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The second set of times above is identical to that of enabling timgsl] ____, “Observability of discrete event system$ZEE Trans. Automat.
Identification of the first set above is ensured by Conditions 2) and 4), ~ €ontr, vol. 35, pp. 797-806, July 1990. i
Finally, Conditions 2) and 4) ensure that we can extract ] Y. Park, “Model-Based monitoring of discrete event systems,” Ph.D.

. . . . .. dissertation, School of Electrical and Computer Engineering, Purdue
interrupted times, which are the time epochs when the state transits )i, west Lafayette, IN, 1996. P g g

from 5. to S¢ due to the occurrence of an event other than [13] Y. Park and E. K. P. Chong, “Sensor assignment for invertibility in
Necessity: We use contraposition. interruptive timed discrete event systems,"Hroc. 9th IEEE Int. Symp.
If Condition 1) is not satisfied, then we have an occurrence of[14] '”te"'QfEUt tc_gnifvdc_ommbusgoiﬂ, Jlé')é_199“;, pp. 2?7—2t12n-ms t
with an associated null transition observation. By Lemma ik, not ———. DIstnbuted nversion in imed discrete event systentfiscrete

h . Event Dynamic Systems: Theory Applol. 5, no. 2/3, pp. 219-241,
invertible. Apr./July 1995.

Suppose Condition 2) does not hold. Then, there exist two trE5] A. A. Pritsker, Introduction to SLAM Il New York: Halsted, 1986.
jectories froms(0) to s and s’, respectively, that have the samel16] P. Ramadge, “Observability of discrete event systems,Prioc. 25th
observation. Since € S. ands’ € S¢, there is a transition either Conf. Decision Contr.Athens, Greece, Dec. 1986, pp. 1108-1112.

- . . [17] P. Ramadge and W. Wonham, “The control of discrete event systems,
from 5. to 5C or from 5¢ to S. that has a null observation. The Proc. IEEE vol. 77, pp. 81-98, Jan. 1989.
former constitutes an occurrence or interruption time ,ofvhile the [18] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.
latter an enabling time. Hence, by Lemmaelis not invertible. Teneketzis, “Diagnosability of discrete-event system&EE Trans.

If Condition 3) does not hold, then there exists an event o guf”;athcogt“-v?g 4|9' Pp. 15;55.‘15?7;-’} S,;ept'l %EQEQE'C .

e’ # e whose occurrence we cannot distinguish from that .off 1 79_78 CJJgi fsraés n-line monitoring: A tutorialy omputerpp.
Condition 4) does not hold, a similar situation occurs, the differenggo; . Wilfiams, M. Andersland, J. Gannon, J. Lumpp, and T. Casavant,
being that in this case we cannot distinguish between the occurrence “Perturbation tracking,” inProc. 32nd Conf. Decision Conir.San
and interruption ot. In either case, by Lemma &,is not invertible. Antonio, TX, 1993, pp. 674-679.

Examples illustrating the conditions fof-invertibility and an
algorithm to extract lifetimes of-invertible event from observations

can be found in [12].

IV. CONCLUSIONS On Constructing a Shortest Linear Recurrence Relation

_ The framework that we have mtrod_uced opens up many possibili- Margreet Kuijper and Jan C. Willems

ties for further work. A problem that arises naturally in our framework

is that of designing an observation mapfor a given systent; to

achieve invertibility while minimizing some cost function. Such a Abstract—t has been shown in the literature that a formulation of
problem is practically relevant in the context of sensor configuratidhe minimal partial realization problem in terms of exact modeling of a
design. We envision that its solution paves a path toward a gené?%lpavior lends itself to an iterative polynomial solution. For the scalar

. . i L case, we explicitly present such a solution in full detail. Unlike classical
systematic framework for the design of on-line monitoring syStem§o|ution methods based on Hankel matrices, the algorithm is constructive.

Some work along these lines is reported in [13]. It iteratively constructs a partial realization of minimal McMillan degree.
The algorithm is known in information theory as the Berlekamp—Massey
algorithm and is used for constructing a shortest linear recurrence
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relation. Although it was originally designed for decoding purposepresented in [5, p. 180], which is the original algorithm from [4, p.

it later became important for cryptographic applications, namely f&84] with a modification from [12]. Thus, our approach has enabled

calculating the complexity profile of a sequence of numbers; saesystem-theoretic explanation of the algorithm.

