing is avoided as much as
possible (see, e.g., [7] and [19]). Research into the mechanics
of contact has a long history [3], [16]. When a trajectory
makes contact with the boundary set of the region modeled
by an inequality constraint, this is generally referred to as
activation of the associated equality constraint. Activation
and deactivation of a constraint, and the consequences of the
addition and deletion of equations to a representation, have
been studied for instance in [10], [13], and [18]. When a
constraint becomes active, some derivative of (part of) the
state can be discontinuous [18]. For example, the velocity of
a bouncing rigid ball will change sign instantaneously when
the ball touches the (rigid) ground. Depending on the physical
properties of the modeled system, the new state (after collision)
will in general depend on the state when the collision took
place. A mapping that models the laws of collision is needed,
which is regarded as external in our framework. The latter
is not surprising because a general theoretical discussion on
linear systems does not involve the notion of collisions, as
apparent for mechanical systems. An analog can be found in
[26], where certain mechanical properties, such as the notion
of energy, are used to make a link between the framework
of [25], [27], and “physical modeling.” We will show that
collisions can be brought into the studies of linear dynamical
systems by using geometric terms, i.e., the use of particular
structures of vector spaces [29].

To gain a clear understanding of the contact problem we
make investigations into linear time-invariant systems in state
representation. We will discuss inequality constraints that
represent an arbitrary convex polyhedral set. The approach
we take is to first investigate what can be deduced already
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from the mathematical models of the unconstrained dynamical
system and the constraint set. It is only after this analysis that
we look in more detail to the constrained dynamical system
itself. This particular sequence of steps leads to important
insights to the contact problem and to useful theoretical
findings with respect to modeling and control of dynamical
systems subject to unilateral constraints. Research in the field
of positively invariant polyhedral sets (see for instance [4], [8],
and the references therein), i.e., systems subject to constraints
described by polyhedral sets, do not include a discussion on
the contact problem itself. We will show that our approach
generalizes, for restricted linear systems, the classic notion of
positive invariance for linear systems.

The paper is organized a follows: in Section II the problem
formulation is presented. A constrained mechanical system is
discussed and the assumptions are stated. Since an arbitrary
convex polyhedral set can be represented as the intersection of
a finite system of closed affine half-spaces [24], it will prove
fruitful to first consider the case where the state trajectory
is restricted to be in one closed half-space. A first, and
basic, subdivision of the state space, based on activation and
deactivation of a boundary set, is given in Section III. In
Section IV we complete our subdivision of the state space
by examining the behavior of the unconstrained system on
the boundary of the constraint set. It is shown that the
subsets are invariant under linear state feedback. Some of
the relations that hold between all the newly introduced
subsets of the state space are presented. Algorithms that will
compute all these subsets in a finite number of steps are
derived in the Appendix. Sections V and VI are the core
of the present paper: a detailed description of the restricted
behavior of continuous-time constrained linear systems is
given. A physical interpretation is added to the mathematical
description, and the contact problem is discussed. The main
results will be the allocation of the specific place that is
reserved in our framework for modeling the laws of collision
and a precise definition of the constrained state-space system in
terms of its restricted behavior. In addition, the concepts of un-
controlled collisions and controlled collisions are introduced.
It is shown that trajectories of the constrained system consist
of concatenated trajectory pieces of the unconstrained system.
In this framework, consistent initialization of constrained
linear systems will be discussed. It is shown that dynamical
systems subject to equality constraints are included in our
analysis. In Section VII, relaxation of some of the assumptions
is treated. Moreover, the results will be extended to cover
continuous-time dynamical systems restricted by an arbitrary
convex polyhedral set. In Section VIII, a comparison is made
between our approach to constrained systems and constrained
mechanical system models found in the literature. Finally, in
Section IX the conclusions are stated. Throughout the paper
simple examples illustrate the concepts that are introduced.

II. M OTIVATION AND PROBLEM FORMULATION

The study of control/structure interaction in large spacecraft
or complex robotic systems is facilitated by assuming an ideal,
linear mathematical model for the dynamics (see, e.g., [2]).

Such a model can, for instance, be obtained by (feedback)
linearization of the nonlinear dynamics model. Consider the
following multi-input/multi-output linear second-order differ-
ential equation as a model for a mechanical system:

(1)

where is a generalized system coordinate vector,
the generalized force vector, the

generalized positive definite inertia matrix, the
generalized structural damping matrix, the gener-
alized structural stiffness matrix, and the actuator
force distribution matrix.

The presence of an object in the environment implies a
restriction of the behavior of the mechanical system. In many
cases these restrictions can be represented, or approximated
(locally), by a finite system of linear inequalities

(2)

with By convention, inequalities between
vectors are componentwise. Restriction (2) determines a con-
vex polyhedral set. Note that constraint (2) can also be used to
model distances between subsystems in particular directions.

As a simple example consider a ball that is falling to the
ground. Two principal observations can be made. First, the ball
can start at any position on or above the ground and with any
initial velocity. Second, due to the presence of gravity, the ball
will inevitably come into contact with the boundary. Moreover,
based on the conservation of momentum, the velocity of the
(rigid) ball will change sign instantaneously when the ball
touches the (rigid) ground.

More generally, it can be seen that if for
the behavior of the constrained system in that time-

interval is described by (1). In that case the boundary set of
the allowed region, i.e., the equality constraints ,
associated with the inequalities , are called passive
[18]. (Here subscript denotes the th row of a matrix.)
On the other hand, (part of) this boundary set is called
active (at time ) when for some
[18]. In the latter case, (1) and (part of) (2) reduce to
a differential/algebraic equation (DAE) on the time-interval

and may be combined to yield a differential equation
with fewer generalized variables than the one in (1) [13]. We
will not follow this approach. For instantaneous collisions one
has that a constraint can be active at a discrete-time point
only. Another difference compared to DAE systems is that one
cannot differentiate (2) to obtain an inequality constraint on
the velocity level as the differential operator does not preserve
sign [9]. On the other hand, for DAE’s one also has ,
a fact that is referred to as a hidden constraint in constrained
mechanical systems [5].

