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Abstract. In this paper we study the interplay between control problems and
symmetries in the context of linear systems. In particular, we establish sufficient
conditions under which it is possible to control a symmetric system in order to
make it achieve control objectives, without “breaking” its symmetry.
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1. Introduction

A central issue in control theory is to study the modifications which can be induced
on an input/output system by means of a (feedback) controller. Typical problems
in this context are stabilizability, pole placement, disturbance decoupling, robust-
ness, and many others.

In this paper we want to study these problems in the context of linear systems
with symmetries. The main question which we want to address is if it is possible to
control a system which has a certain symmetry, in order to achieve control objec-
tives, such as stability, without “symmetry breaking.” In order to clarify the type of
problem we are interested in, we present a couple of simple illustrative examples.
We are a bit informal, precise definitions and notation being given in further
sections.

Consider, first, g identical particles P, , ..., P,in R? which are under the simultane-
ous influence of a fixed potential field, potential interactions, and external control
forces Fy, ..., F,. Denote the position of the particle P, by s;. Assume that the system
has an unstable symmetric equilibrium for s, = s*fori= 1, ..., g with F; = 0 for
i=1,..., g and that our goal is to stabilize asymptotically the system around this
point. Linearization around the equilibrium point yields an input/output linear

system of the following type:
d
R —_— =
( 7 t>x F, (1
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168 F. Fagnani and J. C. Willems

where x = {xy,..., x,) with x; =5, — s* ¢ R’, F =YF,, ..., F,), and R(d/dt) is the
constant coefficient matrix differential operator induced by the 3N x 3N polyno-
mial matrix

R, R, ~* R, R,
r=|f K R R 2)
RZ RZ RZ Rl

where R, and R, are 3 x 3 polynomial matrices. The system has a symmetry which
is also evidenced by motion equations: if (F, x) is an input/output pair of functions
solving(1)andif o € S, (the group of permutations of the set {1, ..., g}), then (F?, x°),
where F* = (F,,, ..., Fyp) and x% = {(X,(), - .., X4(g), i8 also an input/output pair
solving (1). It can easily be checked (using the behavioral theory or classically,
passing through state space realizations) that the system (2) is asymptotically
stabilizable by dynamic feedback. In other words, two 3N x 3N polynomial matri-
ces A and B with A invertible over the field of rational functions R(z) and with
AT'B (the transfer function) a proper rational matrix exist, such that the linear
x-input/F-output linear system

d d
A(EE>F = B<E>x (3)

is an asymptotically stabilizing controller for (1), namely, the closed-loop system

f(D)emr
() -o(2):

is asymptotically stable: if (F, x) solves (4), then lim, , . ., (F, x)(t) = 0. The stabiliza-
tion problem becomes less obvious if we impose additional requirements on the
feedback controller. One possible request which is of evident importance, is that, in
the controller, each F; only depends on the corresponding x; and that such depen-
dence does not depend on i. Namely, we require both A and B to be of block diagonal
form with the same 3 x 3 repeated blocks on the diagonals. Stabilization under this
requirement is a typical problem considered in decentralized control and it turns
out to be a quite difficult one which will not always be solvable. A reasonable, less
restrictive request on the controller could be that it has to have the same symmetry
as the system which it has to control. Notice that the decentralized controller is
indeed a symmetric system of a very special type. A consequence of our main result,
Corollary 11, illustrated in Example 3 of Section 5, shows that this is possible, that
such a symmetric stabilizing feedback controller does indeed exist. The first conse-
quence of using symmetric controllers is that the symmetry is also preserved at the
level of the closed-loop system (4), which is a fact of independent interest. Moreover,
it follows from the representation results in [FW2] that such a symmetric controller
admits “symmetric” equations in the sense that A and B can be choosen to have
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the same structure as R. Namely,

Ay A, o Ay A, B, B, -~ B, B,
A= | A A A g B Buo B Byl
A, A, - A, A, B, B, --- B, B,

for suitable 3 x 3 polynomial matrices 4,, 4,, B;, B,. This shows that the controller
has a nice internal structure reflecting the symmetry of the problem. Other symme-
tries could arise in this problem if the fixed potential field has some geometric
symmetry. For instance, if the potential has radial symmetry, then there is an
obvious SO(3)-symmetry in the physical system. This can be put in evidence by the
fact that in this case the polynomial matrices R, and R, are of the type R, = r,Id
and R, = r,Id where r;, r, € R[z]. This symmetry can also be incorporated in the
stabilizing controller which will have the matrices 4, A,, B;, B, diagonal with the
same structure as R, and R,. This example is discussed again in Example 3 of
Section 5 where other control problems are also considered.

Another example comes from the problem of designing active dampers to stabilize
vibration tables or drilling towers which have a certain rotational symmetry with
the location of the dampers respecting such symmetry. Of course this is, in principle,
a distributed parameter control problem. However, a suitable finite-dimensional
simplification is the linear model described by the following equations:

d
R(Zl_t>x=F’ (6)

where x = (x,, ..., x,) with x; e R, F = (F,, ..., F,) with F; e R, and

ry ¥y rq_l rq
T r r,_ T,
— q 1 a-2 q-1
R= i ) . (7
ry T3 }’q ¥y

wherer; € R[z] foralli = 1,..., g. We can think of this as the model of a simplified
version of the original system where we have concentrated all the mass in the points
P, ..., P, where the dampers are located. x; represents the displacement from
equilibrium of the point P, and F; is the control force acting on P;. It is clear from
the equations that we are in a less symmetric situation than in previous example:
in this case we do not have invariance of the solution set of (6) by the complete
permutation group S, as in the previous example but only with respect to the cyclic
permutations. They form the subgroup Z. However, using similar arguments based
on Corollary 11, we can again show that a stabilizing symmetric feedback controller