[13]. It is explained below that the denominator of a minimal partial In the sequel, we put ideas from [16] to work. We take a behavioral

realization corresponds to a shortest linear recurrence relation. point of view and first need to introduce some basic ideas of the
Despite the observations in [14], [7], and [1], the Berlebehavioral approach.

kamp—Massey algorithm has not been welcomed in system theory

as a COI‘lStI’UCtive Solution method fOI’ minimal partial realization. 1I. PRELIMINARIES ON MODELING OF BEHAVIORS

Instead, most system-theoretic results on minimal partial realizationIn the behavioral approach [15]-[17], a system is essentially

are based on Hankel matrices (e.g., [7] and references therein) A '

do not produce explicit algorithms for calculating a minimal partia Ined as a behavids which is a set of trajectories; in this paper
realizat!c())n P 9 9 P& e consider linear shift-invariant behaviors on the timeZetof the

. . . form B = ker R(s), where R is a polynomial -matrix and
In recent literature [16], [17], a framework for modeling data intg et (U)’. poly 9 x4 g
e . . .Is the backward shift operator
a “minimal” behavior has been presented. It includes an outline
for an iterative procedure. In [3] it is shown how this framework o ((wo,wr,wa,-++)) = (wi,wa, ).
can be applied to model a partially given impulse response in the
general multivariable case. In this paper, our aim is to use this
approach to derive a constructive and efficient iterative algorithm. R(o)w = 0. )
The algorithm is based on the outl_lne given in [17] a_nd COInCIdGIlfepresentation (3) is calledlarnel representationf 5.
with the Berlekamp—Massey algorithm. In fact, we find that the ; . .

: . Let us repeat some notions from [15] and start with the following
Berlekamp—Massey algorithm not only constructs the denommaﬁor :

. - A .lemma (see, e.g., [9, Th. 3.9] for a detailed proof).
but also the numerator of a minimal partial realization. We restrlc? ) e %
L Lemma 1: Let Ry € R7**7 and R; € R72*7. Then
ourselves to the scalar case because of its simplicity and ele-
gance. However, the algorithm can be extended to the multivariable ker Ri (o) C ker Rz(0)
case; see [10] where a connection is made with the genera“%and only if there exists a polynomial matriX € R?2*9 such that
Berlekamp—Massey algorithm of [6].
Let us now formulate the issues in a precise way. Assume that Ry = FR;.

ay,az,--+,an is a finite sequence of numbers from a fi#d For
the purpose of this paper, we do not need to make a distinction

between finite and infinite fields. The problem of finding a shorte

In other words 3 consists of trajectories: Z+ — R?, for which

It is a corollary of the above lemma that polynomial matrides
d R- of full row rank represent the same behavior if and only if
there exists a unimodular matriX (i.e., a polynomial matrix with

linear recurrence relation fot, a2, --,an is the following: find . 4
L2, N 9 constant nonzero determinant) such tRat= U R».
real numbersg,e1, -+, e, -1, such that . -
The behavioral approach can be used for obtaining models from
ajqr, Fer—16540—1 4+ +eopa; =0 a set of observed time series. The general ideas stem from [16]. In
for j=1,---,N—L. (1) this section, we restrict ourselves to exact modeling of discrete-time

series, as presented in [17]. In the following, we briefly recall the
Here L should be as small as possible in order to capture as muchiasic concepts.

possible of the structure underlying, as, - - -, an. If ar,az2,---,an Let us assume that we havedata setD = {bo,b:,---,bn}
does not allow any relation of the type (1) fbi< N, thenwe sef. =  whereb;, € (R?)%+ are observed trajectorigs = 0,1,---,N). A
N and consider (1) to be trivially satisfied for any,e1,---,e,—1.  behaviorB is called anunfalsified modefor D if D C 5. A model
In the sequel, we denote a linear recurrence relationfog,---,an B, is calledmore powerfulthan a model3. if B, C Bz. A model

by the polynomiak(s):=s"+es,_1s" '+ -4eo; a shortest linear B* is called themost powerful unfalsified model (MPUNYr D, if
recurrence relation has minimal degree. Note that the polynomjat is unfalsified forD andD C B = B* C B. It has been shown