For (1), define the state Then (1) and (2)
can be written equivalently as

(3)
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Note that for constrained mechanical system (3) one has
, i.e.,

Motivated by (3), we will investigate linear time-invariant
dynamical systems

(4)

subject to inequality constraints

(5)

Here and
Throughout, we will assume that polyhedral set (5) is

nonempty, an assumption which is trivially satisfied if
It is remarked that no requirements, other than , will be
put on constraint matrix ; we allow for redundant equations
and implicit inequalities [9]. The combination of (4) and (5)
gives rise to a constrained system defined as

(6)

To reduce notation we usually delete the arguments, for in-
stance will be denoted by In the remainder

will denote a trajectory of a dynamical system. Note that (4)
is a linear system, whereas (6) is not. In [9] systems as in (6)
are investigated in a convex conical setting. (A systemis
called conical if a system

is called convex if
[9].)

The following assumptions hold throughout this paper for
system matrices and and constraint matrices and
unless stated otherwise.

1)
2)
3)
4)

Assumption 1) is equivalent to controllability of the un-
constrained system (4) [29]. Assumption 2) is motivated by
representation (3) and is a natural one to make (see also
[26] for a discussion on equality constraints in the case
of Hamiltonian or gradient systems). Assumption 2) does
cover mechanical systems subject to holonomic inequality
constraints but is not limited to this case. Assumptions 3) and
4) are made to exclude the trivial cases or
(depending on whether or not Note that Assumption
4) is trivially satisfied for polyhedral cones. We will use the
phrase “ satisfies the assumptions” to indicate
that in the state-space with system matrices

and of the unconstrained system, and
constraint matrices and used to model
a convex polyhedral set, satisfy the above assumptions. We
also assume that the controls take their value inthe set
of piecewise functions. Relaxation of the assumptions is
discussed in Section VII.

The main topic discussed in this paper is the contact
problem. The questions we will address are as follows.

1) How do inequality constraints (5) interact with the
behavior of an unconstrained system (4)?

2) How do collisions fit into a general theory on dynamical
systems subject to unilateral constraints?

First we make investigations into the influence of the constraint
on the unconstrained system Further discussion of the
constrained system itself is postponed until Section V. The
second question, especially, will give rise to a specific place
in our framework that is reserved for modeling the laws of
collision, which are regarded as external factors. We will show
that when the boundary of an inequality constraint becomes
active, the state trajectory may become discontinuous with
respect to time. It will also be shown that incorporating a
physical interpretation into a system theoretical framework
generalizes the notion of positively invariant (or controlled
invariant) polyhedral sets.

We will show that collisions can be brought into the study
of linear dynamical systems by using geometric terms, i.e., the
use of particular structures of vector spaces. In particular it will
be shown that the subsets can be computed using intermediate
steps of the invariant subspace algorithm (ISA). For future
reference we state this “ -algorithm” [29]. Let denote the
state space. Let matrices and be given and be of
appropriate dimensions. Let
(Note that it is not required that is invertible.) Define

and

(7)

This defines a nonincreasing sequence of subspaces of
Since is finite, there exists a value of such that

This limit is denoted by By construction one
has

III. CONTACT AND RELEASE SETS

In this section we will start our subdivision of the state-
space by investigating the behavior of an unconstrained
system in a convex polyhedral cone. Any convex polyhedral
cone can be represented as the intersection of a finite system
of closed half-spaces [24]

where denotes theth row of matrix It will
prove fruitful to first consider in detail the case of a single
inequality constraint

with (8)

The constrained system with
will be denoted by (It is not until a full

description is derived of the restricted behavior for in
Section V that we return to the case of multiple constraints,
i.e., in Section VI.)

A first, and basic, subdivision of the state-spaceis based
on inequality constraint (8) only. Define for good) as the
collection of states, where the inequality constraint is satisfied
strictly and ( for false) as the collection of states, where
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the inequality constraint is not satisfied. One has

(9)

(10)

(11)

The set represents the interior of the convex cone, whereas
the boundary set models a hyperplane in Note that
and are disjunct subsets whose union is again the
state-space

A further subdivision of the subspace can be made
based on the interaction of trajectories of unconstrained system

(4) with (8). Note that controllability (of the unconstrained
system) implies that any state can be reached in finite time
starting from an arbitrary initial state. Let ( for
contact) denote the set of points where a trajectory ofthat
starts in can come into contact with Analogously,
let ( for release) denote the set of points where a
trajectory of can leave the boundary set and remain (for
some period of time) in These sets are defined formally
by the following definition.

Definition III.1 (Contact Set and Release Set ):

1) and such that
and

2) and such that
and

Formally but to shorten notation we
will usually delete the arguments. The (finite-time) trajectory
piece in the definition of is referred to as locally
viable in [23], where the so-called target problem, i.e., how
to reach a specific target subset, is discussed for differential
inclusions.

It is intuitively clear that and defined for sys-
tem switch roles for the time-reversed system

This is proven in the Appendix.
Finally, the set of points where a control exists such that

the state remains in is given by [29].
Example III.2 (A Single Train Moving Along a Track):Let

the position of (a point on) a train be denoted byConsider
the single-input/single-output (SISO) representation

obtained from (1) by setting subject
to the inequality constraint obtained from (2) by setting

Define The system matrices are

and

The constraint matrix reads: . It can be verified
that is controllable and that Inspection shows
that

and

It follows that

and

Even on this basic level some interesting properties arise.
It can be seen that on no special measures need to
be taken as the trajectory will leave the constraint and will
go to On , however, a collision can take place
as there is no control such that the trajectory will remain on

In general, the situation will be more complicated than
the one given in the example above. We will locate exactly,
in subsequent sections, the subset of where collisions
will take place.