of type
d d
A(%)F - B(E>x ®
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with
a, a, a,_; a, by b, =+ b,y b,
T U T b e
a, ay - a, a b, by ==+ b, b

exists. It can be shown that the transfer function from x to F, A~!B, will have the
same structure as 4 and B. This can be interpreted as follows. The output response
F; of the ith damper to the input displacements trajectory (xy, ..., x,) is equal to
the output response F; of the jth damper to the rotated input displacements
trajectory (X;4;—;, - .., X,4;—;) (Where addition is modulo g). This is a nice symmetric
solution of the problem which again reflects the special structure of the plant.

In these two examples the symmetry considered was of a static type, namely, the
action of the group was only at the level of the input and output spaces, and time
was not involved in the symmetry. Control problems including stabilization for this
type of symmetries were also studied in [HLM], [HM1], [HM2], and [M]. How-
ever, in these papers the authors consider only linear systems in input/state/output
form with the symmetry also in the state variables. The theory which we have
developed in this paper is, on the other hand, based on the behavioral approach to
systems and, as a consequence, it is completely intrinsic in the sense that all the
results proven only depend on the intrinsic properties of a linear system and not
on its possible representations (input/output, input/state/output, etc.). A related
advantage of using the behavioral approach is that we can also consider systems
with no a priori distinction between input and output variables: this is quite useful
in studying interconnections of electrical networks with symmetries. Moreover, our
theory also applies to symmetries which are not of a static type and to a wide range
of different control problems. The paradigm underlying Corollary 11 is the follow-
ing: If, given a plant with a symmetry, a certain feedback control problem can be
solved and the control problem is “symmetric” in a suitable sense, then the control
problem can be solved by means of a controller which has the same symmetry as
the plant. The affirmative answer in the previous examples are exactly due to the
fact that asymptotic stabilization is “symmetric” with respect to static symmetries.
An important example of nonstatic symmetry is time-reversibility: the many-
particles system in the first example has this property. Indeed, since there are no
dissipative forces in the equations of motion, only even-order derivatives appear so
that the input/output solution set of (1) is closed under reversing the arrow of time.
However, it is clear that time-reversibility cannot be mantained in the closed-loop
system if we want asymptotic stability. The symmetry has necessarily to be “broken”
if we want to achieve this control objective. In the language used previously
we could say that asymptotic stability is not “symmetric” with respect to time-
reversibility. Of course, there are instead control problems other than stabilization
which are “symmetric” with respect to time-reversibility: some are considered in
Examples 3 and 4 of Section 5.

A related problem which we also consider in this paper is the one of intercon-
necting a system with a feedback controller in order to make the closed-loop system
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symmetric with respect to a given symmetry. Such a symmetrization problem
actually encompasses many classical problems in control theory like disturbance
decoupling and noninteracting control.

In order to discuss systems and symmetries we make use of the behavioral
approach to systems theory [W1]-[W3]. This permits us to introduce the concept
of system interconnection [W4] at a general level such that it encompasses the case
offeedback and to treat a quite general class of symmetries. In this paper we consider
linear differential behaviors, namely, systems which are described by a set of linear
constant coefficient differential equations. All the results we need on these systems
are collected in Section 2 where all the relevant notation is also introduced. In
Section 3 we introduce the concept of symmetry as an action of a group G on the
C*-trajectories which preserves differential behaviors. We then recall some results
proven in [FW3]. To each symmetry we can associate, in a canonical way, a dual
action on the space of equations. This permits us to shift our investigations to a
more algebraic level. Most of our results are established for symmetries induced by
linearly reductive matrix groups. In Section 4 we introduce the concept of feedback
and regular feedback interconnection of differential behaviors and we establish a
few results, of independent interest, which characterize the subspaces of a given
differential behavior which can be obtained through feedback and regular feedback.
In Section 5 we discuss the problem of symmetric feedback: our main results are
Theorem 10 and Corollary 11 which give sufficient conditions under which certain
control objectives can be achieved, without “breaking” the original symmetry of the
plant. These results are then applied to some examples such as symmetric stabiliza-
tion and symmetric decoupling. Finally, in Section 6 we briefly consider the problem
of making a system symmetric by feedback.

As a final remark, we notice that symmetric control problems such as the one
considered in this paper are related to control problems for systems defined over
rings [BBV], [BSSV], [S].

2. Differential Behaviors. Preliminary Facts

Let k be equal to R or C and denote by k* the multiplicative group k\{0}.
Throughout this paper W and E always denote finite-dimensional vector spaces
over k. Denote by C;, the k-vector space of infinitely differentiable functions from
R to W equipped with the canonical Frechet topology of uniform convergence on
compact subsets of R. Denote R = k[z] and E[z] = R ® E, the R-module of
polynomials with coefficients in E.

Following [W3] we define a linear differential behavior over W (called the signal
space), a subspace 4 of Cy, which is the kernel of a linear contant coefficient differ-
ential operator. Namely, a vector space E exists and D = Y ", D,z € Hom(W, E)[]
(D; e Hom, (W, E)), such that

winfdY. & o dw

D is called a polynomial matrix representation of # and E is the equating space of
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D. The class of linear differential behaviors over W is denoted by Z[W1]. In the
examples presented in Section 1, (1), (3), (6), and (8) were exactly polynomial matrix
representations of linear differential behaviors. In all those cases we have w = (F, x):
the signal space is the product of the input space and the output space. As we have
already mentioned, one of the advantages of the behavioral approach to systems is
that we do not need to assume such a decomposition in the signal space.

