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The Contact Problem for Linear Continuous-Time
Dynamical Systems: A Geometric Approach

A. A. (Tonny) ten Dam, K. F. Dwarshuis, and Jan C. Willeras|low, IEEE

Abstract—In this paper linear time-invariant dynamical sys- these systems have not been (or cannot be) prepared properly.

tems described by a combination of differential equalities and And it is the latter that can be seen as the contact problem
static inequalities in state-space formulation are investigated. Of proper

special interest is the contact problem: the effect of the boundary h bl L . d f h
of the constraint set on the behavior of the system. This effect | N€ contact problem is investigated from a system theo-

is studied by dividing the state-space in a number of disjunct retical point of view: the effect of the presence of inequal-
subsets. It is shown that these subsets are invariant under linear ity constraints on the behavior of a linear continuous-time
state feedback. In our framework, a specific place is reserved dynamical system. Inequality constraints can be found in,

for modeling the laws of collision, i.e., physical modeling, which : :
are regarded as external factors. Our main results are a system for instance, models for economic systems, thermal control

theoretical framework in which we describe what happens upon Systems, and biological systems. But perhaps the best anWF‘
contact and a definition of the constrained state-space system in class of systems where inequalities arise is that of mechanical

terms of its restricted behavior. The results presented here can systems, where the contact problem can be discussed in terms
be considered as an extension for restricted linear systems of the ¢ ~gllisions and collision avoidance.

classic positive invariance theory for linear systems. . . .
P y Y It is well known that control of constrained mechanical

Index Terms—Constrained behaviors, constrained linear sys- systems is much harder than control of unconstrained systems.
tems, contact problem, hybrid systems, inequality constraints. One also has to ensure that impact forces remain within
specified bounds and that bouncing is avoided as much as

|. INTRODUCTION possible (see, e.g., [7] and [19]). Research into the mechanics

HE PURPOSE of this paper is to contribute to a betté’tj contact has a long history [3], [16]. When a trajectory

understanding of the influence of obstacles on the b|g1_akes contact with the boundary set of the region modeled
an inequality constraint, this is generally referred to as

havior of a physical system. Methods for physical modeling® ™" . . . L
ctivation of the associated equality constraint. Activation

enerally follow from certain principles, such as setting u . .
g y P ¥ d deactivation of a constraint, and the consequences of the

the motion equations in the case of mechanical systems F\{g d deleti ¢ ) . h
use of the Lagrangian formalism. Since in many practicg ltion and deletion of equations to a representation, have

control problems geometric unilateral constraints enter t &en S?Ud'ed for mstan_ce in [10], [1,3]' gnd [18]. When a
problem formulation, the resulting system of equations will ifonstraint becomes active, some derivative of (part of) the
general contain both differential equalities as well as algebraitdt€ can be discontinuous [18]. For example, the velocity of
(inequalities. For instance, during operations with a robotft Pouncing rigid ball will change sign instantaneously when
arm, situations will occur where the manipulator is, or comel!€ ball touches the (rigid) ground. Depending on the physical
in contact with its environment. In this setting the differentidProPerties of the modeled system, the new state (after collision)
equations model the unconstrained behavior of the manipuf§!l in general depend on the state when the collision took
tor, whereas the algebraic equalities and inequalities model #lgce- A mapping that models the laws of collision is needed,
environment. In a more general system theoretical framewdMich is regarded as external in our framework. The latter
the algebraic equations may model interconnections betwd@r10t surprising because a general theoretical discussion on
subsystems [28] or general restrictions on the system impod§ar systems does not involve the notion of collisions, as
by the environment [26]. In this context we will be concerne@PParent for mechanical systems. An analog can be found in
with the preparation of the state to allow for a successfl§6], where certain mechanical properties, such as the notion
interconnection or tearing [28]. We also investigate what wifif €nergy, are used to make a link between the framework

happen if systems interconnect (or tear) while the state(s)®f[25], [27], and “physical modeling.” We will show that
collisions can be brought into the studies of linear dynamical
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from the mathematical models of the unconstrained dynami&lich a model can, for instance, be obtained by (feedback)
system and the constraint set. It is only after this analysis tHatearization of the nonlinear dynamics model. Consider the
we look in more detail to the constrained dynamical systefollowing multi-input/multi-output linear second-order differ-
itself. This particular sequence of steps leads to importagitial equation as a model for a mechanical system:

insights to the contact problem and to useful theoretical

findings with respect to modeling and control of dynamical Mj+Dy+ Ky = Lu (1)

systems subject to unilateral constraints. Research in the ﬁelﬁerey ¢ R is a generalized system coordinate vector

" . ; . 4 :
of positively invariant polyhedral sets (see for mstance[ 1, [8], ¢ R™ the generalized force vectond € B¢ the
and the references therein), i.e., systems subject to constraints” " o T : dxd
: . . . eneralized positive definite inertia matrik) € IR the
described by polyhedral sets, do not include a discussion gn . : . dxd
. . eneralized structural damping matri¥, € IR the gener-
the contact problem itself. We will show that our approach: . ; dxm
. . . , . alized structural stiffness matrix, adde IR the actuator
generalizes, for restricted linear systems, the classic notion 0 o :
o . . force distribution matrix.
positive invariance for linear systems. . . . N
. : . . The presence of an object in the environment implies a
The paper is organized a follows: in Section Il the problem .~ . . .
T : . restriction of the behavior of the mechanical system. In many
formulation is presented. A constrained mechanical system is . .
. ) . .cases these restrictions can be represented, or approximated
discussed and the assumptions are stated. Since an arbit ar L . : o
. ; rQo#’ally), by a finite system of linear inequalities
convex polyhedral set can be represented as the intersection 0
a finite system of closed affine half-spaces [24], it will prove Py>d )
fruitful to first consider the case where the state trajectory N
is restricted to be in one closed half-space. A first, andith P € IRP*¢,d e IRP. By convention, inequalities between
basic, subdivision of the state space, based on activation amdtors are componentwise. Restriction (2) determines a con-
deactivation of a boundary set, is given in Section Ill. Invex polyhedral set. Note that constraint (2) can also be used to
Section IV we complete our subdivision of the state spaeeodel distances between subsystems in particular directions.
by examining the behavior of the unconstrained system onAs a simple example consider a ball that is falling to the
the boundary of the constraint set. It is shown that thground. Two principal observations can be made. First, the ball
subsets are invariant under linear state feedback. Somecah start at any position on or above the ground and with any
the relations that hold between all the newly introduceiditial velocity. Second, due to the presence of gravity, the ball
subsets of the state space are presented. Algorithms that will inevitably come into contact with the boundary. Moreover,
compute all these subsets in a finite number of steps d&ased on the conservation of momentum, the velocity of the
derived in the Appendix. Sections V and VI are the corgigid) ball will change sign instantaneously when the ball
of the present paper: a detailed description of the restrictemliches the (rigid) ground.
behavior of continuous-time constrained linear systems isMore generally, it can be seen that My(t) >d for ¢t €
given. A physical interpretation is added to the mathematic@l , ¢;], the behavior of the constrained system in that time-
description, and the contact problem is discussed. The maiterval is described by (1). In that case the boundary set of
results will be the allocation of the specific place that ithe allowed region, i.e., the equality constraidtyy = d;,
reserved in our framework for modeling the laws of collisiomssociated with the inequaliti€gy > d;, are called passive
and a precise definition of the constrained state-space systeifiBj. (Here subscripti denotes theith row of a matrix.)
terms of its restricted behavior. In addition, the concepts of u@n the other hand, (part of) this boundary set is called
controlled collisions and controlled collisions are introduceéctive (at timet) when Py(¢) = d; for somei € 1,---,p
It is shown that trajectories of the constrained system congi$8]. In the latter case, (1) and (part of) (2) reduce to
of concatenated trajectory pieces of the unconstrained systemdifferential/algebraic equation (DAE) on the time-interval
In this framework, consistent initialization of constrainedkt,,¢,] and may be combined to yield a differential equation
linear systems will be discussed. It is shown that dynamioaith fewer generalized variables than the one in (1) [13]. We
systems subject to equality constraints are included in owill not follow this approach. For instantaneous collisions one
analysis. In Section VII, relaxation of some of the assumptioihgs that a constraint can be active at a discrete-time point
is treated. Moreover, the results will be extended to covenly. Another difference compared to DAE systems is that one
continuous-time dynamical systems restricted by an arbitraggnnot differentiate (2) to obtain an inequality constraint on
convex polyhedral set. In Section VIII, a comparison is madge velocity level as the differential operator does not preserve
between our approach to constrained systems and constraigigel [9]. On the other hand, for DAE’s one also hag = 0,
mechanical system models found in the literature. Finally, #nfact that is referred to as a hidden constraint in constrained
Section IX the conclusions are stated. Throughout the papeechanical systems [5].
simple examples illustrate the concepts that are introduced. For (1), define the state := [y*,3%]*. Then (1) and (2)

can be written equivalently as

II. MOTIVATION AND PROBLEM FORMULATION i =Az+ Bu
The study of control/structure interaction in large spacecraft = 0 ! T+ 0 "
) ; " . : -M~'K —-M-'D M™L
or complex robotic systems is facilitated by assuming an ideal,

linear mathematical model for the dynamics (see, e.g., [2]). Cz =[P 0]z >d. 3
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Note that for constrained mechanical system (3) one has2) How do collisions fit into a general theory on dynamical

