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The second set of times above is identical to that of enabling times.
Identification of the first set above is ensured by Conditions 2) and 4).

Finally, Conditions 2) and 4) ensure that we can extract all
interrupted times, which are the time epochs when the state transits
from Se to Sce due to the occurrence of an event other thane:

Necessity: We use contraposition.
If Condition 1) is not satisfied, then we have an occurrence ofe

with an associated null transition observation. By Lemma 1,e is not
invertible.

Suppose Condition 2) does not hold. Then, there exist two tra-
jectories froms(0) to s and s0; respectively, that have the same
observation. Sinces 2 Se and s0 2 Sce ; there is a transition either
from Se to Sce or from Sce to Se that has a null observation. The
former constitutes an occurrence or interruption time ofe; while the
latter an enabling time. Hence, by Lemma 1,e is not invertible.

If Condition 3) does not hold, then there exists an event
e0 6= e whose occurrence we cannot distinguish from that ofe: If
Condition 4) does not hold, a similar situation occurs, the difference
being that in this case we cannot distinguish between the occurrence
and interruption ofe: In either case, by Lemma 1,e is not invertible.

Examples illustrating the conditions ford-invertibility and an
algorithm to extract lifetimes ofd-invertible event from observations
can be found in [12].

IV. CONCLUSIONS

The framework that we have introduced opens up many possibili-
ties for further work. A problem that arises naturally in our framework
is that of designing an observation map� for a given systemG to
achieve invertibility while minimizing some cost function. Such a
problem is practically relevant in the context of sensor configuration
design. We envision that its solution paves a path toward a general
systematic framework for the design of on-line monitoring systems.
Some work along these lines is reported in [13].
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On Constructing a Shortest Linear Recurrence Relation

Margreet Kuijper and Jan C. Willems

Abstract—It has been shown in the literature that a formulation of
the minimal partial realization problem in terms of exact modeling of a
behavior lends itself to an iterative polynomial solution. For the scalar
case, we explicitly present such a solution in full detail. Unlike classical
solution methods based on Hankel matrices, the algorithm is constructive.
It iteratively constructs a partial realization of minimal McMillan degree.
The algorithm is known in information theory as the Berlekamp–Massey
algorithm and is used for constructing a shortest linear recurrence
relation for a finite sequence of numbers.

Index Terms—Behaviors, Berlekamp–Massey algorithm, linear systems,
minimal partial realizations, shortest linear recurrence relations.

I. INTRODUCTION

In this paper we consider the minimal partial realization problem.
In [14], a connection with a problem in coding theory, namely
the decoding of certain types of error-correcting block codes (BCH
codes), has first been mentioned. The essential step in the decoding
of a BCH code is the construction of a shortest linear recurrence
relation for a finite sequence of numbersa1a2; � � � ; aN ; see, e.g.,
[8] and [5]. The length of the recurrence relation corresponds to
the number of errors that have occurred in transmitting a message.
It has to be minimized in maximum likelihood decoding when
errors are assumed to be independent. In 1968, Berlekamp and
Massey presented an algorithm to compute a shortest linear recurrence
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relation. Although it was originally designed for decoding purposes,
it later became important for cryptographic applications, namely for
calculating the complexity profile of a sequence of numbers; see
[13]. It is explained below that the denominator of a minimal partial
realization corresponds to a shortest linear recurrence relation.

Despite the observations in [14], [7], and [1], the Berle-
kamp–Massey algorithm has not been welcomed in system theory
as a constructive solution method for minimal partial realization.
Instead, most system-theoretic results on minimal partial realization
are based on Hankel matrices (e.g., [7] and references therein) and
do not produce explicit algorithms for calculating a minimal partial
realization.

In recent literature [16], [17], a framework for modeling data into
a “minimal” behavior has been presented. It includes an outline
for an iterative procedure. In [3] it is shown how this framework
can be applied to model a partially given impulse response in the
general multivariable case. In this paper, our aim is to use this
approach to derive a constructive and efficient iterative algorithm.
The algorithm is based on the outline given in [17] and coincides
with the Berlekamp–Massey algorithm. In fact, we find that the
Berlekamp–Massey algorithm not only constructs the denominator
but also the numerator of a minimal partial realization. We restrict
ourselves to the scalar case because of its simplicity and ele-
gance. However, the algorithm can be extended to the multivariable
case; see [10] where a connection is made with the generalized
Berlekamp–Massey algorithm of [6].