A key concept in systems theory is the one of controllability. & € 2[W] is said
to be controllable if for all w,, w, € & there are t, > 0 and w € & such that w(t) =
w,(t) for t < 0 and w(t) = w,(t — t) for t >t,. At the opposite extreme of the
controllable behaviors there are the autonomous ones: # € 2[ W1 is said to be
autonomous if wi, w, € Z and w,(t) = w,(¢) fort < Oimpliesw, = w,. If # € [ W],
then a largest controilable linear differential behavior contained in & exists. It is
denoted by 4, and is called the controllable subbehavior of 4. For the relationship
of these notions with the classical ones see [W1]-[W31].

Let # € 2[ W]. Consider the annihilators of &, defined by

B+ = {peW*[z]|p<%>w=0,Vwe99}, (1

where W* := Hom,(W, k). Clearly, #* is an R-submodule of the R-free module
W*[z]. On the other hand, if M is an R-submodule of W*{z], we can consider

‘M= {weC%‘Hp(%)w:O,VpeM}. (12)

Since M is finitely generated, it follows that *M € 2{W]. The following theorem
gathers some relevant results on differential behaviors.

Theorem 1. Let & € Z[W] and let M be an R-submodule of W*[z1. Then

()
%) = 5, (M)t = M. (13)
This yields a bijection between Z[W7 and the class of all R-submodules of

wW*[z].
(2) Let {#,\i € I} be a family of elements in Z[W]. Then

(\ Be 2[W] and (ﬂ @i)L =Y % (14)
iel

iel iel

Moreover, if I is finite, then

S #,coW] and ( ) '@f)L - ot (15)

(3) & is controllable if and only if W*[z]/#" is free.

(4) A is autonomous if and only if W*[z]/#" is torsion.

(5) If W*[z]/#* = T @ F where T is the torsion of W*[z]/%* and F is an R-free
complement, then B, = {n~Y(T)) where n: W*[z] —» W*[z]/%" is the quotient
projection. Moreover, X = {n~*(F)) is autonomous and # = B.® X.
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Proof. (1) is contained in [W3].

(2) Thefact that ﬂ i1 B € D[ W] follows from the fact that W*[z] is noetherian.
That 2[W1] is closed under finite summation is standard: see [W3]. The rest are
straightforward verifications.

(3) and (4) are also standard (see [W3]).

(5) Tt easily follows from (3) and (4) that {(z~'(T)) is controllable and (= *(F))
is autonomous. Moreover, it is clear that {(zn~*(T)) @ (= '(F)) = 4. This implies
that &, = (= ~(T)). [ ]

If # € 2[W], denote the rank of the free module #* by p(%). Clearly, p(%#) <
dim, W and we can find D € Hom, (W, k?®)[z] such that ker D(d/dt) = #. This
simply shows that # can be described by p(£) differential equations and no less.
Any polynomial matrix representation of % with equating space of dimension p(%)
is therefore called minimal. An example of minimal representation is given by (1) in
Section 1. If Z € [ W1, consider

B = {pe B|deg(p) < i}, (16)

where deg(p) denotes the degree of the polynomial p e W*[z]. Clearly, the #:’s are
k-vector spaces and it holds that

B + 2B < B, 17

It is a standard fact (see [W1] for more details) that equality holds in (17) except
for at most finitely many indices. Define

Vo(%B) = dim, %s,

7:(B) = dim, B} — dim(B-, + z8-,), i> 1.
It is well known that p(#) = ), y(%). Define, moreover, n(%) = Y ; iy,(%). The two
integers p(#) and n(%) we have introduced have an important system-theoretic
interpretation: p(%) is the number of output variables in any input/output represen-
tation of %, while n(%) is the McMillan degree of 4, namely, the dimension of the

state space in any minimal state-space representation of . See [W1]-[W3] for
precise statements and details.

(18)

Remark. The choice of working in C® is mostiy done for simplicity. More general
settings can indeed be chosen, see [W3] and [F]. In particular, all the results
we present in this paper are still true if we replace C* with the space of distribu-
tions 2.

3. Symmetries of Differential Behaviors

Denote the group of all the topological vector space isomorphism of C3 by GL,(C%).
Let G be a group and let T: G — GL,(Cy) be a representation of G. Clearly, T
induces an action of G on the class of all (closed) subspaces of C. We say that
(G, T)is a symmetry on 2[ W1 if the class 2[ W] is invariant under the action of G
(ie., if #e Z[W], then T, % := {Twiwe B} e Z[W]forall ge G). #e P[W] is
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called symmetric if it is fixed by the action of G (i.e.,, T,w € # for every w e # and
forall g € G). The subclass of symmetric behaviorsin 2 [ W]is denoted by Z[ W]°.

We now need to introduce some notation and to recall some results established
in [FW3]. Aside from the differential operators there are other relevant operators
on C*. If x € R, denote by &* the shift operator given by (c*w)(t) := w(t + x). If
¢ ek, denote by .#, the multiplicative operator given by (A w)(t) := eSw(r). If
n € R*, denote by %, the scaling operator given by (&,w)(t) := w(nt). All these
operators can be trivially extended to any space of type Cjy and they are denoted
in the same way. The following was proven in [FW3].