e together with the initial values.,az,---,a,; completely define in [16] that a unique MPUMB* exists forD. Note, however, that
the original finite sequence. One can therefore view the problem ®fkernel representation (3) @&* is far from unique. In fact, any
finding a shortest linear recurrence relation as a problem of dajter kernel representation can be obtained by left multiplication by

reduction. a unimodular matrix.
The scalar minimal partial realization problem for a finite sequence Example 2T = Z andq = 2): Let D = {b}, with
ai,az,---,ay is the following: find polynomialg andh for which 21 27 111 Tol To
‘ | o= (L) L))
h(s) _ do+ars™ 4t ans 4 o(s)s" D oplo|’ (1] |o]| |0

() The MPUM is a three-dimensional vector spac#&™ =
such that deg is as small as possible agds proper rational. Itis not span {s”b,sb,b}. A kernel representation of3* is given
difficult to see that the denominaterof a minimal partial realization by

is a shortest linear recurrence relation fer,asz,---,an. Vice 2
. . . 1 —-1—20-—30 w 0
versa, a shortest linear recurrence relatidor a1, as, - - -, anx gives 0 it w | = ol
rise to a minimal partial realization far, as, -+, ax by defining ?
h(s):=hys" +h, 18" +--- + ho where, forj = 0,1,---, L Alternative kernel representations Bf are, e.g.,
2
hji=a; +er—1aj—1+ -+ e1ar + eoao. 2 1=20+0" —1||wi| _ |0
o? 0 | |w: 0

In Section Ill, we reformulate the above problem in a behavioral

setting, as in [3]. This reformulation then provides a natural basiy

for an iterative solution, the Berlekamp—Massey algorithm, which we { 2- 3‘72 —2- ‘7} {"’1} — {0}_ (4)
present in full detail in Section IV. Here, we adhere to the version as —0+20 T w2 0
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We are now ready to present the procedure of [17, p. 289], whichTheorem 6: Let b be defined by (5). Let
underlies the iterative partial realization algorithm of Section IV. The

procedure provides a framework for the iterative construction of a [c(a) —plo)] {wl} =0
kernel representation of the MPUM f@® = {bo,b:,---,bx}. It W2
can be easily understood from Lemma 1. be a kernel representation of row degieef a C-MCUM for {b}
Procedure 3: Initially define with ¢(0) = 1. Define polynomialse andh by [e R]:=[c p]".
R_,:=1I (wherel is the identity matrix. Thene is a shortest linear recurrence relation &t a., - - -, axy and
) ) . i h/e is a minimal partial realization foto, a1, . an.
Proceed iteratively as follows fok = 0,---,N. Define, after  pecause of the above theorem, the minimal partial realization
receiving {bo, b1 ---. by}, the kth error trajectory e;. as problem can be reformulated as follows.
er:=Ri_1(0)by. Problem Statement: Find a C-MCUM d&,. for {b}.
Compute a kernel representatidi (c)w = 0 of the MPUM for The MPUM for {b} simply equals
{er}. Then, define span {O"Vb, " 'b,---.ob, b}.
Bip:=ViBp—1. As noted in [3], a kernel representation for it is givendyr )w = 0,
Theorem 4 [17]: For k = 0,---, N, the kernel representation where
Ri(oc)w = 0 of the above procedure represents the MPUM for Als) — 1 —(ao+ars+-+ans™)
{bo,by,---,bg}. A(s) = 0 SN+ . (6)

Next, we recall the notion otontrollability from [15]. For the L ) . . .
purpose of this paper, we consider the following as a definition; &S iS not a unique kernelnrepresentatlon._ As noted in Section I,
behavior3 = ker R(s) on Z.. is controllable if R(s) has constant @1y other kernel representation can be obtained by left multiplication
rank for alls € C. For the specific case that= 2, it follows from by a unimodular matrix. Here, we are specifically interested in row-
Lemma 1 that two distinct nontrivial controllable modés and3, reduced kernel representations; see also [3] and [2]. The reason for
that are unfalsified for the same data set are “incomparable,” . HlS is contained in the foII_owing theorem.
neither B, C B, nor B, C Bi. However, an ordering can still be Theorem 7:Let b be defined by (5). Let the MPUM fofb} be
introduced on the basis of the “complexity” of a model. As a measufd/en by
of complexity we introduce therder n(53) of a behavior. Since this ) ¢ p
concept will also be important for noncontrollable behaviors, we give R(o)w =0 with R= L« _q}- @)