IV. SUBDIVISION OF THE BOUNDARY SET

If a trajectory enters the boundary of the constraint
set, i.e., if at some timeone has , it depends on the
characteristics of the state (and its derivatives) at this contact
point whether or not a collision takes place. Of particular
interest are the components of the state (and its derivatives)
that are not in the boundary set. A measure of this is the value
of , where denotes the th derivative of the
state vector at time which can be obtained from (4)

We will be concerned mainly with a further subdivision of
To shorten notation some definitions are given that

will enable us to present alternative representations of the
subsets defined in the previous section. Let , i.e.,
is a countable dimensional vector whose elements take their
values in

Definition IV.1: Let matrices and be given. Define
the following.

1) as

2) as
with if

3) as

4)

Both and are finite since the pair is
controllable [29]. It is easy to see that and

, one has Observe that is the
smallest integer for which depends on the
control. In an input/output setting the integer can be used
to derive, for instance, an input/output decoupling control law
[12], and is also known as the order of the infinite zero in
case , and the least of the order at infinity in the
general case [11]. It is remarked that the integerhas its
counterpart in nonlinear systems theory, where it is referred to
as a characteristic number, and represents “the inherent number
of integrations between inputs and an output ”
[22]. In such a nonlinear context the map denotes
the Lie-derivative of the one-form along vectorfields
built up from and From the assumptions it is easy to
see that and The following corollary
is straightforward from the definitions and the assumption



462 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 4, APRIL 1997

Corollary IV.2 (Some Useful Properties):Let
Then:

1)
2)
3)
4)

It can be seen from Corollary IV.2-3) that for one
has that is independent of the control. The integers

and also have another important property: they are
invariant under linear state feedback.

Lemma IV.3: Let satisfy the assumptions and
let Then the integers and are invariant
under the linear state feedback with the new
control.

Proof: Omitted.
It is remarked that Lemma IV.3 also holds if ,

i.e., if Next we give alternative representations of the
subsets and

Lemma IV.4 (The Sets and ):

1) such that
and even, and or and
odd, and

2) such that
and

3) such that
Proof: Let and let with If

for all , then It follows that
This gives 3). Now suppose that such that
From a Taylor-series expansion it follows that it suffices to
look at the first derivative that is not equal to zero. From the
definition of the sets and the statements in 1) and
2) now follow.

It is important to note that Lemma IV.4 does not say that,
for instance, and are disjunct. This is discussed in
more detail in the remainder.

It is clear that the integers and play an
important role. The decision of whether or not a point

belongs, for instance, , can be based on the value
of It is easy to see that if such that
for then there is also a control such that

If , it follows from Corollary IV.2-4) that
it is basically a controller design problem to keep the deriva-
tives of the state along the manifold equal to zero (or not).
This motivates the definitions in the remainder of this section.

Let denote all for which all trajectories of
passing through do so coming from and going to

Similarly, let denote all for which all
trajectories of passing through do so coming from
and going to Let denote the collection of states that
belong to of which the smallest for which
can be unequal to zero depends on the control. These sets are
defined formally by the following definition.

Definition IV.5 (The Sets and ( for Control):

1) is even, and

2) is even, and

3)

Based on our motivation of mechanical systems, we make
a further subdivision in contact (or release) with “velocity”
equal to zero and “velocity” unequal to zero.

Definition IV.6 (The Sets ( for Velocity),
and ( for Higher Derivatives)):

1)
2)
3) is odd

and
4) is odd

and

Finally, we prove that all subsets defined so far are invariant
under linear state feedback (which is not to be confused with
the notion of controlled invariance). For instance, the set where
contact can be made with “velocity” component unequal to
zero does not change if we apply linear state feedback.

Proposition IV.7: Let satisfy the assumptions
and let Then the subsets

and are invariant under the linear state
feedback with the new control, for the system

Proof: For the subsets and
there holds: From Lemma IV.3 follows

that these integers are invariant. It is easy to show that the sign
of is preserved. Finally, for one has without
conditions on the sign of

It will be important for a description of the restricted
behavior to have available some of the relations that exist
between the subsets defined so far. In the Appendix, Lemma
A.1, it is shown that The following result will be
important.

Theorem IV.8 (Relations Between Subsets of the State
Space): Let satisfy the assumptions and let

Then we have the following.

1)
2) The subsets

and are two by two disjunct.
3)
4)

Proof: The first two statements are straightforward from
the definitions and Lemma IV.4. The last two statements then
follow from Lemma A.1 and Lemma A.2 (see the Appendix)
by straightforward argumentation.

Theorem IV.8 together with Proposition IV.7 yields that we
can make a complete subdivision of in disjunct subsets
that are invariant under linear state feedback. In the Appendix,
algorithms are derived that calculate these subsets in a finite
number of steps. The following result is immediate.

Corollary IV.9: The subsets and are invariant
under the linear state feedback with the new
control.

Next, as a summary, an intuitive explanation is given of
all subsets that have been defined so far. Let
satisfy the assumptions and take We can make
the following statements relating with a trajectory of
the unconstrained system.

1) satisfies the inequality constraint strictly.
2) belongs to the boundary set.
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3) does not satisfy the inequality constraint.
4) all trajectories with for

some go transversally through the boundary set from
to

5) all trajectories with for
some go tangentially “through” the boundary set and
go from to

6) all trajectories with for
some go tangentially “through” the boundary set and
go from to

7) all trajectories with for some
go tangentially “through” the boundary set, and there

exists at least one trajectory that remains in
8) all trajectories with for

some go tangentially “through” the boundary set from
to

9) all trajectories with for
some go tangentially “through” the boundary set from

to
10) all trajectories with for

some go transversally through the boundary set from
to

Until now we have investigated how trajectories of an
unconstrained dynamical system interact with a boundary set.
If the boundary set is looked upon as a mathematical constraint
rather than a hard environment constraint, it follows that in

application of a smooth control cannot prevent a
trajectory of system (4) to enter It is clear that this finding
has consequences for (feedback) controller design if one of the
objectives is smooth contact with the boundary set. Moreover,
the control should be chosen appropriately in, i.e., one
should exclude controls that will drive the system into
This leads to the concepts of (locally) applicable and forbidden
controls which will prove useful when the collision maps are
discussed.

