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Hector J. Sussmann and  Jan C. Willems 

ptimal  control was born in 1697-300 years ago-in Gron- 
ingen, a university  town  in  the  north of The  Netherlands, 

when  Johann  Bernoulli,  professor of mathematics at the  local 
university  from  1695 to 1705,  published his solution of the  bra- 
chysfochrone  problem. The year  before  he  had  challenged his 
contemporaries to solve this problem. We will tell the  story of 
some of the  events of 1696  and 1697-when solutions  were  sub- 
mitted by Johann  Bernoulli  and  such  other  giants as Newton, 
Leibniz,  Tschirnhaus, l’Hopita1, and  Johann’s  brother,  Jakob 
Bernoulli-and then  sketch  the  evolution of this field until it 
reached  maturity  in  our  century.  Since  the birth of optimal  con- 
trol, like all births, did  not  take  place in a vacuum,  the historical 
context will first be  described, by outlining  briefly  some of the 
main  ideas  and  discoveries  on  curve  minimization  problems 
from classical Greece  up to Bernoulli’s  time. We will  then state 
the  brachystochrone  problem,  present  Bernoulli’s  solution,  and 
also  provide a short  nontechnical interlude, dealing  with  Ber- 
noulli’s personality  and with his exceptionally  gifted  family. 
Subsequently  we will follow  the intricate path that has  led to the 
modern  versions of the  necessary  conditions  for a minimum, 
from  the  Euler-Lagrange  equations to the  work of Legendre  and 
Weierstrass  and,  eventually,  the  maximum  principle of optimal 
control theory. Finally, we  will  “close  the  loop” by returning to 
the  brachystochrone  from  the  perspective of modern  optimal 
control. 

Our thesis, that the  brachystochrone  marks  the birth of opti- 
mal control, is undoubtedly  somewhat  controversial,  and  some 
readers-especially those who espouse views currently  in  vogue 
about  the social construction of reality-might suspect that it is 
merely a reflection of the  professional  and nationalistic biases of 

Hector Sussman (sussmann@hamilton.rutgers.edu) is with the Department 
of Mathematics, Rutgers University, New Brunswick, NJ 08903. His work 
was supported in part by  NSF Grant DMS95-00798 and AFOSR Grant 0923, 
He is especially grateful to Annye K. Sussmann for her careful reading of the 
manuscript  and  her  invaluable  suggestions.  Willems  (J.C.Wi1- 
lems@math.rug.nl) is with the Department of Mathematics, University of 
Groningen, P.O. Box 800; 9700 AV Groningen, The Netherlands. This arti- 
cle was presented in  the history session of the 35th Conference on Decision 
and Control in Kobe, Japan, on Dec. 11, 1996. 

the  authors. We gladly  plead  guilty to most of this charge-and 
state for  the  record that we are both control theorists, and one of 
us is a  professor  at Groningen-asking only that the word 
“merely”  be  stricken out. Our biases may  of course  explain how 

Fig. 1. Johann  Bernoulli (1667-1748). 
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Fig. 2. The  Brachystochrone  Problem (Acta Eruditorum,  June  1696, 
p. 269). 

we  became  interested in this issue, but are not at all relevant to the 
merit  and  validity of our  conclusion. 

In this article, we  will focus on point-to-point optimal control 
problems,  where the  objective is to transfer the state ofa dynami- 
cal  system with  minimum cost  from  one point to another. This 
means  that we  are leaving out the  whole area of transversality 
conditions, which arise when one  considers “set-to-set’’ prob- 
lems.  Furthermore, we will  not discuss  at all the  very important 
related question of sufficient conditions (and  “Hamilton-Sacobi 
theory”),  as  well as the  problem of finding optimal  controllers, 
for example in  the  form of feedback  laws, which is of course  also 
a  central concern of optimal  control theory. 

Bernoulli’s Challenge 
In the  June  1696  issue of Acta  Eruditorum, Bernoulli  posed 

Invitation  to all mathematicians  to solve a  new  problem. 
If in a  vertical  plane two points A and B are given,  then it  is re- 

quired to spec@ the orbit  AMB of the movable  point  M,  along 
which it, starting from A, and under the injluence of its own 
weight,  arrives  at B in  the shortest  possible time. So that  those 
who are  keen of such  matters will be tempted to solve this prob- 
lem, is  it  good to know  that it is not, as it may  seem,  purely  specu- 
lative and without  practical use. Rather it even  appears, and this 
may be  hard to believe, that it is very useful also for other 
branches of science  than  mechanics. In order to avoid  a  hasty 
conclusion, it should be remarked that the straight line is cer- 
tainly the line of shortest  distance  between  A and B, but it is not 
the one which is traveled in the  shortest time. Howevez  the cuwe 
AMB-which I shall  divulge ifby the end of this year  nobody else 
has  found it-is very  well  known  among  geometers. 

Later, at the  suggestion of Leibniz,  Bernoulli  extended  the 
deadline for the  solution until Easter  1697,  and  on  January 1,1697, 
he  published  the  announcement  reproduced  below,  addressed to 
The  Sharpest  Mathematical Minds of the Globe (see  Fig. 3). 

the  following  challenge  (see  Fig. 2):  

Before 1696 
Similar  optimization  problems  had  been  studied at least since 

the  Greeks. The oldest  of all is the one of determining  the  shortest 
path  joining  two points, whose  solution-which  must  have  been 
well  known  since  very  ancient times-is a straight-line segment. 

Next came the isoperimetricproblem, also  known as Didosprob- 
lem, inspired  by  the  mythical  story  told  by  Virgil  (70-19  B.C.) in 
the Aeneid about  the  foundation of Carthage (c. 850 B.C.): the 
question is to find the plane cuwe of a given length that encloses 
the largestpossible  area.  The solution  was  known  by  the  Greeks to 
be the circle, although it took until the 19th century for this to be 
proved in a  way that meets our contemporary  standards of  rigor. 

Hero (or Heron) of Alexandria’  showed in his Catoptrics that 
when  a light ray emitted by  an object  is reflected  by  a  mirror, it 
follows a  path from the object  to  the  eye which is  the shortest  of 
all possible  such  paths. In Hero’s setting, which  involved  a single 
medium and  therefore  a constant  speed of light, “shortest”  was 
equivalent to “fastest.” This was no  longer the case  in the  work of 
Fermat  (1601-  1665),  who  formulated the  general principle that 
light rays,follow  the  fastest-i.e.,  minimum time-paths. This  ex- 
plained  not  only  Hero’s  observation about reflection, but  also 
Snellius’  law  of  refraction.  We shall  see that  Fermat’s  principle 
played a crucial role in Bernoulli’s solution of  the  brachysto- 
chrone problem. 

While all this was  happening in the  physics front,  some prog- 
ress  was  also  made  in the understanding  of  purely  mathematical 
aspects of curve optimization  problems. In particular, Newton 
had  studied in  1685 the  determination of the  shape ofa body  with 
minimal  drag, which  was  a  true  “calculus of variations”  problem. 
But this remained an  isolated  piece of  work  which did not attract 
much  attention  and  had no interesting  spinoffs. 

1696-1697: The Watershed 
The events of 1696 and 1697  were a  clear  turning  point. Ber- 

noulli’s 1696  challenge  to his  colleagues  was  taken  up  by  the  best 
mathematical minds of the  time.  Six  mathematicians  submitted 
solutions  to  the  brachystochrone  problem, and not just any six! 
Besides Sohann’s  own solution,  there was one by  Leibniz,  who 
called  the problem  splendid  and  solved it  in a letter to  Johann 
dated  June  16,  1696; another one by  Johann’s elder brother 
Jakob;  one by Tschirnhaus;  one by  l’Hopita1,  and, finally, one by 
Newton.  Newton’s solution was  presented to the  Royal  Society 
on February 24, 1697, and  published,  anonymously  and  without 
proof,  in  the  Philosophical  Transactions. However, the identity 
of the  author  was  clear to  Bernoulli, since, as  he noted, ex ungue 
leonem (you can tell the lion  by its claws).  Sohann’s  solution  was 
published  in the Acta  Eruditorum of  May 1697,  almost exactly 
300 years  before this magazine article, and the  same  issue  also 
contained  Sakob’s  solution,  reprinted  Newton’s anonymous so- 
lution,  and  included  the  contributions by Tschirnhaus  and 
l’Hopita1, as well as a short note  by  Leibniz,  remarking that he 
would  not reproduce his own  solution, since it was  similar to that 
of  Bernoulli. He  also noted who  else,  in his opinion,  could solve 
the  problem:  l’Hopita1, Huygens, were  he alive, Hudde, ifhe had 
not  given up and Newton, if he would take  the 
trouble. 