OB =0, ie.,im(B) C ker(0). systems subject to unilateral constraints?
Motivated by (3), we will investigate linear time-invariantrirst we make investigations into the influence of the constraint
dynamical systems on the unconstrained systed. Further discussion of the

constrained systemic© itself is postponed until Section V. The
second question, especially, will give rise to a specific place
in our framework that is reserved for modeling the laws of
collision, which are regarded as external factors. We will show
Cz > d. (5) that when the boundary of an inequality constraint becomes
active, the state trajectory may become discontinuous with
Here A ¢ R"", B ¢ R"™™,C ¢ RP*, andd ¢ respect to time. It will also be shown that incorporating a
IR?. Throughout, we will assume that polyhedral set (5) ighysical interpretation into a system theoretical framework
nonempty, an assumption which is trivially satisfied/i= 0. generalizes the notion of positively invariant (or controlled
It is remarked that no requirements, other tifaez 0, will be  invariant) polyhedral sets.
put on constraint matrix’; we allow for redundant equations We will show that collisions can be brought into the study
and implicit inequalities [9]. The combination of (4) and (5pf linear dynamical systems by using geometric terms, i.e., the
gives rise to a constrained systeifi( A, B, C,d), defined as use of particular structures of vector spaces. In particular it will
be shown that the subsets can be computed using intermediate
se. {w = Az + Bu (6) Steps of the invariant subspace algorithm (ISA). For future
0<Cx—d. reference we state thig*-algorithm” [29]. Let.X denote the

To reduce notation we usually delete the arguments, for i%t_ate space. Let matriced, B, and C' be given and be of

- . - ; appropriate dimensions. Let=V := {z € R"|Az € V}.
Staf?cez (A’B’C’.d) will be denoted bﬁ - In the remainder ote that it is not required thatl is invertible.) Define
z will denote a trajectory of a dynamical system. Note that (4), ¥ and
is a linear system, whereas (6) is not. In [9] systems as in (6)
are investigated in a convex conical setting. (A systéns kbl sk _
called conical if{z; € X} = {\z; € ¥,V\ > 0}, a system VI =ker(C)n ATV +im(B)), - k=01, (7)

% is called convex iffz,, z, € ¥} = {Az; + (1 - Az, € This defines a nonincreasing sequence of subspace¥. of

%, VA0 < )‘. < 1} [91) . . Since dim(&X) is finite, there exists a value df such that
The following assumptions hold throughout this paper f%kﬂ — V. This limit is denoted by*. By construction one

system matricesA andB and constraint matrice§€’ and d, hasV* C ker(C).
unless stated otherwise.

1) rank[BAB--- A""'B] = n.

Y& = Ax+ Bu 4

subject to inequality constraints

2) im(B) C ker(C) IIl. CONTACT AND RELEASE SETS
3) C # ()__ In this section we will start our subdivision of the state-
4) {z € R"|Cx > d} # 0. spaceX’ by investigating the behavior of an unconstrained

Assumption 1) is equivalent to controllability of the unSyStém in a convex polyhedral cone. Any convex polyhedral
constrained system (4) [29]. Assumption 2) is motivated HPNe can be represented as the intersection of a finite system
representation (3) and is a natural one to make (see afoclosed half-spaces [24]

[26] for a discussion on equality constraints in the case »

of Hamiltonian or gradient systems). Assumption 2) does {x e R"|Cz > 0} = ﬂ {z € R"|Ciz > 0}

cover mechanical systems subject to holonomic inequality - -
constraints but is not limited to this case. Assumptions 3) and
4) are made to exclude the trivial case$ = X, or ¥¢ = where C; denotes theth row of matrix C' € IRP*™. It will
(depending on whether or n6t< d). Note that Assumption prove fruitful to first consider in detail the case of a single
4) is trivially satisfied for polyhedral cones. We will use thenequality constraint

phrase &,,(A, B, C.d) satisfies the assumptions” to indicate

that in the state-spac# with dim(&’) = n, system matrices Cz >0, with C e R, (8)
AeR™™"™ andB € R™*™ of the unconstrained system, and

constraint matrice€ € IRP*" andd € R?, used to model The constrained systelir (A, B, C) (:= X°(4A, B, C,0)) with

a convex polyhedral set, satisfy the above assumptions. Wec R*™ will be denoted byx¢. (It is not until a full
also assume that the controls take their valuéfinthe set description is derived of the restricted behavior $f in

of piecewiseC™ functions. Relaxation of the assumptions iSection V that we return to the case of multiple constraints,
discussed in Section VII. i.e., C € RP”*™(p > 1) in Section VI.)

The main topic discussed in this paper is the contactA first, and basic, subdivision of the state-spak¢és based
problem. The questions we will address are as follows.  on inequality constraint (8) only. Defink, (g for good) as the

1) How do inequality constraints (5) interact with thecollection of states, where the inequality constraint is satisfied

behavior of an unconstrained system (4)? strictly and X’ (f for false) as the collection of states, where

=1
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the inequality constraint is not satisfied. One has Even on this basic level some interesting properties arise.
It can be seen that o/;\V* no special measures need to

Ay ={z € R"|Cz >0} ) be taken as the trajectory will leave the constraint and will
Xr ={z € R"|Cz <0} (10) go to &,. On X,,,\V*, however, a collision can take place
ker(C) = {z € R"|Cz = 0}. (11) as there is no control such that the trajectory will remain on

_ . ker(C). In general, the situation will be more complicated than
The set|, represents the interior of the convex cone, wheregse one given in the example above. We will locate exactly,

the boundary set models a hyperplané. Note thatt,, Xr, in subsequent sections, the subsekaf(C) where collisions
and ker(C) are disjunct subsets whose union is again thgill take place.

State-spacet.

A further subdivision of the subspager(C') can be made
based on the interaction of trajectories of unconstrained system I\VV. SUBDIVISION OF THE BOUNDARY SET
33 (4) with (8). Note that controllability (of the unconstrained
system) implies that any state can be reached in finite tirQS
starting from an arbitrary initial state. Let.,, (con for
contact) denote the set of points where a trajectory dhat

If a trajectoryx € ¥ enters the boundary of the constraint
t, i.e., if at some timeone hasCz(t) = 0, it depends on the
characteristics of the state (and its derivatives) at this contact
. ) : point whether or not a collision takes place. Of particular
starts in, can come into contact wither(C). Anqlogously, interest are the components of the state (and its derivatives)
Iet.Xrel (rel for release) denote the set of points Where fhat are not in the boundary set. A measure of this is the value
trajectory of . can leave the boundary set and remain (fqf Cz®(t), where z((t) denotes theith derivative of the
some period of time) int;;. These sets are defined forma”ystate_vecto’r at time. which can be obtained from 4)
by the following definition. ’
Definition 1ll.1 (Contact Seft,,,, and Release SeX,.): i i i1 i1
1) Xeon := {z € ker(0O)|3z € ¥ and 3t* <0 such that 20(t) = A'z(t) + A7 Bu(t) + -+ BulTV ().
z(0) = z, andz(r) € X, Vr: t* <7 <0}. _ _ _ o
2) X = {z € ker(C)[Fz € ¥ and 3t* >0 such that We will be concerned mainly with a further subdivision of
2(0) = z, and (1) € X,,Vr: 0< T <t*}. kgr(C). To shorten notation some definitions are given that
Formally X,on = Xson(A, B, C), but to shorten notation we will enable us to present alternative representations of the

: . . . N
will usually delete the arguments. The (finite-time) trajector?ubs{ats dte]:)?e%,m the. prel\/lous; sectrl]on. gelt' u ’t "?"ku thei
piecez(t) in the definition of X, is referred to as locally S a countable dimensional vector whose elements take their

viable in [23], where the so-called target problem, i.e., hoWAues in.

to reach a specific target subset, is discussed for differentjgPefinition IV.1: Let matricesd, B, andC’ be given. Define
inclusions. the following.

It is intuitively clear thatX.., and X,o, defined for sys- 1) h:: ker(Q)_lx UN — R as hi(zr,u) = CAw +
tem (4, B, C), switch roles for the time-reversed system =1 CA’Bu,_;.

Y (—A,—B,C). This is proven in the Appendix. 2) 7: ker(C) x UM = N U {00} asr(z,u) := min{i €
Finally, the set of points where a control exists such that ~ Nhi(z,u) # 0} with r(z,u) = oo if hi(z,u) =
the state remains iker(C) is given by V* [29]. 0,vi € N.
Example 111.2 (A Single Train Moving Along a Trackiet ~ 3) ¢t ker(C) — N asro(z) := min{i € N|h;i(z,u) #
the position of (a point on) a train be denoted#yConsider 0,u € UN}. ‘
the single-input/single-output (SISO) representagien+y =  4) 7o := min{i € NJCA"'B # 0}.

u, obtained from (1) by setting/ = D = K = L = 1, subject Both ¢ and rc(x) are finite since the paifA4,B) is
to the inequality constraint > 0, obtained from (2) by setting controllable [29]. It is easy to see that: € ker(C) and
P =1,d = 0. Definex := [y7,47]¥. The system matrices arevu € U", one hasrc(x) < 7(z,u). Observe that is the
smallest integeri € N for which h;(z,u) depends on the
A= { 0 1 } and B = [0} control. In an input/output setting the integey can be used
-1 -1 1 to derive, for instance, an input/output decoupling control law

The constraint matrixC' reads:C = [1 0]. It can be verified [12], and is also known as the order of the infinite zero in
that(A, B) is controllable and thaf'B = 0. Inspection shows €asép = 1, and the least of the order at infinity in the

that general case [11]. It is remarked that the integgrhas its
counterpart in nonlinear systems theory, where it is referred to
Xeon = {2 € R*|zy =0 Az <0} as a characteristic number, and represents “the inherent number
Xeeg ={z € ]RQ|3jl =0Axzy >0} of integrations between inputs and an output= ho(z,u)”
and [22]. In such a nonlinear context the map(x,v) denotes

the Lie-derivative of the one-form()(¢) along vectorfields
built up from Az and B. From the assumptions it is easy to
see thatrg > 2 and r¢(z) > 1. The following corollary

is straightforward from the definitions and the assumption
Xeon U Xl = ker(C), and XonNXg=V". 0O CB =0.