Definition IV.10: Consider (4). Let The set of
(locally) applicable controls is defined as

such that and
The set of (locally) applicable bound-

ary controls is defined as
such that and
The set of (locally) forbidden controls is defined as

such that and

Definition IV.10 can be seen as a further subdivision of
the boundary set. However, as far as the points are
concerned, these sets are not disjunct. The set of forbidden
controls will prove useful when we introduce the collision
maps in our framework. From the definitions it follows that
for (4) the set of forbidden controls is given by

where

The set is also important in the case of bilaterally
constrained systems, where (6) reduces to a DAE. For the

set an explicit expression can be derived. In fact, it is
easy to see that for (4)

The above sets, and some implications of our findings for
controller synthesis, will be discussed in Section VIII. (A
complete treatment of the latter topic is outside the scope of
the present paper.)

V. RESTRICTEDBEHAVIORS: THE SINGLE CONSTRAINT CASE

In this section we will define what we mean by a constrained
linear system , i.e., how an inequality constraint affects the
behavior of a dynamical system. Recall from Section II that
the constrained behavior (with is given by

(12)

A more detailed description of is based on the subsets
defined in the previous sections.

For constrained mechanical systems one has in general
, i.e., This can be seen from (3).

If each (sub)system is actuated, then in general
Now, if contact is made in a problem

arises since all trajectories will proceed to Consequently,
for mechanical systems subject to unilateral constraints the
contact problem arises: collisions do happen and a discussion
on this subject should thus be an integral part of a general
theory on constrained mechanical systems. Now in mechanics,
a collision will not change the position but will affect the
velocity component. Note that this change will in general
depend in a unique way on the state at the moment of collision.
We make the following assumption.

Assumption V.1:Collisions are instantaneous.
For a description of we need two more notions:

(in)consistent initial conditions and a mapping that can be
used to model the laws of collision. First we define the set of
(in)consistent initial conditions.

Definition V.2 (Initial Value Sets):The set of consistent ini-
tial conditions, , for is defined as
with The set of inconsistent initial conditions, ,
for is defined as with

Clearly and
In the remainder of this section we again concentrate on the

single constraint case:
In our framework contact with the boundary set of a single

inequality constraint is modeled by a map A general
expression for the map will involve entering the physical
nature of the system and the constraint, and we will not pursue
such a general expression in the present paper. The mapwill
be used to provide a continuation of trajectories by mapping
the set of points where contact is made to the set where
release can take place. This will make (5) an invariant set
for (4). We will focus on the local behavior upon contact.
For the global behavior one also needs to consider an infinite
number of collisions in a finite period of time, which is a
modeling topic in itself (see [1] for a related discussion). For
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mechanical systems, however, some general remarks are made
in Section VIII.

Recall that if contact is made in , then whatever
(smooth) control is used all trajectories will go to unless
some special measures are taken. Init depends also on the
control whether a trajectory will proceed in or will remain
in This motivates the following definition.

Definition V.3: Let If we
will call contact at an uncontrolled collision. Likewise, if

we will call release at an uncontrolled release.
If , then we will say that contact, release, atis a
controlled collision, controlled release, respectively.

From a system theoretical point of view, in the case of
elastic collisions, the map can be decomposed into a number
of different maps by making use of the symmetry with respect
to the integer For this observe that for the sets
and the value of is the same, as it is for the sets

and and for the sets and (c.f., Proposition
A.4). For the set we have and once contact is
made we can instantly choose a control such that we remain
in Since all subsets are disjunct, and following the line of
reasoning above, we introduce the collision maps, making use
of the result in Theorem IV.8 (and the notation in Algorithm
A.8).

Definition V.4 (Elastic Collisions):In the case of uncon-
trolled elastic collisions, the collision map

can be decomposed on its (co)domain as follows.

1) for collisions with “velocity”
unequal to zero.

2) for collisions with a higher odd
derivative unequal to zero.

3) for collisions with a higher even
derivative unequal to zero.

4) for collisions with a higher even deriva-
tive unequal to zero.

In the case of controlled elastic collisions, the collision map
can be modeled as for collisions

in
Note that the map is only needed during initialization

since for no trajectory of will ever enter again.
The map is defined for completeness reasons. Also, in
a major difference with respect to classical contact theory oc-
curs: control enters the formulation. Whereas for uncontrolled
collisions only the state needs to be adapted, for controlled
collisions the control also needs to be adapted. Note that for
uncontrolled collisions the map will introduce a jump in
the state-variables, from which an impulsive input can be
calculated [15]. Another difference is that for uncontrolled col-
lisions the collision map acts at discrete points in time, whereas
controlled collisions may need continuous application of the
map This difference is further detailed in Section VIII for
constrained mechanical systems.

In the case of inelastic collisions (in mechanical systems),
part of the velocity component of the state is set to zero. This
can be captured in our framework by mapping the state
into with in the first nonempty subset in , where

, leaving the possible higher-order discontinu-

ities intact. This is possible since we can always mapinto
the set (for which ). Again, if originally

, then control enters the formulation.
Definition V.5 (Inelastic Collisions):Let de-

note the contact point. Define
such that with if
Then inelastic collisions can be modeled by a map as follows.

1)
if

2) if
3) if

It can be seen that inelastic collisions differ in a number
of ways from elastic collisions, especially when control enters
the formulation. Notably, if is mapped
into (so called “plastic” collisions), then at the same time
instance one must prevent the solution from entering into
by adapting the control (if necessary). This can be done by
applying the map immediately after the map Of course,
one could also combine the latter two maps in one controlled
collision map, but the present definitions will allow us to unify
elastic and inelastic collisions when discussing the behavior of
constrained dynamical systems below. Note also that the map

in Definition V.5 is similar to the map in Definition V.4.
Example V.6 (Example III.2 Revisited):Consider again the

system in Example III.2. From and it
follows that From Algorithm A.8 it follows that

The sets and are empty. From Theorem
IV.8 it now follows that

and

c.f., Example III.2. In the case of elastic collisions the intuitive
“change of the sign of the velocity component” follows by
defining Here is the
elasticity parameter. The inelastic collisions can correspond to

Due to the introduction of the map in to our framework,
it can be seen that any can be chosen
as initial condition: in order to cross the boundary set, contact
must be made in By choice of the collision map,
the trajectory will proceed from where the new state acts
as an initial condition for the system. Thus, in our framework,
trajectories of the constrained system consist of concatenated
path pieces of the unconstrained system.