The solutions of Bernoulli’s  problem were as beautiful as 
could have  been  expected  given  the eminence of the personalities 
who took up  his  challenge and found the correct answer.  Moreo- 
ver, this work  was  followed  by  a  period  of intense activity on 

‘Exact dates unknown. Believedby historians to have flourished about 1 OOBC., al- 
though  some attribute his optics work to  a  “Hero  the Younger,” who may have lived in 
the 7th or 8th century A.D. 

’Hudde became mayor of Amsterdam, and Huygens died in 1695. 
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problems of a  similar  kind,  whose  origin is directly traceable to 
the  events of 1696-1697,  and  in  many  cases specifically to the 
Bernoullis,  both intellectually and  in  terms of personal  contacts. 
For  example,  Euler was a  student of Bernoulli  in  Basel,  and  La- 
grange  became  interested  in  variational  problems by reading 
Euler’s  works.  From this research,  general  techniques  eventually 
emerged in the work  of Euler  and  Lagrange. So there is no  doubt 
that something  important in the  history of mathematics  hap- 
penedin 1696-1697.  For  example, D.J. Struik, in [9], p. 392, says 
of the articles published in the  May  1697  Acta Eruditorum that 
“these  papers  opened  the  history of a new field, the  calculus of 
variations.” 

Why Optimal Control? 
The  conventional  wisdom  holds  that  optimal  control  the- 

ory  was  born  about 40 years  ago  in  the  former  Soviet  Union, 
with  the  work  on  the  “Pontryagin  maximum  principle”  by L.S. 
Pontryagin  and  his  group’(cf. [8]). Some  mathematicians  he- 
lieve  that  this new theory  was no more  than  a  minor  addition  to 
the  classical  calculus of variations,  essentially  involving  the 
incorporation of inequality  constraints.  The  article  by  L.  Mar- 
kus in [SI describes  the  unenthusiastic  reaction  at  the  1958  In- 
ternational  Congress of Mathematicians to the  announcement 
of the  maximum  principle  by  the  Soviet  group. In addition,  it 
is likely  that  other,  nonmathematical,  factors  may  also  have 
contributed  to  the  negative  reaction.  Among  these,  two  rea- 
sons  clearly  stand  out:  first of all  Pontryagin’s  personality 
and,  in  particular,  his  notorious  anti-Semitism,  and  second, 
the  feeling  that many  held  that  the  result  was  primarily in- 
tended  for  military  applications. 

We believe that optimal  control is significantly  richer  and 
broader  than  the  calculus of variations, from  which it differs in 
some  fundamental  ways,  as  we now explain. 

The calculus of variations  deals main1 with  optimization 
problems of the  following  “standard”  form ?. . 

minimize z = f ~ (  q(t), q(t), t)dt, 

subject  to q(a) = 4 and q(b) = , (1) 

or, equivalently, of the  form 

 minimize^ = JabL(q(t), 4t>, t)dt ,  

subject to q(a) = q,  q(b) = 4 , and q(t> = u(t) 

f o r a l t s b .  (2) 

The distinctive feature of these  problems is that the  minimization 
of (1)  takes  place in the  space of “all” curves, so nothing interest- 
ing  happens  on  the level of the set of curves  under  consideration, 
and all the  nontrivial  features of the  problem arise because of the 
Lagrangian L. 

31n what  follows,  we will discuss  the work of several authors  from  the  17th  to  the 
19th centuries.  In  the  interests of clarity  and consistency, we will always use our own no- 
tations  and  mathematical  terminology  rather than those of the  authors  under  discussion. 
So, for  example,  the  letter L will always  stand foi- the “Lagrangian,” the  state variables 
will usually-but not always-be called q, and  the  independent variable-often called x 
or y in early papers on the subject-will usually be t, and  should be thought of as time. 
We will use dots-and on  a  few  occasions  primes,  and  also dldt, when we want to differ- 
entiate  a  long expression-to denote differentiation with  respect  to  time (cf. Equation 
(12) below for an example of the use of these notations). 

poblermalterum ut2 Geometricurn, quod priori fuboe- 
&mus&&enebco Erudiiisproponimus 

Fig. 3. Johann  Bernoulli’s  announcement 

Optimal  control  problems, by contrast, involve  a  minimiza- 
tion  over  a set Cof curves  which is itself determined by some  dy- 
namical constraints. For  example,  Cmight  be  the set of all curves 
t - q(t) that satisfy a differential equation 

for  some  choice of the  “control  function” t H u(t) .  Even 
more  precisely,  since  it  may  happen  that  a  member of C does 
not  uniquely  determine  the  control u that  generates  it,  we 
should  be  talking  about  trajectory-controlpairs (q(.) ,u(.)) .  
S o  in  an  optimal  control  problem  there  are  at  least  two  ob- 
jects  that  give  the  situation  interesting  structure,  namely, 
the  dynamicsfand  the  functional Z to  be  minimized. In par- 
ticular,  optimal  control  theory  contains,  at  the  opposite  ex- 
treme  from  the  calculus of variations,  problems  where  the 
“Lagrangian”  Lis = 1,  i.e.  completely  trivial,  and  therefore 
all  the  interesting  action  occurs  because of the  dynamicsf. 
Such  problems,  in  which  i t   is   desired to minimize 
time-i.e., the  integrallof (2) with  L = 1-among all  curves 
t- q ( t )  that  satisfy  endpoint  constraints  as  in (2) and  are so- 
lutions of (3) for  some  control  t ++ u( t ) ,  are  called  minimum 
timeproblems.  It  is  in  these  problems  that  the  difference  be- 
tween  optimal  control  and  the  calculus of variations  is  most 
clearly  seen,  and  it  is no accident  that  these  were  the  prob- 
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Fig. 4. The  Brachystochrone  cycloid (Acta Eruditorum,  May 1697). 

lems that propelled  the  development of optimal  control in the 
early 1960s, and that time-optimal  control is prominently  repre- 
sented in  today’s research  and in modern  optimal  control text- 
books. 

Within this framework, we can  state  the  first of our  reasons 
for  claiming that the  brachystochrone  problem  marks  the  birth 
of optimal  control:  Bernoulli’s  problem,  as  posed  in  the  Acta 
Eruditorum,  is  a  true  minimum  time  problem of the kind that  is 
studied  today  in  optimal  control  theory.  Bernoulli  called  the 
fastest  path  the  brachystochrone  (from  the  Greek  words 
ppax~ozo~ :  shortest, and xpovos: time).  Moreover,  the  bra- 
chystochrone  problem  is  the first one ever  to  deal  with  a  dy- 
namical  behavior and explicitly ask for the  optimal  selection of 
apath. In both  the  isoperimetric  problem  and  Newton’s  minimal 
drag  problem  the  curves to be  computed  are  not  thought of as 
paths of a moving body  or particle. Finally, and  most  impor- 
tantly, a large part of the  subsequent  history of the  calculus of 
variations  can  be  best  understood as the  search for the  simplest 
and most  general  statement of the  necessary  conditions for op- 
timality, and this  statement  is  provided by the maximumprinci- 
ple of optimal  control  theory. 

The  above  reasons are, in our view, compelling  arguments in 
favor of our  claim that 1696 deserves to be  called  the  year of the 
birth of optimal control. 

Bernoulli’s Solution of the 
Brachystochrone  Problem 

We start by describing  Johann’s  Bernoulli’s  solution? 
Let us first formulate  the  brachystochrone  problem in modem 

mathematical  language.  Choosex  and y axes in the  plane with the 
y axis  pointing  downwards.  Use (0,O) and (a,b) to denote,  respec- 
tively, the  coordinates of the  end  points A and B. A pathf: [O,q-+  
R2, defined on  an interval [O,T l ,  and  having  componentsfl(t), 
f2(t), is said to be a feasible  trajectory (or feasible  path) if 

(i)AO) = (O,O) , f (T)  = (a,b),  andfis Lipschitz  continuous, 

Here g is the gravitational  constant.  Condition (i) states that the 
pathfmust start at A and  end  at  B.  Condition (ii) reflects conser- 
vation of energy: at each  instant t ,  the  kinetic  energy of the  body 
must equal  the  decrease of potential  energy  due to its loss of 
height.  (The law that a body which  has fallen from  a  height  h  has 

sier, hut in the long run  it has turned out  to  be more akin to the mainstream ideas of the 
4J&ob’s solution was quite  different  from Johann’s, and at first  sight  seemed clum- 

calculus of variations, Hamilton-Jacohi theory, and dynamic  programming,  and is there- 
fore widely considered  to  he of great historical importance in the  development of opti- 
mal control.  It will not, however, be  discussed here, due  to lack of space. Goldstine’s 
book [7] gives an excellent account. 
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velocity  proportional to & was due to Galileo,  and  was well 
known in Bernoulli’s  time.) 