V* ={o}.

It follows that
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Corollary IV.2 (Some Useful Properties)-et = € ker(C).
Then:

1) ro(x) = min{ro,inf{i € N|JCA'z # 0}};

2) Yu e UN: 1 < i<re(x) = hi(z,u) = 0;

3) re(z) <ro = Yu € UN: hi(z, 1) = hi(x),i < 7o;

4) JuecUN:i>rg = hi(z,u) = 0. 1)

It can be seen from Corollary 1V.2-3) that for< ry, one 2)
has thath;(x,u) is independent of the control. The integers 3)
ro andrc(x) also have another important property: they are
invariant under linear state feedback. 4)

Lemma IV.3: Let X, (A4, B, C) satisfy the assumptions and
let C € R**". Then the integers, andrc(z) are invariant
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Based on our motivation of mechanical systems, we make
a further subdivision in contact (or release) with “velocity”
equal to zero and “velocity” unequal to zero.

Definition 1V.6 (The SetsY.oy ., Arelw (v for Velocity),
Xeon,h, @aNd &yep , (R for Higher Derivatives)):

Xeonw = {& € Xeon|rc(z) = 1}

Xrel,'u = {37 € Xre1|7’C($) = 1}

Xeon,h, 1= {2 € Xeon|Vu € UN: 1< re(x), re(z) is odd
and h,,c,(x) (a:,g) < 0}.

KoLt = {z € Xeal|Vu € UN: 1 <7 (), rc(x) is odd
and h,,c,(x) (a:,g) > 0}.

Finally, we prove that all subsets defined so far are invariant

under the linear state feedbagk= I’z + v, with v the new under linear state feedback (which is not to be confused with

control.
Proof: Omitted. O
It is remarked that Lemma V.3 also holds fB # 0,

the notion of controlled invariance). For instance, the set where
contact can be made with “velocity” component unequal to
zero does not change if we apply linear state feedback.

i.e., if ro = 1. Next we give alternative representations of the Proposition IV.7: Let X,,(A, B, C) satisfy the assumptions

subsetstioy, Arel, @and V*.
Lemma IV.4 (The Setk.qy, Arel, and V*):
1) Xeon = {7 € ker(C)|Fu € UN such that{r(z,u) < oo
and even, andh,(, ) (x,u) >0}, or {r(x,u)<oc and
odd, andh,,(l,&) (.I,Q) < 0}}
2) X = {z € ker(C)|Fu € UN such thatr(z, 1) < oo
and hr(m&) (.’IZ, Q) > 0}
3) V* = {z € ker(C)|Fu € UM such that(z,u) = co}.
Proof: Letz € ¥ and letz(0) = = with = € ker(C). If
hi(z,w) = 0for all {, thenr(z,w) > n. It follows thatz € V*.
This gives 3). Now suppose that such thath;(x,u) # 0.

and let C € RY™™. Then the subset®’.,V,,V;, Xeonu
Xeon, by Xrelw, aNd Apep, are invariant under the linear state
feedback: = Fx+wv, with v the new control, for the systel.
Proof: For the subset¥;, V,, Xoon v, Xeon,hs Arel,w, and

Arern there holdsl < r¢(x) < ro. From Lemma 1V.3 follows
that these integers are invariant. It is easy to show that the sign
of h; is preserved. Finally, fo¥, one has'¢(z) = ro (without
conditions on the sign of,). O

It will be important for a description of the restricted
behavior to have available some of the relations that exist
between the subsets defined so far. In the Appendix, Lemma

From a Taylor-series expansion it follows that it suffices t8-1, it is shown thatV. = V*. The following result will be
look at the first derivative that is not equal to zero. From thgportant. _
definition of the setst,,, and &, the statements in 1) and Theorem IV.8 (Relations Between Subsets of the State

2) now follow. |

Space): Let &,,(A, B,C) satisfy the assumptions and let

It is important to note that Lemma IV.4 does not say thay € IR"*™. Then we have the following.
for instance, X, and ;. are disjunct. This is discussed in 1) ker(C) = VUV UV, U Xeon, o UXoon U Xrel v U el -

more detail in the remainder.

It is clear that the integersy, r(x, ), and r(x) play an

important role. The decision of whether or not a paine

2) The SUbsetSng va ch va ng Xcon,'vv Xcon,hv Xrel,'vv
and A% ;, are two by two disjunct.
3) Xeon = Ve U Vg U Xcon,'v U Xcon,h-

ker(C) belongs, for instance}..;, can be based on the value 4) x,, = V.U Vy U Xielw U Kol -

of rc(z). Itis easy to see that dv such thath,(, ) (z,v) >0

for ro < 7(x,v) < o0, then there is also a contral such that
hro(2,1) > 0. If ¢ > 7, it follows from Corollary 1V.2-4) that
it is basically a controller design problem to keep the deriv
tives of the state along the manifofd equal to zero (or not).
This motivates the definitions in the remainder of this section.

Proof: The first two statements are straightforward from
the definitions and Lemma IV.4. The last two statements then

%Q”OW from Lemma A.1 and Lemma A.2 (see the Appendix)

y straightforward argumentation. O
Theorem IV.8 together with Proposition V.7 yields that we

Let V, denote allz € ker(C) for which all trajectories of Can make a complete subdivisionlef(C) in disjunct subsets
3. passing through: do so coming fromX, and going to that are invariant under linear state feedback. In the Appendix,

Xy. Similarly, let V; denote allz € ker(C) for which all
trajectories of¥ passing throughx do so coming fromt’s

algorithms are derived that calculate these subsets in a finite
number of steps. The following result is immediate.

and going toX;. Let V, denote the collection of states that Corollary IV.9: The subsetst.,, and Ay are invariant

belong toker(C) of which the smallesi € N for which A;

under the linear state feedbagk= F'x + v, with v the new

can be unequal to zero depends on the control. These setscargrol.

defined formally by the following definition.
Definition IV.5 (The Set¥),, V;, andV; (c for Control):

Next, as a summary, an intuitive explanation is given of
all subsets that have been defined so far. kgt A, B, C)

1) V, == {z € ker(C)Vu € UN: rc(x) is even, and satisfy the assumptions and take e IR'*". We can make

h,,c,(x) (a:, Q) > 0}.

the following statements relating € A with a trajectory of

2) V; = {z € ker(C)[Vu € UV: rc(z) is even, and the unconstrained systed.

h,,c,(,;)(a:,g) < 0}
3) V. = {z € ker(C)|rc(x) = ro}.

1) z € &, & x satisfies the inequality constraint strictly.
2) x € ker(C) & z belongs to the boundary set.
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3) ¢ € Xy & x does not satisfy the inequality constraint. setif,(x) an explicit expression can be derived. In fact, it is
4) & € Xeon, & all trajectoriese € X with z(t) = = for easy to see that for (4)

somet go transversally through the boundary set from

X, 10 X, Uy(x) = {u € UCA™ 2 + CA ™" Bu = 0},

5) x € Xeonn < all trajectoriesz € X with z(¢) = « for

somet go tangentially “through” the boundary set and he above sets, and some implications of our findings for
go from X, to X;. controller synthesis, will be discussed in Section VIII. (A

6) = € V,  all trajectoriesz € ¥ with z(t) = z for complete treatment of the latter topic is outside the scope of

somet go tangentially “through” the boundary set andhe present paper.)
go from &, to X,.

7) x €V, « all trajectoriesz € X with z(t) = = for some v ResTRICTED BEHAVIORS: THE SINGLE CONSTRAINT CASE
£ go tangentially “through” the boundary set, and there In this section we will define what we mean by a constrained
exists at least one trajectory that remainsén(C). . . . . Y
linear systen®l$, i.e., how an inequality constraint affects the

8) ¢ € V; < all trajectoriesz € X with z(¢) = = for : . .
: “ " behavior of a dynamical system. Recall from Section Il that
somet go tangentially “through” the boundary set fromthe constrained behavior (with = 0) is given by

Xf to Xf.