a general definition: the orden(B) is defined as the minimum value '

of the sum of the row degrees @, where the minimum is taken Assume that:(0) # 0 and thatR is row reduced with row degrees
over all possible kernel representations (3)/fThis minimum is #1 andsz. If k1 < 2 and/or f(0) = 0, then

attained exactly wher® is “row reduced.” w,

Definition 5: Let R € R“*7 have full row rank. DefineR, € [c(o)  —p(a)] [w.)} =0 (8)
R9*? as theleading row coefficient matrinof R, i.e., the constant )
matrix that consists of the coefficients of the highest degree termsrépresents a C-MCUM fofb}.
each row ofR. Define R to berow reducedf R, has full row rank. Proof: First observe that, by Lemma 1, there exists a unimodular

When a matrixR is not row reduced, a unimodular matfix can matrix U such that

be found such thal/ R is row reduced. A procedure is given in [18, 1 —(ae+ars 4 Fans™)
p. 27] (see also [9, p. 24]) where it is shown that not only the sum R(s) =Ul(s) L) GV }
of the minimal row degrees is an invariant of a behavior, but also
the minimal row degrees themselves are invariants of a behavior. Py @ result,R(s) can only lose rank at = 0, so thatf andg have
example, the minimal row degrees Bfin Example 2 are 1 and 2; N0 common zeros, except possiblysat= 0. We have to prove that
this can be seen from the row-reduced representation (4). a representation

In accordance with [2], we call a mod#l a controllable-minimal w,
complexity unfalsified model (C-MCUM9r D if 5 is controllable, [d(o) —n(o)] L"Q} =0
unfalsified forD, and of least order among all controllable unfalsified
models forD. that constitutes a controllable unfalsified model {@r}, necessarily

has row degree>k;. If
[ll. PARTIAL REALIZATION AS EXACT MODELING d —n
In this section, we put the minimal partial realization problem in det {f —g:| 70 ©)

a behavioral framework, as in [3]. However, we prefer to @se
instead ofZ_ as the time-axis for reasons of exposition.

First, we transform the datai, a2, -,an into a trajectoryb
that can be interpreted as a reversed partial impulse response.
trajectoryb is defined fromZ, to R? by

o= (3] [ [ BT R e iy 2o )] =[]

Not surprisingly, a model fof{b} corresponds to a partial realization.would be an unfalsified finite-dimensional model fop} of order
More precisely, we have the following theorem which can be readilyx, + x2, which contradicts the row reducedness Bf Next, if
verified. (We define theeciprocal P"(s) of a polynomial matrix f(0) # 0, then (9) can only fail to hold if deqd —n] = k.
P(s) = Pys" + Po_1s" '+ ...+ Pis+ P, (P, # 0) by By assumption, we have that in this cage > x, so that deg
P(s):=P, + P, _is+---4 Pis""" 4+ Pys") [d —n] > k1. ]

then this would give rise to an unfalsified finite-dimensional model

for {b}, which necessarily has first row degree., because of the
sumption thak is row reduced. Now, if (0) = 0, then necessarily
)eholds, since otherwise ddd —n]< k2, so that
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By the above theorem, one of the rows of a row-reduced represéime V;’s ensures that eacRy, is row reduced® = —1,0,---, N).
tation of the MPUM for{b} represents the C-MCUM fofb}. Our Indeed,R_; is trivially row reduced and the assumption tHa{_;
approach is therefore to construct a row-reduced representation ofitheow reduced, implies thak, is row reduced. IfA, = 0 or
MPUM for {b}. For this, one can proceed in two different ways.

