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1. Introduction 

A central issue in control  theory is to s tudy the modifications which can be induced 
on an input /ou tpu t  system by means of  a (feedback) controller. Typical problems 
in this context are stabilizability, pole placement, disturbance decoupling, robust-  
ness, and m a n y  others. 

In this paper  we want  to study these problems in the context of  linear systems 
with symmetries. The main question which we want  to address is if it is possible to 
control  a system which has a certain symmetry,  in order  to achieve control  objec- 
tives, such as stability, without  "symmetry  breaking." In  order  to clarify the type of 
problem we are interested in, we present a couple of  simple illustrative examples. 
We are a bit informal, precise definitions and nota t ion being given in further 
sections. 

Consider, first, q identical particles P1 . . . .  , Pq in R 3 which are under  the simultane- 
ous influence of  a fixed potential  field, potential  interactions, and external control  
forces F1 . . . . .  F~. Denote  the posit ion of  the particle Pi by si. Assume that  the system 
has an unstable symmetric  equilibrium for si = s* for i = 1, . . . ,  q with Fi = 0 for 
i = 1 . . . . .  q and that  our  goal is to stabilize asymptotical ly the system around  this 
point. Linearizat ion a round  the equilibrium point  yields an input /output  linear 
system of the following type: 
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where x = *(x 1 . . . .  , x~) with xi = si - s* e R 3, F = ~(F 1 . . . . .  F~), and R(d/dt) is the 
constant coefficient matrix differential operator induced by the 3N x 3N polyno- 

R21 
- - .  ( 2 )  

R = R2 R1 RE 

2 R2 "'" R2 t 

mialmatr ix 

where R 1 and R 2 are 3 x 3 polynomial matrices. The system has a symmetry which 
is also evidenced by motion equations: if (F, x) is an input/output pair of functions 
solving(l) and ifa e Sq (the group of permutations of the set {1, . . . ,  q}), then (F ~, x~), 
where V = t(F~ll) . . . . .  F~q)) and x ~ = ~(x~m,..., x~(q)), is also an input/output pair 
solving (1)�9 It can easily be checked (using the behavioral theory or classically, 
passing through state space realizations) that the system (2) is asymptotically 
stabilizable by dynamic feedback. In other words, two 3N x 3N polynomial matri- 
ces A and B with A invertible over the field of rational functions R(z) and with 
A-IB (the transfer function) a proper rational matrix exist, such that the linear 
x-input/F-output linear system 

A ( d ) F  = B ( d ) x  (3) 

is an asymptotically stabilizing controller for (1), namely, the closed-loop system 

R ~ t x = F ,  
(4) 

is asymptotically stable: if (F, x) solves (4), then limt_~ + ~ (F, x) (t) = 0. The stabiliza- 
tion problem becomes less obvious if we impose additional requirements on the 
feedback controller. One possible request which is of evident importance, is that, in 
the controller, each Fi only depends on the corresponding xi and that such depen- 
dence does not depend on i. Namely, we require both A and B to be of block diagonal 
form with the same 3 x 3 repeated blocks on the diagonals. Stabilization under this 
requirement is a typical problem considered in decentralized control and it turns 
out to be a quite difficult one which will not always be solvable. A reasonable, less 
restrictive request on the controller could be that it has to have the same symmetry 
as the system which it has to control. Notice that the decentralized controller is 
indeed a symmetric system of a very special type�9 A consequence of our main result, 
Corollary 11, illustrated in Example 3 of Section 5, shows that this is possible, that 
such a symmetric stabilizing feedback controller does indeed exist�9 The first conse- 
quence of using symmetric controllers is that the symmetry is also preserved at the 
level of the closed-loop system (4), which is a fact of independent interest�9 Moreover, 
it follows from the representation results in [FW2] that such a symmetric controller 
admits "symmetric" equations in the sense that A and B can be choosen to have 
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the same structure as R. Namely, 

[11 A2 A21 [11 B2 
A = A2 A1 "'" A2 A2 B = B2 B1 "'" B2 B2 

�9 ; 
2 A1 "" A2 1 2 B2 "'" Bz t 

(5) 

for suitable 3 • 3 polynomial matrices A1, A2, B1, B 2. This shows that the controller 
has a nice internal structure reflecting the symmetry of the problem. Other symme- 
tries could arise in this problem if the fixed potential field has some geometric 
symmetry. For  instance, if the potential has radial symmetry, then there is an 
obvious SO(3)-symmetry in the physical system. This can be put in evidence by the 
fact that in this case the polynomial matrices R1 and R 2 are of the type R1 = rl ld 
and R2 = rzld where rl ,  r2 e R[z]. This symmetry can also be incorporated in the 
stabilizing controller which will have the matrices A 1, A2, B1, B2 diagonal with the 
same structure as R~ and R 2. This example is discussed again in Example 3 of 
Section 5 where other control problems are also considered. 

Another example comes from the problem of designing active dampers to stabilize 
vibration tables or drilling towers which have a certain rotational symmetry with 
the location of the dampers respecting such symmetry. Of course this is, in principle, 
a distributed parameter control problem. However, a suitable finite-dimensional 
simplification is the linear model described by the following equations: 

where x = t(xl, . . . ,  xq) with x i e R, F = t(F~ . . . . .  Fq) with Fi e R, and 

rl r2 "'" rq-1 rq 

R - -  rq rl. "'" rq-2. rq-1. , (7) 

r a .-. r a rl 

where r i e R [z] for all i = 1, . . . ,  q. We can think of this as the model of a simplified 
version of the original system where we have concentrated all the mass in the points 
P~ . . . . .  Pq where the dampers are located, x~ represents the displacement from 
equilibrium of the point P~ and F~ is the control force acting on P~. It is clear from 
the equations that we are in a less symmetric situation than in previous example: 
in this case we do not have invariance of the solution set of (6) by the complete 
permutation group S o as in the previous example but only with respect to the cyclic 
permutations. They form the subgroup Z s. However, using similar arguments based 
on Corollary 11, we can again show that a stabilizing symmetric feedback controller 
of type 

A ~ ~ x (8) 



170 F. Fagnani and J. C. Willems 

with 

iil a2,1 aq 1 A = aq  aj . . .  a q _  2 a q _  1 B = 

2 a 3  �9 �9 �9 aq  a 1 

bl b2 "'" bq-1 bq 

bq b 1 " ' "  b q _  2 bq-1 

b 2  b 3  . . .  b e bl 

(9) 

exists. It can be shown that the transfer function from x to F, A-1B,  will have the 
same structure as A and B. This can be interpreted as follows. The output response 
Fi of the ith damper to the input displacements trajectory (xl . . . . .  x~) is equal to 
the output response Fj of the jth damper to the rotated input displacements 
trajectory ( x , l + i _ j , . . .  , Xq+ i j )  (where addition is modulo q). This is a nice symmetric 
solution of the problem which again reflects the special structure of the plant. 