9) x € X1y < all trajectoriesz € X with z(¢) = « for i = Az + Bu
somet go tangentially “through” the boundary set from x4 {0 <. (12)
Xf to Xg. -

10) = € AL, « all trajectoriesy € ¥ with z(t) = « for A more detailed description df¢ is based on the subsets
somet go transversally through the boundary set fromefined in the previous sections.
Xr to Ay, For constrained mechanical systems one has in general

Until now we have investigated how trajectories of ang = 2, i.e., Xeonw # 0. This can be seen from (3).
unconstrained dynamical system interact with a boundary siéteach (sub)system is actuated, then in gene’l’aif} =
If the boundary set is looked upon as a mathematical constraifd/ —1 L # 0. Now, if contact is made iMeon,, @ problem
rather than a hard environment constraint, it follows that iarises since all trajectories will proceedit. Consequently,
Xeon\V. application of a smooth control cannot prevent gor mechanical systems subject to unilateral constraints the
trajectory of system (4) to ente¥;. It is clear that this finding contact problem arises: collisions do happen and a discussion
has consequences for (feedback) controller design if one of the this subject should thus be an integral part of a general
objectives is smooth contact with the boundary set. Moreovéingory on constrained mechanical systems. Now in mechanics,
the control should be chosen appropriatelyVin, i.e., one a collision will not change the position but will affect the
should exclude controls that will drive the system intp. velocity component. Note that this change will in general
This leads to the concepts of (locally) applicable and forbiddelepend in a unique way on the state at the moment of collision.
controls which will prove useful when the collision maps ar@/e make the following assumption.
discussed. Assumption V.1:Collisions are instantaneous.

Definition 1V.10: Consider (4). Letz € V.. The set of  For a description of¥¢ we need two more notions:
(locally) applicable controls is defined d#,(x) = {u € (in)consistent initial conditions and a mapping that can be
U|Fz € X,3t* >0 such thatz(0) = =, andz(7) € X, U used to model the laws of collision. First we define the set of
ker(C),¥7: 0< T < ¢*}. The set of (locally) applicable bound-(in)consistent initial conditions.
ary controls is defined a,(z) = {v € U|3z € X,3* >0 Definition V.2 (Initial Value Sets):The set of consistent ini-
such thatz(0) = z, and z(r) € ker(C),¥7: 0<7<t*}. tial conditionsZ¢, for ¢ is defined ag* := {z € A|3z € ¢

The set of (locally) forbidden controls is definedds(xz) = with (0) = x}. The set of inconsistent initial condition&[*,
{u € U|Fz € X,3t* >0 such thatz(0) = z, andz(r) € for X¢is defined asV® := {x € X| Az € X¢ with 2(0) = z}.
Xp V7 0< 7 <t*}. ClearlyZc N N¢ =@, andZ° UN° = X,

Definition 1V.10 can be seen as a further subdivision of In the remainder of this section we again concentrate on the
the boundary set. However, as far as the points V. are single constraint case? € R*",
concerned, these sets are not disjunct. The set of forbidderhn our framework contact with the boundary set of a single
controls will prove useful when we introduce the collisiorinequality constraint is modeled by a ma@d A general
maps in our framework. From the definitions it follows thaéxpression for the maff” will involve entering the physical

for (4) the set of forbidden controls is given by nature of the system and the constraint, and we will not pursue
; . such a general expression in the present paper. Thelhweif

Up(x) = U Up(x), ¢ 270 be used to provide a continuation of trajectories by mapping

! the set of points where contact is made to the set where

where release can take place. This will make (5) an invariant set

for (4). We will focus on the local behavior upon contact.
For the global behavior one also needs to consider an infinite
The setlf,(z) is also important in the case of bilaterallynumber of collisions in a finite period of time, which is a
constrained systems, where (6) reduces to a DAE. For thmdeling topic in itself (see [1] for a related discussion). For

Ll}(a:) = {u € U|h;(z,u) < 0}.
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mechanical systems, however, some general remarks are mtdg intact. This is possible since we can always majpto
in Section VIILI. the setV* (for which ro(2) = 7). Again, if originally
Recall that if contact is made iR, \V., then whatever rc(z) = ro, then control enters the formulation.
(smooth) control is used all trajectories will go £ unless  Definition V.5 (Inelastic Collisions).Let = € ker(C) de-
some special measures are takenVlrit depends also on the note the contact point. Definer := min{rc(£)|32 € Xral
control whether a trajectory will proceed iti, or will remain  such thatrc(x) <rc(&) < ro} with v = 7o if 7o (x) = ro.

in ker(C). This motivates the following definition. Then inelastic collisions can be modeled by a map as follows.
Definition V.3: Let = € ker(C). If € (Xeon\Ve) U Vs We 1) Tu: (Xeon\Ve)UVy = XN {z € ker(O)|re(x) = rr}
will call contact atz an uncontrolled collision. Likewise, if if ro<rg.

x € A1\Ve we will call release at: an uncontrolled release.  2) T,: (Xeon\V:) U Vs = V. if rp = 7.

If € V., then we will say that contact, release, ;ais a 3) To: Ve xU —= V. x (UNUy) IT rp =19,

controlled collision, controlled release, respectively. It can be seen that inelastic collisions differ in a number
From a system theoretical point of view, in the case @ff ways from elastic collisions, especially when control enters

elastic collisions, the map can be decomposed into a numbethe formulation. Notably, ifz € (Xeon\Ve) U Vy is mapped

of different maps by making use of the symmetry with respegito V., (so called “plastic” collisions), then at the same time

to the integerrc(z). For this observe that for the sets,,,, instance one must prevent the solution from entering Aifo

and &;1,, the value ofrc(x) is the same, as it is for the setsby adapting the control (if necessary). This can be done by

Xgon’h anXmfeLh, and for the sety/; andV} (c.f., Proposition applying the mag, immediately after the mafp),. Of course,

A.4). For the sed/. we havery = r¢(x), and once contact is one could also combine the latter two maps in one controlled

made we can instantly choose a control such that we rematilision map, but the present definitions will allow us to unify

in V*. Since all subsets are disjunct, and following the line alastic and inelastic collisions when discussing the behavior of

reasoning above, we introduce the collision maps, making usenstrained dynamical systems below. Note also that the map

of the result in Theorem 1V.8 (and the notation in Algorithni’, in Definition V.5 is similar to the maff. in Definition V.4.

A.8). Example V.6 (Example 11.2 RevisitedConsider again the
Definition V.4 (Elastic Collisions):In the case of uncon- system in Example 111.2. Fron®B = 0 and CAB = 1, it

trolled elastic collisions, the collision maf: X.on UV +—  follows thatrg = 2. From Algorithm A.8 it follows that

X1 can be decomposed on its (co)domain as follows.

1) T,: Xeonw — Xrely, for collisions with “velocity” Keonw ={z € Rz, = 0 A 29 <0}
unequal to zero. X — 2, _ * _
o ; . . . elv ={2 € R%|z1 =0 A 2, >0}, V* = {0}
2) Tp: X, — AL, for collisions with a higher odd o =4 o1 2> 0) {0

derivative unequal to zero.
3) Ti,: Vi — Vi, for collisions with a higher even The setsVy, Vs, Xeon,n, and ey, are empty. From Theorem

derivative unequal to zero. IV.8 it now follows that
4) Tj: Vi — V., for collisions with a higher even deriva-
tive unequal to zero. Xeon ={z € R?|z; = 0A 25 <0}

In the case of controlled elastic collisions, the collision magnd
T can be modeled d8.: V. xU — V. x (U\U;), for collisions
in V..

Note that the mafT}jg is only needed during initialization _ o o
since fort >tg no trajectory ofE‘f will ever enter]}f again_ c.f., Example [11.2. In the case of elastic collisions the intuitive
The mapZ} is defined for completeness reasons. AlsoVin “change of the sign of the velocity component” follows by
a major difference with respect to classical contact theory géefiningZ’(0, z2) = (0, —6x2), z2 # 0. Here0 <¢é < 1 is the
curs: control enters the formulation. Whereas for uncontrolléasticity parameter. The inelastic collisions can correspond to
collisions only the state needs to be adapted, for controlléd= 0. O
collisions the control also needs to be adapted. Note that forPue to the introduction of the m&p in to our framework,
uncontrolled collisions the maf will introduce a jump in it can be seen that any € {x € X|Cz > 0} can be chosen
the state-variables, from which an impulsive input can RS initial condition: in order to cross the boundary set, contact
calculated [15]. Another difference is that for uncontrolled cofust be made iftco, UV;. By choice of the collision map,
lisions the collision map acts at discrete points in time, wherel{t$ trajectory will proceed frond’.;, where the new state acts

controlled collisions may need continuous application of tH&® an initial condition for the system. Thus, in our framework,
map .. This difference is further detailed in Section VIl fortrajectories of the constrained system consist of concatenated

constrained mechanical systems. path pieces of the unconstrained system.
In the case of inelastic collisions (in mechanical systems), -émma V.7:Let X,,(4, B, C) satisfy the assumptions and

1xn : : -
part of the velocity component of the state is set to zero. THR ¢ € IR ™. The (in)consistent initial value sets for (12)

can be captured in our framework by mapping the state &€ given by
into z, with Z in the first nonempty subset if;,, where
re(z) <re(#), leaving the possible higher-order discontinu- I¢ = XU Xoon U X UV, and N°© = A

Xrel :{a: EIR,2|$1 =0Ax9 2> 0}
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Proof: The proof is straightforward from the definitions Example V.11 (Example IIl.2 Extended®uppose that we
of the subsets and the collision mdjp O want to model two trains riding on the same track, where the
It is remarked that if one requires that all trajectories agecond train is initially to the right of the first train. Denote

smooth atty, the conditionlim,;, z(t) = z(to) must be y = [y,y3]|*, with y1, 12, the position of the first train and

added to our definitions of (in)consistent initial conditions. lthe second train, respectively. The position constraint reads:
that case the se¥.on » U Xeon r, UV cannot be part of the sety2 —y1 > 0. If we further assume that;, =d; = k; =1; = 1,