Lemma V.7:Let satisfy the assumptions and
let The (in)consistent initial value sets for (12)
are given by

and
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Proof: The proof is straightforward from the definitions
of the subsets and the collision map

It is remarked that if one requires that all trajectories are
smooth at the condition must be
added to our definitions of (in)consistent initial conditions. In
that case the set cannot be part of the set

(and should be added to ).
Example V.8 (Example III.2 Revisited):Consider again the

mechanical system in Example III.2. Use of the map
for shows

that for the constrained system and

It is of interest to note that in the classic positive invariance
theory [4], [8], the set is not a
positively invariant set for the system in (3). This can be seen
using a result from [8], provided that there are no redundant
constraints. In that case, classical positive invariance holds
if and only if there exists an essentially nonnegative matrix

such that for the system with linear feedback
there holds [8], with

In the present case this reduces to finding matrixsuch
that since From and

it can be seen that matrix does not exist
unless Moreover, if , then (classical)
positive invariance will never hold. We conclude that our
approach is an extension of the classic positive invariance
theory for linear systems.

We are now ready to present a more detailed description of
a constrained linear system. For it is clear that the initial
conditions must be in the set If a trajectory at time
belongs to , then the boundary of the constraint set does
not influence the trajectory. Hence the state satisfies the un-
constrained system equations. Furthermore, if contact is made,
collision can take place. This is modeled by the uncontrolled
and controlled collision maps from Definitions V.4 and V.5.
In fact, we have now proven the following theorem.

Theorem V.9:The constrained system in (12) can alter-
natively be presented as piecewise
such that

1)
2)
3)

4)
with

Here is defined as in Definitions V.4 and V.5.
Proof: Omitted.

System is a complex hybrid system, where features of
continuous dynamical systems are combined with character-
istics of finite automata [6]. Controller synthesis for such
systems is a nontrivial task [6]. For nonlinear constrained
mechanical systems, some of these difficulties are described
in [13] and [18].

Finally, we state the following result.
Corollary V.10: , i.e.,

the constrained system in Theorem V.9 is invariant under
linear feedback with the new control.

Example V.11 (Example III.2 Extended):Suppose that we
want to model two trains riding on the same track, where the
second train is initially to the right of the first train. Denote

with the position of the first train and
the second train, respectively. The position constraint reads:

If we further assume that ,
it follows that From Algorithm A.8 we obtain that

So, collisions occur when the trains make contact, and the
second train is moving faster to the left, or slower to the right,
than the first train. Assuming rigid trains, the elastic collision
map based on conservation of momentum, can read

VI. RESTRICTED BEHAVIORS: THE

MULTIPLE CONSTRAINTS CASE

In this section we will extend the results of Section V to
the multiple constraints case, i.e.,

(13)

with For later reference we denote

To make full use of the results of the previous sections we
make the following observations. Note that

(In this section the subscript is used to
denote subsets and matrices of subsystemNext, define the
constrained systems by

(14)

It follows that For system contact or release
with the boundary set is to be understood as contact or release
with at least one boundary set. For the polyhedral conethe
boundary set and the regions and are given by

(15)

(16)

(17)

It can be seen that

and
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For each subsystem the subsets of interest
can be computed from Algorithm A.8. The (in)consistent
initial conditions sets are given by

and

Taking the sets and into account, the following is
obtained for the multiple constraints case:

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

There are a number of things that make multiple constraints
notably different in character than single constraints. First, the
subsets in (18)–(25) need not be disjunct as on the intersection
of the constraints, for each individual boundary set different
characteristics can hold. Nevertheless, all subsets can still be
computed. The multiple number of combinations of subsets
that is possible also reveals that for dynamical systems subject
to multiple constraints the organization of all the subsets is a
problem in itself, which we will not tackle here.

Secondly, in contrast to the single constraint case, it
is now possible that, for instance, is not entirely in

, or that , but This is shown
in the following example.

Example VI.1: Let

and

It is readily verified that satisfies the assump-
tions. From Algorithm A.8 it follows that

and

From (22) and (23) it follows that and

Two solutions can be proposed for this loss of symmetry.
The first is to treat the loss of symmetry as a control problem:
the system should be controlled such that contact is not made
in In light of the research in the field of positive
invariance, this seems to be a difficult problem, and we will not
discuss it in the present paper. Another solution is to view this
as an inelastic collision: simply map the contact point in the
first subset (with higher value of ) such that release can
take place. Such a subset always exists sinceis nonempty.
Fortunately, symmetry is preserved in the case of mechanical
systems (with ), subject to position constraints, as in
(2). This is immediate from the observation that the contact
and release sets yield inequality constraints on the velocities,
which can never be in conflict with the position constraints.
(They can be empty if the original position constraints are in
fact implicit equalities [9].) Obviously, Example VI.1 does not
deal with a mechanical system.

The third difficulty with multiple constraints is that for all
intersections of boundary sets, new collision maps may need
to be defined even if the collision maps for the single boundary
sets
have already been specified. However, this requires specific
knowledge of the application, which can be seen as follows.
Suppose that there are two different inequality constraints,
numbered 1 and 2, respectively, leading to two boundary sets.
On the intersection of the boundary sets the combinations
of all subsets introduce subsets with new characteristics. For
instance, there may be a subset where for one constraint we
enter the boundary set in whereas for the other
constraint we enter the boundary set in Based on
Section V, the obvious choice of the collision mapwould
be to map onto It
is unclear, however, how the original collision maps and

should be combined. And compositions of and
also may not be a correct expression as the map may
result in a (intermediate) state that violates the first inequality
constraint. A further complication arises if the boundary sets
have different elasticity properties. Clearly, the physics of the
problem should not only specify (expressly) the collision maps
on the boundary set of each individual constraint, but also on
the intersection of the boundary sets. For the present paper
it suffices to remark that we have identified the places where
collisions can occur and where the collision maps should be
defined to deal with these collisions. Note that the results
presented here can also be used as a starting point for controller
design such that simultaneously a state trajectory remains on
one constraint and makes contact with another constraint in a
smooth manner, i.e., contact with velocity components equal
to zero. For instance, if , such a design is possible
if and only if

It is clear that with the above definitions the analog of The-
orem IV.8-3) and -4) still holds, with the obvious redefinition
of the sets and , keeping in mind that contact and
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release is to be understood as contact or release with at least
one boundary set.