In these two examples the symmetry considered was of a static type, namely, the 
action of the group was only at the level of the input and output spaces, and time 
was not involved in the symmetry. Control problems including stabilization for this 
type of symmetries were also studied in [HLM], [HM1], [HM2], and [M]. How- 
ever, in these papers the authors consider only linear systems in input/state/output 
form with the symmetry also in the state variables. The theory which we have 
developed in this paper is, on the other hand, based on the behavioral approach to 
systems and, as a consequence, it is completely intrinsic in the sense that all the 
results proven only depend on the intrinsic properties of a linear system and not 
on its possible representations (input/output, input/state/output, etc.). A related 
advantage of using the behavioral approach is that we can also consider systems 
with no a priori distinction between input and output variables: this is quite useful 
in studying interconnections of electrical networks with symmetries. Moreover, our 
theory also applies to symmetries which are not of a static type and to a wide range 
of different control problems. The paradigm underlying Corollary 11 is the follow- 
ing: If, given a plant with a symmetry, a certain feedback control problem can be 
solved and the control problem is "symmetric" in a suitable sense, then the control 
problem can be solved by means of a controller which has the same symmetry as 
the plant. The affirmative answer in the previous examples are exactly due to the 
fact that asymptotic stabilization is "symmetric" with respect to static symmetries. 
An important example of nonstatic symmetry is time-reversibility: the many- 
particles system in the first example has this property. Indeed, since there are no 
dissipative forces in the equations of motion, only even-order derivatives appear so 
that the input/output solution set of (1) is closed under reversing the arrow of time. 
However, it is clear that time-reversibility cannot be mantained in the closed-loop 
system if we want asymptotic stability. The symmetry has necessarily to be "broken" 
if we want to achieve this control objective. In the language used previously 
we could say that asymptotic stability is not "symmetric" with respect to time- 
reversibility. Of course, there are instead control problems other than stabilization 
which are "symmetric" with respect to time-reversibility: some are considered in 
Examples 3 and 4 of Section 5. 

A related problem which we also consider in this paper is the one of intercon- 
necting a system with a feedback controller in order to make the closed-loop system 
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symmetric with respect to a given symmetry. Such a symmetrization problem 
actually encompasses many classical problems in control theory like disturbance 
decoupling and noninteracting control. 

In order to discuss systems and symmetries we make use of the behavioral 
approach to systems theory [W1]- [W3] .  This permits us to introduce the concept 
of system interconnection [W4] at a general level such that it encompasses the case 
of feedback and to treat a quite general class of symmetries. In this paper we consider 
linear differential behaviors, namely, systems which are described by a set of linear 
constant coefficient differential equations. All the results we need on these systems 
are collected in Section 2 where all the relevant notation is also introduced. In 
Section 3 we introduce the concept of symmetry as an action of a group G on the 
C~-trajectories which preserves differential behaviors. We then recall some results 
proven in [FW3]. To each symmetry we can associate, in a canonical way, a dual 
action on the space of equations. This permits us to shift our investigations to a 
more algebraic level. Most of our results are established for symmetries induced by 
linearly reductive matrix groups. In Section 4 we introduce the concept of feedback 
and regular feedback interconnection of differential behaviors and we establish a 
few results, of independent interest, which characterize the subspaces of a given 
differential behavior which can be obtained through feedback and regular feedback. 
In Section 5 we discuss the problem of symmetric feedback: our main results are 
Theorem 10 and Corollary 11 which give sufficient conditions under which certain 
control objectives can be achieved, without "breaking" the original symmetry of the 
plant. These results are then applied to some examples such as symmetric stabiliza- 
tion and symmetric decoupling. Finally, in Section 6 we briefly consider the problem 
of making a system symmetric by feedback. 

As a final remark, we notice that symmetric control problems such as the one 
considered in this paper are related to control problems for systems defined over 
rings [BBV], [BSSV], I-S]. 

2. Differential Behaviors. Preliminary Facts 

Let k be equal to R or C and denote by k* the multiplicative group k\{0}. 
Throughout  this paper W and E always denote finite-dimensional vector spaces 
over k. Denote by C~v the k-vector space of infinitely differentiable functions from 
R to W equipped with the canonical Frechet topology of uniform convergence on 
compact subsets of R. Denote R = k[z] and E[z] = R | E, the R-module of 
polynomials with coefficients in E. 

Following [W3] we define a linear differential behavior over W (called the signal 
space), a subspace ~ of C~v which is the kernel of a linear contant coefficient differ- 
ential operator. Namely, a vector space E exists and D = ~7=o D, z* ~ Homk(W, E) [-z] 
(O~ E Homk(W, E)), such that 

~ =  wrC~vlD ~ w : =  i=o Didti ---0 . (10) 

D is called a polynomial matrix representation of ~ and E is the equatin9 space of 
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D. The class of linear differential behaviors over W is denoted by N[W] .  In the 
examples presented in Section 1, (1), (3), (6), and (8) were exactly polynomial matrix 
representations of linear differential behaviors. In all those cases we have w = (F, x): 
the signal space is the product of the input space and the output space. As we have 
already mentioned, one of the advantages of the behavioral approach to systems is 
that we do not need to assume such a decomposition in the signal space. 

A key concept in systems theory is the one of controllability. 55 e ~ [ W ]  is said 
to be controllable if for all wl, w2 e ~ there are t o > 0 and w e ~$ such that w(t) --- 
wl(t ) for t < 0 and w(t) = W z ( t  - t o )  for t > to. At the opposite extreme of the 
controllable behaviors there are the autonomous ones: ~ e ~ [ W ]  is said to be 
autonomous if w 1, wE e ~ and w l(t ) = W z(t ) for t < 0 implies w 1 = w 2. If N e @ [W], 
then a largest controllable linear differential behavior contained in N exists. It is 
denoted by Nc and is called the controllable subbehavior of N. For  the relationship 
of these notions with the classical ones see [W1]- [W3] .  