Z¢ (and should be added t&). it follows that rq = 2. From Algorithm A.8 we obtain that
Example V.8 (Example 111.2 RevisitedConsider again the . .
mechanical system in Example lll.2. Use of the map Aeonw = {y2 = 41 = 0,2 — 51 <O}

T: (0,22) — (0,—6x9), for zo # 0,0 < § < 1 shows
that for the constrained systelf: Z7¢ = &, U ker(C) and
N¢ =X,

It is of interest to note that in the classic positive invarian
theory [4], [8], the set{z € X|[P O]z > 0} is not a
positively invariant set for the system in (3). This can be seen To(y1, Y2, U1, 92) = (Y1, Y2, 2, 1)- n
using a result from [8], provided that there are no redundant
constraints. In that case, classical positive invariance holds
if and only if there exists an essentially nonnegative matrix
H € IRP*? such that for the system with linear feedback

So, collisions occur when the trains make contact, and the
second train is moving faster to the left, or slower to the right,

than the first train. Assuming rigid trains, the elastic collision

cr‘la‘lapTU, based on conservation of momentum, can read

VI. RESTRICTED BEHAVIORS. THE
MULTIPLE CONSTRAINTS CASE

u = Fz, there holdC(A+ BF) = HC [8], with ¢ = [P 0]. In this section we will extend the results of Section V to
In the present case this reduces to finding mafiixsuch the multiple constraints case, i.e.,

that CA = HC, since CB = 0. From CA = [0 P] and F— Ae+ Bu

HC = [HP 0] it can be seen that matrii does not exist e {0 <Cu (13)

unlessP = 0. Moreover, if Xcon. # 0, then (classical)
positive invariance will never hold. We conclude that ouith ¢ € RP*", > 1. For later reference we denote
approach is an extension of the classic positive invariance
theory for linear systems. C:={reR"|Cz >0}, CeR", p>1.

We are now ready to present a more detailed description of
a constrained linear system. FBf it is clear that the initial To make full use of the results of the previous sections we
conditions must be in the sdt. If a trajectoryz at ime¢ mMake the following observations. Note thét= Ni_,{z €
belongs toX,, then the boundary of the constraint set dodB”|Ciz > 0}. (In this section the subscript is used to
not influence the trajectory. Hence the state satisfies the @§note subsets and matrices of subsystgrilext, define the

constrained system equations. Furthermore, if contact is mag@)strained systemsg,i = 1,---,p, by
collision can take place. This is modeled by the uncontrolled # = Az + Bu
and controlled collision maps from Definitions V.4 and V.5. X5 {0 <Coa (14)

In fact, we have now proven the following theorem.

Theorem V.9:The constrained systed; in (12) can alter- it follows that::c = n?_, ¥¢. For systen® contact or release
natively be presented as] = {z: IR — X'|Ju piecewiseC*  ith the boundary set is to be understood as contact or release

such thatvt, € IR: with at least one boundary set. For the polyhedral doree
1) z(to) € ¢ = &, Uker(C); boundary set,, and the regionst;, and X, are given by
2) z(t) € Xy U Xie, t > to = £(t) = Az(t) + Bu(t); ,
940 S eV UVt 2 o = e (0 = ¢ =Cn {U o e R|Cia = 0}} (15)
8) (t) € Vet > to = limye o (z, w)(+*) = T(alt), u(t)), , o
with () == u@ (1)}, Xy = [ {z € R*|Ciz>0} (16)
Here T is defined as in Definitions V.4 and V.5. i=1
Proof: Omitted. O P
SystemX¢ is a complex hybrid system, where features of Xy = U {z € R"|Ciz <0} 17)
continuous dynamical systems are combined with character- =1

istics of finite automata [6]. Controller synthesis for such can be seen that
systems is a nontrivial task [6]. For nonlinear constrained » »
mechanical systems, some of these difficulties are described

’ C,=Cn ker(C; , Ay = Xy
in [13] and [18]. ’ <U (ker( ))> o=[1%

=1 =1
Finally, we state the following result. and
Corollary V.10: X$(A,B,C) = (A + BF,B,C), ie., P
the constrained systed in Theorem V.9 is invariant under Xr = U X

linear feedback: = Fx + v, with v the new control. i=1
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For each subsystersi§, (i = 1---p), the subsets of interestand

can be computed from Algorithm A.8. The (in)consistent Xrelw2 ={x € R%|zy = 0,25 >0}
inital condiions sets are given by From (22) and (23) it follows that¥un,; € Xen and
c __ C __ c __ c __ Xrel,'v,l ¢ Xrel- O
= Q Zi=¢, and N*= Z_Ul N =24y Two solutions can be proposed for this loss of symmetry.

The first is to treat the loss of symmetry as a control problem:
the system should be controlled such that contact is not made
iN Aeon,w,1. IN light of the research in the field of positive

Taking the setsZ¢ and A¢ into account, the following is
obtained for the multiple constraints case:

V. — <LPJ v ) nc (18) invariance, this seems to be a difficult problem, and we will not
¢ et ot b discuss it in the present paper. Another solution is to view this
» as an inelastic collision: simply map the contact point in the
VF = Vei (19) first subset (with higher value of-(x)) such that release can
=1 take place. Such a subset always exists siWtés nonempty.
P Fortunately, symmetry is preserved in the case of mechanical
V, = <U Vgﬂ> NGy (20) systems (withrg = 2), subject to position constraints, as in
i=1 (2). This is immediate from the observation that the contact
p and release sets yield inequality constraints on the velocities,
Vi = <U Vﬁi) NG (21)  which can never be in conflict with the position constraints.
1:1 (They can be empty if the original position constraints are in
fact implicit equalities [9].) Obviously, Example VI.1 does not
Aeon,v = <U XCO“?”) s (22) deal with a mechanical system.
Zzl The third difficulty with multiple constraints is that for all
Kielw = <U Xm’m) ne, (23) mtersectpns of bogndary sgt;, new collision maps may need
e} to be defined even if the collision maps for the single boundary
p sets {zx € X[Ciz = OP\{U!_, ;. {z € X|Cjz = 0}}
Xeelh, = <U Xrel’h’i) NCy (24) have already been specified. However, this requires specific
i=1 knowledge of the application, which can be seen as follows.

=l

Suppose that there are two different inequality constraints,
Keon,h = <U Xcon,h,i) NCp. (25) numbered 1 and 2, respectively, leading to two boundary sets.
i=1 On the intersection of the boundary sets the combinations
There are a number of things that make multiple constrairgs all subsets introduce subsets with new characteristics. For
notably different in character than single constraints. First, thigstance, there may be a subset where for one constraint we
subsets in (18)—(25) need not be disjunct as on the intersectimner the boundary set i, .1, Whereas for the other
of the constraints, for each individual boundary set differesbnstraint we enter the boundary setdif, , ,. Based on
characteristics can hold. Nevertheless, all subsets can still$ection V, the obvious choice of the collision m@pwould
computed. The multiple number of combinations of subsgde t0 Map(Xeon,u,1 N X2, 5, 2) ONO (Xeelw1 N AZ o). It
that is possible also reveals that for dynamical systems subj&ctinclear, however, how the original collision mafis; and
to multiple constraints the organization of all the subsets isZa » Should be combined. And compositions®f; and7;; ,
problem in itself, which we will not tackle here. also may not be a correct expression as the 'ﬁ%E may
Secondly, in contrast to the single constraint case, rgsult in a (intermediate) st_ate _that v_|olat¢s the first inequality
is now possible that, for instance;.; is not entirely in constrqlnt. A furthe.r F:omphcaupn arises if the bounQary sets
C, or that Xeopoi € Cb bUt Xeep s ¢ C. This is shown have different elasticity properties. Clearly, the physics of the
o ” problem should not only specify (expressly) the collision maps
on the boundary set of each individual constraint, but also on
the intersection of the boundary sets. For the present paper
0 10 0 it suffices to remark that we have identified the places where
A=10 0 1}, B=|0 collisions can occur and where the collision maps should be
0 00 1 defined to deal with these collisions. Note that the results
and presented here can also be used as a starting point for controller
o= {—1 0 0} design such that simultaneously a state trajectory remains on
0 10 one constraint and makes contact with another constraint in a
It is readily verified thatY,,(A, B,C) satisfies the assump-smooth manner, i.e., contact with velocity components equal
tions. From Algorithm A.8 it follows that to zero. For instance, iV, ; C V., such a design is possible
3 if and only if V. 1 N (Xeon 2\ Xeon,w 2 @.
Keonv,1 = {2 € Rz =0, —25 <0} It is clear that with( the at}ove defi)nﬁ?ons the analog of The-
Xret,o1 = {2 € RP|z; = 0,25 <0} orem I1V.8-3) and -4) still holds, with the obvious redefinition
Xeonw,2 ={z € R3|zs = 0,23 < 0} of the setsX,., and X,.;, keeping in mind that contact and

in the following example.
Example VI.1: Let
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release is to be understood as contact or release with at leastemma VIl.1: Let ¢ € R>*™.C # 0 andd = 0. If

one boundary set. im(B) Z ker(C), thenker(C) = V* =V, = Xeonv = Xrel v
Based on the results of Section V and the discussion abogad Xeon p, = Xeeln = Vy =V, = 0.

