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A Behavioral  Approach to Linear 
Exact Modeling 

A. C.  Antoulas, Fellow, IEEE and J. C. Willems, Fellow, I€€€ 

parameter-free framework for the  study of the  general problem of 
Absfract-The behvioral approach to system  theory provides  a 

linear  exact  modeling  and  recursive  modeling.  The  main  contri- 
bution of this  paper is the  solution of the (continuous-time) 
polynomial-exponential  time series modeling  problem. Both re- 
cursive  and  nonrecursive  solutions  are  provided  and classified 
according  to  properties  like  complexity  and  controllability.  It is 
shown  in  particular,  that  recursive  modeling corresponds to 
updating by means of a  cascade  interconnection of systems. As a 
special case the  solution of several  other  problems,  like  rational 
interpolation,  realization,  modeling of arbitrary  discrete-time 
time series. is obtained. 

I.  PROLEGOMENA 
A. Ocen'iew 

T HE problem of identifying a model of a dynamical 
system from observed responses goes back a very 

long way and has given rise to  the field of system identifi- 
cation. For example, the derivation of Newton's inverse- 
square gravitational law as suggested by Kepler's laws, can 
be considered as a question of system identification. In 
recent decades, the  standard  approach in this area has 
been to interpret  the  measurements  as  the input and the 
output variables of a stochastic system. The  output mea- 
surements are then explained by the model through the 
inputs  and  the stochastic noise. See Ljung [22] for  an 
authoritative account of the theory and the algorithms 
resulting from this mode of thinking. 

Recently. we have put forward the so-called behavioral 
framework for the study of dynamical systems. It is deter- 
ministic at the  outset  (but stochastic generalizations are 
being pursued)  and lends itself  very  well to  the problem of 
obtaining dynamical models from observed responses. See 
Willems [291 for an exposition of this theory. 

In the classical framework, see e.g., Kalman, Falb,  and 
Arbib [21, chapter 11, a dynamical system is viewed as  a 
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mapping which transforms inputs u into outputs y. Two 
basic considerations express the  need  for  a framework at 
a  more  fundamental level. First, in many cases (think,  for 
example, of electrical circuits) the distinction between 
inputs  and outputs is not a priori clear; instead, it should 
follow as a  consequence of the modeling. Second, it is 
desirable to  be able to  treat  the different representations 
of a given system (for example: input-output  and  state- 
space  representations) in a unified way. 

In  the behavioral setting, the basic variables considered 
are the external or manifest variables w, which consist of u 
and y, without distinguishing between them. The collection 
of trajectories describing the evolution of w over time 
defines a dynamical system. It turns  out  that this defini- 
tion provides the right level of abstraction, necessary for 
accommodating the two considerations layed out above. 
This establishes the  foundations of a parameter-free the- 
ory of dynamical systems, the advantages of representa- 
tion-independent results-or vice versa, the disadvantages 
of representation-dependent results-being well recog- 
nized. The resulting central object is the most powerful 
unfalsified model (MPUM) derived from the  data, which, 
again, is a space of trajectories. Subsequently, inputs and 
outputs can be introduced  and  the corresponding 1 / 0  
operator recovered. 

The idea of using this approach in order  to  obtain 
dynamical models from a set of observed time series has 
been  pursued since the very first publications related to 
this approach. Both the situation of exact (noiseless) mod- 
eling, cf. Willems [26], and of approximate modeling, cf. 
Willems [27], have been treated; the results of this latter 
paper were generalized in the monograph by Heij [MI. 

In the  present  paper we will exclusively treat exact 
modeling. The dura (observed responses) are continuous- 
time polynomial-exponential time series, and  the model 
class consists of linear, continuous-time, time invariant, 
finite dimensional systems. The novel features are i) the 
specialization of the general behavioral framework to the 
case of polynomial-exponential data, ii) the  treatment of 
the modeling question for any a priori imposed input-out- 
put structure, iii) the fact that  the controllability proper- 
ties of the resulting model are worked out, thus making 
contact with transfer function fitting, and iv) the recursiv- 
ity of the algorithms and their system theoretic interpreta- 
tion. 

Two problems which have been studied extensively, and 
can be cast into  the framework of exact modeling, are 
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realization’ and rational interpolation. Roughly speaking, 
the  data in the  former problem are impulse response 
measurements, while in the  latter, they are frequency 
response measurements. As shown subsequently, the real- 
ization problem can be interpreted as a special case of the 
interpolation problem, which in turn, is a special case of 
the general polynomial-exponential time series modeling 
problem studied here  (see Section 11). At this stage, we 
would like to draw the  reader’s  attention to Antoulas [11; 
this paper studies the recursive realization problem, and 
in  many respects, its results anticipate the recursiveness 
results presented below. The main result of the above 
paper, for example, which is shown pictorially in Fig. 3, 
remains valid in the  present context: recursive update 
corresponds to attaching an appropriately defined component 
to a cascade interconnection of systems (for details see 
Section VIII-X  and  Remark 6.9). 

B. The Data 
We will denote by k the field of real numbers R or  that 

of complex numbers C .  The following finite collection 
of vector-valued continuous-time polynomial-exponential 
time series, with domain T = R and range k4, constitutes 
our data set: 

D := (w, := p,exp, , i E 11);’ (1.1) 

p, is a vector-valued polynomial function: 

K ,  t j-  1 

p,: R - k4 where t - p,(t) := pi,K,-,  ~ 

j = l  ( j  - I)! ’ 

p,.o + 0,  E k4; (1.2) 

the function exp,  is defined as follows: 

exp,: R + k where t - exp,(r) := e*‘ with A E k.’ 
(1 3) 

The constant hi is called the frequency of the time series 
w,. For  subsequent use we define the integers: 

n 
N := K ,  where K ,  := degpi + 1. (1.4) 

i- 1 

C. The Main Problem (Rough Statement) 
Given the above data  set D, find all linear,  continuous- 

time, time invariant, h i t e  dimensional systems which 
explain, Le., could have generated, the  data w, E D, i E n. 
In particular, modeling algorithms which are recursive in 
the  number of time series n are  to be devised. The 
important  parameters to keep track of in these  considera- 
tions are: 

model complexity and model controllability. 