Based on the results of Section V and the discussion above,
we can now give the following result, with the obvious
redefinition of the set

Theorem VI.2:The constrained system given in (13) can
alternatively be presented as piecewise

such that

1)
2)
3)

4)
with

Proof: The proof follows from Theorem V.9 and the
definitions in this section.

Again, system is a complex hybrid system, where the
collision maps are now much more complicated, especially on
intersections of boundary sets. As an example we will consider
the case where the inequalities model a linear subspace,
showing that systems subject to equality constraints can also
be treated with the theory presented here.

Example VI.3 (Example III.2 Extended):Consider again
the system in Example III.2, but now subject to the constraint
pair For system we have (from Example
V.6)

and

From Algorithm A.8 it follows for system that (with
constraint

and

Clearly,
Since for and the boundary set is the same, it is obvious
that also the intersection of the contact sets becomes important
for trajectories of From and

it follows that a trajectory cannot leave
nor make contact with it. Consequently, is the only

solution, as expected.
Corollary VI.4: , i.e., the

constrained dynamical system in Theorem VI.2 is invariant
under linear feedback with the new control.

VII. GENERALIZATIONS

In this section we will first discuss the relaxation of one or
more of the assumptions. Secondly, we will extend the results
to cover arbitrary convex polyhedral sets.

First consider the case where the assumption
does not hold, i.e., The following result

is valid independent of the controllability of and states
that all collisions are controlled collisions.

Lemma VII.1: Let and If
, then

and
Proof: From and

follows ISA now gives
Moreover, since one has And from

it follows that, depending on value
of or

Next suppose that is not controllable, and
Note that in case , i.e., in the case of an autonomous
system, obviously is not controllable. For simplicity
assume that we are dealing with a single inequality constraint.
Two cases are distinguished: and In case

, the analysis of the previous sections still holds. The
interesting case is when In that case (see
the Appendix, Definition A.5). It is straightforward to show
that now and So, for instance, step 10) in
Algorithm A.8 should be adapted to Furthermore,
from it follows that It
follows that, in the notation of [29],
Consequently, the state trajectories of the controllable part
of the system are entirely in It depends on the
characteristics of the uncontrollable part of the system whether
collisions can happen.

Example VII.2: Let

and

It follows that

Algorithm A.8 yields

These collisions are uncontrolled. On the other hand if ,
then since for the uncontrolled system we have

which never comes in contact with the
boundary if

We have now set the stage to extend our results to linear
systems, where the state trajectory is constrained to an arbitrary
convex polyhedral set. It is well known that any polyhedral set
in can be written as a convex polyhedral cone in by
introducing an auxiliary variable [24]. The original polyhedral
set can then be obtained by projection
onto the original space [24]. Let denote the auxiliary
variable. Now define the extended polyhedral cone

Clearly, taking constant, by means of the pro-
jection map , i.e., , we obtain the original
polyhedral set again.

This idea for static cones can be extended as follows to the
dynamical system given by

(26)
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To avoid some technicalities we assume without loss of
generality that there are no redundant inequalities [9]. It can
be seen that contact and release take place on the boundary set

For (26) the integer is of
interest. (Compare with from Definition IV.1.) Define
as new state variable Note that auxiliary
variable is used as a scaling variable and is kept to its initial
value by taking In that case the original statecan
be obtained from the new state since Clearly, there
is a one-to-one correspondence between the old state-variable

and the new state-variable For the dynamics of the
extended system, we obtain

Substitution of this equation into (26), using , yields

We obtain for the extended system

(27)

Observe that in (27) the dynamics are (in part) represented by
a nonlinear differential equation. Also note that the restricting
cone is not closed. In order to put (27) in the standard form
discussed in Section VI, we first observe that is trivially
satisfied if we take as initial condition

with This follows from Next, and again using
the fact is constant, we make a change of the basis of

, i.e., with the new control. Since we can
always recover the original input Substitution of
into (27) gives

(28)

with

As a last step, define

and

The resulting system equations now read

(29)

Clearly, system (29) is a linear system restricted by a
polyhedral cone and fits the framework of Section VI.

With respect to the assumptions made in Section II we
remark the following. First observe that

Hence Also
and

However, controllability of the pair is not preserved
by introduction of the auxiliary variable the pair
is obviously not controllable. It can be seen, however, that

and We state
the following result.

Proposition VII.3: Let and
Consider systems and Then the following relations
hold.

1)
2)

Proof: Straightforward computation gives

The result in 1) now follows from From
the definitions it follows that

The result in 2) now follows from
Clearly, for we can use the results presented in

Sections III–VI, with the notable exception that we no longer
have that for the constrained system if

VIII. C ONSTRAINED MECHANICAL SYSTEMS

In this section our approach to constrained dynamical sys-
tems is applied and compared to constrained manipulator
models. A primary goal of controller design for constrained
manipulators is to ensure that impact forces remain within
specified bounds and that bouncing of the manipulator is
avoided as much as possible. In general, for constrained
manipulator systems there are two approaches to the contact
problem: in the first approach the surface is assumed to be
stiff, but deformable. In the second approach the surface is
assumed to be rigid. We will only discuss the latter approach
for an ideal linear model of a constrained robotic manipulator:
a series of connected links with a so-called end-effector on the
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end of the last link. Numerous publications exist which address
constrained manipulators, and we refer to [7], [13], [14], [17],
[19], [21], and [30] (and the references therein) for details.