we can now give the following result, with the obvious  Proof: Fromdim(ker(C)) =n—1andim(B) € ker(C)

redefinition of the self;. follows ker(C) + im(B) = X'. ISA now givesV* = ker(C).
Theorem VI.2: The constrained systekf given in (13) can Moreover, sinceCB # 0 one hasrg = 1. And from
alternatively be presented &s = {z: R — X|Ju piecewise hy(z,u) = C Az + CBuy, it follows that, depending on value
C* such thatvty € R: of ug, hy(z,u) <0,hy(z,u) =0 or hy(z,u)>0. O
1) z(to) € I Next suppose that4, B) is not controllable, and’B = 0.
2) z(t) € Xy U Xeel,t > to = &(t) = Az(t) + Bu(t); Note that in caseB = 0, i.e., in the case of an autonomous
3) z(t) € (Xeon\Ve) UVy,t > to = limy|;, z(t*) = System, obviously( A4, B) is not controllable. For simplicity
T(z(t)); assume that we are dealing with a single inequality constraint.
4) z(t) € Ve, t > to = limy- +(a, w)(t*) = T(x(t),u(t)), TWO cases are distinguisheé < co andro = oo. In case
with 2, (t) == u@(t)}. ro < 00, the analysis of the previous sections still holds. The

interesting case is whery = oc. In that caser,,;, = 1 (see
definitions in this section. the Appendix, Definition A.5). It is straightforward to show

Again, system> is a complex hybrid system, where thdhat n_owV* =V andV. = 0. So, fczlr inste}knce, step 10) in
collision maps are now much more complicated, especially gigorithm A.8 should be adaptedjfijl = V*. Furthermore,
intersections of boundary sets. As an example we will considéPm 7o = oo it follows that CA™'B = 0 (j > 1). It

the case where the inequalities model a linear subspaf@ows that, in the notation of [29](Alim(B)) C ker(C).

showing that systems subject to equality constraints can afggnseauently, the state trajectories of the controllable part
be treated with the theory presented here. of the system are entirely irfker(C). It depends on the
Example V1.3 (Example III.2 ExtendedConsider  again characteristics of the uncontrollable part of the system whether

the system in Example 1112, but now subject to the constraifif!lisions can hc'?lppen.
pairy > 0,—y > 0. For systemy we have (from Example ~EXample VIl.2: Let
V.6)

Proof: The proof follows from Theorem V.9 and the

0 1 0 0
A=1]1 0 o|, B=|o|, and c=[1 0 o
Xcon,'u,l I{.’L’ € IRQ|$1 =0Ax2 <0} 0 0 1 ’ . ; [ ]

and
It follows that

(Aim(B)) =V* = {z € R"|z1 =0 = x2}.

Xrel,'u,l = {-’L’ S IR?|.’IZ'1 =0A ZTo > 0}

From Algorithm A.8 it follows for systemX§ that (with

constraint—y > 0): Algorithm A.8 yields
Xeonw,2 = {37 S IR,2|$1 =0Az2> 0} Xeon,w = {37 S IR,n|$1 =0,22< 0}.
and ) These collisions are uncontrolled. On the other hand # I,
KXretw,2 ={z € R7[z1 = 0A 22 <0} then Xeon» = 0 since for the uncontrolled system we have
z,(t) = e’z (to), which never comes in contact with the

Clearly, ¢, = {y = 0}, N® = {y <0} U{y>0}2° = {0} o nqarye = 0'if 2, (fo) # 0. 0
Since forX{ andX§ the boundary set is the same, it is obvious We have now set the stage to extend our results to linear

that also the intersection of the contact sets becomes import né . : . .
; ; tems, where the state trajectory is constrained to an arbitrar
for trajectories ofS§ N X5. From Xeon,m.1 N Xeon,v,2 = 0 and Sy ) y y

Y . convex polyhedral set. It is well known that any polyhedral set
2/“’17’”71 n XE’L’”’? T ? tlt fg;lrllo_\:v scthat a trajetctciryg qar:rr:ot Ie?vein IR™ can be written as a convex polyhedral condRft* by
sglurli%rnm;lsee;ggc?gd with it. Consequently= 0 is the only introducing an auxiliary variable [24]. The original polyhedral
' ’ . tC = T > then be obtained b jecti
Corollary V1.4: 3¢(A, B,C) = X°(A+BF,B,C), i.e. the setC = {x € IR"|Cx 2 d} can then be obtained by projection

. . . T . onto the original spac@R™ [24]. Let o denote the auxiliary
constrqlned dynamical systexif in Theorem VI.2 is invariant variable. Now define the extended polyhedral cone
under linear feedback = Fx + v, with v the new control.

Ct = {(z,0) e R""|Cra — da > 0,0 > 0},

VII. GENERALIZATIONS Clearly, takingae = a9 > 0 constant, by means of the pro-

In this section we will first discuss the relaxation of one gection mapll,, i.e., II: (z,a) — z, we obtain the original
more of the assumptions. Secondly, we will extend the resuiglyhedral seiC again.
to cover arbitrary convex polyhedral sets. This idea for static cones can be extended as follows to the
First consider the case where the assumpiiofB) C dynamical systent:¢(A, B, C,d) given by
ker(C') does not hold, i.e.CB # 0. The following result )
is valid independent of the controllability ¢4, B) and states e, {37 = Az 4 Bu (26)
that all collisions are controlled collisions. d < Cx.
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To avoid some technicalities we assume without loss of With respect to the assumptions made in Section Il we
generality that there are no redundant inequalities [9]. It caemark the following. First observe that
be seen that contact and release take place on the boundary set

Cy :ICQ{LPJ {$€X|Cﬂizdz}}

=1

CB=[C -d {ﬂ _ CB.

Hence {im(B) C ker(C)} & {im(B) C ker(C)}. Also
{C # 0} & {C # 0}y and {C # 0} & {CT # 0}.

i . o : . NV
For (26) the integeny(x) := min{r(z,w)lu € U™} i of oyever controllability of the paifA, B) is not preserved
interest. (Compare withc:(x) frgm TDe%flnltlon IV.1) Define , introduction of the auxiliary variablex: the pair (4, B)
as new state variable := [(za)™, " ]". Note that auxiliary iiobviously not controllable. It can be seen, however, that

variable« is used as a scaling variable and is kept to its initi?Ahm(F)) — X U {ao}, and I, (Afim(B)) = X. We state
valueag by takingd = 0. In that case the original statecan o following resut. ’ * '

be obtained from the new state since- z; /«g. Clearly, there Proposition VII.3: Let C € R**".d € R, and a> 0.

is a one-to-one correspondence between the old state-vari@é%sider system&¢ and X<, Then the following relations
z and the new state-variablg. For the dynamics oE<T, the hold

extended system, we obtain 1) ro(A, B,C,d) = ro(4.B,0).
(

_d(za) ) 2) {[(ax)T,aT]" € ]R"+1|7’5 ar,a) = £}y = {z €
21 = P o+ az. ]Rn|7’b($) — g}'
Substitution of this equation into (26), usikg= 0, yields Proof: Straightforward computation gives
71 = (Az + Bu)a = Az + Buazs. Zj = ﬁl)] 8}
We obtain for the extended system S J .
y T =[C —d {A 0} _c4l 0.
21 = Az + Buzo 0 0

et ) 22=0 , i .
net. 62< o — do (27) The result in 1) now follows fronC A’B = CA’B. From
0< 2 LT the definitions it follows that

. —h. T _1MMT
Observe that in (27) the dynamics are (in part) represented by hi(z,0) = hi([(az)", o ]‘ )
a nonlinear differential equation. Also note that the restricting ——i | za i1
cone is not closed. In order to put (27) in the standard form =C4 [ } - Z cA By
discussed in Section VI, we first observe that- 0 is trivially
satisfied if we take as initial condition

#(to) = [(awz(to)", o] i=1

&
=1

with ¢ > 0. This follows fromz, = 0. Next, and again using —al| cAlz + i: CA1Bu. .
the facta > 0 is constant, we make a change of the basis of -

U, i.e.,v := au, with v the new control. Since: # 0, we can o !
always recover the original input. Substitution ofy = au =ahi(z,w).
into (27) gives The result in 2) now follows fromy > 0. O
51 = Az + Bu Cl_early, for ch we can use the _results presented in
vt d =0 (28) Sections llI-VI, with the notable exception that we no longer
0 < Cz — dzy have thaty* = V. for the constrained systed if d # 0.
with
VIIl. CONSTRAINED MECHANICAL SYSTEMS
2(to) = (o (t0))", g 1", o >0. In this section our approach to constrained dynamical sys-
A | defi tems is applied and compared to constrained manipulator
S a last step, define models. A primary goal of controller design for constrained
_ A 0 _ B _ manipulators is to ensure that impact forces remain within
A= 0 0/ b= Wk and C:=[C —d]. specified bounds and that bouncing of the manipulator is
_ _ avoided as much as possible. In general, for constrained
The resulting system equations now read manipulator systems there are two approaches to the contact
5 =42+ DB problem: in the first approach the surface is assumed to be
zet: {0257 (29) stiff, but deformable. In the second approach the surface is

assumed to be rigid. We will only discuss the latter approach
Clearly, system (29) is a linear system restricted by far an ideal linear model of a constrained robotic manipulator:
polyhedral cone and fits the framework of Section VI. a series of connected links with a so-called end-effector on the
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end of the last link. Numerous publications exist which addreptanning stage: a feedforward control can be designed such

constrained manipulators, and we refer to [7], [13], [14], [L7that impulse forces are small.