Let us now formulate the issues in a precise way. Assume that
a1; a2; � � � ; aN is a finite sequence of numbers from a fieldF: For
the purpose of this paper, we do not need to make a distinction
between finite and infinite fields. The problem of finding a shortest
linear recurrence relation fora1; a2; � � � ; aN is the following: find
real numberse0; e1; � � � ; eL�1; such that

aj+L + eL�1aj+L�1 + � � �+ e0aj = 0

for j = 1; � � � ; N � L: (1)

HereL should be as small as possible in order to capture as much as
possible of the structure underlyinga1; a2; � � � ; aN : If a1; a2; � � � ; aN
does not allow any relation of the type (1) forL<N; then we setL =

N and consider (1) to be trivially satisfied for anye0; e1; � � � ; eL�1:
In the sequel, we denote a linear recurrence relation fora1a2; � � � ; aN

by the polynomiale(s) := sL+eL�1s
L�1+� � �+e0; a shortest linear

recurrence relation has minimal degree. Note that the polynomial
e together with the initial valuesa1; a2; � � � ; aL completely define
the original finite sequence. One can therefore view the problem of
finding a shortest linear recurrence relation as a problem of data
reduction.

The scalar minimal partial realization problem for a finite sequence
a1; a2; � � � ; aN is the following: find polynomialse andh for which

h(s)

e(s)
= a0 + a1s

�1
+ � � �+ aNs

�N
+ �(s)s

�(N+1)

such that dege is as small as possible and� is proper rational. It is not
difficult to see that the denominatore of a minimal partial realization
is a shortest linear recurrence relation fora1; a2; � � � ; aN : Vice
versa, a shortest linear recurrence relatione for a1; a2; � � � ; aN gives
rise to a minimal partial realization fora1; a2; � � � ; aN by defining
h(s) := hLs

L + hL�1s
L�1 + � � �+ h0 where, forj = 0; 1; � � � ; L

hj := aj + eL�1aj�1 + � � �+ e1a1 + e0a0: (2)

In Section III, we reformulate the above problem in a behavioral
setting, as in [3]. This reformulation then provides a natural basis
for an iterative solution, the Berlekamp–Massey algorithm, which we
present in full detail in Section IV. Here, we adhere to the version as

presented in [5, p. 180], which is the original algorithm from [4, p.
184] with a modification from [12]. Thus, our approach has enabled
a system-theoretic explanation of the algorithm.

In the sequel, we put ideas from [16] to work. We take a behavioral
point of view and first need to introduce some basic ideas of the
behavioral approach.

II. PRELIMINARIES ON MODELING OF BEHAVIORS

In the behavioral approach [15]–[17], a system is essentially
defined as a behaviorB which is a set of trajectories; in this paper
we consider linear shift-invariant behaviors on the time-setZ+ of the
form B = kerR(�); whereR is a polynomialg � q-matrix and�
is the backward shift operator

�((w0; w1; w2; � � �)) := (w1; w2; � � �):

In other words,B consists of trajectorieswww:Z+ 7! R
q; for which

R(�)www = 0: (3)

Representation (3) is called akernel representationof B:
Let us repeat some notions from [15] and start with the following

lemma (see, e.g., [9, Th. 3.9] for a detailed proof).
Lemma 1: Let R1 2 R

g �q andR2 2 R
g �q: Then

kerR1(�) � kerR2(�)

if and only if there exists a polynomial matrixF 2 R
g �g such that

R2 = FR1:

It is a corollary of the above lemma that polynomial matricesR1

andR2 of full row rank represent the same behavior if and only if
there exists a unimodular matrixU (i.e., a polynomial matrix with
constant nonzero determinant) such thatR1 = UR2:

The behavioral approach can be used for obtaining models from
a set of observed time series. The general ideas stem from [16]. In
this section, we restrict ourselves to exact modeling of discrete-time
series, as presented in [17]. In the following, we briefly recall the
basic concepts.