A  feasible pa thp  : [O,T*] + R2 is said to be optimal if there 
exists no feasible  path f :  [O,u -+ R2 for  which T <  T*. A brachys- 
tochrone is a curve in R2 traversed  by an optimal  feasible  path, 
i.e., a subset B of R2 of the  form B = (x,y) E R2 : there exists tE 
[O,P], such that (x,y)  =$(t)} where$ : [O,P] -+ R2 is an opti- 
mal feasible  path. 

One  obvious fact is that the solution cannot always be a 
straight  line,  a possibility that Bernoulli rightly warns against. 
For  example,  consider  the  extreme  case when b = 0. It is easy to 
see that it takes finite time to roll from A to B on a half circle, 
since it will take finite time to roll from A to the  bottom of the cir- 
cle,  and  the  same  time to climb  back up to B. Since, however, the 
straight-line segment  fromA to B is horizontal,  the  speed of mo- 
tion  along it vanishes. So, the straight line segment  cannot  be an 
optimal  path,  because  the  motion  along it takes infinite time. 

It turns  out that the  brachystochrone is a cycloid. It is the 
curve  described by a point P in a circle that rolls without  slipping 
on on  the x axis, in such a way that P passes  through A and  then 
through B, without hitting the x axis in between. It is easy to see 
that this defines  the  cycloid  uniquely  (see Fig. 4). 

Bernoulli’s  ingenious  derivation of the  brachystochrone  has 
been  the  subject of numerous  accounts,  but  since this event plays 
a  crucial  role in our own story, we will outline  the proof again. 

Bernoulli  based his derivation on Fermat’s  minimum  time 
principle. If we imagine  for  a  moment that instead of dealing 
with the  motion of a  moving body  we are  dealing with a light ray, 
condition (ii) above  gives us a formula for  the  “speed of light” c 
as a function of position:  c = a. Let us rescale-or, if the 
reader so prefers, “change  our  choice of physical units”-so that 
2g = 1. Then  our  problem is exactly  equivalent to that of deter- 
mining  the light rays-i.e., the  minimum-time paths-in a plane 
medium  where  the  speed of light c  varies  continuously as a  func- 
tion of position  according to the  formula  c = f i .  

It is at least intuitively clear that, if we discretize  our  problem 
by dividing  the  half-plane  into  horizontal strips S k  = { (x ,y )  : y k  < y 
I y k + ]  } of height 6, fork = 0,1, .. ., where yk = kd,  and treating c in 
each strip S k  as a constant Ck (by, say, setting Ck = &), then  the 

light rays  for  the  discretized  problem  should  approach  those  for 
the  original  problem as F 1 0. The light rays of the  discretized 
problem  can  be  studied  using  the  law of refraction of light. 
Clearly,  the  paths  will  be straight-line segments  within  each indi- 
vidual strip, and all that needs to be  done is to determine how 
these  rays  bend as they cross  the  boundary  between  two strips. 
The  answer is provided by the  laws of optics as developed by 
Snellius, Fermat,  and  Huygens. 

Snellius  had  observed that, if two  media  are  separated by a 
straight line, and a light ray is refracted at the  boundary  between 
them,  then  the ratio of the  sines of the  incidence  angles  between 
the light rays and the  normal to the  boundary is constant.  Fermat 
subsequently  showed that this is precisely what happens  when 
light is assumed to follow  a  minimum-time  path.  Applying this to 
the situation of the  two  media  separated by a horizontal  leads to 
the  following  optimization  problem.  Assume that we have two 
points,  the first, P I ,  located  above,  and  the  second, Pz, lying  be- 
low the  boundary.  Suppose  a light ray travels with speed V I  in  the 
medium  above  the  horizontal line and with speed vz in  the  me- 
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dium below the  line. Of course, when V I  = v2, this fastest  path  is 
the  straight  line  from PI to P2. This  implies  that  the  fastestpath  to 
travcl from P1 to P2, when V I  # v2 is  a  broken  line  consisting of a 
straight  line  from PI to  some  point P’ on  the boundary, and an- 
other  straight  line  from P’ to P2. The  problem  is thus reduced  to 
finding  the point P’. This,  is, however, a  simple  calculus  ques- 
tion, and it turns out that  the point P’ is  determined  by  the  equa- 

tion ~ 

sine, - sine, 
- - or, equivalently, ~ - -. 

VI v2 

sine, - v, 
sine, v2 

This  law relating the  incidence  angles to the velocities of 
propagation is  due to  Huygens, and implies  the  law of Snellius. 

Bernoulli  used  Huygens’  law to conclude that the  quantity 2 

will  be  a  constant,  since  in  each  strip Sk the  speed of our  light ray 
is &,. Passing to the  limit as 6 10 ,  we conclude  that  the  sine of 

the  angle 0 between  the  tangent to the  brachystochrone and the 
ver t ical   axis   must   be  proport ional   to  f i .  Since  

sin 0 

&l 

dx A2 sin8 = l/dx2tdyz, we find that ~ = Ky, where K is  a 
dx2 + dy2 

d x 2  +dy2 1 
constant.  Then ~ = -, Le., I +  y’(x) = -, where 

2 c  

A2 Ky Y 

C = -. So the curve described  by expressing the y-coordinate of 

the  brachystochrone  as  a  function of its  x-coordinate will satisfy 
the differential equation 

1 
K 

with C a constant. The curves  given  by  the parametric  equations 

” 
x(cp) = x. + -(cp - sincp) , L 

2 

satisfy (4). It  is easily seen  that these equations specify the cy- 
cloid  generated by a point P on a circle of diameter C that rolls 
without slipping on the  horizontal  axis,  in  such  a way that P is  at 
(xo, 0) when cp = 0. 

The argument  that  we have presented  is Bernoulli’s,  and 
Equation (4) appears  in his  paper,  followed by  the  statement 
“from which I conclude that the  Brachystochrone  is  the  ordinary - 
Cycloid.” (He actually wrote dy = dx , but he was  using x 

for the  vertical coordinate and y for  the  horizontal one. Cf. [9], p. 

In  contemporary  mathematics,  the  symbol & usually stands 
for  the nonnegative square  root of r, but it  is  obvious  that  Johann 
Bernoulli  did  not  have this in  mind.  What  he  meant was, clearly, 
what  we would  write  as 

394). 

y’(x) = *jy 

or, equivalently, 

y(x)(l + y’(x)’) = constant . (7) 

In  particular, the solution curves should be allowed to have a 
negative slope.  But y’ should stay continuous, so that a switching 
from  a + to  a - solution of (6) is  not  permitted. 

Even  with  the  more  accurate  rewriting (7), the differential 
equation  derived  by  Bernoulli  also  has spurious solutions,  not 
given by (5)! Indeed,  for any v > 0, the  constant  function 
y(  x) = is  a solution, corresponding to C = Y. More generally, 
one can  take  an  ordinary  cycloid  given  by ( 3 ,  follow it  up to cp = 
x-so that  dy/& = &then  follow  the  constant  solution  y(x) = C 
for an  arbitrary  time T, and  then  continue  with a cycloid  given  by 
(5). Such paths are, indeed,  compatible  with  Huygens’  law of re- 
fraction. 

It is easily  understood  that  the  laws of Snellius  and  Huygens 
cannot  explain  why a light ray  has to bend  upward  or  downwards 
once  it is horizontal. As such  Bernoulli’s  argument is certainly 
incomplete  when  the  brachystochrone  cycloid  connecting A and 
B first bottoms  out  before  climbing back up to the  point  B. There  is 
no reason  why it should  not  proceed  horizontally once  it has 
reached  the  lowest  point.  This  shortcoming  in  Bernoulli’s 
argument  seems to have  escaped historians. We shall later see that 
the maximum  principle  does  exclude  these  horizontal  motions. 

The  spurious  solutions, and all the other problems,  such  as the 
apparent arbitrariness of the  requirement  that y’ be continuous, 
can  be  eliminated  in  a  number of  ways. For  example,  one can 
prove  directly that  the  spurious trajectories are  not  optimal, or 
one  can use, as an alternative to Bernoulli’s method,  the  calculus 
of variations approach, based on the  Euler-Lagrange  equation 
(10) below. 

It is  easy  to  see that the  brachystochrone  problem  can be put in 
the “standard” form (l), provided  wepostulate5  that  it suffices to 
consider  curves  in  the x,y plane  that are graphs of functions y = 
y(x) defined on [O,a]. Then  the  dynamical  constraint (ii)-with 
2g = 1, as before-becomes  dx2 + dy2 = y d?,  which  gives 

4dx2 + dy2 
dt = 

I6 
= L( y ,  j )&,  where 

L(y,u) = y-1‘2 (1 + U2)In (8) 

and  we are  using x  rather  than t for  the  time variable,  and  writing j, 
for dyldx. So Bernoulli’s problem  becomes  that of minimizing 
theintegral~o‘L(y(x), j,(x))dxsubjecttoy(O)=Oandy(a)=b. 