[19], [21], and [30] (and the references therein) for details. With the aid of the homogenization procedure from
As in our approach, three phases are recognized in c@ection VII, it can be shown that from (3) and Definition

strained motion: a free motion phase, a collision phase, andval that r, = 2. From Algorithm A.8 it follows that for

constrained motion phase. More often than not, the dynami&, with Ce R**" d € R, the uncontrolled collision and

model of a robotic manipulator is in terms of generalizetblease sets are

joint-coordinates. Using the kinematic relations it can be .

transformed into a model in so-called task-space coordinates Keonw ={Py = dAPy<0} (33)

[21]. Assuming that contact is frictionless, the following model Xeelw ={Py = d A Py>0}. (34)

's taken from [7], adapted to a finear setting and to OL&Eonsequently, for (3), it follows that the collision map

notation: (introduced in Section V) does not need to affect the positions,
Mij+Djy+Ky=Lv+PTf (30) but causes a jump discontinuity in (part of) the velocity
0 during free motion, components of the state. This is completely in line with
f= {1“ during collision, (31) the results found in, for instance, [7], [13], and [30] (when
A during constrained motion adapted to the linear case). Since the system has a nonzero

mass, the discontinuity in the state is caused by an impulsive

subject to (2). Herg represents the end-effector positidit, f  force. Our approach to constrained dynamical systems covers
represents the contact force matrix,denotes the impulsive a result obtained in [7] for constrained mechanical systems.
force due to collisions, andl denotes the Lagrange multiplier(The original proof for the nonlinear case can be found in [7,
which has the dimension of the force for a holonomic equalityh. 1].)
constraintPy = p [7]. We will assume thatd < 0, which Proposition VIII.1 [7]: Let g, denote the velocity compo-
gives that the constraint set is nhonempty. nent normal to the boundary set of (2) at the moment of

Model (30) is based on mechanical systems subject dollision. Then there is no elastic collisioi’ = 0) if and
equality constraints. Clearly, (30) now contains two inputsnly if ¢, = 0.
i.e.,v and f, of which v is the control input and' is an input Proof: From Theorems IV.8 and V.9 and (33), it follows
which is not available for control purposes. In the literature aihat there are no collisions if and only #fy = d and Py = 0.
constrained mechanical systems matiixs usually chosen to Hence,y € ker(P), i.e., ¢, = 0. The collision mapT of
be the identity. We will assume that each degree of freeddBection V can be taken as the identity & meaning that
can be actuated and thdt is invertible (to avoid some there is no discontinuity in the state. Consequeritly; 0. O
singularities). As in Section |l a state-space model can beFinally, we discuss the constrained motion phase. System

obtained by definings = [y*, 57" (3) reduces to a singular system (or descriptor system) [20]. If
the motion is assumed to proceedlif, i.e., if one assumes
b LMO_IK _MI—1D}$+ {MglL}U that the trajectory of (3) remains iker(C), we effectively
have a bilateral constraint. An expression for the collision
n { 0 } s (32) MapZ; can be derived with the aid of the class of applicable
M-PT controlsi4, in Definition 1V.10. SinceC A™~1 B has full-row

rank, an expression for a right-inverse can be found. To arrive

in conjunction with (31) and (5). at (30) we takey := v 4+ w and solve
In our approach to restricted systems, c.f., Theorem V1.2,

in the free motion phase the original unconstrained dynamics CA™z +CA™ B +w)=0
model is recovered. This is also true in model (30), (31), and ]
(2) since f is set to zero in that case. for the vectorw. This leads tow = L~ PT' )\, where
Next we discuss the collision phase. In (3[)models an A= —(PM~1PTYy"Y(PM~Y(Lv — Dij— Ky)).
impulsive force due to collisions. In the case of a robotic
manipulator, this impulsive force is distributed throughout alf we now define the collision maf.(x,u) = (z,v +

joints of the system. In general it is difficult to obtain an.=*PT)), c.f., Definition V.4, then we arrive at (30). Note
explicit expression of this force, and in [7] an estimate is givethat the state needs no adaptation. The expressiok éguals
based on the momentum change in the robotic system duehe one in, for instance, [10], [17], and [18] (for the linear
the collision. This means that knowledge of the collision magase). Upon making contact, whatever the controlthis

T, introduced in Section V, is a prerequisite to obtaining acontrol is corrected by means of such that the control
expression fol, since the velocity characteristics on the ends defined by := v + L~*PT) is not forbidden, i.e.,
effector level immediately after the collisions are necessany. ¢ U, (c.f., Definition 1V.10). This is part of the reason
After estimatingl’, the jump discontinuity in the joint angularwhy model (30) is widely used. On the other handuifis
velocity components can be calculated. The importance gifen, then(v, A) is not uniquely determined. This also follows
(the estimate of]' is a consequence of the fact that a smaffom practical experience; it is possible to vary the force
impulsive force leads (in general) to small changes in tlexerted on a table while maintaining the position. This means
velocities. The estimated value bfcan be used in the paththat there are infinitely many combinatioigs, \) that give
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uw = v+ L~1PT ). Note that by introduction of the auxiliary It is also of interest to apply the approach taken in the
variable ), recognition of deactivation of the boundary set is present paper to cover other (more general) system repre-
problem in itself, i.e., the sign of is important. For a detailed sentations. If the restricting constraints contain a mixture of
discussion on whether or not a boundary set becomes actepialities and inequalities, it is natural to investigate the
or passive in the case of constrained mechanical systems,awatact problem in a descriptor representation: the equalities,
refer to [13] and [18]. i.e., the dynamics and the equality constraints represent the
It is concluded that our approach to restricted systems fidescriptor system, and the inequality constraints model behav-
the general approach taken in the literature on constrainedal restrictions. The equalities can also model contact with a
mechanical systems. Moreover, our approach makes it possitteindary for a longer period of time. In that case, combining
to compute explicitly the regions where uncontrolled collisionsur framework with the results reported in [10] and [26] may
occur and where smooth controlled contact is possible. Caltow for easier resolution of constrained motion problems in
study indicates that control effort may be aimed at makirg system theoretical setting.
contact with small velocities and at effective avoidance of Finally, we remark that our approach shows promise for
multiple bounces. It is remarked that (30) also provides cluegtension to nonlinear systems. Indeed, (some of) the integers
for extending the theory presented in this paper to the cdatroduced in the present paper already have their counterpart
where, after impact, the motion remains (or is to remairipr nonlinear systems. Also, for controlled collisions the role
on the boundary of the constraint set [14], [19]. During thief the largest controlled invariant set is taken over by the
constrained motion phase, systéif(6) becomes a descriptormaximal controlled invariant distribution. This is currently
system in differential algebraic form. If part of the inputunder investigation.
variables are to be interpreted as contact forces as in (30),
it is practical to maintain all input variables in the system
representation. An auxiliary variable can be introduced which
plays the role of Lagrange multiplier [10], [17]. A promising
approach is to combine our framework to model the contact!n this Appendix first some relations between subsets of the
problem, with the framework advocated in [26] to covePoundary set are presented. Next, algorithms are derived that

APPENDIX
ALGORITHMS

subspace restrictions. will, in principle, produce all the subsets in a finite number
of steps.
Lemma A.1:Let X,,(A, B, C) satisfy the assumptions and
IX. CONCLUSIONS let C € RY*™. ThenV, = V*.

In this paper we have studied the contact problem: the effect Pr0f: (Ve C V*): Supposer € V.. Thenrg = rc(z).
(of the boundary) of inequality constraints on the behavidirom Corollary IV.2-2) and -4) it follows thadlu such that
of linear continuous-time dynamical systems. A number §f (%) = 0,Vi. This givesr(z, u) = co. From Lemma IV.4
(two-by-two disjunct) subsets of the state space have bebfpllows thata € V* _(V* C Ve): Letx € V7. Now suppose
introduced. It was shown that these subsets are invaridj@t® & Ve. By definitionrc(x) # ro. From Corollary IV.2-
under linear state feedback. Algorithms have been derivéyt follows rc(x) <ro. Moreover, er(‘)m Corollary 1V.2-3) it
that calculate these subsets in a finite number of steps. &}}owsNthath,,C,(x)(x,g) # 0,¥Vu € Y. This contradicts that
main results are a system theoretical framework in which € U™ such thatr(z, u) = oo, as follows fromz € V*.
described exactly what happens upon contact, identified thé_emmaéf:Let A.(4, B, C) satisfy the assumptions and
specific places for modeling the laws of collision (which arl§t ¢ € IR”"". Then we have the following.
regarded as external factors), and presented a precise definitioh) Xcon N Xrel = V* U V.
of the constrained state-space system in terms of the restricted@) Xcon,y N Xret = 0, aNd Xrer,v N Xeon = 0.
behavior. In this framework, the consistent initialization of 3) Xcon U &rer = ker(C)\Vy.

a constrained linear system has been discussed. The resulfd V. NV, = 0.

presented here can be considered an extension for restricted Proof (1, C): Suppose that € X N Xeer. If re(z) =
linear systems of the classic positive invariance theory feg, thenz € V.. From Lemma A.1 it follows that € V*. If
linear systems. on the other handsc(z) # 7o, thenrc(z) < 1o, c.f., Corollary