Let us assume that we have adata setD = fbbb0; bbb1; � � � ; bbbNg

wherebbbi 2 (Rq)Z are observed trajectories(i = 0; 1; � � � ; N): A
behaviorB is called anunfalsified modelfor D if D � B: A model
B1 is calledmore powerfulthan a modelB2 if B1 � B2: A model
B
� is called themost powerful unfalsified model (MPUM)for D; if
B
� is unfalsified forD andD � B ) B

�
� B: It has been shown

in [16] that a unique MPUMB� exists forD: Note, however, that
a kernel representation (3) ofB� is far from unique. In fact, any
other kernel representation can be obtained by left multiplication by
a unimodular matrix.

Example 2(T = Z+ andq = 2): Let D = fbg; with

b =
3

0
;
2

0
;
1

1
;
0

0
;
0

0
; � � � :

The MPUM is a three-dimensional vector space:B� =

span f�2b; �b;bg: A kernel representation ofB� is given
by

1 �1� 2� � 3�2

0 �3
www1

www2
=

0

0
:

Alternative kernel representations ofB� are, e.g.,

1� 2� + �2 �1

�3 0

www1

www2
=

0

0

and

2� 3� �2� �

�� + 2�2 �

www1

www2
=

0

0
: (4)
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We are now ready to present the procedure of [17, p. 289], which
underlies the iterative partial realization algorithm of Section IV. The
procedure provides a framework for the iterative construction of a
kernel representation of the MPUM forD = fb0;b1; � � � ;bNg: It
can be easily understood from Lemma 1.

Procedure 3: Initially define

R
�1 := I (whereI is the identity matrix):

Proceed iteratively as follows fork = 0; � � � ; N: Define, after
receivingfb0;b1; � � � ;bkg; the kth error trajectory eeek as

eeek :=Rk�1(�)bk:

Compute a kernel representationVk(�)www = 0 of the MPUM for
feeekg: Then, define

Rk :=VkRk�1:

Theorem 4 [17]: For k = 0; � � � ; N; the kernel representation
Rk(�)www = 0 of the above procedure represents the MPUM for
fb0;b1; � � � ;bkg:

Next, we recall the notion ofcontrollability from [15]. For the
purpose of this paper, we consider the following as a definition: a
behaviorB = kerR(�) on Z+ is controllable ifR(s) has constant
rank for all s 2 C: For the specific case thatq = 2; it follows from
Lemma 1 that two distinct nontrivial controllable modelsB1 andB2
that are unfalsified for the same data set are “incomparable,” i.e.,
neitherB1 � B2 nor B2 � B1: However, an ordering can still be
introduced on the basis of the “complexity” of a model. As a measure
of complexity we introduce theorder n(B) of a behavior. Since this
concept will also be important for noncontrollable behaviors, we give
a general definition: the ordern(B) is defined as the minimum value
of the sum of the row degrees ofR, where the minimum is taken
over all possible kernel representations (3) ofB: This minimum is
attained exactly whenR is “row reduced.”

Definition 5: Let R 2 Rg�q have full row rank. DefineRd 2
R
g�q as theleading row coefficient matrixof R, i.e., the constant

matrix that consists of the coefficients of the highest degree terms in
each row ofR: DefineR to berow reducedif Rd has full row rank.

When a matrixR is not row reduced, a unimodular matrixU can
be found such thatUR is row reduced. A procedure is given in [18,
p. 27] (see also [9, p. 24]) where it is shown that not only the sum
of the minimal row degrees is an invariant of a behavior, but also
the minimal row degrees themselves are invariants of a behavior. For
example, the minimal row degrees ofB in Example 2 are 1 and 2;
this can be seen from the row-reduced representation (4).

In accordance with [2], we call a modelB a controllable-minimal
complexity unfalsified model (C-MCUM)for D if B is controllable,
unfalsified forD, and of least order among all controllable unfalsified
models forD:

III. PARTIAL REALIZATION AS EXACT MODELING

In this section, we put the minimal partial realization problem in
a behavioral framework, as in [3]. However, we prefer to useZ+
instead ofZ� as the time-axis for reasons of exposition.