Let N e ~ [ W ] .  Consider the annihilators of ~ ,  defined by 

where W* := HOmk(W, k). Clearly, ~ l  is an R-submodule of the R-free module 
W* [z]. On the other hand, if M is an R-submodule of W* [z], we can consider 

{ } •  w e C ~ l p  dt w = 0 ,  V p e M  . (12) 

Since M is finitely generated, it follows that • e ~ [ W ] .  The following theorem 
gathers some relevant results on differential behaviors. 

Theorem L Let ~ �9 ~ [ W ]  and let M be an R-submodule of W*[z]. Then 

(1) 

_L(#)• = ~,  (• • = M. (13) 

This yields a bijection between ~ [ W ]  and the class of all R-submodules of 
W* [z]. 

Moreover, if  I is finite, then 

~ e ~ [ W ]  and ~ = (~ ~ .  (15) 
~ e l  i ~ l  

(3) ~ is controllable i f  and only if  W* [z]/~ • is free. 
(4) ~ is autonomous i f  and only i f  W* [z]/N • is torsion. 
(5) I f  W* [z]/N l = T �9 F where T is the torsion of W* [z]/~ • and F is an R-free 

complement, then Nc = lOz-l( T)) where ~z: W*[z] ~ W*[z] /~  • is the quotient 
projection. Moreover, X = l(rc-t(F)) is autonomous and ~ = r G X. 

(14) 

(2) Let {~iti e I} be a family of elements in ~ [ W ] .  Then 

O ~ i e ~ [ W ]  and ~i = ~ Y)•- 
i ~ I  i ~ l  
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Proof. (1) is contained in [W3]. 
(2) The fact that N i ~ ~ ~ e ~ [ W] follows from the fact that W* [z] is noetherian. 

That ~ [ W ]  is closed under finite summation is standard: see [W3]. The rest are 
straightforward verifications. 

(3) and (4) are also standard (see [W3]). 
(5) It easily follows from (3) and (4) that • is controllable and • 

is autonomous. Moreover, it is clear that • @ • = N. This implies 
that ~r = ~(rc-~(T)). �9 

If ~ ~ ~ [ W ] ,  denote the rank of the free module ~• by p(~). Clearly, p(~) < 
dimk W and we can find D ~ HOmk(W, k p(~)) [z] such that ker D(d/dt) = ~.  This 
simply shows that ~ can be described by p(~) differential equations and no less. 
Any polynomial matrix representation of ~ with equating space of dimension p(~) 
is therefore called minimal. An example of minimal representation is given by (1) in 
Section 1. I f ,~ E ~ [ W ] ,  consider 

~/~ := {p ~ ~• < i}, (16) 

where deg(p) denotes the degree of the polynomial p e W* [z]. Clearly, the ~{'s are 
k-vector spaces and it holds that 

~ ?  + zM? _c ~?+1. (17) 

It is a standard fact (see I-W1] for more details) that equality holds in (17) except 
for at most finitely many indices. Define 

yo(~) = dimk ~o-, (18) 

7i(~) = dimk ~{  -- dimk(~{-1 + z~{_~), i >_ 1. 

It is well known that p(~) = ~ i  7i(~). Define, moreover, n(~) = ~ i  iyi(~). The two 
integers p(M) and n(M) we have introduced have an important system-theoretic 
interpretation: p(~) is the number of output variables in any input/output represen- 
tation of ~ ,  while n(~) is the McMillan degree of ~ ,  namely, the dimension of the 
state space in any minimal state-space representation of ~.  See [W1]-[W3] for 
precise statements and details. 

Remark. The choice Of working in C ~ is mostly done for simplicity. More general 
settings can indeed be chosen, see [W3] and IF]. In particular, all the results 
we present in this paper are still true if we replace C ~~ with the space of distribu- 
tions 9 ' .  

3. Symmetries of Differential Behaviors 

Denote the group of all the topological vector space isomorphism of C~v by GLk(C~v ). 
Let G be a group and let T: G ~ GLk(C~v ) be a representation of G. Clearly, T 
induces an action of G on the class of all (closed) subspaces of C~v. We say that 
(G, T) is a symmetry on ~ [ W ]  if the class ~ [ W ]  is invariant under the action of G 
(i.e., if ~ e ~ [ W ] ,  then ToM := {Towlw ~ ~} ~ ~ [ W ]  for all g ~ G). ~ ~ ~ [ W ]  is 
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called symmetric if it is fixed by the action of G (i.e., Tow �9 N for every w �9 N and 
for all 9 �9 G). The subclass of symmetric behaviors in ~ [W] is denoted by ~ [ W ]  G. 

We now need to introduce some notation and to recall some results established 
in [FW3]. Aside from the differential operators there are other relevant operators 
on C ~176 If x �9 R, denote by ~-~ the shift  operator given by (~rXw)(t) := w(t + x). If 

�9 k, denote by J/{~ the multiplicative operator given by (J///r er If 
r / �9  R*, denote by 5e, the scaling operator given by (Sa~w)(t):= w(rlt). All these 
operators can be trivially extended to any space of type C~v and they are denoted 
in the same way. The following was proven in I-FW3]. 

Theorem 2. Let  G be a group and let T: G ~ GLk(C~v ) be a homomorphism. The 
following conditions are equivalent: 

(1) (G, T) is a symmetry in ~ [ W ] .  
(2) There are (unique) maps x: G --* R, ~: G --+ k, tl: G ~ R*, and R: G --* GLR(W[z] )  

such that 

(d) TO= X~ oMr (19) 

Consider now z: G --* CA( l ,  k) given by vow = ~low + 3o where w �9 k and 9 �9 G. 
From the fact that T is a homomorphism, it follows that z is also a homomorphism 
and it naturally induces a G-action on R defined by the k-algebra automorphisms 

g . p = p o z o _ ,  , p � 9  9 � 9  (20) 

The action (20) of G on R can be extended to any tensor product of type R | W. 
Consider now R*: G ~ GLR(W* [z])(ifR o = ~'~ R,.oz', then R~* = ~ R*oz'). Define 
U: G --* GLk(W*[z] )  by 

U o p : = ( d e t R * , ) ( 9 " ( R * p ) ) ,  9 � 9  p � 9  (21) 

A straightforward verification shows that U is a k-representation. Moreover, 

(Toni) • = Uo(~• V 9 �9 G, (22) 

which, in particular, shows that ~ �9 @[W] G if and only if ~ is a G-invariant 
R-submodule of W* [z]. U is called the dual action associated with the symmetry 
(G, T). For  the sake of simplicity of notation from now on all the actions of G are 
denoted by left multiplication by 9 (e.g., Tgw = 9" w, Uop = 9" P). 