’ We use the  term realuatron to denote  the  problem which is usually 

’ denotes  the  set (1. Z;.., n); e( denotes  the  exponential function. 
referred to in the  literature  as partial reuluufion. 

Other issues of interest are 
imposed input-output model structure and model smoothness. 
The precise formulation of the main problem is given in 
Section 111-F, following a brief introduction to  the behav- 
ioral framework. 

D. Overview of Contents 
1) The Basic Idea 
Consider the problem defined in Sections I-B and I-C 

with q = 2. In this case, each measurement w, E D can 

be written as w, = , and can be interpreted  as  a 

measurement on a single-input single-output system. The 
problem of finding all linear, time invariant systems which 
are compatible with the given data D, reduces to finding 
all polynomials p. q E u s ]  such that 

(”y:) 

The basic concept behind the solution of this problem is 
what we shall call the generating system, which in the case 
q = 2 is a 2 X 2 nonsingular polynomial matrix 

computed directly from the  data D. The main result is 
that p, q is a solution pair if, and only if, there exists a pair 
of polynomial a, b such that 
( p   - 9 )  = (a -b)O* = (aO,, - be?, aOIz - boZ,). 

If p,q are co-prime, the solution can be equivalently 
described in terms of the  transfer function 

which is a linear fraction. Thus while the  generating sys- 
tem @* depends on D, the polynomials a, b are  the  free 
parameters. The above solution has an interpretation in 
terms of the feedbag interconnection of the systems I 
defined by @*, and I defined by r := (a - b), as shown 
in Fig. 2 and explained in Section X. 

Through  the years, solutions to various special cases of 
the general polynomial-exponential modeling problem 
have been worked out in what amounts  to  a  generating 
system approach. For example, more  than  three  quarters 
of a century ago, one version of the rational interpolation 
problem, the so-called (scalar) Necanlinna-Pick or con- 
strained  interpolation problem, was  solved  using this ap- 
proach. Actually, the  generating system  was constructed 
recursively. For details on this problem cast in the  gener- 
ating system framework see, e.g., Antoulas  and  Anderson 
[3], or Ball, Gohberg,  and  Rodman [12]. 

More recently, the general unconstrainted rational in- 
terpolation problem in all its matrix and tangential ver- 
sions, has also  been solved in the generating system 
framework, with the complexity (McMillan degree) of the 
solutions as parameter. This solution is nonrecursive. For 
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details  see  Antoulas  and Willems [71, Antoulas, Ball, 
Kang, and Willems [8]. Furthermore, in Antoulas [l], the 
complete recursive solution of the realization problem  has 
been worked out in the  generating system framework. It 
should be kept in mind that  (as shown in Section 11) the 
problems of realization and rational interpolation can be 
viewed as special cases of the  general polynomial-ex- 
ponential time series modeling introduced above. 

2)  Questions 
The main question which arises is: what is the origin 

and system-theoretic interpretation of the generating sys- 
tem? Which property of the  data  guarantees its existence? 
In particular, while one is interested in single-input 
single-output system compatible with the data, where  does 
the two-input two-output generating system come  from? 
Alternatively, when can the solutions of a modeling prob- 
lem be parametrized by means of linear fractions? 

3) Answers 
It is the thesis of this paper  that  these questions can be 

answered by adopting  the behavioral framework to  the 
modeling problem. It will be argued in Section 111, that if 
we are  interested in linear, time invariant models, the 
central object on  the level of trajectories (behaviors) is the 
smallest linear  and shift invariant cover B* of D, which  we 
shall refer to as the most powerful unfalsifed  model, ab- 
breviated MPUM, of the data D. It follows that B* is 
unique and all other  linear  and shift invariant covers B of 
D yield  less powerful, unfalsified models of D: 

D c B *  c B .  

Part of the  central construction, which will be discussed in 
detail below, is to express B* as the kernel of an appro- 
priate differential operator with constant coefficients 
O*(d/dt):  

B* = ker O*. O* E kgX2[s],  g s 2. 

Hence, O*(d/dthv = 0,  for all w E B*, and consequently 
also for wI E D c B*, i E n.  The following key result 
holds: 

g = 2 and det O* # 0 0 dim, B* < m. 

Furthermore, any other (less powerful linear time invari- 
ant) model B can also be represented  as  the  kernel of 
some differential operator O(d/d t ) :  

B* = ker O* c ker 0 := B. 
The above inclusion implies the existence of a differential 
operator r such that 

0 = rO* where 0,  r E kgx2[s], g = 1 or 2. 
The converse is also true, Le., for every r as above we 
have 

B* = ker 0' c ker rO* =: B. 
This shows that 0* is indeed a generating system, In 
other words, the existence of a finite dimensional linear time 
incariant cocer for the data set D is equivalent to the 
existence  of a two-input  two-output generating system 0* 
(also called a two-port; see Section X for details). Recall 

that  the generating system  is completely determined from 
the  data, while the terminating system r is completely 
arbitrary. 

Furthermore, the fact that in the above parametrization 
r is arbitray yields, at least conceptually, the solution to 
the recursive modeling problem for free. In particular, if 
D = D, U D, we define 07 as  a generating system for  the 
data  set D, and 0; as  a generating system for  the 
modified data set O:(d/dt)D,. The cascade 0' :- O:OT 
of the two generating systems 07 and 0;, provides a 
generating system for D. 

4) Summary of Contents 
In Section I1 the various problems which can be cast as 

special cases of the polynomial-exponential framework 
are discussed. Section I11 provides a comprehensive de- 
scription of the behavioral framework. Only the ingredi- 
ents  needed  for  the solution of the  present problem are 
discussed. They include the definition of linear systems, 
the concept of the most powerful unfalsified model 
(MPUM), behavioral equation  representations of the 
MPUM, 1/0 systems, model complexity and model con- 
trollability. The section concludes with a precise state- 
ment of the polynomial-exponential modeling problem. 
Section IV is devoted to  the construction of the most 
powerful unfalsified model B*. which  as  we already men- 
tioned, is the smallest linear shift invariant cover of the 
data set D. A basis for B* is  explicitely  given in terms of 
the  elements D (Theorem 4.4). 