1) Make the polynomial matrix4 in (6) row reduced, i.e., L1 > Li
construct a unimodular matriX such that/ A is row reduced. then

2) Use the datay, a1, - - -, axy iteratively. At each step, construct 1 A
a row-reduced representation of the MPUM corresponding Ri(s) = {0 ,’“}Rk,l(s) (10)
to ai,az,---,ar (k = 0,---N). For this, use the iterative 5

modeling Procedure 3, applied & b,s""'b,---,ob.b}. s clearly row reduced again; note that thBp = Li_,. If Ay #0

For 1), the procedure of [18] can be used. The algorithm is themd L,_; < Li_1, then
essentially the Euclidean algorithm, applied to the polynomials!
andag+ays+---+ans™; see [11]. For 2), the row aR,. of smallest Ry (s) = {
degree that does not lose ranksat 0, represents the C-MCUM at
stepk. One can therefore think of an iterative procedure that requirgs again row reduced; note that then
a check on the value at= 0 and the row degrees at each step, as
in [2, p. 1795] and [3]. However, such a check is not needed if
we choose thd’;’s in such a way that the?:’s are not only row
reduced, but also have a second row that loses rank=at). Then,
by Theorem 7, the C-MCUM at stépis unambiguouslgiven by the
first row of Ry. This is the clever idea behind the iterative algorithm
of the next section, which is the Berlekamp—Massey algorithm.

Remark 8: If a representation (7) of the MPUM fofb} is row
reduced andf(0) = 0, then a parameterization of all C-MCUM'’s,
represented by

1

s/Ay _(,)Ak :| Ri—1(s)

Ly=1Li 4. (12)
Finally, it can be proven by induction that

—ag

Ry (0) = {(1) 0

} for k=0,---,N (12)
so that, by Theorem 7, we may conclude that the first rowRgf
gives rise to a C-MCUM for{by}.

In order to be able to write the algorithm in compact form, we
note thatdet Ry (s) = s*T', so that

wy -
[d(o) —n(a)] {wz} =0 Li+Le=k+1. (13)
is given by As a result, (10) coincides with the conditidn.—; > k/2, whereas
e —» (11) translates intd.; = k — Ly_;. Let us denote
[d —n]=]1 Q]L; _ﬂ

Ry = |:C.k Pk :|
Here « is a polynomial with degy = 2x1 — (N + 1) for k1 > fo —gx
_(_/\/‘+_1)/2_anda =0 f_or k1 < EN—i— 1)/2. In particular, a C-MC_:UI\_/I By definition, the numben,,
is unique if and only if<1 < (N +1)/2. The above parameterization_
can also be found in [2] and [12].

is the coefficient ok* in (ao + a15+
-+ aps®)er_1(s) — pr_1(s). This equals the coefficient of® in
(ao+ais+- - +ars®)er_1(s) because of the fact that dpg_; < k
[use (12) and (13)].

IV. AN ITERATIVE ALGORITHM Below, we rewrite the above algorithm in compact form.
In this section, we present our main result by working out th&he resulting algorithm is a slightly generalized version of the
above-mentioned option 2) in detail. Berlekamp—Massey algorithm, in the sense thais not fixed (the

Fork =0,---, N, let b, := o™ ~"b, whereb is defined by (5). Berlekamp-Massey algorithm sets = 11)- N .
App|y|ng Procedure 3 to the data 5{3507 bl; e bN}; we get error Algorlthm 9: Denotecy, := [1 O]R}, [0] Inltlally define
trajectoriese;., for which

10
R_i:= , d L_,:=0.
ger, = o Ry_1(0)by = Rip_1(0)br_1 = 0. ! L) 1} »an !
Consequentlye;, is of the simple form Proceed iteratively as follows fok = 0,---, N. Define, after
A 0 0 receivingag, a1, - - -, ax, the numberA, as the coefficient of* in
e = <{Aﬂ {0} L)},' ) (ap + ars 4+ -+ aks’“)ck_1 (s).

Compute the matrix?; and the integell,. as follows:
Define Li, and L;, as the degree of the first and the second row of

Ry respectively. Define the update matfix as Ri:= ViR
A, — where, if A, = 0 or Ly_;1 > k/2
Vi(s):= Bk =Bkl AL =0 k k1> k/
0 s ) 1 AL
. Vits)i= 1y [ Lei=lea
or Ly_1>Li_y, :

and, if otherwise

Ak —Ak } otherwise

Vils):= |:5/A;,, 0 1 —Ay :|

Vi(s):= L/Ak 0
Clearly, in both casesVi(c)w = 0 represents the MPUM for :
{er}. ConsequentlyR.(c)w = 0 represents the MPUM fofb,} Then the first row ofR;. represents a C-MCUM fofb,}; the
(Theorem 4). It can be proven by induction thAt, = 1 for reciprocal of that row yields a minimal partial realization as in
k=20,---,N. It also follows by induction that the above choice ofTheorem 6.