Example 1. A symmetry (G, T) on ~ [ W J  is called time-invariant if TO o a x = a x o 
T o for all 9 �9 G. It is easy to see that (G, T) is time-invariant if and only if U o is 
R-linear for all 9 �9 G. A particular class of time-invariant symmetries are the static 
ones: a symmetry (G, T) is called static if a representation p of G on W exists such 
that (Tow)(t) = pg(w(t)) for all t �9 R and 9 �9 G. In what follows we identify T and p. 
In this case it is easy to see that the dual action U is given by p*. Static symmetries 
have been studied in much detail in [F] and I-FW2]. 
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Example 2. An important  example of nonstatic (actually not even time-invariant) 
symmetry is time-reversibility. In this case G = Z 2 = ( { -  1, + 1}, .), (T_lw)(t) = 
w(--t). Differential behaviors which are symmetric with respect to this symmetry 
are called time-reversible. In this case the dual action on W*[z]  is the following 
involution: for p(z) E W*[z] and g ~ G, define (gp)(z) := p(gz). See [FW1] for more 
details about  time-reversibility and its generalizations. 

F rom now on we assume that G is a matrix group, namely, that it is a subgroup 
of GL(n, C) for some n e N. Consider the Zariski topology in GL(n, C). We do not 
assume that G is closed, since this permits us to consider real groups also. It is a 
classical result that every finite group and, more generally, every affine algebraic 
group is (isomorphic to) a closed matrix group. I f X  is an affine algebraic set, a map  
q~: G ~ X is called algebraic if it is the restriction of an algebraic map from G to X. 
If V is a finite-dimensional k-vector space, a representation p: G ~ GLk(V) is said 
to be rational if it is algebraic (think of GLk(V ) as a subset of GLc(V | C)). In other 
words, p is rational if, with a fixed basis of F, the entries of the matrix which 
represents p are all polynomial functions of G. Notice that if G is finite, the condition 
of rationality is always verified. If V is a (possibly infinite-dimensional) k-vector 
space, a representation p: G ~ GLk(V ) is called rational if a sequence V~ of G- 
invariant k-subspaces of V exists such that U ,  ~ = V and the subrepresentations 
p: G ~ GLk(~) are all rational. We also say that V is a G-module. A matrix group 
G is called linearly reductive if all its rational finite-dimensional complex representa- 
tions are completely reducible (i.e., they can be written as a direct sum of irreducible 
representations). We refer the reader to IN]  for a detailed analysis of linearly 
reductive matrix groups. We just remind the reader that a lot of groups have this 
property: all finite groups and, more generally, every compact  topological group; 
further, every semisimple connected affine algebraic group, like the classical groups 
SL,, 0,,  and SP,. 

Consider now an action of the group G on the polynomial algebra R = k [z] given 
by k-algebra automorphisms, which is rational. Let M be an R-module, equipped 
with a G-action which makes it into a rational G-module and such that 

g ' ( rm) = (g.r)(g.m). (23) 

M is said to be an (R -- G)-module and the action of G on M is called a quasi-linear 
representation of G. If M, N are (R - G)-modules and M is R-finitely generated, we 
can make HomR(M, N) into an (R -- G)-module by defining (g "f)(m) := g" (f(g-1 "m)) 
where f ~ HomR(M, N) and m e M. We refer the reader to [BH] for all the results 
on (R - G)-modules. We will need the following. 

Proposition 3 (Splitting Lemma). Let G be a linear y reductive matrix group and let 

0 ~ M 1 _L, M2 p M3 ~ 0 (24) 

be an exact sequence of (R - G)-modules (i and p are G-equivariant). I f  (24) splits as 
a sequence of R-modules, it also splits as sequence of (R -- G)-modules (i.e., the 
splitting map can be chosen to be G-equivariant). 



176 F. Fagnani and J. C. Willems 

Proofi In the case k = C it is proven in [BH]. The case k = R is analogous. �9 

Let G be a matrix group, and let (G, T) be a symmetry on ~ [ W ] .  Consider the 
associated maps x, ~, q, and R as in Theorem 2. (G, T) is said to be a rational 
symmetry if: 

(i) x, 4, t/, and R(2) (for all 2 ~ C) are algebraic maps. 
(ii) sup{deg(R0)lg ~ G} < + ~ .  

If (G, T) is rational, the associated homomorphism ~: G ~ GA(1, k) is algebraic, 
hence the action of G on R given in (20) turns R into a G-module. Moreover, it is 
immediate to check that the dual action U in (21) is quasi-linear and turns W* [z] 
into an (R - G)-module. Notice that if G is finite, conditions (i) and (ii) are always 
automatically verified. Further, a static symmetry (G, p) (with G possibly not finite) 
is rational if and only if p: G ~ GLk(W) is a rational representation. 

A rational symmetry (G, T) is called degree-preserving if deg(Uop) = deg(p) for all 
g ~ G, p ~ W* [z]. Notice that this is equivalent to having R constant in Theorem 
2. (G, T) is called finite if ~(G) is a finite group (hence {0} or isomorphic to Z2). 
Notice that if G is finite (or compact), this is always verified. It is clear that static 
symmetries and time-reversibility are degree-preserving and finite. 

We close the section with a couple of simple results on symmetric differential 
behaviors which will be needed in what follows. 

Proposition 4. Let G be a linearly reductive group and let (G, T) be a rational 
symmetry on ~ [ W ] .  Let ~ ~ ~ [ W ] .  The following conditions are equivalent: 

(1) ~' E ~ [ W ]  G. 
(2) ~c E ~ [ W ]  ~ and X ~ ~ [ W ]  ~ autonomous exists such that ~ = ~r • X. 