Theorem 2. Let G be a group and let T: G - GL,(Cy) be a homomorphism. The
Jollowing conditions are equivalent:

(1) (G, T)is a symmetry in G{W].
(2) There are(unique)maps x: G - R, & G - k,n: G - R*,and R: G - GLg(W[z])
such that

d
T,=c%oR, (%) oM, oS, (19)

Consider now t: G — GA(1, k) given by t,w = n,w + £, where we k and ge G.
From the fact that T is a homomorphism, it follows that 7 is also a homomorphism
and it naturally induces a G-action on R defined by the k-algebra automorphisms

g p=po T, PER, geG. (20)

The action (20) of G on R can be extended to any tensor product of type R ®, W.
Consider now R*: G —» GLx(W*[z])(if R, = Y ; R; ,z',then R} = ) ; R¥,z"). Define
U:G— GL,(W*[z]) by

Up:=(detR¥)(g9-(Rfp), ge€G, peW*[z] 21)
A straightforward verification shows that U is a k-representation. Moreover,
(T,B)- = U, #'), VgeG, (22)

which, in particular, shows that # € [W]C° if and only if #* is a G-invariant
R-submodule of W*[z]. U is called the dual action associated with the symmetry
(G, T). For the sake of simplicity of notation from now on all the actions of G are
denoted by left multiplication by g (e.g, Tw =g w, U;p =g-p).

Example 1. A symmetry (G, T) on Z2[W] is called time-invariant if T, 0 6* = 6% o
T, for all g € G. It is easy to see that (G, T) is time-invariant if and only if U, is
R-linear for all g € G. A particular class of time-invariant symmetries are the static
ones: a symmetry (G, T) is called static if a representation p of G on W exists such
that (T,w)(t) = p,(w(t)) for all t € R and g € G. In what follows we identify T and p.
In this case it is easy to see that the dual action U is given by p*. Static symmetries
have been studied in much detail in [F] and [FW2].
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Example 2. Animportant example of nonstatic (actually not even time-invariant)
symmetry is time-reversibility. In this case G =Z, = ({—1, +1}, *), (T_,w)(t) =
w(—1). Differential behaviors which are symmetric with respect to this symmetry
are called time-reversible. In this case the dual action on W*[z] is the following
involution: for p(z) e W*[z] and g € G, define (gp)(z) := p(gz). See [FW1] for more
details about time-reversibility and its generalizations.

From now on we assume that G is a matrix group, namely, that it is a subgroup
of GL(n, C) for some n € N. Consider the Zariski topology in GL(n, C). We do not
assume that G is closed, since this permits us to consider real groups also. It is a
classical result that every finite group and, more generally, every affine algebraic
group is (isomorphic to) a closed matrix group. If X is an affine algebraic set, a map
¢: G — X is called algebraic if it is the restriction of an algebraic map from G to X.
If V is a finite-dimensional k-vector space, a representation p: G — GL, (V) is said
to be rational if it is algebraic (think of GL,(V) as a subset of GL ¢(V ®, C)). In other
words, p is rational if, with a fixed basis of V, the entries of the matrix which
represents p are all polynomial functions of G. Notice that if G is finite, the condition
of rationality is always verified. If V is a (possibly infinite-dimensional) k-vector
space, a representation p: G — GL, (V) is called rational if a sequence V, of G-
invariant k-subspaces of V exists such that { J, ¥, = V and the subrepresentations
p: G > GL,(V,) are all rational. We also say that ¥ is a G-module. A matrix group
G is called linearly reductive if all its rational finite-dimensional complex representa-
tions are completely reducible (i.e., they can be written as a direct sum of irreducible
representations). We refer the reader to [N] for a detailed analysis of linearly
reductive matrix groups. We just remind the reader that a lot of groups have this
property: all finite groups and, more generally, every compact topological group;
further, every semisimple connected affine algebraic group, like the classical groups
SL,, O,,and SP,.

Consider now an action of the group G on the polynomial algebra R = k[z] given
by k-algebra automorphisms, which is rational. Let M be an R-module, equipped
with a G-action which makes it into a rational G-module and such that

g:(rm)=(g-r)(g-m). (23)

M is said to be an (R — G)-module and the action of G on M is called a quasi-linear
representation of G. If M, N are (R — G)-modules and M is R-finitely generated, we
can make Homg(M, N)into an (R — G)-module by defining (g f)(m) := g (f(g~!-m))
where f € Homg(M, N) and m € M. We refer the reader to [BH] for all the results
on (R — G)-modules. We will need the following.

Proposition 3 (Splitting Lemma). Let G be a lineary reductive matrix group and let
0->M, 5M,5M,—0 (24)

be an exact sequence of (R — G)-modules (i and p are G-equivariant). If (24) splits as
a sequence of R-modules, it also splits as sequence of (R — G)-modules (i.e., the
splitting map can be chosen to be G-equivariant).
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Proof. In the case k = C it is proven in [BH]. The case k = R is analogous. B

Let G be a matrix group, and let (G, T) be a symmetry on Z[W]. Consider the
associated maps x, &, n, and R as in Theorem 2. (G, T) is said to be a rational
symmetry if:

i) x, &, n, and R{J) (for all 1 € C) are algebraic maps.
(i) sup{deg(R,)lg € G} < +c0.

If (G, T) is rational, the associated homomorphism 7: G — GA(l, k) is algebraic,
hence the action of G on R given in (20) turns R into a G-module. Moreover, it is
immediate to check that the dual action U in (21) is quasi-linear and turns W*[z]
into an (R — G)-module. Notice that if G is finite, conditions (i) and (ii) are always
automatically verified. Further, a static symmetry (G, p) (with G possibly not finite)
is rational if and only if p: G — GL,(W) is a rational representation.