First, we transform the dataa1; a2; � � � ; aN into a trajectoryb
that can be interpreted as a reversed partial impulse response. The
trajectoryb is defined fromZ+ to R2 by

b =
aN
0

; � � � ;
a1
0

;
a0
1

;
0

0
;

0

0
; � � � : (5)

Not surprisingly, a model forfbg corresponds to a partial realization.
More precisely, we have the following theorem which can be readily
verified. (We define thereciprocal P r

(s) of a polynomial matrix
P (s) = Pns

n
+ Pn�1s

n�1
+ � � � + P1s + P0 (Pn 6= 0) by

P r
(s) :=Pn + Pn�1s + � � � + P1s

n�1
+ P0s

n.)

Theorem 6: Let b be defined by (5). Let

[c(�) �p(�)]
www1

www2

= 0

be a kernel representation of row degreeL of a C-MCUM for fbg
with c(0) = 1: Define polynomialse and h by [e h] := [c p]r:

Thene is a shortest linear recurrence relation fora1; a2; � � � ; aN and
h=e is a minimal partial realization fora0; a1; � � � ; aN :

Because of the above theorem, the minimal partial realization
problem can be reformulated as follows.

Problem Statement: Find a C-MCUM onZ+ for fbg:
The MPUM for fbg simply equals

span f�Nb; �N�1b; � � � ; �b;bg:

As noted in [3], a kernel representation for it is given byA(�)www = 0;

where

A(s) =
1 �(a0 + a1s+ � � �+ aNs

N
)

0 sN+1 : (6)

This is not a unique kernel representation. As noted in Section II,
any other kernel representation can be obtained by left multiplication
by a unimodular matrix. Here, we are specifically interested in row-
reduced kernel representations; see also [3] and [2]. The reason for
this is contained in the following theorem.

Theorem 7: Let b be defined by (5). Let the MPUM forfbg be
given by

R(�)www = 0 with R =
c �p
f �g

: (7)

Assume thatc(0) 6= 0 and thatR is row reduced with row degrees
�1 and�2: If �1 � �2 and/orf(0) = 0; then

[c(�) �p(�)]
www1

www2

= 0 (8)

represents a C-MCUM forfbg:
Proof: First observe that, by Lemma 1, there exists a unimodular

matrix U such that

R(s) = U(s)
1 �(a0 + a1s+ � � �+ aNs

N
)

0 sN+1 :

As a result,R(s) can only lose rank ats = 0; so thatf andg have
no common zeros, except possibly ats = 0: We have to prove that
a representation

[d(�) �n(�)]
www1

www2

= 0

that constitutes a controllable unfalsified model forfbg; necessarily
has row degree��1: If

det
d �n
f �g

6= 0 (9)

then this would give rise to an unfalsified finite-dimensional model
for fbg; which necessarily has first row degree��1; because of the
assumption thatR is row reduced. Now, iff(0) = 0; then necessarily
(9) holds, since otherwise deg[d �n]<�2; so that

c(�) �p(�)
d(�) �n(�)

www1

www2

=
0

0

would be an unfalsified finite-dimensional model forfbg of order
<�1 + �2; which contradicts the row reducedness ofR: Next, if
f(0) 6= 0; then (9) can only fail to hold if deg[d �n] = �2:

By assumption, we have that in this case�2 � �1; so that deg
[d �n] � �1:



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 11, NOVEMBER 1997 1557

By the above theorem, one of the rows of a row-reduced represen-
tation of the MPUM forfbg represents the C-MCUM forfbg: Our
approach is therefore to construct a row-reduced representation of the
MPUM for fbg: For this, one can proceed in two different ways.

1) Make the polynomial matrixA in (6) row reduced, i.e.,
construct a unimodular matrixU such thatUA is row reduced.