ProoL (2) =*- (1) is obvious. 
(1) ~ (2) Consider the canonical exact sequence of (R - G)-modules 

0 ~ M• ~ W* [z] & W* [z]/M • ~ O. (25) 

Let T be the torsion of W* [z]/~ • It is easy to see that T is G-invariant. It follows 
from Proposition 3 that a G-invariant free submodule of W* [z]/~3 • exists such that 
W* [z]/~ -y = T �9 F. The result now follows from (5) of Theorem 1. �9 

Let (G, T) be a symmetry on @[W] and let M ~ N[W] .  There is a largest 
G-invariant subspace contained in ~: 

~G := n g ~ ;  (26) 
g ~ G  

and a smallest G-invariant subspace containing ~: 

~ := ~ g -~ .  (27) 

Clearly, NG = N = Pfi if and only if ~ E @[W] G. Are ~G and N 'G also differential 
behaviors? It follows from (2) of Theorem 1 that the answer is in the affirmative for 
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2G. The question for 2 G is more delicate and in general the answer is negative. 
However, there is a positive result for an important class of symmetries. 

Proposition 5. Let (G, T) be a finite rational symmetry and let 2 �9 ~ [ W ] .  Then 
2 G �9 ~ [ W ] .  

Proof. Let X �9 ~ [ W ]  be such that 2 = 2c G X. Clearly, 2 ~ = (2c) ~ + X G. Be- 
cause of (2) of Theorem 1, it suffices to prove that (2r ~ an X a are differential 
behaviors. First, let us consider (2c) G = ~o  g" 2c. We claim that a finite set {gl, . . . ,  
g n } -  G exists such that (2~)~ = ~'=1 gi '2r  In order to see this, assume the 
contrary. Then a sequence 9~, g2, ---, g . . . . .  of elements of G exists such that 

91 "2e # gl "2e -}- g2"2r # "'" :~ ~ g i ' 2 e  ~ " " .  
i=1 

Now consider the annihilators: 

"'" gi 2 e  : / : ' " .  
i=1 

(28) 

(29) 

Since, by (3) of Theorem 1, they are all direct addends in W* [z] it follows that the 
rank is strictly decreasing. This is a contradiction. 

Let us now prove that X ~ �9 ~ [ W ] .  Consider the complexification Y = X | C. 
Clearly, Y �9 ~ [ W  | C]. Further, (G, T) is also a symmetry on ~ [ W Q k  C] and 
yG = X o @k C. If F is a finite subset of C and n �9 N, consider 

Yr,, := {t ~ p(t)e~tlp �9 W| ] deg(p) < n, 2 �9 F}. (30) 

It is well known that F and n can be chosen such that Y ~ Yr,,. Since (G, T) is finite, 
we have that F G := {~/02 + ~oJg �9 G, 2 �9 F} is also finite. It easily follows from 
Theorem 2 that 

(Yr,,) G - Tr%,. (31) 

This implies that Y~, and therefore also X G, is finite-dimensional. On the other 
hand, X G is shift-invariant and hence (see [F] for instance) is a differential 
behavior. �9 

Remark. It follows from the proof of the previous proposition that if (G, T) is a 
finite rational symmetry, 2 G can be represented as sum of only a finite number of 
terms of the form g" 2 .  

4. Interconnections 

Let 21, 22 �9 ~ [ W ] .  Define the interconnection of 21 and 22 simply as 21 n 2 2. 

The interconnection is said to be feedback if 

p(21 c~ 22) = p(21) + p(22), (32) 
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and regular feedback if it is feedback and in addition 

n(21 ca 22) = n(21) q- n(22). (33) 

Feedback and regular-feedback interconnections are denoted by means of special 
symbols, respectively, ~ car 22 and 21 n,f 22. It can be shown that this notion of 
regular feedback corresponds, for input/state/output systems, to the usual classical 
notion of (nonsingular) feedback. On the other hand, feedback interconnections 
which are not regular classically appear when we do a feedback intereonnection of 
two input/state/output systems which both have feedthrough terms. For  more 
details regarding these definitions and their relation with the classical ones in 
systems theory, see [W3] and [W4]. 

Remark. It follows from (2) of Theorem 1 that the interconnection between 21 
and 22 is feedback if and only if 

2~  ca 2 3  = {0}. (34) 

Moreover, the interconnection is regular feedback if and only if (see [W1]) 

(2f) i  n (23)  ̀  = {0}, (2f) ,  �9 (2i-), = ( 2 f  + 2~)~, Vi. (35) 

Let 2 ' ,  2 �9 @[W] with 2 '  _ 2 .  2 '  is said to be a feedback subbehavior (resp. a 
regular-feedback subbehavior) of 2 if ~ �9 ~ [W] exists such that 2 '  = 2 car 2 (resp. 
2 '  = 2 n , f~ ) .  If 2 �9 ~ [ W ] ,  we denote by J~(2) (resp. ~ f f ( 2 ) )  the set of all the 
feedback (resp. regular-feedback) subbehaviors of 2 .  

The next result is a characterization of feedback subbehaviors. 

Theorem 6. Let 2 ,  2 '  �9 ~ [ W ]  and 2 '  ~_ 2 .  The following conditions are equiva- 
lent: 

(1) 2 '  �9 ~ ( 2 ) .  
(2) 2 ' •  • is free. 
(3) I f  X e ~ [ W ]  is such that 2 '  = 2'~ O) X,  then 2 = 2~ + X. 

In particular, it follows from (3) that i f  2 is controllable, then 2 '  ~_ 2 implies 

Proof. (1) ~ (2) follows from the previous remark and from (2) of Theorem 1. 
(2) =~ (3) Clearly, 2 c + X ~_ 2 ,  so we only have to prove that 2 ~_ 2c + X which 

is equivalent to 2~  n X • _ 2 • Let M be a submodule of W* [z] such that 2 '• = 
2 • @ M. This yields the commutative diagram 

0 ) M  i p , w *  [ z ] 1 2 1  , W * [ z ] 1 2  '• , 0 
~ ,  (36) 

W* [z] 

where p, n, and n' are the canonical projections and where the top row is exact. 
Let r ~ 2~  c~ X I. Since 2'~ ~_ 2c, it follows that r �9 2 '1. Hence p(n(r)) = n'(r) = 0 
which yields n(r) �9 ker p : i(M). On the other hand, r �9 2~,  hence n(r) e 2 ~ / 2  • = 
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~ / ~  c~ X • ~ W*  [ z ] /X  • Since i(M) is free and W *  [z] /X  • is torsion, this implies 
that re(r) = 0. This yields r �9 ~• 

(3) =~ (2) We have 

~'•177 ~ ~ ' •  ~ w* [z]l~2. (37) 

It follows from (3) of Theorem 1 that the last module in (37) is free, hence the first 
one also is. �9 

Corollary 7. Let  ~,  ~ ' ,  ~ "  �9 ~ [ W ]  and suppose that ~ "  ~_ ~ '  ~_ ~ .  Then 

~ "  �9 ~ ( ~ )  ~ ~ '  �9 ~ ( ~ ) .  (38) 

Proof. It immediately follows from condition (2) of Theorem 6. 