This gives the  Euler-Lagrange  equation 

1 + y’(x)’ + 2y(x)y”(x) = 0 , (9) 

which is  stronger  than (7), since (7) is equivalent to y’ + y’3 + 
2yy’y”=0,i.e.,toy’(l+y’2+2yy”)=O,whosesolutionsarethose 
of (9) plus  the  spurious  solutions  found  earlier.  It  is  easy  to  see 
that  the  solutions of the  Euler-Lagrange  equation (9) are  exactly 
the  curves  given by (3, without  any  extra  spurious  solutions, 
showing  that,  for  the  brachystochrone  problem, the Euler- 
Lagrange method  gives  better  results  than  Bernoulli’s ap- 

5With optimal  control, this “postulate”  becomes apvovable conclusion, cf.  “Finale 
for Brachystochrone  and Control” below. 
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proach. (We will  see  in  a  later  section that optimal control  is 
even better.) 

Bernoulli  was  originally  under  the  mistaken  impression 
that  the  brachystochrone  problem was new. However,  Leib- 
niz  knew  better:  in 1638  Galileo,  in  his  book on the Rvo New 
Sciences, had  formulated  the  brachystochrone  problem  and 
even  suggested  a  solution:  he  seems  to  have  thought it was  a 
circle.  Galileo  had  actually shown-correctly-that  an arc 
of a  circle  always  did  better  than  a  straight line-except, of 
course,  when a = 0. 

Bernoulli  considered  the fact that Galileo  had  been  mistaken 
on two counts, by thinking that the  catenary was a  parabola,  and 
that the  brachystochrone was a circle, as  conclusive  evidence of 
the  superiority of differential calculus  (or  the Nova Methodus as 
they  called it). 

He  was thrilled by  his discovery that the  brachystochrone was 
a  cycloid.  This  curve had been  introduced by Galileo,  who  had 
given it its name: related to the circle. Huygens  had  discovered  a 
remarkable  property of the  cycloid: it is the only curve  such that a 
body falling under its own weight is guided by this curve so as to 
oscillate with a  period that is independent of the initial point 
where  the body is released.  Contrary to what  Galileo  thought,  the 
circle has this property  only  approximately:  the  period of oscilla- 
tion of apendulum is afunction of its amplitude.  Therefore,  Huy- 
gens  called this curve,  the  cycloid,  the tautochrone (from 
zav~os: equal,  and xpovos: time). Bernoulli was amazed  and 
somewhat  puzzled, it seems, by the  coincidence that the  cycloid 
turns  out to be  both  the  brachystochrone  and  the  tautochrone, so 
that two rather different properties  related to the  time  traveled  on 
it by a body falling under its own weight  led, in the  end, to the 
same  curve.  He  concluded that nature always arranges  things in 
the simplest manner as here, by giving the same  curve two differ- 
ent properties. 

Johann Bernoulli and his Family 
We  now sketch  some of the historical context  surrounding  the 

life and work of Bernoulli.  The  Bernoullis  were  a  Protestant  fam- 
ily originally  from  Antwerp  in  Flanders.  They  fled  Antwerp  in 
1583 to escape  the  religious  oppression of the  Spanish rulers and, 
after spending  some  time in Frankfurt, finally settled in Basel, 
Switzerland,  early in the  17th  century.  Among its members  there 
were  eight  mathematicians in three  consecutive  generations. 
Most of them  ended  up  as  professors in Basel,  but many spent  ex- 
tensive  periods in other universities in  Europe.  The  most  promi- 
nent of  the Bernoullis  were  Jakob  (1654-1705),  his  younger 
brother  Johann  (1667-1  748),  the  protagonist of our story, and  Jo- 
hann’s son,  Daniel  (1700-1782),  born in Groningen  while his fa- 
ther was a  professor there. Jakob  Bernoulli  made  important 
contributions, in particular, to probability theory. (Bernoulli dis- 
tributions are  named after him.)  Daniel is the  discoverer of Ber- 
noulli’s law in hydrodynamics,  one of the  great  laws in physics. 

At  the  time that Bernoulli  came of age,  mathematics was go- 
ing  through  a  revolution.  In  1684,  Leibniz  published his first arti- 
cle about differential calculus in the Acta Eruditorum. This 
article was entitled Nova methodus pro maximis et minimis,  item- 
que tangentibus, quae  nec  fructus, nec  irrationales  quantitas 
moratul; & singulare pro illis  calculi  genus. He  showed  the 
power of the Nova Methodus by finding  maxima  and  minima  for 
a  number of examples  much  more effectively than  had  been  pos- 
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sible  before.  Johann 
and  Jakob  Bernoulli 
were  among  the first to 
master  Leibniz’  tech- 
nique,  and,  in  1691, 
Johann  achieved  his 
first success by using 
the differential calcu- 
lus  to  determine  the 
catenary,  the  shape of a 
hanging  chain.  In his 
mere  mid-20’s,  Johann 
was hired by the  Mar- 
quis  de  l’Hopita1,  a 
French  nobleman  and 
one of the  leading 
mathematicians of his 
time, to teach  him  the 
differential  calculus. 
While  he  received  a 
handsome  payment  for 
his  services,  he  was 
bound by contract to let 
the Marquis  take credit 
for  the  discoveries 
made by  Johann during 

Fig. 5. Johann and Daniel Bernoulli. 

this teaching. Johann  always claimed that  he  was the true discov- 

erer of  1’Hopital’s rule about  the limit of --* which  appeared in the 

Marquis’  book, Analyse  des Irlfiniment Petits. His  contempo- 
raries  tended to ignore  this  claim,  since  Johann  was  not  known 
to be  particularly  generous  to  others  or  objective  about  his 
own  achievements.  However,  in  1922,  the  original  notes of 
these  lectures  were  discovered,  which  brought  positive  evi- 
dence  for  Johann’s  claim. 

Johann  Bernoulli  was  not  an  easy  person.  He  often  quarreled 
openly with his colleagues,  and  complained  about his salary, his 
health, his work. In 1695,  shortly after taking  up  the  chair  in 
Groningen that had been offered  to  him on the  recommendation 
of Huygens,  he  vented his disenchantment in a letter to Leibniz, 
who had encouraged  him to accept  the offer: I have not met any of 
the practitioners of Algebra, which you consider present in Hol- 
land. To the contrary, I have not had the honor of meeting a single 
person  who  would even deserve to be called a “mediocre mathe- 
matician.” In the  same letter he complained that his teaching 
took  too  much of his time,  and that the moreprogress the students 
make, the less  progress I make. Bernoulli  expressed  such politi- 
cally incorrect views  not  only in private letters, but  also publicly. 
While in Groningen he got into serious difficulties with the  local 
protestant  theologians  and clergy,  who disapproved of the way 
new discoveries  in  the  physical  sciences  cast  doubt on the valid- 
ity of revealed truth. 

In  his  disputes with his mathematical  colleagues  he was unre- 
lenting. He was perhaps  the  most  abrasive  contender  in  the bitter 
controversy  between  the  English,  Newtonian,  and  the  continen- 
tal,  Leibnizian,  schools,  regarding  the originality and  rigor of the 
differential calculus.  He  “was  a  man of violent likes and dislikes: 
Leibniz  and  Euler  were  his  gods;  Newton he positively  hated  and 
greatly  underestimated.” ([l], p. 135.)  His rivalry with his 
brother  Jakob  became an embarrassment to the scientific com- 

0 
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munity,  and  when  in  1699 they were  both  elected to the  Paris 
Academy, it was  on the explicit condition that they promise to 
cease  arguing,  a  promise that of course was not  kept.  Even  more 
peculiar was Johann’s rivalry with his own son  Daniel,  whom  he 
criticized-for being  a Newtonian-and  plagiarized-on the 
law of  hydrodynamics-and of whose  success  he  was  allegedly 
very jealous.  Johann  once threw Daniel  out of the house  for  hav- 
ing won a  French  Academy of Sciences  prize  for  which  Johann 
had  also  been  a  candidate,  cf. [l],  p. 134.  Daniel,  however, re- 
mained  dutifully  respectful  towards his father, but frequently  ex- 
pressed his misgivings to his friend  Euler (a student of Johann in 
Basel  and  a  colleague of Daniel in Saint  Petersburg). 