The next three sections are concerned with equation 
representations of the MPUM B*. In Section V, by in- 
spection of D, constant matrices H .  F parametrizing B* 
are written down. The sfare L,ariable (SV) equation  repre- 
sentation  asserts  that w E B* if. and only if, there exists a 
state trajectory of appropriate dimension x, such that 
(d/dt)x = Fx, w = Hx (Theorem 5.5, Corollary 5.6). The 
elimination of the state x from thesz equations yields the 
so-called autoregressire ( A R )  equation  representation: w 
E B* if, and only if, @ * ( d / d t h  = 0, Le., B* = ker @* 
(Theorem 6.4); @* is what we have called above a generat- 
ing system. 

The next two sections are devoted to recursice modeling 
of the  data set D. Section XI11 treats  the recursive update 
of the MPUM B*, as  well  as the  update of the  corre- 
sponding SV and AR representations. 

An important sub-class of models are  the controllable 
ones. The remaining part of the  paper is devoted to  the 
study of these models. In Section VII, AR representations 
of controllable systems are described in terms of the 
Smith canonical form (Formula 7.1). As explained in Sec- 
tion 111-E-2) controllable models can be equivalently rep- 
resented  as the image of an appropriate differential oper- 
ator: B,,,,, = irnqco,,,,, Le., for every w E B,,,,,, there 
exists an auxiliary vector trajectory a of appropriate  di- 
mension, such that w = qc0,,,(d/dt)a. These  are  the so- 
called moving aceruge (MA) equation  representations 
(Formula 7.2). 

The difficulty  in dealing with controllable models lies in 
the fact that in general, there is no controllable MPUM 
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(see Example 3.22). Instead. there is a family of control- 
lable models having minimal complexity, abbreviated C- 
MCUM (controllable minimal-complexity unfalsified mod- 
els), defined in (3.23a). In order  to  characterize  this family 
we need 2 ingredients: a)  the inuariant factors of any 
generating system @*, and b) the row degrees of one row 
reduced @*. The characterization is  given recursively. 
Hence,  the recursive update of the invariant factors  and 
the row indices is discussed in Section VI11 Theorem 8.13, 
Corollary 8.14. 

Section IX discusses the recursive update of the family 
of minimal-complexity controllable models. This is accom- 
plished in two steps. First, given one controllable model of 
minimal complexity, a  parametization of all such models 
is achieved. This parametrization turns out to  be affine 
(Theorem 9.9 of Section IX-A). Second, the update of one 
controllable model of minimal complexity is worked out in 
Section IX-B. The main result is Theorem 9.18, which 
gives the simultaneous update of the MPUM and of a 

This result is of technical nature. In  order  to make it as 
transparent as possible, we  list the ingredients which are 
involved: a) a row reduced (with order row degrees) 
generating system at step n, denoted by @*, and a  con- 
trollable model of minimal complexity, consisting of cer- 
tain rows  of @* [indexed by the set I defined in (9.2)]. b) 
the  error E , _  defined by (8.8-91, and the  corresponding 
error  generating system r,, defined by (8.11). c) the 
indexes r E q and I ,  k E q defined by (8.10) and (9.11c, d), 
respectively,-and the resulting matrix A defined by 
(9.17a-c). The update is then given explicitely by formulae 
(9.19). 

Section X discusses the  representation of the above 
results in terms of cascade interconnections of 1 / 0  sys- 
tems and (where appropriate) of linear fractions (Figs. 
1-3). We conclude with examples which illustrate the 
main features of the theory (Section XI). 

11. RELATED PROBLEMS 
The solution of a number of important problems can be 

obtained as a corollary to  the solution of the mainprob- 
lem defined in Section I-B and I-C. These problems are 
discussed below. 

Ai Finite Obsernation Internal. The solution of the main 
problem remains valid if the interval of observation, Le., 
the domain of w,, is replaced by any nonzero finite inter- 
val T := [ a ,  b ]  c R. 0 

Bi Arbitrary Responses in Continuous-Time. It is  well 
known that using Fourier analysis, a large class of vector- 
valued signals w: R + k4 ,  can be expressed as (possibly 
infinite) linear combinations of (complex) exponentials: 

C-MCUM. 

w = c.,w,, 
1 

where w, := piexp,, , a, E k,  p, E kq, A, # A,, i # j ;  

the summation might be discrete or continuous  (integra- 
tion). Since each w, is linearly independent from the 

Fig. 1 

r$5 Fig. 2 

Fig. 3. 

linear hull of all the remaining wI,  j # i ,  a straightforward 
argument implies that a linear, time invariant system 
explains w if, and only if,  it explains each w, individually. 
We thus conclude that, at least in principle, modeling 
experiments involving  fairly large classes of continuous- 
time signals can be reduced to modeling experiments in- 
volving single-frequency exponential signals. 0 

C) The Rational Interpolation Problem. Consider a linear 
system with unknown rational transfer function Z of size 
p X m. Let the data supplied be samples of the frequency 
response, Le., the values of this transfer function, and  the 
values of a  number of consecutive derivatives thereof, at 
given frequencies: 

Z(')(A) denotes  the rth derivative of Z evaluated at A. 
The problem of recovering all Z compatible with the 
above data, is often  referred to  as rational intelpolation. 

For simplicity, let rn = p = 1, Le., q = 2. With w, := 
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we define the polynomial-exponential time series w,: R + 

kZ,  where 

A straightfonvard argument involving the Taylor series 
expansion of (s - A,)"W,(s) around s = hi, where w.(s) 
denotes  the Laplace transform of w,, shows that  the 
transfer function of any linear system compatible with the 
input-output experiment which is defined by wi, will sat- 
isfy (2.1). Notice moreover,  that because of the 0's appear- 
ing in the upper row  of w,, rational  interpolation is a 
special  case of the general problem of polynomial-ex- 
ponential time series modeling. 0 

D)  The Realization or Impulse Response Modeling Prob- 
lem. As in C), for simplicity, consider single-input, 
single-output systems. Given the scalars a,,  a,;.., aN-  
determine all rational functions 2 whose behavior at 
infinity  (Le., formal power series) is: 

Z(s)  = a, + a,s- '  + ...  + a y - l s - N + I  + ... . 
Sometimes. the a, are  referred to as Murkou parameters. 
By introducing s - '  as the new variable, the behavior at 
infinity is transformed into the behavior at zero: 

Z(s )  := ~ ( s - ' )  = a. + a,s + . * .  +aN_, sN- '  + .... 
Consequently, a, = z(tJ(0)/i!, Le., the realization problem 
is equivalent to  a rational interpolation problem where all 
the  data  are provided at zero. From C), the corresponding 
time series w: R + K2, defined by 

w(t) := ( 1 j N- 1 

( N  - l ) !  
- + .,. 

is thus purely polynomial. 0 
E)  Transient and Steady-State Response. Experiments 

which  involve both  transient  and steady-state information, 
can be  cast into the above framework. Here is a simple 
example. Suppose that  the input of a (scalar) linear system 
is u = exp,, t 2 0, while the resulting output is y = cAexpA 
+ cFexp,,, t 2 0. The time series corresponding to thls 
expenment is 

w = exp, + ((1 exp,, t 2 0. 