We would like to establish a result analogous to Theorem 6 for regular-feedback 
subbehaviors. The problem is much more complicated and of central importance 
in linear systems theory. We give here a necessary and sufficient condition at the 
level of annihilators. 

Theorem 8. Let  ~,  ~ '  �9 YEW] and ~ '  ~ ~ .  The followin9 conditions are equiva- 
lent: 

0) ~ '  �9 ~ ( ~ ) .  
(2) (~[• + z~[ z) n ~3s = ~?  + z~t ,  vi. 

Proof. (1)=>(2) Let ~ �9 YEW] such that ~ ' =  ~ n r f ~ .  Then, by the previous 
remark, 

~ t  r ~ t  = ~• Vi. (39) 

Notice that in (2) " _ "  is always verified, so we only have to check " g . "  Let 
p �9 ( ~ •  + z ~  x) n ~{§ Then p = Pl + zp2 with p~, P2 �9 ~ •  It follows from (39) 
that Pl = q~ + q~ and P2 = q2 + q2 with ql, q2 �9 ~{  and ~ ,  q2 �9 ~{.  Hence p = 
(ql + zq2) + (gh + ZFh). Since p �9 ~{+1, it follows from (39) that ql + z~2 = 0. This 
implies that p �9 ~ {  + z~{. 

(2) =~ (1) Let us prove, by induction, that k-subspaces M ~ ___ ~ •  exist such that: 

(i) ~ @ M i = g3~ • 
(ii) M i + z M  i ~_ M i+1. 

Choose M ~ such that N~- @ M ~ = ~;• Suppose that we have obtained M ~ . . . . .  M j 
which verify (i) and (ii) (for i < j). Let us first prove then that 

( v J  + z v 0  ~ ~?+1 = {0}. 

It follows from (2) of Theorem 8 that (40) is equivalent to 

(40) 

(M i + z M  j) n (~J- + z~J-) = {0}. (41) 

Let p E (M j + zM i) m ( ~  + z~)) .  Then p = m + zn = a + zfl with m, n �9 M j and 
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~, f l e  ~ .  Therefore, 

z(n - fl) = ~ - m e ~j• (42) 

I f j  = 0, this implies n = f le  M ~ c~ 9~- = (0). Similarly, m = ~ = 0. Hence p = 0. If 
j > 0, (42) yields n -  f l e  ~ j i .  From conditions (i) and (ii) it now follows that 
n e m j-1 and f le  ~ - 1 .  Hence p ~ m j ~ ~ = (0). This proves (41), which yields (40). 
Let us now consider any complementary k-subspace of 9~+ 1 @ (M ~ + zM ~) inside 
~j~+~ and define M ~+~ = N | (M ~ + zMJ). Clearly, the sequence M ~ . . . . .  M ~+~ 
satisfies (i) and (ii) and thus, by induction, we obtain the sequence M( 

Denote by M the R-submodule of ~ '•  generated by U~ M( We claim that 

M~ = M J, Vj. (43) 

In (43) " ~ "  is clear from the definition of M. " ~ "  is proven as follows: let m e Mj. 
Then m=~l=o2~m~ with 2~eR and m~eM ~'. Let s=max{k~+deg(2~) [ i=  
0 . . . . .  1}. A repeated application of (ii) shows that m e M ~. On the other hand, 
m e ~)• = M~ ~ M j. Again, the properties of the sequence M ~ imply that m e M ~. 
This proves (43). 

It now immediately follows from the previous remark that M c~f • = ~ ' .  �9 

Remark. I f ~ l  = ~i- + z ~  for i > h ~ N, condition (2) in Theorem 8 is automat- 
ically verified for i > h. This shows that (2) in Theorem 8 really consists of only a 
finite number of conditions. 

Corollary 9. Let ~,  ~' ,  ~"  ~ ~ [ W ]  and assume that ~"  ~_ J3' ~_ ~.  Then 

~,,  ~ ~ ( ~ )  ~ ~ ,  ~ ~ ( ~ ) .  

Proof. Follows immediately from condition (2) of Theorem 8. 

(44) 

5. Symmetric Intereonneetions 

In this section assume that G is a linearly reductive matrix group and let (G, T) be 
a rational symmetry on @[W]. The following important result says that all the 
(regular) feedback symmetric subbehaviors of a symmetric behavior ~ can be 
obtained by (regular) feedback interconnection of 9~ with some other symmetric 
behavior. 

Theorem 10. Let ~1, ~2 ~ ~[-W] and assume that ~a, Ma n ~2 ~- ~ [ W ]  G. Then 
~z  e ~ [ W ]  ~ exists such that 

~1 c~ ~2 = ~1 c~ ~2. (45) 

Moreover, if  ~1 ~ ~2 is feedback, then ~32 can be chosen such that ~1 n ~2 is also 
feedback. I f  ~ n ~2 is regular feedback and (G, T) is degree-preserving, then ~2 can 
be chosen such that ~1 n ~2 is regular feedback. 
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Proof. Of course, ~z  := N'~ ~ N2 satisfies (45) and is symmetric. 
Assume now that ~ ~ N2 is feedback. Clearly, the solution ~2 = NI n N2 will 

not guarantee a feedback interconnection with NI, so we have to construct a 
different one. Let M = ( .~ c~ r162 • = ~ (9 Y)~. Consider the canonical quasi-linear 
action of G on W* [z] associated with (G, T). Clearly, M and 9 ~  are G-invariant 
R-submodules of W* [z]. Consider the exact sequence of (R - G)-modules 

0 ~ ~ L M L M / ~  ~ O. (46) 

It follows from Proposition 2 that (46) splits as a sequence of (R -- G)-modutes. 
Hence, a G-invariant submodule N of M exists such that M = N �9 N~. Clearly, 
~2 = iN  solves the problem in the feedback case. 