Fig. 5 is a  photograph of a  stained  glass window of the  Acad- 
emy  Building (the main venue of the  university) in Groningen.  It 
shows  Daniel  Bernoulli  sweetly  clutching his father‘s robe, 
while  Johann  shows off his brachystochrone. 

At  the  occasion of the  300th  anniversary of the  appointment 
of Bernbulli  and  the  discovery of the  brachystochrone,  the Uni- 
versity of Groningen  erected  the  monument  shown  in  Fig.  6.  It 
consists of  an artist’s rendering of the  brachystochrone,  with  the 
circle that generates  the  cycloid.  In  the  background,  one  can  see 
the  building of the  mathematics  department,  where  the  second 
author of this article has his office. 

Euler,  Lagrange,  Legendre 
With  the  work of Johann  and  Jakob  Bernoulli,  Leibniz, 

Tschirnhaus,  Newton, and  1’Hopital  on the  brachystochrone,  op- 
timal  control  got off to a  spectacular start. Let us now look at 
some critical events  in its later evolution. 

The  next  chapter of our tale is the  work of Euler  (1707-1793) 
and  Lagrange  (1736-1813).  Leonhard  Euler  entered  the  Univer- 
sity of Basel at the  age of 13, and  became  a  student of Bernoulli, 
who gave him  private  lessons  once  a  week.  In  Basel, he  worked 
on isoperimetric  problems  in  1732  and  1736. In 1744 he pub- 
lished his book  The  Method of Finding Plane  Curves that Show 
Some Property of Maximum  or  Minimum, where he gave  a  gen- 
eral procedure  for  writing  down  what  became  known as Euler’s 
equation. 

And  then  Lagrange  entered  the stage. In  H.  Goldstine’s  words 
([7], p. 110.): 

On 12 August 1755 a 19-year-old  Ludovico de la Grange 
Tournier of Turin, wrote Euler a brief letter to which  was at- 
tached an  appendix containing mathematical details of a very 
beautifi*l  and revolutionary idea. He  saw how to eliminate from 
Euler ‘s methods the tedium and  need for geometrical insight  and 
to reduce the entire process to a quite analytic  machine or  appa- 
ratus, which could turn  out the necessary condition of Euler  and 
more, almost automatically. This basic idea of Lagrange ushered 
in a new epoch in the  calculus of variations. Indeed,  after seeing 
Lugrange‘s  work,  Euler dropped his  own  method, espoused that 
oflagrange, and  renamed the subject the  calculus of variations. 

In the summaly to hisPrstpaper using variations, Euler  says 
“Even  though  the  author of this  [Euler]  had meditated a long 
time and  had revealed to friends  his desire yet  the gloiy offirst 
discovery was reserved to the verypenetrating  geometer of Turin 
LA GRANGE,  who having used analysis  alone,  has clearly at- 
tained the same solution which the author  had deduced by geo- 
metrical considerations.” 

Lagrange  derived  the  necessary  condition 
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known  today  as  the  “Euler-Lagrange  equation.”  (This was  not his 
notation.  The  symbol a for partial derivative was first used by 
Legendre in 1786.) 

Equation  (10)  makes  perfect  sense  and is a  necessary  condi- 
tion  for  optimality  for  a  vector-valued  variable q as  well  as  for  a 
scalar  one. It can  be  written as a  system: 

Alternatively, we can  regard  Equation (IO) as  a  vector identity, in 

which q = (ql, ..., qn) is an n-dimensional  vector,  and -, - aL aL 
a4 a9 

stand  for  the  n-tuples [ $, ... , $1, ($, ..., $), A  modern 

mathematician  might  be  troubled by the  use of 4 both  as an “inde- 
pendent  variable”  and  as  a  function of time  evaluated  along a tra- 
jectory, and  might  prefer to write  (10)  as 

where  the  Lagrangian L(q. 1.1. t )  is a  function  on [W2’+l, i.e. afunc- 
tion of q E R”, u E R’, t E R. This  makes it clear that to compute 

the  left-hand  side of (10) one first evaluates - “treating 4 as an 

independent  variable,”  then  plugs in q(t) and q( t ) for q, q,  and fi- 
nally differentiates with  respect to t. 

The  Euler-Lagrange  system (10)-or  (12)-only gave  condi- 
tions for stationarity, Le., for  the first variation of Zto be zero. The 
next  natural  step was to look at the  second variation, and this was 
done by Legendre  (1752-18331,  who  found an additional  neces- 
sary  condition  for  a  minimum.  His  condition,  derived  for  the  sca- 
lar case, is 

aL 
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Fig. 6. The  Brachystochrone  Monument. 
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With  an  appropriate  reinterpretation,  Legendre’s  condition 
(13) is  also  necessary  in  the  vector  case: all we  have to  do is 
read  (13)  as  asserting  that   the  Hessian  matrix {& (q( t ) , q( t ) , t ) } has to  be nonnegative definite. 

1s Z,JS n 

The  First Fork in the Road: Hamilton 
At this point, we  are  close to the first and  most critical fork in 

the  road,  involving  the  work of W.R. Hamilton (1 805-1865).  In  a 
sense,  the  issue at stake will seem  rather trivial, just  a matter of 
rewriting  the  Euler-Lagrange  system in a  different  formalism. 
However, sometimes  formalisms  can  make  a  tremendous differ- 
ence. To understand what happened  and what could  have  hap- 
pened but  did not, let us try  to make  sense of the  two  necessary 
conditions  for  a  minimum that have  been  presented so far. We 
have the  Euler-Lagrange  equation  (10)  and  the Legendre condi- 
tion (13). The  Legendre  condition is clearly  the  second-order 
necessary  condition  for  a  minimum of a  function,  namely, L(q(t), 
u, t )  as a  function of u, but (10) does not look at all like the first- 
order  condition  for  a  minimum of that same  function. It is natural 
to ask  whether  there  might  be  a way  to relate the  two  conditions. 
Is it possible that both  can  be  expressed  as  necessary  conditions 
for  a  minimum of one  and  the  same  function?  The  answer is yes, 
and  understanding how this is done  leads straight to optimal  con- 
trol theory, the  maximum principle, and far-reaching  generaliza- 
tions of the classical theory.  But  before we get there, let us tell the 
story of  how Hamilton  almost  got  there  himself, but missed,  and 
Weierstrass got even closer, but  missed  as well. 

Let us look at another way  of writing (10). Suppose  a  curve  t 
H q(t) is a  solution of (10). Define  a  function H(q ,  u,p,  t )  of three 
vector  variables q, u, p in Rn, and of t E R, by letting 

Then  define 

dH It is then  clear that - = u, so along  our  curve q(t): 
aP 

Also, - = --, so (12), with p(t)  defined  by (15), says that aH dL 
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aH aL Finally, - = p - -, so (15) says: au  au 

The  system of equations (16), (17), (18), usually written more 
concisely  as 

is exactly  equivalent to (lo), provided that His defined as in (14). 
We will call the  function H the  “control  Hamiltonian.“ and re- 

fer to (19)  as  the control Hamiltonian form of the Euler-Lagrange 
equations. In our view, Formula (14) is the  definition that Hamil- 
ton  should  have given for  the  Hamiltonian,  and  Equations (19) 
are  “Hamilton’s  equations  as he should  have +t.r.ittelz them.” 

What  Hamilton  actually  wrote was (in our notation. not his) 

where N q , p ,  t )  is a  function ofp,q and  t  alone,  defined by the for- 
mula X(q,p, t)  = ( p ,  4) - L( q ,  q, t ) ,  which  resembles  (14). but is 
not at all the  same.  The  difference is that in Hamilton’s defini- 
tion, 4 is supposed to be  treated  not  as an independent variable, 
but  as  a  function of q, p ,  t, defined  implicitly by the equation 

It is easy to see that, ifthe map ( q ,  q, t )  -+ ( q ,  p .  t )  dejirzed by 
(21) can be inverted, i.e., if we can  “solve  (21) for q as a  function 
of q, p ,  t,” then  (20) is equivalent to (19). Indeed. it  is clear that 
gq, p ,  t )  = H(q, u(q, p ,  t) ,  t), where u = u(q. p ,  t j  satisfies 

aH 
Since -( q ,  u, t )  = 0 for u = u(q, p ,  t) ,  we  see that ~ = - 

ax’ 3H 
au 31 39 

along  solutions of (19), and  then  the first equation of (20)  holds 
as well. Similarly,  the  second  equation of (20) also  holds. The 
converse is also  easily  proved. 

It  should  be  clear  from  the  above  discussion that the Hamilto- 
nian reformulation of the  Euler-Lagrange  equations in terms of 
the  “control  Hamiltonian” is at least as  natural as  the classical 
one,  and  perhaps even simpler.  Moreover,  the  control  formula- 
tion  has at least one  obvious  advantage, namely. 