2) Use the dataa0; a1; � � � ; aN iteratively. At each step, construct
a row-reduced representation of the MPUM corresponding
to a1; a2; � � � ; ak (k = 0; � � �N): For this, use the iterative
modeling Procedure 3, applied tof�Nb; �N�1b; � � � ; �b;bg:

For 1), the procedure of [18] can be used. The algorithm is then
essentially the Euclidean algorithm, applied to the polynomialssN+1

anda0+a1s+� � �+aNsN ; see [11]. For 2), the row ofRk of smallest
degree that does not lose rank ats = 0; represents the C-MCUM at
stepk: One can therefore think of an iterative procedure that requires
a check on the value ats = 0 and the row degrees at each step, as
in [2, p. 1795] and [3]. However, such a check is not needed if
we choose theVk’s in such a way that theRk’s are not only row
reduced, but also have a second row that loses rank ats = 0: Then,
by Theorem 7, the C-MCUM at stepk is unambiguouslygiven by the
first row ofRk: This is the clever idea behind the iterative algorithm
of the next section, which is the Berlekamp–Massey algorithm.

Remark 8: If a representation (7) of the MPUM forfbg is row
reduced andf(0) = 0; then a parameterization of all C-MCUM’s,
represented by

[d(�) �n(�)]
www1

www2

= 0

is given by

[d �n] = [1 �]
c �p
f �g

:

Here � is a polynomial with deg� = 2�1 � (N + 1) for �1 �
(N+1)=2 and� = 0 for �1< (N+1)=2: In particular, a C-MCUM
is unique if and only if�1< (N +1)=2: The above parameterization
can also be found in [2] and [12].

IV. A N ITERATIVE ALGORITHM

In this section, we present our main result by working out the
above-mentioned option 2) in detail.

For k = 0; � � � ; N; let bk := �N�kb; whereb is defined by (5).
Applying Procedure 3 to the data setfb0;b1; � � � ;bNg; we get error
trajectorieseeek; for which

�eeek = �Rk�1(�)bk = Rk�1(�)bk�1 = 0:

Consequently,eeek is of the simple form

eeek =
�k

~�k

;
0

0
;

0

0
; � � � :

DefineLk and ~Lk as the degree of the first and the second row of
Rk; respectively. Define the update matrixVk as

Vk(s) :=
~�k ��k

0 s
; if �k = 0

or Lk�1> ~Lk�1;

Vk(s) :=
~�k ��k

s=�k 0
; otherwise:

Clearly, in both cases,Vk(�)www = 0 represents the MPUM for
feeekg: Consequently,Rk(�)www = 0 represents the MPUM forfbkg
(Theorem 4). It can be proven by induction that~�k = 1 for
k = 0; � � � ; N: It also follows by induction that the above choice of

the Vk’s ensures that eachRk is row reduced(k = �1; 0; � � � ; N):

Indeed,R
�1 is trivially row reduced and the assumption thatRk�1

is row reduced, implies thatRk is row reduced. If�k = 0 or

Lk�1> ~Lk�1

then

Rk(s) =
1 ��k

0 s
Rk�1(s) (10)

is clearly row reduced again; note that thenLk = Lk�1: If �k 6= 0

andLk�1 � ~Lk�1; then

Rk(s) =
1 ��k

s=�k 0
Rk�1(s)

is again row reduced; note that then

Lk = ~Lk�1: (11)

Finally, it can be proven by induction that

Rk(0) =
1 �a0
0 0

; for k = 0; � � � ; N (12)

so that, by Theorem 7, we may conclude that the first row ofRk
gives rise to a C-MCUM forfbkg:

In order to be able to write the algorithm in compact form, we
note thatdetRk(s) = sk+1; so that

Lk + ~Lk = k + 1: (13)

As a result, (10) coincides with the conditionLk�1>k=2; whereas
(11) translates intoLk = k � Lk�1: Let us denote

Rk :=
ck �pk
fk �gk

:

By definition, the number�k is the coefficient ofsk in (a0+ a1s+

� � � + aks
k)ck�1(s)� pk�1(s): This equals the coefficient ofsk in

(a0+a1s+� � �+aks
k)ck�1(s) because of the fact that degpk�1<k

[use (12) and (13)].
Below, we rewrite the above algorithm in compact form.