Assume that A # p; due to  the linear independence of 
the two summands of w, each one can be modeled indiuid- 
ually. The first term of w forces the value of the  transfer 
function of the underlying system at the frequency A to be 
equal to cA, while the second term says that p is an 
eigenfrequency of the system, Le., a pole of the  transfer 
function. Since for modeling purpose, this term is equiva- 
lent to ( y )  exp,,, the coefficient c,, does not enter  into 
the determination of the model. Indeed,  this  constant is 
due  to  the initial condition of the system  which we are 
modeling. 0 

Remarks 2.3: 
a)  The problems described in C), D), and E) can be 

formulated for multiinput, multioutput systems at the 
expense of more involved notation. The essence however 
remains: many exact modeling problems, including the 
widely known problems of rational interpolation  and  real- 
ization, can be cast into  the framework of polynomial-ex- 
ponential time series modeling. 

b) The discrete-time version of the realization problem 
described in D) has the following interpretation in terms 
of input-output experiments. Let the input u be an im- 
pulse, i.e., u(0) = 1 and u( t )  = 0,  for t # 0. The corre- 
sponding output being f i t )  = a, ,  for t 2 0,  and f i t )  = 0, 
t < 0, we are seeking all linear, time invariant models 
having the above impulse response up to time t = N - 1. 
Thus, in D), this discrete-time problem. defined on  a  time 
interval which depends on  the  number of data points, is 
transformed  into  a  continuous-time problem defined on  a 
jixed-length time interval. This transformation is applied to 
a more general discrete-time problem in G )  below. 0 

F) Discrete-Time Observation Intercal. The main prob- 
lem  can be formulated for discrete-time polynomial-ex- 
ponential observations, Le.,  in (1.1) T = Z. The solution of 
the continuous-time problem T = R, applies mutatis mu- 
tandis to this case. 0 

G) Arbitrary Responses in Discrete-Time. A problem of 
great significance for applications is that of modeling on 
the basis of arbitrary discrete-time experiments: given an 
observed time  series w: Z + kq, we are looking for all 
discrete-time, linear, time invariant models explaining3 it. 

This problem can be solved from first principles as 
shown in Antoulas [ll]. It can also be solved by transform- 
ing it to a  continuous-time problem as follows. Assume, 
without loss of generality (cf. E) above), that the experi- 
ment has started at time t = 0, Le., w ( t )  = 0, t < 0. De- 
fine the following continuous-time time series 

v,: R + k4 where 
rv- 1 

V J t )  := w(0)- + ' I .  

( N  - l)! 
t.v-,- 1 

+ W ( j ) ( N  - j - I ) !  + ... + w ( N  - 1). 
Denote the family of discrete-time. linear, time invariant 
systems ,esc, which explain3 w up to time N - 1, and the 

A model ''explains" a time series, if the time series could have been 
generated by the model in question. 
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family of continuous-time, linear, time invariant systems 
ZF"', which explain' v,%, respectively by: FtSc  := {X,"lsc), 

:= (Xyn'). Notice that  the  elements of Ffsc are 
defined in terms of the forward shift operator u-', while 
those of FZn' in terms of the derivative operator (d /d t ) .  
There is a  one-to-one  correspondence 9: FY' + Fdise 
between these two families. It is obtained by replacing the 
dericatice operator by the forward shift operator: ( d / d t )  - u-'. This  follows  as a straightforward generalization of 
the  discrete-time realization problem discussed above (see 
(2.2) and  Remark 2.3-b). For an illustration, see Example 
A of Section XI. 

In connection with the single, discrete  time series w, a 
recursive modeling problem can be defined with respect 
to time. Given a  discrete-time model explaining w up to 
time t ,  call it I,, and w(t + 11, compute X,,,. Clearly, 
using the above equivalence, this problem, defined on a 
variable-length time interval, can be transformed into a 
problem of recursive modeling of the  set of continuous- 
time time series: V , , V ~ ; . ' , V , ; . . , V ~ ,  defined over the 
fixed-length interval R, recursivity being with respect to 
the index i ,  and not with respect to time t. 

Remark 2.4: Realization was the first exact modeling 
problem to be studied in the  literature. It was formally 
introduced in the 60's (see Kalman, Falb, and Arbib [21]) 
and eventually two approaches  cqstallized: the state space 
and the pobnomial (see Fuhrmann 1161 for  an overview of 
the interplay between these two approaches in linear 
system theory). The state space method uses the  Hankel 
matrix as main tool: see. e.g., Bosgra [13], Antoulas, 
Matsuo, and Yamamoto [lo] for a  recent overview, and 
Gohberg, Kaashoek, and Lerer [17] for  a  generalization. 
The polynomial approach has the Euclidean division algo- 
rithm as focal point: see, e.g., Kalman [20], Fuhrmann 
[15], Antoulas [l], van  Bare1 and Bultheel [24]. Actually, 
Antoulas [l]  presents  the  presents  the  complete theory of 
recursive realization for multiinput,  multioutput systems, 
and as already mentioned in the overview, anticipates the 
recursiveness results presented in Sections VI11 and IX. 