(Al) the  control  version of the  Hamilton equariorls is equivn- 
lent to the  Euler-Lagrange system under  completely gerwa l  cow 
ditions, whereas  the  classical  version  only  makes sense wherz the 
transformation (21) can be inverted, at least lo call^, to sohe for  4 
as  a  function of q, p ,  t. 
We  now  show that (Al) is not the only  advantage of the  control 
view  over the classical one. To see this, we  must  take  another  look 
at Legendre’s condition (13). Since H(q, u,p, t)  is equal  to -L(q. U .  

t )  plus  a linear function of u, (13) is completely  equivalent to 
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Now let us write  (23)  side  by side with the  third  equation of (19): 

dH a2H - = 0  and - < O .  au au2 - 

and let us stare  at the result  for  a few seconds. 
These  equations unmistakably suggest  something! Clearly, 

what has to be  going on here is that H  must have a  maximum  as  a 
function of u. So we state this as a  conjecture. 

CONJECTURE M: besides (19) (or the equivalentform (IO)) ,  
an additional necessary condition for optimality is that H(q(t), u, 
p(t),  t), as a  function of u, have a maximum at q( t )  for each t. 

Notice  that  Conjecture M is  a natural consequence of rewrit- 
ing Hamilton’s equations  “as  Hamilton  should have done it,”  and 
it  is  reasonable  to  guess  that, if Hamilton had  actually done  it, 
then  he  himself,  or  some other 19th century mathematician, 
would  have written  (24) and be  led by it  to  the  conjecture. On the 
other  hand,  it  is only  by  using the  Hamiltonian of (14), as  op- 
posed  to Hamilton’s own form of the  Hamiltonian, that one can 
see that the Legendre condition has to do with the sign of the sec- 
ond u-derivative of a function of u whoseJirst u-derivative has  to 
vanish.  This  function  cannot  be  L  itself,  because the first order 

conditions do not say that - = 0. Nor  can  it  be  Hamilton’s  Ha- 

miltonian % which isn’t even a  function of u. Only the use of the 
“control” Hamiltonian leads naturally to Conjecture M .  

It turns out  that  Conjecture M is  true,  and  that  once  its truth is 
known  then vast generalizations  are  possible.  But  before  we  get 
there, we must move to the  next chapter  in  our tale, and discuss 
the work of Weierstrass,  who  essentially discovered  and proved 
Conjecture M, but did  it using a  language that obscured  the sim- 
plicity of the result, and for that reason  missed  some  profound 
implications of  his  discovery. 

aL 
au 

The Second Fork in the Road: Weierstrass 
Weierstrass (1 8 15-1 897) considered  the  problem of minimiz- 

ing  an  integral I of the form I = 5 L( q( s) , q( s) >ds for  Lagrangi- 

ans L such that L( q ,  q )  ispositively homogeneous with respect to 
the velocity 4 (that is, L( q ,  aq) = aL( q ,  q )  for all q, 4 and all a 
2 0) and does not depend on time. (As will become  clear soon, we 
have a good reason  for using s rather than t as the  “time” variable 
in the  expression  for I.) 

ln a  sense,  one  can always make this assumption on L  “with- 
out loss of  generality,”  by defining  a new function A(q, t ,  u, T) = T 
L(q, UIT, t) ,  and think o f t  as  a new q variable,  say qo, and of T as 

g, where s is  a new  time  variable, or “pseudotime,”  not to be 
ds 

confused with the  true time  variable t. However, “without  loss of 
generality”  is  a  dangerous  phrase, and does not at all entail “with- 
out  loss of insight.” We shall argue  below  that this restriction, in 
conjunction with the  dominant view that  Hamilton’s  equations 
had to  be written in  the  form (20), may have  served  to  conceal 

h 

from Weierstrass  the true  meaning  and  the far-reaching implica- 
tions of the new condition  he  discovered. 

Weierstrass introduced the  “excess function” 

depending on three  sets of independent variables q ,  u ,  and U. He 
then  proved  his side condition: Fora curve SH q-(s) to be a solu- 
tion of the minimization problem, the function E has to be 2 0 
when evaluated for q = q*(s), u = q,( s), and a completely arbi- 
trary ii. 

Weierstrass  derived this side  condition by comparing the Yef- 
erence  curve q* with other  curves q(.) that are “small perturba- 
tions” of q*, in the sense  that q(s) is  close to q*(s) for all s but q( s) 
need  not be close  to q*( s). Since Weierstrass’  condition  involves 
comparing L(q*(s), u)  for u close  to q*(  s), with L(q*(s), u )  near  an 
arbitrary  value ii of u, possibly very far from q,( s), it is obvious 
that variations q with  “large”  values  of q are needed. 

Notice  that,  for  Lagrangians with the homogeneity  property 

of Weierstrass, L( q ,  u )  = -( q ,  u )  u, so Weierstrass could aL 
au 

equally well  have  written  his excess function  as 

Using p = -( q ,  u )  as  in  (15),  we  see that aL 
au 

which the  reader will immediately  recognize as 

where His our “control  Hamiltonian.” So Weierstrass’ condition, 
expressed  in terms of the  control  Hamiltonian, simply  says that 
(MAX) along an optimal curve t H q*(t), 3 we dejine p(t)  via 
(15), then for every t, the value u = q*( t )  must maximize the (con- 
trol) Hamiltonian H(q*(t), u, p(t), t)  as a function of u. 
In Weierstrass’  formulation,  the  condition  was  stated  in  terms of 
the  excess  function, for the  special  Lagrangians  satisfying  his  ho- 
mogeneity  assumption. In that case the  resulting His independent 
of time,  as in our  equation (28). But, if one rewrites  Weierstrass’s 
condition as  we have done,  in terms of H, then  one  can  take a gen- 
eral Lagrangian,  transform  the  minimization  problem into one  in 
Weierstrass’s form, write  the  Weierstrass  condition  in  the  form 
(MAX) (so in particular H i s  independent of time)  and  then  undo 
the  transformation  and go back to the original  problem.  The result 
is (MAX),  as  written,  with  the  control  Hamiltonian of the  original 
problem. So the  Weierstrass  condition, if reformulated  as  in 
(MAX), is valid  for  all  problems,  with  exactly  the  same  statement. 

Moreover, (MAX) can  be simplified considerably. Indeed: 
the  requirement  thatp(t) be defined via (15) is now redundant: if 
H(q(t),  u,p(t),  t),  regarded as  a  function of u ,  has a  maximum  at 
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u = q( t ) ,  then -( y( t ) ,  q( t ) ,  p( t ) ,   t )  has  to vanish, so p(t)  aH 
au 

has  to  be  given  by (15). Moreover,  the  vanishing  of 
-(q(t),q(t),~(t),t)isalsooneoftheconditionsof(19).So dH 

we can  state (19) and  (MAX) together: 
(NCO) Ifa curve t ++ y(t)  is a  solution of the minimization  prob- 
lem (l),  then  there  has to exist a  function t - p(t) such  that  the 
following  three  conditions hold f o r  all t: 

au 

As a version  of the necessary conditions for optimality, (NCO) 
encapsulates in  one  single statement the combined power of the 
Euler-Lagrange necessary conditions and  the Weierstrass side 
condition as  well, of course, as the Legendre condition, which 
obviously follows from (MAX). Notice the elegance and  econ- 
omy of language achieved  by this unified statement:  there  is  no 
need to bring in  an  extra entity called  the “excess function.” Nor 
does  one need to include a formula specifying how p ( t )  is  de- 
fined,  since (30) does this automatically. So the  addition of the 
new  Weierstrass condition to  the  three equations of( 19) results  in 
a new set of three,  rather than  four, conditions, a set much “sim- 
pler than the sum of its parts.” Notice moreover that (MAX)-or, 
more  precisely,  the  Weierstrass  side  condition  part of 
(MAX)-is exactly Conjecture M. So we can surmise at  this 
point  that  (MAX), as stated, probably could have been discov- 
ered soon after  the work  of Hamilton, since it  is  strongly  sug- 
gested by (24), and almost certainly by  Weierstrass, if only 
Hamilton’s equations had been written in  the form (14), (19). 

So, we can now add two new items to our list of advantages of 
the “control formulation” of Hamilton’s equations over the  clas- 
sical one: 

(A2) Using  the  control Hamiltonian, it would have  been  an 
obvious next step to write Legendre’s condition in “Hamiltonian 
form,”  as in (24), and this would have led immediately to the for- 
mulation of Conjecture M, aproof of which  would  then  have  been 
found  soon after: 

(A3) With the  control Hamiltonian,  Weierstrass’s side condi- 
tion becomes  much simplel; does  not require  the introduction of 
an  “excess  function,” and can be combined  with the Hamilton 
equations into an  elegant unified formulation  (NCO) of  the nec- 
essary  conditions for  optimality. 