Ly:=k— L.
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Example 10: Let (ao, a1, a2,as,as) = (0,0,1,1,0). [71 W. B. Gragg and A. Lindquist, “On the partial realization problem,”
Application of the above algorithm yields: Lin. Alg. Appl, vol. 50, pp. 277-319, 1983.
[8] R. Hill, A First Course in Coding TheonyOxford Appl. Math. Comput-
1 0 1 0 ing Sci. Series. Oxford: Clarendon, 1986.
Ag=0, Lo=0, Ro= {O 8}3—1 = {O 8} [9] M. Kuijper, First-Order Representations of Linear SysterBeries on
Syst. Contr.: Found. Appl. Boston, MA: Birlduser, 1994.
Ay =0. Li—=0. R — 10 Re — 10 [10] —_, “An algorithm for constructing a minimal partial realization in
L= =% T= 0o |7 " |0 42 the multivariable case,Syst. Contr. Letf.1996, to be published.
9 [11] —, “Partial realization and the Euclidean algorithmiZEE Trans.
Ay =1. Lo=2. Ry= 1 -1 R, = 1 -s Automat. Contr.to be published.
- ’ - ’ - s 0 s 0 [12] J. L. Massey, “Shift-register synthesis and BCH decodili§EE Trans.

Inform. Theory vol. IT-15, pp. 122-127, 1969.
[13] R. A. Rueppel,Analysis and Design of Stream CipherdNew York:
1 -1 1—s5 —g2 Springer-Verlag, 1986.
Rs = Ry = 2 [14] M. K. Sain, “Minimal torsion spaces and the partial input/output
problem,” Inform. Contr, vol. 29, pp. 103-124, 1975.

Ag==1, Li=2 [15] J. C. Willems, “From time series to linear system—Part |: Finite-
2 2 dimensional linear time invariant systemsiutomatica vol. 22, pp.
Ry = { 1 1}5,3 _ {1 —s+s _55} 561-580, 1986.
-5 0 —s5+s S [16] —, “From time series to linear system. Part Il: Exact modeling,”
Automatica vol. 22, pp. 675-694, 1986.
As a result [17] —, “Paradigms and puzzles in the theory of dynamical systems,”
IEEE Trans. Automat. Contrvol. 36, pp. 259—-294, 1991.
l—0+0" —07) {wl} =0 [18] W. A. Wolovich, Linear Multivariable Systems New York: Springer
w2 Verlag, 1974.

represents a C-MCUM fofb}. Taking the reciprocal row vector, we
get the (unique) minimal partial realizatidrf (s* — s + 1).

V. CONCLUSIONS ) )
A Descriptor Solution to a Class

The minimal partial realization problem has been considered as of Discrete Distance Problems

an instance of exact modeling of a behavior on a half-axis, as in [3].
Solutions W|t_h|n this framework are based on polynor_mals rather thanM_ M. M. Al-Husari. I. M. Jaimoukha, and D. J. N. Limebeer
Hankel matrices. A central role is played by behaviors that are the
span of a finite number of trajectories and thus do not have a transfer
function. It is for this reason that the notion of a behavior rather thanAbstract_Hanke| norm and Nehari-type approximation problems arise
a transfer function is essential to the approach. We put the thedrymodel reduction and . -control theory. Existing solutions to the
to work in deriving an efficient and constructive iterative solutiofiscrete-time version of these problems may be derived using a standard
for the scalar case: the celebrated Berlekamp—Massey algorithm. AHS;Space framework, but the resulting solution formulas require an
. A A - . o . invertible A-matrix. As a further complication, the D-matrix in the rep-
interesting feature of the algorithm is that its efficiency is enhancggsentation formula for all solutions becomes unbounded in the optimal
by the update at each step of four polynomials rather than two. Itdsse. The aim of this paper is to show that both these complications may
a topic of future research to put this idea to work for identificatiohe removed by analyzing these problems in a descriptor framework.
purposes, in the context of approximate modeling. Index Terms—Descriptor systems, discrete-time Nehari problemH ..
control, model reduction.
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