In practice there are usually restrictions on the control. BY.2-1). Fromx € &}, Lemma IV.4-2), and Corollary 1V.2-
linear state feedback these constraints are transformed iBjat follows thath,,(,(x)(a:,g) >0,Vu € UN. Fromz € Xeon
state constraints. Clearly, by choice of the control designér,follows from Lemma 1V.4-1) thath, . (x,x) is even.
contact with the virtual boundary can lead to saturation of thgom Definition 1V.5 it now follows thatz € V,. (1,2):
controls. One of the features of classical positive invariané@m Definition IV.5 and Lemma IV.4 it follows thav, C
theory is that it usually leads, under restricting conditions, t&.., N X..;. Suppose that: € V.. Thenrc(x) = 7o, C.f,
controls that do not saturate. It is of interest to combine th#efinition IV.5. From Corollary 1V.2-2) and Definition V.1
theory presented here for systems with state restrictions withfollows that 4;(x,u) = 0 Vi <rg, hy (z,u) = CA™z +
the (classical) positive invariance theory for controller restrig2 A™ ~! By,,, with CA™~1B # 0. By appropriate choice of
tions (under linear state feedback). Such a theory can leadufpone can makeé:,,(z,u) positive or negative, taking into
nonsaturating controller design, where realistic collision mapscount the parity of,. From Lemma IV.4 it now follows
are included for the state restrictions. that x € Xon N Xel.
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2): We only prove the first equality. The second equakn influence on the sdt*. For this, it is useful to define two
ity can be proven analogously. Suppasec Ao .. Then more integers.
rc(z) = 1, c.f., Definition IV.6. It follows from Lemma IV.4  Definition A.5: Define the integers; and r,,;, asr; =
andCB = 0 thath (z,u) <0,Vu € UN. Lemma IV.4-2) now min{i € N| Ng<j<; A7 ker(C) C A~ ker(C)}, and
gives thatz ¢ Ay Tmin = min(re,71).

3): Let x € ker(C). First assume thag € V. Def- Note that the setV := No<j<r, A7 ker(C) is the
inition 1V.5-2) gives thatVu € UM,rc(z) is even and unobservable subspace, andvif= {0}, (C, A) is observable
P (z) (2, 1) < 0. From Lemma IV.4 it now follows that ¢ and integerr; equals the observability index [29].

Xeon UXel. Next assume that € ker(C)\Vy. If ro(z) is odd Lemma A.6:Let X,,(A, B, C) satisfy the assumptions and
and h,., () (z, ) <0, then it follows from Lemma IV.4 that let C € R'*™. Let V' denote the subspaces obtained in step

r € Xeon- If hpp(z)(z,u) >0, then it follows from Lemma ; of ISA (7). Then:
IV.4 thatx € X.q. This leads tar € Xeon U Xrel 1) im(B) ¢ A—(ro—1) ker(C);
4): This follows from the definitions. O 2) im(B) C A-G-1) ker(C),Vi: 1 < § <ro;

Note that the result in Lemma A.2-1) shows that Example 3) Vi =Nocjei A7 ker(C),Vi: 1 < i < 7;
1.2 is indeed nongeneral. That example, however, does4) A T—OJ and Vo = V*j =t =70
show that some of the subsets can be empty. For the set ' '

;Vrgé Xf:;é{ﬁréc)(g(;f?lri)s Slrgzs(elgti:/eerlmsM(greCc?\I/q::raflrg’pTag}ﬂf( assumptions and the definitions. From ISA (7) it follows
are g y » eSp y. V. o N that for i = 1 the equality 3) holds sinc&' = ker(C).
it follows that ISA (7) yields the seV. in a finite number of ow assume thai = n<re. Then, from (7) Y+l =
steps. Therefore, in the remainder we will concentrate on the 1 o n_]jo. . .
subsetsV,, Vy, X, Xeonh, Xeelv, aNd X 1. Recall from er(C) N (A +1(00§j<" A kerl(C)) +im(B)). Using 2)
9 » “con,vy “vcom,hvy “vrel,us rel,fv- H mn — — . —J —
Theorem IV.8 that these sets are two-by-two disjunct. For the"’ g|vesV_j = ker(C)n (4 - Mogj<n A™ ker(C)) =
sets Xeon v and A, there holdsrc(x) = 1, by definition. Mogjcntt A ker(C). As for 4): from 1), 2), and Definition
From Definition 1V.1 it now follows thath(z,u) = CAx. }A‘HS I f?llowsl thgt o dSISZl\' The second statement now
This yields by Lemma 1V.4 the following proposition. oflows from ). 2), an ' : ,
Proposition A.3: Let X,.(4, B, C) satisfy the assumptions Combining ISA (7) and Lemma A.6 now gives the following

and letC € R**™. Then corollary. _ |
Corollary A.7: Let X, (A, B,C) satisfy the assumptions

and letC € R**™. Then the subspaceg’, calculated with
ISA, have the following characteristics:

Tonditions 1) and 2) follow immediately from the

Xeonw ={z € X|Cx =0ACAz <0}

and
Kreelw ={z € X|Cz = 0A CAz >0} W=x; V= ker(C) = Vo\(xg U &)
V2 =V (Xeonw U Xrerw); V2 = VA (VI UVY)
Proof. Omitted. L V4 = Vg\(Xclon,h U Xrlel,h); e ;VTO = Vc =V

For the subsetd/,, Vs, Xcon,n, and Aiep, the derivation _ o _ N
of alternative representations is based on the observation thdtinally, combining Corollary A.7 with Propositions A.3 and

eitherrc(x) must be odd orc(x) must be even. A.4 and Lemma A.6 yields the following algorithm, which pro-
Propostion A.4: Let &,,(A, B, C) satisfy the assumptions duces all the required subsets in a finite numbers of steps. Since
and letC € IR'*™. Then we have the following. V* = V' the algorithm can be terminated at most-insteps.
1) V, = Upcic(1/om, V;;V; = {z € ker(C)|C A%z > 0} Algorithm A.8 (Computation of the Subsets of the
ﬂ{ﬂo<j<_m AT ker(O)),1 < i< %7,0' State-Space)let X,(4,B,C) satisfy the assumptions

2) Vi = Urcicom Vi Vi = {& € ker(C)|CA%z <0} and letC € R*™. Let V' denote the subspaces obtained in
No<soar A ﬁer(fc)}{l <i<in. stepi of ISA (7). Let V° = X. Then:

; @ i—1 i—1 1
3) Xcon,h = L—J1<i 1/2)(rg—1 Xczon L;Xczon = {.’L’ 1) V= {x €V |CA v 0}7 ! S ‘ S o
Si<(1/2)(ro—1) ol Ccon, 2) X, = {z € V|Cz>0};

ker(C)|CAZ 1z < 0} N {No<j<o; A ker(C
( )| } { 0<;5<2 ( ) 3) Xf _ {37 € V0|C$<O};

$1
1< %(7’0 - 1) ‘ ‘ 1

4) Xeen = Ui<i<(1/2)(ro—1) Xﬁel,h;XrZel,h = {z € 4) Xeonw = {2 € Vl |CA$<0]t;
ker(C)|CA?+ e > 0F N {Mo<j<ar A~ ker(O)h1 < D) Aretw = {2 € VICAz >0k

IA m

i< 3(ro = 1). 6) V%i = Ui<i<(1/2)ro B’; with V, = {z €
Proof: We will prove only 1). The other statements ; 5 |Ci4 x>0} 1 < ’<%;0? ih Vi =
are proven analogously. From Definition IV.5 it follows that ) Vi = Uicica/or Fow po= o o«

{z €V} & {re(x) = 2i andh,.. () (2, 1) > 0,1 < i< Lro}. VH|CA?z<0},1 < i< %To;i o
The result now follows from Corollary 1V.2-2) and -3), and 8) XC?H:’L = Ui<ic1/2)(ro-1) ‘Xcoln,h with Xl 5 = {z
the definition of the magh;(x, u). VIH|CAY e <0}, 1 < i<3(ro — 1)

In the remainder of this section we show that the calculation®) AreLh = Ui<i<(1/2)(r—1) Arern With Xy, = {z €
of the subspaces can be based on the ISA (7). The inigger V> THCA* 12> 0},1 < i< §(ro — 1);
is well defined as a consequence of the controllability of the 10) Ve = V™ (= V*).
pair (A, B). Obviously, observability of the paifC, A) has Proof: Omitted. O

m
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As remarked in Section Ill, it is intuitively clear that the[14]
contact sets and the release sets switch roles for the time-
reversed system, i.e., the system with system matrcéand |15
—B. Note thatd,, (A4, B, C) satisfies the assumptions stated6]
in Section Il if and only if X,,(— A, —B, C) satisfies these
assumptions.

Proposition A.9: Let &,,(A, B, C) satisfy the assumptions. [18]
Then the following relations hold between subsets of systey,

(A, B, C) and the time-reversed systen{—A, —B, C):

[17]

[20]

Xy(A,B,C) =X, (—A,-B,C)
con L(A B C) = rel b( A7 _B7 C) [21]
,L(A B C) con b( A _B C) [22]
Vy(4,B,C) =V,(-A,—B,C) 23
Vi(A,B,C) =V;(=A, —B, C) o
con h(A B C) rel h( A7 _B7 C) 25
rel h(A B C) con h( A,—B,C) (23]
Vu(A, B,C) =V.(—A,—B,0). [26]

Proof: From Definition V.1 it follows that the sign of B [27]

is not important. The result now follows from Algorithm A.8.
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