But  this  is by no means  the end of our story. There  is  much 
more  to  the new formulation  (NCO) than just  elegance  and  sim- 
plicity.  If you compare  (NCO) with all  the  other necessary con- 
ditions  that  we  had  written  earlier, a remarkable new fact 
becomes  apparent.  Quite amazingly, the  derivatives  with re- 
spect to the  u  variable are gone.  All  the  earlier  equations in- 
volved u-derivatives of L or of H ,  and even if we  use  the 
classical version (20) of Hamilton’s equations,  which involves 
no functions of u and  therefore no u-derivatives, the  fact  re- 

mains that  in order to  get  to (20), we  first have to sol\e (21). 
which does involve a u-derivative. 

Now,  if our necessary conditions for optimality  can  be  stated 
without any references  to u-derivatives, we can apply  the aell- 
known Principle of Mathematical  Guessing6, Lvhich in the case 
at hand suggests that  the  existence of the u-derivative of L is not 
needed. Then  there  is  no longer any reason to insist  that  the range 
of  values  of u  be  the whole space: any  subset  of W” would  do. 
since  the minimization that occurs in (30) makes sense over  any 
set.  This  leads us to 
CONJECTURE M2: (NCO) should  still  be a necessal? colldiTioI1 
foroptimality  even  forproblems where 4 is  restricted to belong to 
some subset Uof Rn, and L(q, u, t )  is not required to De differenti- 
able  with  respect to u. 

Now that  we have liberated ourselves from the constraint that 
L be differentiable with respect  to u, it ought to be possible for 
u-i.e.,  q-to be anything,  and  (NCO)  will still work. Once this 
is understood, the next natural  step  is  to apply  the Principle of 
Mathematical Guessing once again and allow q to be e\-en “more 
arbitrary,” for example a general function of some other  variable 
u, and of y and  t. So, instead of letting 4 be u, we can write 4 =.f(y. 
u, t )  for a general functionf(q, u, t).  In that case. the expression 
<p, u>-i.e. <p, q> -that occurs in (14) should of course be re- 
placed by <p,f(y, u, t)>. This  leads  us  to 
CONJECTUREM3: (NCO) should  still  be a mcessary condition 
for optimality  even for problems where q is  restricted to srttisfi a 
differential equation q =f(q, u, t), with  the “corztl-ol~ilrlcrio~l” t- 
u(t) taking  values in some  set U and allowed to be a “conzpletel~. 
arbitrary”  U-valued  function of t ,  and the  Humiltorlim H m u .  

being  dejined  by 

Those  readers  who  are  familiar with optimal control  theory 
will, of course, have recognized Conjecture 1\13 as  bein, 0 essen- 
tially the  same  thing  as  the  celebrated “Pontryagin maximum 
principle.” 

And we  hope  to have convinced all readers,  e\-en  those  n.ho 
are  not  control  theorists,  that  (NCO)  is a  very  natural conclusion. 
It should be clear from our discussion that (NCO) could h a x  
been guessed almost immediately from “Hamilton’s equations 
as Hamilton should have  written  them,”  together vvith the Legee- 
dre  condition,  and would have been an almost obvious conjec- 
ture  to  make  once  the Weierstrass side condition is known. fotll? 
the “correct”  Hamiltonianformalism,  as in (14)  a d  (191, had 
been used all along. 

The Maximum Principle 
So far, we have shown that Conjecture M3 is almost forced on 

us if one looks at  the  classical condition from the  right perspec- 
tive and with the  right formalism, but we have  not  yet  said 
whether it  is  actually true, nor have we given  any indication as to 
how one might go about proving it. 

It  turns  out, however, that Conjecture M3, as stated. is not 
true, as can be seen  from  simple examples, but only  a minor 
modification is needed to  make it true. All  we have  to do is intro- 

‘If a statement is proved under some  specific restrictions but turns out not to In\ ol\ e 
there restrictions at all, chances  are that the restrictions are not nszded and tllc sraternent 
is valid even without them. 
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duce  a new p-variable po-the “abnormal m~ltiplier”~-and 
write  the  Hamiltonian  as 

Everything  we  have  done until now corresponded to taking po = 
1. We  now impose,  instead,  the  weaker  requirement that bo = 0 
(Le., po is a  constant)  andpo 2 0. We then  observe that, if we use 
this new H rather  than  the old one,  then  the  three  conditions of 
(NCO) are  always satisfied if we  make  the trivial choice 
p( t )  = 0,po = 0. So, our new conditions will give nothing inter- 
esting  unless we impose  a  further  nontriviality  condition, stating 
that this possibility is excluded. 

With Conjecture M3 adjusted  with  the  introduction of the  ab- 
normal  multiplier  po, we have finally reached  the justly cele- 
brated  Maximum  Principle: 
(MP) For the  problem of minimizing a func t iona l  
I = jok(q( t ) ,  u( t ) ,  t)dt  subject to a dynamical constraint (3), 

and endpoint constraints q( a )  = q, q( b )  = <, with the parame- 
ter u belonging to a set U,  the variable q taking values  in Rn-or 
in  a  open subset Q of Rn-and the time interval [a,b]fixed, a nec- 
essary condition for a function t - u*(t) on [a, b]  and a corre- 
sponding solution t p ( t )  of (3) to solve the minimization 
problem is that there exist a function t F+ p*(t) E W” and a con- 
stant po 2 0 such that 

( M C ) H ( Z ( t ) )  = max,,,H(q*(t), u,  p*( t ) ,  p o ,  t ) f o r t e  [a,bl, 
where we have written E*( t )  = (q.( t ) ,  %( t ) ,  p.( t ) ,  p o ,  f), and 

the Hamiltonian H(q, u, p ,  PO, t)  is given by (32). 
Conditions  (NT), (HS), and (MC) are  known,  respectively, as the 
nontriviality condition,  the Hamiltonian system,  and  the  minimi- 
zation condition. Notice that (HS) is just  a restatement of (29), 
with  the new H, and (MC) is a restatement of (30). The  second 
equation of (HS) is called  the adjoint equation. A trajectory- 
control  pair ( p ,  u.) for  which  there  existp., po with the  proper- 
ties of (MP) is called an extremal. 

Finally, we remark that for classical calculus of variations 
problems (MP) yields  exactly  the  same  conclusion as (NCO). In- 
deed,  in this case it is possible to exclude  the  possibility  thatpo = 
0, and (MP) reduces to (NCO). So (MP), as stated, is a true  gener- 
alization of the  necessary  conditions  (NCO),  which  covers many 
cases that cannot  be  handled  by  means of the classical calculus of 
variations. 

We conclude  by  presenting  the  analogue of (MP)  for  prob- 
lems  with a variable  time interval: 

(MP’) For a minimization problem of the kind discussed in 
(MP), but with the time interval [a, b] not fixed in advance, as- 
suming that f and L do not depend on  t, the necessary conditions 
are exactly the same as those of (MP), plus the extra requirement 
that H(q*(t),u*(t),p*(t),po) = 0. 
Statement  (MP’)  applies  in  particular to minimum  timeproblems, 
Le., problems  where L = 1.  

7The need for  the  abnormal  multiplier had already  been  noticed by Bolza in 
1913, cf. [ 3 ] .  

From Principle to Theorem 
Our  discussion so far has  dealt  only  with  the  formal  aspect of 

the  necessary  conditions  for  optimality.  In  order to get real 
mathematical  theorems,  we  have to be  accurate  as to the  techni- 
cal assumptions on L, and U, the  exact  statement of the  prob- 
lem,  and  the  precise  meaning of the  conclusions. 

The results of the  previous sections, from  the  Euler-Lagrange 
equation to the  maximum principle, should  be  regarded  as prin- 
ciples rather  than  theorems.  For us, aprinciple is a  generator of 
theorems,  a  not  yet  completely  precise  statement that can  be 
made into a  theorem by filling in the  technical details and  making 
all the  definitions  and  conditions  completely  precise.  The result- 
ing  theorems  are  versions of the principle. Usually,  the  choice of 
technical  conditions  can  be  made  in  more  than  one way, so a 
“principle”  has  more  than  one  version. 

In some  cases,  a  “principle”  becomes  identified  in  the  minds 
of mathematicians  with itsprst published  rigorous  version.  This 
has  happened to some  extent  in  the  case of the  maximum princi- 
ple, because  the  book [8], where  the result was first presented, al- 
ready  contains a rigorous  version. We contend,  however, that this 
version  does  not  exhaust  the  full  power of the principle, and  the 
work  of stating and  proving  stronger  and  more  general  versions 
is still very much in progress. 