Assume now the interconnection between 9~ and Nz is regular feedback and 
(G, T) is a degree-preserving symmetry. Consider again the exact sequence (46) 
which yields the surjection of (R - G)-modules 

Home(2vl/~ ~, M) ~ HornR(M/~-~ M / ~ )  -~ O. (47) 

Denote 

L = {q e HomR(M/Mf, M)ldeg(q o p)(m) <_ deg(m), u e M}. (48) 

It is easy to see that L is a finite-dimensional k-vector space. Moreover, it is G-in- 
variant. Indeed, ifq �9 L, g �9 G, and m �9 M, we have (g" q ~ p)(m) = g ' ( (q  ~ p)(q-1, m)). 
Since the symmetry is degree-preserving, it follows that g" q ~ L. Let 

H =  {p o q[q s L}.  (49) 

Clearly, H is a G-invariant finite-dimensional k-vector space. Notice that Id~t/ef e 
H. Indeed, if we consider the splitting map q of p relative to the decomposition 
M = N~ @ N~-, we have that q o p is the projection on the factor ~ - .  Because of the 
regularity it easily follows that q �9 L. On the other hand, p o q = IdM/~p Consider 
now the exact sequence of G-modules 

po 
L -~ H ~ 0, (50) 

which yields, since G is linearly reductive, 

L ~ ~, H ~ --* 0, (51) 

where L G and H ~ denote the subspaces consisting of G-invariant elements of, 
respectively,  L and G. CleaAy,  t d M t ~  e H s. Le t  l a L G such that p o l = Id~a/~_ 
Clearly, by the way it was constructed, l: M / ~ {  -~ M is a G-equivariant splitting 
map. Define N = Ira(l) ___ M. Then M = N (9 ~ i  L. Consider .~2 = i N  e N [ W ]  a 
Clearly, 9~ 1 c~e~ 2 = Mx nrf~2.  It remains to check that the interconnection is 
regular. We only have to check that M~ ___ (M~)i (~ Ni for all i. If m e M~, we have 
that m = (m - (l o p)(m)) + l o p(m). Since 1 e L, the results easily follows. �9 

We now have the following conclusive result. 
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Corollary 11. Let G be a linearly reductive matrix group and let (G, T) be a finite 
rational symmetry on ~ [ W ] .  Let ~ c_ ~ [ W ]  be a class of differential behaviors 
which has the following properties: 

(1) ~- is G-invariant. 
(2) ~- is invariant by summation. 

Let ~1 ~ ~ [ W ]  a and assume that ME e ~ [ W ]  exists such that 

~1 n ~z ~ ~-. (52) 

Then ~2 ~ ~ [ W ]  G exists such that 

~1 n ~2 e o~. (53) 

Moreover, if  (52) was feedback, then ~z  can be chosen in such a way that (53) is also 
feedback. I f  (52) was regular feedback and (G, T) is a degree-preserving symmetry, 
then ~2 can be chosen so that (53) is regular feedback. 

Proof. Consider 

= (~t c~ ~2) ~. (54) 

It follows from Proposition 5 and from the remark following it, that N e ~,~. Since 
N1 ~ ~2 - N c__ ~1, the conclusion now follows from Corollaries 7 and 9 and from 
Theorem 10. �9 

Remarks. (1) Corollary 11 has a simple interpretation: ~1 can be thought of as the 
plant which has a certain symmetry and we want to control it by means of a feedback 
controller in such a way that certain goals are reached (specified by o~). The theorem 
then says that, under certain assumptions on these goals (specified by conditions (1) 
and (2) of Corollary 11), if a feedback controller exists such that by interconnecting 
it to the plant these goals are reached, then there is also a symmetric feedback 
controller which achieves this. 

(2) It is important to notice that the McMillan degree of the symmetric controller 
~2 in general will be higher than the McMillan degree of the original controller N2. 
Unfortunately our results do not give any estimate on the growth of the McMillan 
degree. Nevertheless, in certain cases (e.g., for static symmetries) estimations can be 
obtained by using the canonical polynomial matrix representation (see [FW2]). 

We now discuss some applications of Corollary 11. 

Example 3 (Symmetric Stabilization and Pole Placement). Let ~ be the subclass 
of N [W] consisting of the autonomous asymptotically stable (lim~ +~o w(t) = 0 for 
every w e N) differential behaviors. Let G be any linearly reductive matrix group 
and let p be a representation of G on W. Consider the static symmetry which they 
induce. Clearly, the assumptions of Corollary 1 t are satisfied. Therefore we have 
the following fact: i f  a plant r162 is symmetric and asymptotically stabilizable by 
(regular) feedback, then it can be asymptotically stabilized in (regular) feedback by 
means of a controller which is also symmetric. The same conclusion can be obtained 
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if we replace asymptotic stability with stability. More generally, we can consider 
consisting of the autonomous behaviors whose eigenfrequencies (those 2 ~ C such 
that the map t ~ eZtv is in ~ for some v e W) lay in a given subset F __%_ C. This 
evidently leads to a sort of weak (multiplicities are not taken into account) pole- 
placement property in a symmetric context. It is not possible to extend this result 
to the pole-placement property with multiplicities. This follows from analyzing a 
canonical polynomial matrix representation of a symmetric system obtained in 
[FW2]. It can be shown that certain multiplicities are intrinsically associated with 
the structure of the representation p, more precisely with the multiplicities and type 
of its irreducible subrepresentations. We now give a concrete example which illus- 
trates this. Let W = k Nq and consider the group G = S~, the permutation group on 
q elements, and the permutation representation p of degree N q  given by 

p J ( w l  . . . .  , wq) := ~w~.~, . . . ,  w ~ ) ,  ~r ~ S~, (55) 

where wl ~ k N. Consider the static symmetry induced by Sq and p on ~ [ W ] .  We can 
think of this static symmetry as occurring when we model the positions (N = 1) or 
the positions and forces (N = 2), as in the example in Section 1, of q identical 
particles in k 3. In [FW2] it is proven that ~ ~ ~ [W] ~ if and only if R ~  e k h • N[Z], 