The problem of rational inrelpolation has a long history. 
It was  only recently recognized however, as an exact 
modeling problem which generalizes the realization prob- 
lem. Again, one can distinguish two approaches: state 
space and polynomial. The generalization of the  state 
space framework from the realization to  the rational 
interpolation problem is due  to  Antoulas and Anderson 
[21,  [31,  [61 and Anderson  and  Antoulas [51. Therein,  the 
Wwner matrix replaces and generalizes the Hankel  ma- 
trix as the main tool. A polynomial approach to rational 
interpolation, which can be viewed as a special case of the 
present theory, was put forward in Antoulas and Willems 
[71 and Antoulas, Ball, Kang, and Willems [81. For a 
recent, general account on  the rational interpolation 
problem. see Ball. Gohberg,  and Rodman [12]. 0 

111. THE BEHAVIORAL FRAMEWORK 

N ?  

This section is devoted to an overview of the behavioral 
framework. For  further details and proofs, the original 

sources, viz. Willems [25],  [261. [28], [291, are to be con- 
sulted. The behavioral framework is built around  the 
triptych: 

behavior-behavioral equations--latent variables. 

The brief discussion of these concepts that follows, is 
tailored to  the needs of the modeling problem under 
investigation. It should be noted that a number of the 
aspects discussed below can be found in earlier work, 
notably in electrical network theory, and in the work of 
Belevich and Rosenbrock. We refer to the original sources 
just  mentioned for details. 

A. Linear Systems 

quantities: 
A dynamical system f is an object composed of three 

I I= (T, W, B); (3.1) 
T E R is the time axis; W is the signal space, Le., the space 
in  which the external or manifest system trajectories w 
take  their values; and B is a subset of WT, the space of all 
time-trajectories, i.e., maps w: T + W from the time axis 
to the signal space. The collection of trajectories B is 
called the behavior of Z. In the sequel we  will consider 
continuous-time systems with 

T =  R and W = kY,q 2 1.4 

For systems with m inputs and p outputs, q = m + p .  
Hence, B c (k9lR is a collection of q-vector valued time 
~ e r i e s . ~  The properties of linearity and time invariance of 
X, are reflected in a  natural way on  the behavior B. The 
system 2 = (R, kq, B) is linear iff B is a linear subspace of 
(k9IR, i.e., 

(w,,w, E Band a , ,  a 2  E k) - (qw, + a2w2 E B); 

time inuariant if 

(w E B) 0 (vw E B),  
where u denotes  the backward shift: ( a w X t )  := w(t + 1). 

The property of finite dimensionality is reflected in the 
behavior in a  more involved  way. I is finitedimensional, if 
B is differential or instantaneously specified, i.e., if B can be 
described as the solution set of a system of differential 
equations. For the definition and for a discussion of the 
concept of differential or instantaneously specified behav- 
iors, see Willems [29, p. 2791. For our purposes, we only 
need the fact that this property is equivalent with the 
representability of B as  the  kernel of a polynomial opera- 
tor in the  differentiation  operator (d /d t ) ,  in an appropri- 
ate sense, as described in the reference just mentioned. 

In the sequel we  will  always be dealing with the family 
of continuous-time, linear, time inuariant, finite  dimen- 
sional systems, which will be denoted by 

Lq := (x = (R, kq, B): 
B is linear, shift invariant. differential] : (3.2) 

Recall that k denotes R or C .  ' The term time se&s is used here as an alternative to fzme finchon. 
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we  will refer to  the elements of Lq simply as linear 
systems. 

B. Modeling and the MPUM 
On the level of behaviors, the modelingproblem can be 

formalized as follows L e t  a finite set of trajectories, called 
the data set  and  denoted by D, be observed and mea- 
sured: 

D := (w], w2 ;..,w,) with w,: R + kq, i = 1,2,.**, n .  

Thus, D c (kq)R. The system Y. = (R, k4, B) E Lq will be 
called an unfalsified model of D iff 

D B. 

Let XI, 8, be unfalsified models of D. We wili call 8,  a 
subsystem of X,, denoted P,  E X,, if B, E B,. Equiva- 
lently, we  will call 8,  morepowelful than 8,. This has  the 
following intuitive interpretation in the context of model- 
ing: the more powerful a  mathematical model is,  i.e., the 
less its behavior explains, the more predictive power it has. 

This brings us to the concept of the most powerful 
unfalsified model, abbreviated MPUM. We will call 2* := 

(R, kq, B' l6 the most powerful model in Lq, unfalsified by 
D. if 

( 2  E L4 and 2 unfalsified by D) - (X* c X). (3 .3)  

In Willems [26] it is shown that given D, the MPUM in 
the class Lq exlsts, and is, therefore, unique. Thus, the 
MPUM explains the given data set and as  little else as 
necessary so as to obtain  a model in the desired class, the 
class of linear systems in this case. 

Depending  on  the choice of the model class the  MPUM 
may not exist. In such a case the  weaker  concept of 
undominated model is used instead. We will call 2 an 
undominated model in some given  cIass M, unfals@ed by 
D, if C E M, and if 

(2' E M, 2' unfalsified by D ,  and H' c Z) (2' = 2).  
(3.4) 

It will be shown later  that  the class M := L$,,,, C Lq, of 
linear controllable models of D, is an example of a model 
class  in  which an MPUM does not exist  in general. Clearly, 
the most powerful model, if it exists, is also undominated, 
but not vice versa. 

For  the problem at hand,  the  data  set D is composed of 
the collection of potynomialarponential time series de- 
fined in (1.1)-(1.3). In Section IV, the MPUM 8* of D in 
the class Lq is explicitely computed; its behavior B* turns 
out to be finitedimensional: 

dim, B* = N < a, 

This implies that 2* is an autonomous system, Le., a 
system whose behavior has the  property that each trajec- 

Superscript * denotes  either  an  MPUM-related  quantity, or more 
generally, a mmimal-complexity-related quantity. 

- __  

tory in B* is uniquely determined by its past: 

(T E T,wl,wz E B*; w,(t)  = w , ( t ) ,  t < T )  =) (wl = w2]. 
(3.5) 

For details  on  autonomous systems, see last paragraph of 
Section 111-D-3). 