Regarding  the  necessary  conditions  for  optimality,  while  the 
discovery of new and  more  general  formal  conditions  pro- 
gressed,  rigorous  versions of the  formal results were  derived at 
various  stages of the  process,  using  in  each  case  the  mathemati- 
cal tools  available  at  the  time. 

The first rigorous  version of the  maximum  principle  appears 
in the  book [ 8 ] .  This  “classical”  version  was  then  improved  by 
other  authors. We choose to quote a version  appearing  in  L.D. 
Berkovitz’s 1974 book [2].  

“Let f ’, ..., f be  the  components off, and  writef’  for L. It is 
assumed that thefi, for  i = 0, ..., m, are  defined on Q x UO x [a,   b],  
where Q, Uo are  open  subsets of R”, R”, respectively.  Moreover, 
each  function q - f i (q ,  u, t )  is required to be of class C’ with re- 
spect to q for  each (u, t )  E Uo x [a, 61, and  each  map (u, t)  - f i (q ,  
u, t )  has to be Bore1 measurable  for  each  fixed q E Q. The  set  Uis 
a subset of Uo. An admissible control is a map [a,  b] - u(t) E U 
such that for  every  compact  subset K of Q there is an integrable 
funct ion t e q,y( t )   such   tha t   the   bound 

Ip”+Au(t),t)ll+ - ( q , u ( t ) J )  Icp,(t)holdsforall(q,t)E 11;: ll 
K x [a, b] and all i = 0, ..., m. For a general class ‘u of  U-valued 
functions on [a,   b],  and 4, ij E Q, let us use c( ‘u, 4, ij) to denote 
the set of all pairs (q( . ) ,  u( . ) )  such that u(.) E ‘u, q( . )  is a solu- 

tion of (3) (i.e., q(.) is an  absolutely  continuous  curve [a,  b] H Q 
such that (3) holds  for  almost  every t) ,  q( a )  = ij, and q( b )  = i. 
Use a&!&, to denote  the class of all admissible controls. Then  the 
optimization  problem  is  that of minimizing  the  integral 
I = jabL( q( t ) ,  u( t ) ,  t)dt in  the class C( auadm, q, <). The  conclu- 

sion of the  theorem is that of (MP), with p* absolutely  continu- 
ous, and  the  adjoint  equation  and  the  maximization  condition 
holding  almost  everywhere.” 

The proof of this first  version of the  maximum  principle is 
rather  long,  and  we  will  not  even  sketch it here.  Since  then, 
stronger  versions  have  been  obtained  by  weakening  the  hy- 
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pothesis of the first version,  or  strengthening  the  conclusions,  or 
both. 

One  important improvement of the  classical  version resulted 
from the use  of nonsmooth  analysis (cf. Clarke  [4,5]).  While  these 
“nonsmooth” generalizations  were  being developed, other  authors 
pursued a different direction, for very  smooth systems. They ob- 
served  that one could  get  stronger  results by allowing a class of 
variations richer than  that  used  in the classical proof. One  can then 
obtain “high-order necessary conditions for optimality.”  In addi- 
tion, a third direction developed in which  (MP) is formulated not 
for controlled differential equations q = f (  q ,  u,  t ) ,  but for differ- 
ential inclusions q E F(  q ,  t ), where F is a  set-valued map (cf. for 
example [5]). The results referred to are proved by different  meth- 
ods and  cannot  be combined into a single theorem. We will  not at- 
tempt  to  explain  why this is so, because  to  do  it  we  would  have to 
discuss in detail the proofs of these  theorems, showing  that in each 
case  one uses a different construction, and these  constructions 
cannot  be  combined into a  single  one valid  on the whole  interval. 
But it is a fact that, due to this incompatibility of the various 
proofs,  a  single  theorem  covering all cases  and  combining 
them-that is, applying to  “hybrid” problems  as above-ap- 
peared,  until a few  years ago, to be beyond reach. Recently,  how- 
ever, one of  us (Sussmann [ 10-121) has obtained a general  version 
of (MP) that contains all the above  results, applies to some new 
cases as  well,  and  actually covers  the “hybrid” case. 

Finale  for  Brachystochrone  and  Control 

this time  from  the  perspective of optimal  control  theory. 

problem  in  the x,y plane,  whose  dynamics  are  given by 

We conclude by returning to the  brachystochrone  problem, 

We can formulate  Bernoulli’s  question  as an optimal  control 

(33) 

where  the  control is a  2-dimensional  vector (u,v) taking  values in 
t h e s e t U = ( u , v ) : u  + v  = l .  

The  Hamiltonian H(x,   y ,  u, v, p ,  q, PO, t )  is then given (using a 
= sgn y) by the formulaH = ( p,u + p2v)& - po, and  the appli- 

cation of (NCO)  gives  the  conditions 

2 2  

where IpI = ,/p; + p i ,  as  well as the differential equations 

Notice that lp( i>l # 0. Indeed,  (MP’) tells us that H = 0. So Ipl = 0 

would imply po = 0, contradicting  (NT).) 
If the  constantpl  vanishes,  thenx I 0, so we get  a vertical line. 

Otherwise, xis continuous  and  always # 0, showing that we  can 
use x t o   p a r a m e t r i z e   o u r   s o l u t i o n .  Since  

But  (33)  and  (34)  imply that i  = f i ,  and  then  Equations  (35) 
IPI 

and  (36)  yield f(x) = -4. So 2 f l =  - 
2YPl 

. ! d  = -(l+ y’*), 
P: 

and  then 1 + y’2 + 2yy” = 0, which is exactly  Equation (9). As we 
explained  before, this leads to the  cycloids, with  no “spurious so- 
lutions.” Notice that this argument  does  not  involve any discreti- 
zation or any use of refraction of light across  boundaries. 

Notice  also that in our  control  argument we have not postu- 
lated that the solution  curves  could  be represented as graphs of 
functions y(x). We have proved it! (In the  calculus of variations 
case this was  an extra  assumption,  cf.  “Bernoulli’s  Solution of 
the  Brachystochrone  Problem”  above.) 

This is one  example  showing that, for  the  brachystochrone 
problem, the optimal control method gives  better results than the 
classical  calculus of variations. 

All the  above  considerations apply to the  computation of opti- 
mal trajectories that are entirely above  the x axis, as in Bernoul- 
l i’s   brachystochrone  problem.  However,   the  natural  
mathematical setting for  the  minimum  time  control  problem  cor- 
responding to (33) is the  whole  plane,  which is why  we wrotefi 

rather that f i  in (33). It is natural, therefore, to try to solve this 
more  general  problem, Le.,  to  try to find  the light rays  when  the 
medium is the whole plane, and  the  speed of light is f i .  Notice 

that this problem is “completely  controllable,” in the  sense that 
any two  points A, B of R2, even  if they  lie on opposite  sides of the 
x axis, can  be  joined by a  feasible  path.  The  right-hand  side of 
(33)  vanishes  along thex axis, but this does  not  prevent  the exis- 
tence of feasible  paths  crossing  the x-axis, because  the  function f i  is not Lipschitz  near  the x axis. (If the  function was Lip- 

schitz,  then by the  usual  uniqueness  theorem of ordinary 
differential equations,  every  solution  going  through  a  point on 
the x axis  would  have to be  a  constant  curve.) However the  same 
non-Lipschitz  feature that makes  the  system  controllable  also 
renders  the  maximum  principle  inapplicable, in its classical and 
nonsmooth  versions,  including  the  Lojasiewicz  version,  since all 
these  require  a  Lipschitz  reference  vector field. 

Suppose, for example, that  we  want  to find an optimal trajec- 
tory from A to B,  where A lies in the upper half-plane and B is in the 
lower half-plane. Then  one can  show, first of all, that an optimal 
trajectory 6 exists, using  Ascoli’s theorem. Next,  using the usual 
necessary  conditions for optimality, e.g., the  Euler-Lagrange 
equation or the classical version  of  the maximum principle, one 
shows  that  any  portion of an optimal  curve which is entirely con- 
tained in the closed  upper  half  plane  or in the closed  lower  half 
plane is a  cycloid given  by (5), or  a reflection  of  such a cycloid 
with respect to thex axis. Next, one  sees that 5 cannot  traverse thex 
axis more  than once. (This requires an  elementary  qualitative 
lemma that  we leave  as exercise.) So we  know  that 5 consists of a 
cycloid  going  from A to a point X in the x axis, followed  by a re- 
flected cycloid going  from X to B. It  remains  to  find X .  

It turns  out that the version of [ I21  applies, since this result 
does  not  require  Lipschitz continuity-or even continuity-of 
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