RA ~ k '  • N[Z], both of full row rank over k(z), exist such that ~ is described by the 
polynomial matrix representation 

d 

(56) 

RA dt A w i = 0 '  i =  1 , . . . , q - I ,  

with w,~ := (1/q)(wl + w 2 + ""  + wq) (the center of mass of the system) and Awi := 
w~ - w,~ (the displacements from the center of mass). It is easy to see that the 
polynomial matrix representations (1) and (3) (with A and B as in (5)) of Section 1 
give rise to representations such as (56) with h = l = 3. Notice that ~r given by (56) 
is autonomous if and only if h = l = N. In this case the eigenfrequencies of ~ are 
given by the union of the zeros of det(Ra~) and the zeros of det(RA). Moreover, every 
eigenfrequency which is a zero of det(R~) will have multiplicity at least q - 1. 
Consider now a symmetric plant N described by equations such as (56) with R~ = 0 
and RA such that I = 1 and the rank ofRA(2 ) is 1 for every 2 e C. Moreover, assume 
that n(N) > 0 (equivalently that at least one component of R A is not constant). N 
is then controllable, hence [W4], [W5] it has the (strong) pole-placement property. 
On the other hand, it is clear from previous considerations that if we interconnect 
it with a symmetric controller (in regular-feedback interconnection), the autono- 
mous behavior which we obtain will have at least one eigenfrequency with multiplic- 
ity q - 1. For  similar examples in a classical setting seee also [HLM],  [HM1],  
[HM2],  and [M]. In the case where the symmetry is not of a static type, symmetric 
stabilization may fail. A typical example is given by time-reversibility: indeed, no 
autonomous time-reversible linear differential behavior can be asymptotically sta- 
ble. However, some symmetric pole-placement results can be obtained for symme- 
tries which are not necessarily of static type. Notice, indeed, that if (G, T) is a finite 
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rational symmetry on ~ [ W ]  and F ___ C is such that rF  ___ F (see Section 3 for the 
definition of ~), then the class ~ of autonomous differential behaviors in N[W]  
whose eigenfrequencies lay in F satisfies the assumptions of Corollary 11. Of course, 
if we want to apply Corollary 11 in the regular case we also need to assume that the 
symmetry is degree-preserving. 

Example 4 (Symmetric Decoupling). A general decoupling problem can be formu- 
lated in the following way. Consider a decomposition 

w = ~ | 1 7 4 1 7 4  (57) 

Given ~"~1 E ~[-W] we say that the decoupling problem (D.P.) with respect to (57) is 
solvable for N1 if ~ 2  ~ ~ F W ]  exists such that 

l 
~'1 c~ ~2 = @ P,(~', c~ ~2), (58) 

i=1 

where Pi is the projector on W~ relative to the decomposition (57). If we ask that the 
interconnection has to be (regular) feedback we talk about the (regular) feedback 
decoupling problem (F.D.P., R.F.D.P.). 

Denote by ~ the class of behaviors ~ of ~ [ W ]  such that ~ = (~I=1 Pq,(~). 
Assume that G is a linearly reductive group and that (G, T) is a rational degree- 
preserving finite symmetry which leaves the class ~ invariant (e.g., time-reversibility 
or any static symmetry for which the subspaces W~ are G-invariant). The assump- 
tions of Corollary 11 are evidently satisfied and this yields the following result: i f  
D.P (F.D.P., R.F.D.P.) is solvable for ~1 ~ ~ [ W ]  G, then it is solvable by means of  a 
~2 E ~ [ W ]  G. 

6. Symmetrization 

Consider a rational symmetry (G, T) on ~ [ W ]  and let N e @[W]. We would like 
to study the conditions under which o~(~) (or ~f f (N))  contains some symmetric 
differential behaviors. Since N' G is the largest symmetric differential behavior con- 
tained in ~ it follows from Corollaries 7 and 9 that this is equivalent to the fact 
~G e ~(N)  (or NG e ~ff(N)).  Notice that the decoupling problems (F.D.P. and 
R.F.D.P.) considered in Example 4 of Section 5 are particular cases of these prob- 
lems. To see this, take G = @~=1 Z2 where Z 2 = {1, - 1} and let T be given by 

T~, ...... rkl(Wl . . . .  , Wk) := (71Wl . . . .  ,7kWk). (59) 

Let us start considering the feedback case. Clearly, if ~ is controllable, then 
NG s o~(N), because of Theorem 6. In general, we have the following: 

Proposition 12. The following conditions are equivalent: 

O) ~ ~ ~(~). 
(2) X ~ ~ [W1 ~ autonomous exists such that ~ = ~ + X.  
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Proof. (2) =,, (1) Obviously g 6  = (~c n ~6)  + X which yields ~ = (Me n MG) • n 
X -L. Hence 

~ / M z  = ( ~  c~ ~G) • n X •  ~ X ~ ~ ( ~  n ~G)• (60) 

Since the last module is free, (1) follows. 
(1) =~ (2) It follows from Proposition 4 that ~G = (N6)r @ X with X e N [ W ]  6 

autonomous. It then follows from Theorem 6 that ~ = ~ + X. [] 

The regular-feedback case is far more complicated and no general result like 
Proposition 12 can be expected. However, our Theorem 8 which characterizes 
regular-feedback subbehaviors can be used as a general approach to this type of 
problem. 

We would like to close with few remarks which illustrate this point. Assume that 
is described by first-order differential equations; more precisely, assume that 

yi(N) = 0 for all i ~ 1. This yields yl(N) = p(N) = n(N). Notice that classical state- 
input linear systems are exactly of this form. It then follows from Theorem 8 and 
from the remark following it, that 

~6  e ~ - ( ~ )  r [(~G)~ + z(~G)o ~] n ~ = {0}. (61) 

In particular, if ( ~ ) ~  = {0}, then ~G e ~ ( ~ ) -  Finally, consider a more particular 
situation: let p: G ~ GLk(W) be an irreducible representation. Consider the induced 
static symmetry on ~ [ W ] .  It follows that (~G)o ~ is a G-invariant subspace of W*, 
hence either ( ~ ) o  z = {0} or (~G)~ = W. In the first case ~G ~ ~ ( ~ ) ,  in the second 
~ a  = {0} and is not in NY(N). 
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