C. Behavioral Equations 
Most often, it  is  very convenient to  represent  the trajec- 

tories making up the behavior of a system, as solutions of 
appropriate  equations. The second concept of our triptych 
is that of behavioral  equations. The third are  latent vari- 
ables. Behavioral equations with latent variables involve 
the manifest variables w. Three instances of behavioral 
equations, which will be used  in the  sequel, are: state 
variable (abbreviated SV) equations; autoregressive (ab- 
breviated AR) equations; and moving acerage (abbrevia- 
ted MA) equations. AR equations involve the manifest 
variables w only; SV equations, in addition to w, make use 
of the  latent variables x, which can be assigned the 
property of state,  and  are called stute variables; and MA 
equations  make use of w and of the  latent variables a, 
called auxiliary or dricing variables. 

1) State Variable (SV) BehaL.iora1 Equations 
For autonomous systems in L2, the general theory de- 

veloped in Willems [25] ,  implies the existence of a repre- 
sentation of P* in terms of SV behavioral equations: 

d 
-x  =Fx, w = H x ,  x E (k'IR. w E (kqIR, (3.6a) 
dt 

for an appropriate (observable) pair (H, F )  E kqX.' X 
. The behavior can thus be represented in terms of 

all possible trajectories  generated by the above equations: 

B* = B ( H , F )  

kNX N 

:= {w: (3.6a) is satisfied for some x E (k,' 1"). (3.6b) 

Section V addresses  the problem of constructing SV be- 
havioral equations for the data set D, given by (1,1)-(1.3), 

2) Autoregressive IAR) Behavioral Equations 
By eliminating the  state variable x from (3.6a) we 

obtain AR (autoregre~sive)~ behavioral equations  repre- 
senting 8*. Let k[s] denote  the ring of polynomials in the 
indeterminate s with coefficients in k, and k"~lX"2[s] de- 
note  the n,  X n ,  polynomial matrices. The resulting AR 
equation has the form: 

@* - w = 0, 0' E kqxq[s], det@* # 0. (3.7a) 

It relates the time  series w: R - kq belonging to B, to its 
derivatives. This  equations can be written explicitely  in 
terms of the coefficient matrices of @*. L e t  

( 3  

O*(S) := O L S L  + 0,-,sL-' + .'. +o,s + e,, 
0, E k q x q .  (3.7b) 

'An autoregremiue equation is  literally an  equation which  regresses on 
itself. No stochastic  connotation is implied. 



ANTOULAS AND WILLEMS: A BEHAVIORAL APPROACH TO LINEAR EXACT MODELIXG 1783 

Equation (3.7a) becomes: 

+ O,-W(t) + O,w(t) = 0, t E R. (3 .7~)  
d 
dt 

The details of  how O* is obtained  from (3.6a) can be 
found in Section VI. Every differential operator which 
annihilates the behavior is called annihilating. Equation 
(3.7a) is thus sometimes referred to  as an annihilating 
behavioral equation. Let C Y X ,  Y )  denote  the set  of all 
infinitely differentiable maps from X to Y .  @*(d/dt)  can 
be interpreted  as  a map from C"(R, kq) to C"(R, kq). The 
following representation of the behavior B* is thus ob- 
tained: 

d 
B* = ker O* ( 1 I= (w: R + k9, with (3.7a)  satisfied). 

(3.8) 

In the sequel we  will use the following notation  for 
systems defined as above: 

X(@) := (R, kq.B(@)) where B(O) := ker 0 - . ( 3  
(3.9) 

Thus, from (3.8), Z* = X(@" 1. The fact that we are deal- 
ing with an autonomous system  is reflected in the nonsin- 
gularity of e*, Le., det @* # 0 [see last paragraph  of 
Section III-D-3)]. The spaces B(@) defined above, satisfy 
the following properties. 

Proposition 3.10; Consider  the  maps O,(d/dt ) :  
C"(R, kq) + C"(R. k"'), where 0, E k"sx9[s], i = 1,2. 

a) Let 0, = re,, r E kn:xnl[sl. 
al)  B(Ol)  c NO,). 
a2) r is unimodular if, and only if, B(T) = 0. 
a3) If r is unimodular, B(O,) = NO,). Conversely, 

if NO,) = B(O,) and 0, has full row rank, r is 
unimodular. 

b) B(Ol) n B(O,) = B(61, where 6 E k4'"4[sI, 4 f q, 
is the  greatest commpn right divisor of the glven 
polynomial matrices: 0 = grcd(@,, 0,). 

c) Conversely to  al), NO,) G NO,) implies the exis- 
tence of r E kn2xnl[s], such that 0, = r0,. 

d) If det 0, # 0,  B(O102)  = O;lB(Ol).A 
e) If n, = n, = q, B(O,) + NO,) = B(0), where d E 

kqxq[s] is the least commpn left multiple of  the 
given polynomial matrices: O = Zclm(O,, 0,). 

Proof: al)  follows trivially. If r is unimodular, by al), 

If r is not  unimodular, by a2). there exists z # 0 such 
that Tz = 0; since 0, has full row rank, there exists y 
such that z = 0 , y ;  the implication is that in this case the 
inclusion NO,) c B(O,) is strict, proving a3). 

Since 0,,0, and their greatest common right divisor 

6, satisfy r[ o: 1 = ( f ), for some unimodular r, the 

validity of b) follows: 

0 

Consequently, B(o,) G NO,) implies NO) = NO,), 
where 0, = @,e; the above equality of behaviors implies 
by a3) the unimodularity of Ql, since 0 can always be 
chosen to have full row rank. We conclude that 0, divides 
0 which  in turn divides O,, as required;  part c)  is thus 
proved. 

Part d) follows readily, provided that  the inverse image 
of 0, is  well defined. This is indeed  the case because both 
the domain and  the range of the derivative operators 
O,(d /d t ) ,  consist of C" functions. 

Since by constructionA@, is a right divisor of 6, i = 1,2, 
a l )  implies B(O,) c B(O), and hence 

B(O,)  + B(O,) G B ( 6 ) .  

To proye the converse inclusion, let 0, = (DIG, i = 1,2, 
where 0 := gcrd(@,, 0,). Let  furthermore,  the following 
generalized Bezout identity hold (see, e.g., Kailath [19, ch. 
6.31): 

('YA ?;)[E -*;J = [: 
It follows that  the least common left multiple of Ql, ( D 2 ,  is  
Q,* := YIQl  = WzQ2: and  that of @,,02  is 0 := @.,?e. 
The Bezout identity implies: 

Iq = A @ ,  + BQ,, Q 2 A  = DVl, Q I B  = CY,.  