A rational symmetry (G, T)is called degree-preserving if deg(U, p) = deg(p) for all
g € G, pe W*[z]. Notice that this is equivalent to having R constant in Theorem
2. (G, T) is called finite if ©(G) is a finite group (hence {0} or isomorphic to Z,).
Notice that if G is finite (or compact), this is always verified. It is clear that static
symmetries and time-reversibility are degree-preserving and finite.

We close the section with a couple of simple results on symmetric differential
behaviors which will be needed in what follows.

Proposition 4, Let G be a linearly reductive group and let (G, T) be a rational
symmetry on 2[W]. Let B € 2[W'). The following conditions are equivalent:

(1) Ze2[W]S

(2) B.e 2{W1° and X € D[W]® autonomous exists such that B = B, ® X.

Proof. (2)=>(1) is obvious.
(1) = (2) Consider the canonical exact sequence of (R — G)-modules
0— B - W*[z] D> W*[z]/8* - 0. (25)

Let T be the torsion of W*[z]/%>. It is easy to see that T is G-invariant. It follows
from Proposition 3 that a G-invariant free submodule of W*[z]/#" exists such that
W*[z]/#*+ = T @ F. The result now follows from (5) of Theorem 1. n

Let (G, T) be a symmetry on 2[W] and let # e Z[W]. There is a largest
G-invariant subspace contained in %:

Bo= () 9% (26)

geG
and a smallest G-invariant subspace containing %:
B=3% g B 27

geG

Clearly, B; = # = #° if and only if # € 2[W]°. Are %, and % also differential
behaviors? It follows from (2) of Theorem 1 that the answer is in the affirmative for
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A;. The question for % is more delicate and in general the answer is negative.
However, there is a positive result for an important class of symmetries.

Proposition 5. Let (G, T) be a finite rational symmetry and let B € D[W]. Then
B e g[W].

Proof. Let X € 2[W] be such that Z = &, ® X. Clearly, #° = (%,)° + X°. Be-
cause of (2) of Theorem 1, it suffices to prove that (#,)° an X are differential
behaviors. First, let us consider (%,)° = Y, g~ %.. We claim that a finite set {g,, ...,
g.} = G exists such that (%,)¢ =Y 1., g;"%.. In order to see this, assume the
contrary. Then a sequence g,, g5, - - -, g, - .- Of elements of G exists such that

91 B Gy BN Gy BFF Y G B F (28)
i=1
Now consider the annthilators:
9 B F g Bing, BeF o F () g Be # (29)
i=1

Since, by (3) of Theorem 1, they are all direct addends in W*[z] it follows that the
rank is strictly decreasing. This is a contradiction.

Let us now prove that X% e 2[W]. Consider the complexification ¥ = X ®, C.
Clearly, Y € 2[W ®, C]. Further, (G, T) is also a symmetry on 2[W ®, C] and
Y% = X6 ®,C.If T is a finite subset of C and n € N, consider

Y= {t - p(t)e¥|pe W®,C[z] deg(p) < n, LeT}. (30)

It is well known that I and n can be chosen such that Y < Y ,.. Since (G, T) s finite,
we have that T'¢:= {n,1 + ¢,lge G, AeT} is also finite. It easily follows from
Theorem 2 that

(Yr.,)° & Tre e (€3))

This implies that Y%, and therefore also X€, is finite-dimensional. On the other
hand, X¢ is shift-invariant and hence (see [F] for instance) is a differential
behavior. |

Remark. 1t follows from the proof of the previous proposition that if (G, T) is a
finite rational symmetry, ¢ can be represented as sum of only a finite number of
terms of the form g- 4.

4. Interconnections

Let #,, #, € 2[W]. Define the interconnection of #, and %, simply as B, N %,.
The interconnection is said to be feedback if

p(#, 0 %,) = p(#1) + p(%B,), (32)
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and regular feedback if it is feedback and in addition
n(#, N %,) = n(#,) + n(%,). (33)

Feedback and regular-feedback interconnections are denoted by means of special
symbols, respectively, &, " %, and B, N, %,. It can be shown that this notion of
regular feedback corresponds, for input/state/output systems, to the usual classical
notion of (nonsingular) feedback. On the other hand, feedback interconnections
which are not regular classically appear when we do a feedback interconnection of
two input/state/output systems which both have feedthrough terms. For more
details regarding these definitions and their relation with the classical ones in
systems theory, see [W3] and [W4].

Remark. 1t follows from (2) of Theorem 1 that the interconnection between %,
and 4%, is feedback if and only if

Bt Hy = {0}. (34)
Moreover, the interconnection is regular feedback if and only if (see [W1])
(B1)n(#3); =10},  (B1):© (By) = (B + By), Vi (35)

Let #', B € P[W] with #' < Z. % is said to be a feedback subbehavior (resp. a
regular feedback subbehavior) of # if % € Z[W] exists such that #' = & n; % (resp.
B =By B). If B € D[W], we denote by F () (resp. #F () the set of all the
feedback (resp. regular-feedback) subbehaviors of 4.

The next result is a characterization of feedback subbehaviors.

Theorem 6. Let B, B € (W] and #' < #. The following conditions are equiva-
lent:

(1) & € F(B).
(2) B/ B* is free.
B If XeP[W]issuchthat B = B, D X, then B =%, + X.

In particular, it follows from (3) that if & is controllable, then #' = # implies
€ F(%).

Proof. (1)< (2) follows from the previous remark and from (2) of Theorem 1.