The resulting algorithm is a slightly generalized version of the
Berlekamp–Massey algorithm, in the sense thata0 is not fixed (the
Berlekamp–Massey algorithm setsa0 = 1).

Algorithm 9: Denoteck := [1 0]Rk
1

0
: Initially define

R
�1 :=

1 0

0 1
; and L

�1 := 0:

Proceed iteratively as follows fork = 0; � � � ; N: Define, after
receivinga0; a1; � � � ; ak; the number�k as the coefficient ofsk in
(a0 + a1s + � � � + aks

k)ck�1(s):

Compute the matrixRk and the integerLk as follows:

Rk :=VkRk�1

where, if �k = 0 or Lk�1>k=2

Vk(s) :=
1 ��k

0 s
; Lk :=Lk�1

and, if otherwise

Vk(s) :=
1 ��k

s=�k 0
; Lk := k � Lk�1:

Then the first row ofRk represents a C-MCUM forfbkg; the
reciprocal of that row yields a minimal partial realization as in
Theorem 6.
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Example 10: Let (a0; a1; a2; a3; a4) = (0; 0; 1; 1; 0):

Application of the above algorithm yields:

�0 =0; L0 = 0; R0 =
1 0

0 s
R
�1 =

1 0

0 s

�1 =0; L1 = 0; R1 =
1 0

0 s
R0 =

1 0

0 s2

�2 =1; L2 = 2; R2 =
1 �1

s 0
R1 =

1 �s2

s 0

�3 =1; L3 = 2

R3 =
1 �1

0 s
R2 =

1� s �s2

s2 0

�4 =�1; L4 = 2

R4 =
1 1

�s 0
R3 =

1� s+ s2 �s2

�s+ s2 s3
:

As a result

[1� � + �
2
��

2
]
www1

www2

= 0

represents a C-MCUM forfbg: Taking the reciprocal row vector, we
get the (unique) minimal partial realization1=(s2 � s+ 1):

V. CONCLUSIONS

The minimal partial realization problem has been considered as
an instance of exact modeling of a behavior on a half-axis, as in [3].
Solutions within this framework are based on polynomials rather than
Hankel matrices. A central role is played by behaviors that are the
span of a finite number of trajectories and thus do not have a transfer
function. It is for this reason that the notion of a behavior rather than
a transfer function is essential to the approach. We put the theory
to work in deriving an efficient and constructive iterative solution
for the scalar case: the celebrated Berlekamp–Massey algorithm. An
interesting feature of the algorithm is that its efficiency is enhanced
by the update at each step of four polynomials rather than two. It is
a topic of future research to put this idea to work for identification
purposes, in the context of approximate modeling.
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A Descriptor Solution to a Class
of Discrete Distance Problems

M. M. M. Al-Husari, I. M. Jaimoukha, and D. J. N. Limebeer

Abstract—Hankel norm and Nehari-type approximation problems arise
in model reduction and H1-control theory. Existing solutions to the
discrete-time version of these problems may be derived using a standard
state-space framework, but the resulting solution formulas require an
invertible A-matrix. As a further complication, the D-matrix in the rep-
resentation formula for all solutions becomes unbounded in the optimal
case. The aim of this paper is to show that both these complications may
be removed by analyzing these problems in a descriptor framework.

Index Terms—Descriptor systems, discrete-time Nehari problem,H1
control, model reduction.

I. INTRODUCTION

It is known that many model reduction andH1-control problems
may be transformed into the following distance problem: letR(z) be a
stable real rational transfer matrix with McMillan degreen: Then for
any
 > 0 and any integerk<n; find all transfer matricesQ(z); with
at mostk poles inside the unit disc, that satisfykR(z)+Q(z)k1 � 


[1], [6]. A necessary and sufficient condition for the existence of a
solution requires
 � (k+1)st Hankel singular value ofR(z) [1], [4].
The discrete-time version of this problem has received less attention
than its continuous-time counterpart. Although the discrete problem
can be tackled using a standard state-space approach, this approach
breaks down ifR(z) has poles at the origin [7], [8]. This difficulty
may be traced to the fact that the conjugation operation cannot be
carried out in a standard state-space framework becauseR�(z) is
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