Thus, every w can be decomposed in the sum w = w1 + w,, 
where w, := A@,w and w2 := BQ2w. If w E B(Q12), we 
have @,,w = YIQ.,w = Y,Q2w = 0; hence Q2w1 = 
@,A@,w = D V I Q l w  = 0 and Q1w, = Q l B Q 2 w  = 
C 9 z @ 2 w  = 0. Consequently w E NOl2) implies w2 E 
B(@,) and w1 E NO,), Le., 

B(CD12) C B(Q1) + B(Q2). 

Finally, because of d), 6 - ' N Q i )  = B(Oi) and 6 - ' B ( Q I 2 )  
= Nd); these relationships imply the desired inverse 
inclusion 

B ( 6 )  C B(O,)  + B(O,), 
TT- '  = i implies B(T) c B(I)  = 0. Conversely, if r is which completes  the proof of e). 0 
not unimodular, clearly B(r) # 0. This proves a2). Since Given 0*, it is  now straightforward to obtain AR 
0, = r-'0,, with r unimodular, a l )  implies B ( 0 , )  equation  representations for all other unfalsified models 
B(@,); consequently of D in L9. It follows from Definition 3.3 of the MPUM 

that, 8 = (R, kq, B) E Lq, is a linear unfalsified model of 
D if, and only if, B* c B. From a) above, using notation B(T@,)  = B(O, )  = B(O,) .  

~~- ~ 



(3.9),  follows that Z(O), 0 E kgx4[s], is an unfalsified 
linear model of D if, and only if, 

O = r@* for some r E kgxq[s], where w.I .0 .g .  g 5 q. 
(3.11) 

The corresponding behavioral equation  representation of 
I(@) 2 I(@*) is: 

0 - w = 0, 0 E kgxq[s] forw E B(O) 3 B(O*).  
(:ti 

(3.12) 

Since by (3.11)  every model of the data can be obtained 
from @*, this latter quantity is sometimes called a gener- 
ating  system for the models of D. 

D. The Complaiiy 
From (3.11) it follows that L4 is parametrized by the  set 

of matrix polynomials having q columns. The number of 
rows  in  (3.12) representing I E Lq will depend on  the 
particular system, and on  the  particular matrix 0 chosen 
to represent Z. The AR behavioral equation  representa- 
tion (3.12) will be called minimal if 

(0'  E k g ' x q [ ~ ]  and I(@) = Z(0')) - (g'  2 g ) ,  

i.e.. 0 has the least number of rows. It is easy to prove 
that (3.12) is minimal if, and only if, the polynomial matrix 
0 has ful l  row rank (meaning that it contains  a g X g 
submatrix, whose determinant is not the zero polynomial). 

Obviously, any  system B E LY admits  a minimal repre- 
sentation.  It follows that the  number of rows  in a minimal 
representation  depends only on Z E Lq, and  not on the 
particular representation as a set of differential equations. 
This allows the association of an integer invariant p to 
each element of Lq. In other words we have a  map 
p :  Lq + (0, l;", q) ,  such that p ( Z )  equals  the  number of 
rows  of a minimal behavioral equation  representation 
(3.12) for I. In fact, if I = X(@), then p ( 8 )  = rank@, 
with the rank as defined above. 

It is possible to classify all minimal AR equation  repre- 
sentations in terms of one. Indeed, X(@,) and X(@,) are 
both minimal representations of the  same dynamical sys- 
tem if, and only if, there exists a polynomial unimodular 
matrix r of size p ( X ) ,  such that 0, = rO,.  

1) I / 0 Systems 
Assume that in (3.12) the signal w is partitioned  as 

w = ( y )  w i t h u : R + k " , y : R + k p a n d r n + p = q .  

Then, if we partition 0 accordingly, i.e., 0 := (Q - T), we 
can write 

with T E kgxp[s ]  and Q E kqxm[sI8 .  (3.13a) 

Recall  that s is an  indeterminate  and not the Laplace variable. 

Assume in addition  that 

g = p  and d e t T # O .  (3.13b) 

Then it  can be shown (see Willems [291) that for all 
u: R 4 k", sufficiently smooth, there exists a y: R + k P  
such that (3.13a,  b) holds. Consequently, we  say that u is 
free or an input. Moreover, for any  given sufficiently 
smooth u: R + km the set of time series y: R + k P ,  such 
that (3.13a) is satisfied will be a finite dimensional linear 
variety. Consequently, we  say that y is bound or an output. 
We will  say that (3.13a, b) defines an input-output  system, 
abbreviated 1/0 system and  denoted by Z l lo  := (R, km 
x kP, B,,o) where 

B,,o := B(Q -T) 

:= ((u, y) : such that (3.13a,  b) is satisfied). (3.14) 

If in addition,  the matrix of rational functions, called the 
transfer function, defined by: 

Z := T - ' Q  E k p x m ( $ ) ' ,  (3.15a) 

is proper, the output y is at least as smooth as the input u, 
and we will refer to a smooth I/O system. This  properness 
condition can be expressed in different terms. Due  to  the 
fact that B(0) = B(T0), for any unimodular r, we  may 
assume without loss of generality. that the polynomial 
matrix 0 = (Q -T) is row reduced. Let [MIh, denote 
the constant matrix which is composed of the coefficients 
of the highest power of each row  of the polynomial matrix 
M .  It can be shown (see e.&.. Kailath [191) that  the 
properness of (3.15a), assuming T  to be row reduced, is 
equivalent to  the condition 

rank [Q -T]h, = rank [T]hr = p .  (3.15b) 

In Willems [29] it is shown that every I E Lq induces a 
smooth  I/O-system.  More precisely, for any Z E L4 there 
will exist a q X q permutation matrix Il such that. when 
the  vector time series r l w  is partitioned  as 

n w  = (;I 
with u: R + k9-P(z),y: R + kp(t)  

the  relation induced by the behavior of I on (u,y) will be 
a  smooth I/O-system. We immediately conclude from this 
that p ( 8 )  is the number of outputs in any (smooth) 1/0 
representation of I9, while m ( I )  := q - p ( I )  is the 
corresponding number of inputs. 

For  the problem at hand, Le., computing and classifying 
all linear models of the polynomial-exponential set of  data 
D, the following stronger result holds true. 