(2) = (3) Clearly, 4, + X < 4, so we only have to prove that # = %, + X which
is equivalent to & N X* < #*. Let M be a submodule of W*[z] such that #'* =
#* @ M. This yields the commutative diagram

r

0 —> M —— W*[z]/#* — W*[}/#*+ — 0
(36)
© W]
where p, , and ©’ are the canonical projections and where the top row is exact.
Let r € B+ N X*. Since &, < 4., it follows that r € #'*. Hence p(n(r)) = 7'(r) =
which yields 7(r) € ker p = i(M). On the other hand, r € %7, hence n(r) € &, /%" =
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BB N X+ =, W*[z]/X* . Since i(M)is free and W*[z]/X ! is torsion, this implies
that 7(r) = 0. This yields r € #*.
(3)=(2) We have

BB < BB =, W*[z]/BL. 37
It follows from (3) of Theorem 1 that the last module in (37) is free, hence the first
one also is. n

Corollary 7. Let #, #', B" € D[ W] and suppose that B" < %' < %B. Then
e F(B) = B ecFB. (38)

Proof. It immediately follows from condition (2) of Theorem 6. |

We would like to establish a result analogous to Theorem 6 for regular-feedback
subbehaviors. The problem is much more complicated and of central importance
in linear systems theory. We give here a necessary and sufficient condition at the
level of annihilators.

Theorem 8. Let B, B € Q[W] and #' < B. The following conditions are equiva-
lent:

(1) &' € RF(B).

() (B + 2B N B, = B + 2B, Vi

Proof. (1)=(2) Let % € P[W] such that # = B n&. Then, by the previous
remark,

B @ B = B, Vi, (39)
Notice that in (2) “=” is always verified, so we only have to check “<.” Let
pe(B* + z%’l) N @,H Then p = p, + zp, with p,, p, € Bt It follows from (39)
that p, = q, + 4, and p, = g, + §, with q,, q, € B and §,, §, € % Hence p =
(g1 + zq,) + (g, + z§,). Since p € B, it follows from (39) that §, + z§, = 0. This
implies that p € % + 2z},
(2)= (1) Let us prove, by induction, that k-subspaces M’ < %;* exist such that:
() - ® M = 3.
(i) M' + zM' < M,
Choose M° such that #; @ M° = %;". Suppose that we have obtained M°, ..., M’
which verify (i) and (if) (for i < j). Let us first prove then that
(M’ + zM')n %5, = {0}. (40)
It follows from (2) of Theorem 8 that (40) is equivalent to
(M? + zMY) N (B} + z%;) = {0}. (41)

Let pe (M’ + zM/) (% + z%;*). Then p = m + zn = « + zf with m, n e M/ and
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o, f € %;. Therefore,
zm—pf)=a—me Q}l. 42)

If j = 0, this implies n = B € M° N %5 = (0). Similarly, m = « = 0. Hence p = 0. If
j >0, (42) yields n — f e #,~,. From conditions (i) and (ii) it now follows that
ne M’~'and f e %;-,. Hence p € M/ n %;- = (0). This proves (41), which yields (40).
Let us now consider any complementary k-subspace of %, @ (M’ + zM’) inside
%1y and define M7*' = N ® (M + zMY). Clearly, the sequence M°, ..., M/*!
satisfies (i) and (ii) and thus, by induction, we obtain the sequence M.

Denote by M the R-submodule of #'* generated by | J; M’ We claim that

M; =M/, Vi (43)

In (43) “2” is clear from the definition of M. “<=” is proven as follows: let m € M;.
Then m=)!_o Am; with ;e R and m;e M* Let s=max{k; + deg(d)li =
0,..., I}. A repeated application of (i) shows that m € M*. On the other hand,
me B = % @ M’. Again, the properties of the sequence M* imply that m e M/,
This proves (43).

It now immediately follows from the previous remark that #n ‘M =%. R

Remark. U B, = B + z8fori > h e N, condition (2) in Theorem 8 is automat-
ically verified for i > h. This shows that (2) in Theorem 8 really consists of only a
finite number of conditions.

Corollary 9. Let #, #', #" € D[ W] and assume that B" = B < B. Then
B € RF (B) => R cRF (D) (44)

Proof. Follows immediately from condition (2) of Theorem 8. ]

5. Symmetric Interconnections

In this section assume that G is a linearly reductive matrix group and let (G, T) be
a rational symmetry on Z{W]. The following important result says that all the
(regular) feedback symmetric subbehaviors of a symmetric behavior # can be
obtained by (regular) feedback interconnection of Z with some other symmetric
behavior.

Theorem 10. Let %y, #, € Z[W] and assume that B, %, "%, € Z[W]S. Then
B, € DLW exists such that
B, NB, =B, B, (45)

Moreover, if B, N B, is feedback, then %, can be chosen such that B, N %, is also
Jeedback. If B, ~ B, is regular feedback and (G, T) is degree-preserving, then %, can
be chosen such that #, ~ %, is regular feedback.
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Proof. Of course, &, .= B, N B, satisfies (45) and is symmetric.

Assume now that %, N %, is feedback. Clearly, the solution %, = %, N %, will
not guarantee a feedback interconnection with #,, so we have to construct a
different one. Let M = (%, N %#,)" = #; ® %5. Consider the canonical quasi-linear
action of G on W*[z] associated with (G, T). Clearly, M and %1 are G-invariant
R-submodules of W*[z]. Consider the exact sequence of (R — G)-modules

085 M5 M/BE-0. (46)

It follows from Proposition 2 that (46) splits as a sequence of (R — G)-modules.
Hence, a G-invariant submodule N of M exists such that M = N @ #;. Clearly,
%, = N solves the problem in the feedback case.