As in our approach, three phases are recognized in con-
strained motion: a free motion phase, a collision phase, and a
constrained motion phase. More often than not, the dynamics
model of a robotic manipulator is in terms of generalized
joint-coordinates. Using the kinematic relations it can be
transformed into a model in so-called task-space coordinates
[21]. Assuming that contact is frictionless, the following model
is taken from [7], adapted to a linear setting and to our
notation:

(30)
during free motion,
during collision,
during constrained motion

(31)

subject to (2). Here represents the end-effector position,
represents the contact force matrix,denotes the impulsive
force due to collisions, and denotes the Lagrange multiplier
which has the dimension of the force for a holonomic equality
constraint [7]. We will assume that which
gives that the constraint set is nonempty.

Model (30) is based on mechanical systems subject to
equality constraints. Clearly, (30) now contains two inputs,
i.e., and of which is the control input and is an input
which is not available for control purposes. In the literature on
constrained mechanical systems matrixis usually chosen to
be the identity. We will assume that each degree of freedom
can be actuated and that is invertible (to avoid some
singularities). As in Section II a state-space model can be
obtained by defining

(32)

in conjunction with (31) and (5).
In our approach to restricted systems, c.f., Theorem VI.2,

in the free motion phase the original unconstrained dynamics
model is recovered. This is also true in model (30), (31), and
(2) since is set to zero in that case.

Next we discuss the collision phase. In (31),models an
impulsive force due to collisions. In the case of a robotic
manipulator, this impulsive force is distributed throughout all
joints of the system. In general it is difficult to obtain an
explicit expression of this force, and in [7] an estimate is given
based on the momentum change in the robotic system due to
the collision. This means that knowledge of the collision map

introduced in Section V, is a prerequisite to obtaining an
expression for since the velocity characteristics on the end-
effector level immediately after the collisions are necessary.
After estimating the jump discontinuity in the joint angular
velocity components can be calculated. The importance of
(the estimate of) is a consequence of the fact that a small
impulsive force leads (in general) to small changes in the
velocities. The estimated value of can be used in the path

planning stage: a feedforward control can be designed such
that impulse forces are small.

With the aid of the homogenization procedure from
Section VII, it can be shown that from (3) and Definition
IV.1 that From Algorithm A.8 it follows that for
(3), with the uncontrolled collision and
release sets are

(33)

(34)

Consequently, for (3), it follows that the collision map
(introduced in Section V) does not need to affect the positions,
but causes a jump discontinuity in (part of) the velocity
components of the state. This is completely in line with
the results found in, for instance, [7], [13], and [30] (when
adapted to the linear case). Since the system has a nonzero
mass, the discontinuity in the state is caused by an impulsive
force. Our approach to constrained dynamical systems covers
a result obtained in [7] for constrained mechanical systems.
(The original proof for the nonlinear case can be found in [7,
Th. 1].)

Proposition VIII.1 [7]: Let denote the velocity compo-
nent normal to the boundary set of (2) at the moment of
collision. Then there is no elastic collision if and
only if

Proof: From Theorems IV.8 and V.9 and (33), it follows
that there are no collisions if and only if and
Hence, , i.e., The collision map of
Section V can be taken as the identity on meaning that
there is no discontinuity in the state. Consequently,

Finally, we discuss the constrained motion phase. System
(3) reduces to a singular system (or descriptor system) [20]. If
the motion is assumed to proceed in, i.e., if one assumes
that the trajectory of (3) remains in we effectively
have a bilateral constraint. An expression for the collision
map can be derived with the aid of the class of applicable
controls in Definition IV.10. Since has full-row
rank, an expression for a right-inverse can be found. To arrive
at (30) we take and solve

for the vector This leads to where

If we now define the collision map
, c.f., Definition V.4, then we arrive at (30). Note

that the state needs no adaptation. The expression forequals
the one in, for instance, [10], [17], and [18] (for the linear
case). Upon making contact, whatever the controlthis
control is corrected by means of such that the control

defined by is not forbidden, i.e.,
(c.f., Definition IV.10). This is part of the reason

why model (30) is widely used. On the other hand, ifis
given, then is not uniquely determined. This also follows
from practical experience; it is possible to vary the force
exerted on a table while maintaining the position. This means
that there are infinitely many combinations that give
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Note that by introduction of the auxiliary
variable recognition of deactivation of the boundary set is a
problem in itself, i.e., the sign of is important. For a detailed
discussion on whether or not a boundary set becomes active
or passive in the case of constrained mechanical systems, we
refer to [13] and [18].

It is concluded that our approach to restricted systems fits
the general approach taken in the literature on constrained
mechanical systems. Moreover, our approach makes it possible
to compute explicitly the regions where uncontrolled collisions
occur and where smooth controlled contact is possible. Our
study indicates that control effort may be aimed at making
contact with small velocities and at effective avoidance of
multiple bounces. It is remarked that (30) also provides clues
for extending the theory presented in this paper to the case
where, after impact, the motion remains (or is to remain)
on the boundary of the constraint set [14], [19]. During this
constrained motion phase, system(6) becomes a descriptor
system in differential algebraic form. If part of the input
variables are to be interpreted as contact forces as in (30),
it is practical to maintain all input variables in the system
representation. An auxiliary variable can be introduced which
plays the role of Lagrange multiplier [10], [17]. A promising
approach is to combine our framework to model the contact
problem, with the framework advocated in [26] to cover
subspace restrictions.

IX. CONCLUSIONS

In this paper we have studied the contact problem: the effect
(of the boundary) of inequality constraints on the behavior
of linear continuous-time dynamical systems. A number of
(two-by-two disjunct) subsets of the state space have been
introduced. It was shown that these subsets are invariant
under linear state feedback. Algorithms have been derived
that calculate these subsets in a finite number of steps. Our
main results are a system theoretical framework in which we
described exactly what happens upon contact, identified the
specific places for modeling the laws of collision (which are
regarded as external factors), and presented a precise definition
of the constrained state-space system in terms of the restricted
behavior. In this framework, the consistent initialization of
a constrained linear system has been discussed. The results
presented here can be considered an extension for restricted
linear systems of the classic positive invariance theory for
linear systems.