Assume now the interconnection between %, and %, is regular feedback and
(G, T) is a degree-preserving symmetry. Consider again the exact sequence (46)
which yields the surjection of (R — G)-modules

Homg(M/ B, M) 5 Homp(M/BL, M/BE) — 0. (47
Denote
L = {q e Homg(M/%7, M)|deg(q o p)(m) < deg(m), Vm e M}. 48)

It is easy to see that L is a finite-dimensional k-vector space. Moreover, it is G-in-
variant. Indeed,ifge L,g € G,andme M, wehave(g-q o p)(m) = g-((q o p)(q~* - m)).
Since the symmetry is degree-preserving, it follows that g-g ¢ L. Let

H={pog|geL}. (49)

Clearly, H is a G-invariant finite-dimensional k-vector space. Notice that Idy 4. €
H. Indeed, if we consider the splitting map g of p relative to the decomposition
M = B{ @ %5, we have that q o p is the projection on the factor %#5. Because of the
regularity it easily follows that g € L. On the other hand, p o g = Id) ;. Consider
now the exact sequence of G-modules

L5 H-0, (50)
which yields, since G is linearly reductive,
LS5 HS -0, (51)

where L® and HY denote the subspaces consisting of G-invariant elements of,
respectively, L and G. Clearly, Idy, 41 € H®. Let e L? such that pol= 11413
Clearly, by the way it was constructed, I: M/#; — M is a G-equivariant splitting
map. Define N = Im(/) € M. Then M = N ® #{. Consider #, = ‘N e I[W]°.
Clearly, %, n¢%#, = B, N, %,. It remains to check that the interconnection is
regular. We only have to check that M, < (%), ® N, for all i. If m e M;, we have
that m = (m — (I o p)(m)) + ! o p(m). Since ! € L, the results easily follows. ]

We now have the following conclusive result.
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Corollary 11. Let G be a linearly reductive matrix group and let (G, T) be a finite
rational symmetry on G[W]. Let F < D[ W] be a class of differential behaviors
which has the following properties:

(1) & is G-invariant.

(2) & is invariant by summation.

Let 8, € 2[W1]° and assume that B, € D[ W] exists such that

BB, e F. (52
Then B, € D[W1° exists such that
B, B, F. (53)

Moreover, if (52) was feedback, then &, can be chosen in such a way that (53) is also
feedbgck. If (52) was regular feedback and (G, T) is a degree-preserving symmetry,
then 4, can be chosen so that (53} is regular feedback.

Proof. Consider
B = (B, " B,)°. (54)

It follows from Proposition 5 and from the remark following it, that 4 € #. Since
B, B, = # = AB,, the conclusion now follows from Corollaries 7 and 9 and from
Theorem 10. =

Remarks. (1) Corollary 11 has a simple interpretation: 4, can be thought of as the
plant which has a certain symmetry and we want to control it by means of a feedback
controller in such a way that certain goals are reached (specified by #). The theorem
then says that, under certain assumptions on these goals (specified by conditions (1)
and (2) of Corollary 11), if a feedback controlier exists such that by interconnecting
it to the plant these goals are reached, then there is also a symmetric feedback
controller which achieves this.

{2) Itisimportant to notice that the McMillan degree of the symmetric controller
4, in general will be higher than the McMillan degree of the original controller 4,.
Unfortunately our resuits do not give any estimate on the growth of the McMillan
degree. Nevertheless, in certain cases (e.g., for static symmetries) estimations can be
obtained by using the canonical polynomial matrix representation (see [FW2]).

We now discuss some applications of Corollary 11.

Example 3 (Symmetric Stabilization and Pole Placement). Let 4 be the subclass
of [ W1 consisting of the autonomous asymptotically stable (lim, ., w(f) = O for
every w € 4) differential behaviors. Let G be any linearly reductive matrix group
and let p be a representation of G on W. Consider the static symmetry which they
induce. Clearly, the assumptions of Corollary 11 are satisfied. Therefore we have
the following fact: if a plant # is symmetric and asymptotically stabilizable by
(regular) feedback, then it can be asymptotically stabilized in (regular) feedback by
means of a controller which is also symmetric. The same conclusion can be obtained
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if we replace asymptotic stability with stability. More generally, we can consider #
consisting of the autonomous behaviors whose eigenfrequencies (those 4 € C such
that the map t — e*v is in % for some v € W) lay in a given subset I' = C. This
evidently leads to a sort of weak (multiplicities are not taken into account) pole-
placement property in a symmetric context. It is not possible to extend this result
to the pole-placement property with multiplicities. This follows from analyzing a
canonical polynomial matrix representation of a symmetric system obtained in
[FW2]. It can be shown that certain multiplicities are intrinsically associated with
the structure of the representation p, more precisely with the multiplicities and type
of its irreducible subrepresentations. We now give a concrete example which illus-
trates this. Let W = k™ and consider the group G = S, the permutation group on
q elements, and the permutation representation p of degree Ng given by

P Wiy ooy Wo) 1= W)y - v Woin)s cES, (55)

where w; € k™. Consider the static symmetry induced by §,and p on 2[W]. We can
think of this static symmetry as occurring when we model the positions (N = 1} or
the positions and forces (N = 2), as in the example in Section 1, of ¢ identical
particles in k3. In [FW2] it is proven that # € 2[W]¢ if and only if R, € k"*[z],
R, € k'*N[z], both of full row rank over k(z), exist such that & is described by the
polynomial matrix representation

d
Rav (a) Wop = Oa

d
RA<21—t)Awi=Os i=1..,49—-1

(56)

with w,, := (1/g)(w; + w, + -+ + w,) (the center of mass of the system) and Aw; :=
w; — w,, (the displacements from the center of mass). It is easy to see that the
polynomial matrix representations (1) and (3) (with 4 and B as in (5)) of Section 1
give rise to representations such as (56) with 7 = [ = 3. Notice that & given by (56)
is autonomous if and only if h = I = N. In this case the eigenfrequencies of 4 are
given by the union of the zeros of det(R,,) and the zeros of det(R,). Moreover, every
eigenfrequency which is a zero of det(R,) will have multiplicity at least g — 1.
Consider now a symmetric plant 4 described by equations such as (56) with R, = 0
and R, such that / = 1 and the rank of R,(1)is 1 for every A € C. Moreover, assume
that n(%) > 0 (equivalently that at least one component of R, is not constant). %
is then controllable, hence [W4], [W5] it has the (strong) pole-placement property.
On the other hand, it is clear from previous considerations that if we interconnect
it with a symmetric controller (in regular-feedback interconnection), the autono-
mous behavior which we obtain will have at least one eigenfrequency with multiplic-
ity ¢ — 1. For similar examples in a classical setting seee also [HLM], [HM1],
(HM2], and [M]. In the case where the symmetry is not of a static type, symmetric
stabilization may fail. A typical example is given by time-reversibility: indeed, no
autonomous time-reversible linear differential behavior can be asymptotically sta-
ble. However, some symmetric pole-placement results can be obtained for symme-
tries which are not necessarily of static type. Notice, indeed, that if (G, T) is a finite
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rational symmetry on Z[W] and I' = C is such that tI" < I (see Section 3 for the
definition of 1), then the class # of autonomous differential behaviors in 2[W]
whose eigenfrequencies lay in I' satisfies the assumptions of Corollary 11. Of course,
if we want to apply Corollary 11 in the regular case we also need to assume that the
symmetry is degree-preserving.

Example 4 (Symmetric Decoupling). A general decoupling problem can be formu-
lated in the following way. Consider a decomposition

W=Wew,e oW, (57)

Given #, € [ W] we say that the decoupling problem (D.P.) with respect to (57) is
solvable for 4, if #, € Z[ W] exists such that

i
'@1 M gz = (‘_Dl Pi(‘@l & @2), (58)

where P, is the projector on W, relative to the decomposition (57). If we ask that the
interconnection has to be (regular) feedback we talk about the (regular) feedback
decoupling problem (F.D.P., RF.D.P.).

Denote by & the class of behaviors # of Z[W] such that # = (P, P, ().
Assume that G is a linearly reductive group and that (G, T) is a rational degree-
preserving finite symmetry which leaves the class & invariant (¢.g., time-reversibility
or any static symmetry for which the subspaces W, are G-invariant). The assump-
tions of Corollary 11 are evidently satisfied and this yields the following result: if
D.P (F.D.P., R.F.D.P)) is solvable for B, € Z[ WS, then it is solvable by means of a
B, € D[W1C.

6. Symmetrization

Consider a rational symmetry (G, T) on 2[W] and let # € [ W]. We would like
to study the conditions under which # (%) (or % (%)) contains some symmetric
differential behaviors. Since % is the largest symmetric differential behavior con-
tained in 4 it follows from Corollaries 7 and 9 that this is equivalent to the fact
B € F(B) (or Bg e RF(H)). Notice that the decoupling problems (F.D.P. and
R.F.D.P.) considered in Example 4 of Section 5 are particular cases of these prob-
lems. To see this, take G = Pk, Z, where Z, = {1, —1} and let T be given by

T om0 Wis ooy Wi 1= (Y1 W15 ooy ViWe)- (59)
Let us start considering the feedback case. Clearly, if # is controllable, then
Bg € F(H), because of Theorem 6. In general, we have the following:
Proposition 12. The following conditions are equivalent:

(1) B e F(B).
(2) X € D[W]S autonomous exists such that B = B, + X.
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Proof. (2)= (1) Obviously #; = (%, " %) + X which yields B; = (B, N Bg)" N
X*. Hence

BLIBE = (B, N By 0 X BE Xt <, (B, Bg) B (60)
G

Since the last module is free, (1) follows.
(1) = (2) It follows from Proposition 4 that B; = (%s). ® X with X € 2[W]°¢
autonomous. It then follows from Theorem 6 that # = % + X. ]

The regular-feedback case is far more complicated and no general result like
Proposition 12 can be expected. However, our Theorem 8 which characterizes
regular-feedback subbehaviors can be used as a general approach to this type of
problem.

We would like to close with few remarks which illustrate this point. Assume that
% is described by first-order differential equations; more precisely, assume that
y{(#) = O for all i # 1. This yields y,(%) = p(#) = n(4#). Notice that classical state-
input linear systems are exactly of this form. It then follows from Theorem 8 and
from the remark following it, that

B € RF (B) < [HBelo + 2(Bs)o] 0 A1 = {0}. (61)

In particular, if (%¢)5 = {0}, then B, € Z#F (%). Finally, consider a more particular
situation: let p: G - GL,(W) be an irreducible representation. Consider the induced
static symmetry on 2[W1. It follows that (%;); is a G-invariant subspace of W*,
hence either (B;)5 = {0} or (Bg)s = W. In the first case #; € #F (), in the second
B; = {0} and is not in BF(%).
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