In practice there are usually restrictions on the control. By
linear state feedback these constraints are transformed into
state constraints. Clearly, by choice of the control designer,
contact with the virtual boundary can lead to saturation of the
controls. One of the features of classical positive invariance
theory is that it usually leads, under restricting conditions, to
controls that do not saturate. It is of interest to combine the
theory presented here for systems with state restrictions with
the (classical) positive invariance theory for controller restric-
tions (under linear state feedback). Such a theory can lead to
nonsaturating controller design, where realistic collision maps
are included for the state restrictions.

It is also of interest to apply the approach taken in the
present paper to cover other (more general) system repre-
sentations. If the restricting constraints contain a mixture of
equalities and inequalities, it is natural to investigate the
contact problem in a descriptor representation: the equalities,
i.e., the dynamics and the equality constraints represent the
descriptor system, and the inequality constraints model behav-
ioral restrictions. The equalities can also model contact with a
boundary for a longer period of time. In that case, combining
our framework with the results reported in [10] and [26] may
allow for easier resolution of constrained motion problems in
a system theoretical setting.

Finally, we remark that our approach shows promise for
extension to nonlinear systems. Indeed, (some of) the integers
introduced in the present paper already have their counterpart
for nonlinear systems. Also, for controlled collisions the role
of the largest controlled invariant set is taken over by the
maximal controlled invariant distribution. This is currently
under investigation.

APPENDIX

ALGORITHMS

In this Appendix first some relations between subsets of the
boundary set are presented. Next, algorithms are derived that
will, in principle, produce all the subsets in a finite number
of steps.

Lemma A.1:Let satisfy the assumptions and
let Then

Proof: Suppose Then
From Corollary IV.2-2) and -4) it follows that such that

This gives From Lemma IV.4
it follows that Let Now suppose
that By definition From Corollary IV.2-
1) it follows Moreover, from Corollary IV.2-3) it
follows that This contradicts that

such that as follows from
Lemma A.2:Let satisfy the assumptions and

let Then we have the following.

1)
2) and
3)
4)

Proof Suppose that If
, then From Lemma A.1 it follows that If

on the other hand, , then , c.f., Corollary
IV.2-1). From Lemma IV.4-2), and Corollary IV.2-
3) it follows that From
it follows from Lemma IV.4-1) that is even.
From Definition IV.5 it now follows that
from Definition IV.5 and Lemma IV.4 it follows that

Suppose that Then , c.f.,
Definition IV.5. From Corollary IV.2-2) and Definition IV.1
it follows that

with By appropriate choice of
one can make positive or negative, taking into

account the parity of From Lemma IV.4 it now follows
that
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2): We only prove the first equality. The second equal-
ity can be proven analogously. Suppose Then

, c.f., Definition IV.6. It follows from Lemma IV.4
and that Lemma IV.4-2) now
gives that

3): Let First assume that Def-
inition IV.5-2) gives that is even and

From Lemma IV.4 it now follows that
Next assume that If is odd

and then it follows from Lemma IV.4 that
If then it follows from Lemma

IV.4 that This leads to
4): This follows from the definitions.
Note that the result in Lemma A.2-1) shows that Example

III.2 is indeed nongeneral. That example, however, does
show that some of the subsets can be empty. For the sets

expressions in terms of constraint matrix
are given by (9)–(11), respectively. Moreover, from
it follows that ISA (7) yields the set in a finite number of
steps. Therefore, in the remainder we will concentrate on the
subsets and Recall from
Theorem IV.8 that these sets are two-by-two disjunct. For the
sets and there holds by definition.
From Definition IV.1 it now follows that
This yields by Lemma IV.4 the following proposition.

Proposition A.3: Let satisfy the assumptions
and let Then

and

Proof: Omitted.
For the subsets and the derivation

of alternative representations is based on the observation that
either must be odd or must be even.

Propostion A.4: Let satisfy the assumptions
and let Then we have the following.

1)

2)

3)

4)

Proof: We will prove only 1). The other statements
are proven analogously. From Definition IV.5 it follows that

and
The result now follows from Corollary IV.2-2) and -3), and
the definition of the map

In the remainder of this section we show that the calculation
of the subspaces can be based on the ISA (7). The integer
is well defined as a consequence of the controllability of the
pair Obviously, observability of the pair has

an influence on the set For this, it is useful to define two
more integers.

Definition A.5: Define the integers and as
and

Note that the set is the
unobservable subspace, and if is observable
and integer equals the observability index [29].

Lemma A.6:Let satisfy the assumptions and
let Let denote the subspaces obtained in step

of ISA (7). Then:

1)
2)
3)
4) and

Conditions 1) and 2) follow immediately from the
assumptions and the definitions. From ISA (7) it follows
that for the equality 3) holds since
Now assume that Then, from (7)

Using 2)
now gives

As for 4): from 1), 2), and Definition
A.5 it follows that The second statement now
follows from 1), 2), and ISA.

Combining ISA (7) and Lemma A.6 now gives the following
corollary.

Corollary A.7: Let satisfy the assumptions
and let Then the subspaces calculated with
ISA, have the following characteristics:

Finally, combining Corollary A.7 with Propositions A.3 and
A.4 and Lemma A.6 yields the following algorithm, which pro-
duces all the required subsets in a finite numbers of steps. Since

the algorithm can be terminated at most insteps.
Algorithm A.8 (Computation of the Subsets of the

State-Space):Let satisfy the assumptions
and let Let denote the subspaces obtained in
step of ISA (7). Let Then:

1)
2)
3)
4)
5)
6) with

7) with

8) with

9) with

10)

Proof: Omitted.
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As remarked in Section III, it is intuitively clear that the
contact sets and the release sets switch roles for the time-
reversed system, i.e., the system with system matricesand

Note that satisfies the assumptions stated
in Section II if and only if satisfies these
assumptions.

Proposition A.9: Let satisfy the assumptions.
Then the following relations hold between subsets of system

and the time-reversed system

Proof: From Definition IV.1 it follows that the sign of B
is not important. The result now follows from Algorithm A.8.
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