Proposition 3.16: For any given choice of the input and 
output variables u,y, there exist linear 1 / 0  unfalsified 
models of D. 

Proofi Without loss of generality we  may assume that 
the  entries of w have been permuted so that w = 

Let 0* be partitioned accordingly, i.e., O* = (0,  0,). 
Due  to  the fact that I* is an  autonomous system, det 0' 

E l .  
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# 0. It follows that each one of the two matrices above 
has fu l l  column rank, namely n z  and p ,  respectively. 
There exists therefore  a submatrix of 0, of sue p ,  de- 
noted by T, which  is nonsingular. The corresponding rows 
of 0, define Q,  and  together (Q -TI, define an 1/0 
unfalsified model of D. 0 

Corollaly 3.17: For any  given choice of the  input  and 
output variables, there also exist smooth 1/0 unfalsified 
models. 

Pro08 From (3.11) follows that without loss of gener- 
ality 0* can be assumed to be in  row reduced  form. Thus, 
[O, @,I,,, is a constant square nonsingular matrix, and 
consequently has fu l l  column rank p ;  this assures 
the existence of a nonsingular submatrix of size p .  The 
corresponding rows define Q and T satisfying property 
(3.15b), which implies the  properness of Z .  0 

2)  The Row-Degree Structure of 0 

plicitely yields 
Consider again (3.12). Writing these g equations ex- 

OZ - w = 0 with 0 =: ( 3  

(3.18) 

Now, consider the ith equation: B,(d/dt)w = 0. Define 
the  ith row degree L,  := degO,, and the total row-degree L 
to be 

L := L ,  + L 2  + ” ’  +L,. 

Among the minimal representations of a given 2 E LY, 
there is obviously one whose total row degree is minimal. 
This minimum is a second integer invariant of Z which 
will be of interest. It will be denoted by n(Z). Whence n 
is a mapping n: Lq + 2-. 

It is possible to classify  which minimal systems Z(O) 
are such that their total row degree  equals d B ) .  Indeed, 
this is the case if, and only if, 0 E kgxq[s], is a row 
reduced polynomial matrix. It can be shown that n(Z)  is 
the dimension of the  state space in  any minimal state 
space representation of X. This result is sometimes re- 
ferred to as Chystal’s  Theorem. For details, see Schu- 
macher [231 and  the  references  therein. 

31 The Complexity 
We are now  in a position to define the complexity c of 

a dynamical system in Lq. 
c :  L4 + { O ,  l;.., q) x z, 

where c ( I )  := (m(Z) ,  n ( 8 ) ) .  (3.19) 
The si,qnificance of this pair is twofold. Firstly, in terms  of 

ber of scalar differential equations  needed  to specify I, 
while n(Z> equals  the minimal total row degree possible 
in these  equations. Secondly, in terms of inputs and states, 
m ( 8 )  equals  the  number of inputs in X, and n ( Z )  equals 
the  number of internal states. 

Now, endow the range of c (Le., the complexity space) 
(0, l;.., q )  X Z,, with the lexicographic’ ordering. This 
induces a  pre-ordering on L4 by defining 

( 2 ,  I &I:  - ( c ( X , )  I C ( Z , ) ) .  

In our modeling procedures, we will be  paying special 
attention to models whose complexity is as small as possi- 
ble in this sense. 

Recall Definition 3.5 of an autonomous system. It is 
possible to prove (see Willems [26]) that  the following 
conditions are equivalent: i) I is autonomous; ii) p ( 2 )  = 
q ;  iii) m ( Z )  = 0; iv) B is finite dimensional. Thus, I.(@) is 
autonomous iff rank@ = q, Le., I is representable by a 
square nonsingular polynomial matrix 0; in fact, the 
degree of det 0 equals  the dimension of B. Thus, accord- 
ing to (3.191, the complexity of X* is the  ordered pair: 

c* := c(Z*) = (O.dim,B*) = (O,degdet@*). 
which implies that in the lexicographic ordering,  the com- 
plexity of any autonomous system is  always  less than  the 
complexity of any nonautonomous system. 

E. Controllability 
Among all linear models of D. of particular interest are 

the controllable ones. A further  important aspect at  which 
the behavioral formalism departs  from, and generalizes, 
the classical formalism is that related  to controllability: 
controllability becomes namely an attribute of the system 
(i.e., of a collection of trajectories) as opposed to an 
attribute of a system  representation Le.. of equations gen- 
erating  these  trajectories). 

Roughly speaking, a system is controllable if its behav- 
ior has the property: whatever the past history (trajectory), 
it can always be steered to any desired future trajectory. 
More precisely, a dynamical system I = (R, kY, B) E L9 is 
said to  be controllable if for any w1,w2  E B, there exists a 
I’ > 0 and  a w E B such that 

w ( t )  = 1 w , ( t )  for t < 0 

w,(t) for r > t” 

In terms of AFt behavioral equation  representations,  the 
system X(@) is controllable if, and only if, the  tank of the 
(constant) matrix @(A)  E Cgxq is constant and therefore 
equal to p ( Z ) ,  for all A E C, In particular, an 1 / 0  system 
[cf. (3.13a, b)]  will be controllable if, and only  if, the 
polynomial matrices T, Q are left co-prime. The question 
of existence of controllable models of D is answered next. 

Proposition 3.20: There exist nontrivial” controllable 
models of D if, and only  if, @* has at least one invariant 
factor  equal to unity. 

’The lexicographic ordering is a total ordermg. It is defined as 
follows: given the vectors of n real  numbers a. b we urite u > b If u = b 

behavioral equations, qA- m ( 2 )  equals  the minimal num- lo The space (kq)R of all time  series i5 a trivial controllable  model 
or if forsome J E g, a, = b,. I < I .  and a > b,. 
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In Section VI it will be shown that this condition can be 
expressed directly in terms of properties of the  data D; it 
will be shown namely, that the existence of controllable 
models is equivalent with the condition of having less that 
q linearly independent time series at each different  fre- 
quency [see (6.7b)l. Thus, combining Proposition 3.16 and 
Corollary 3,17, with Proposition 3.20 we obtain the follow- 
ing lemma. 

Lemma 3.21: The evistence  of controllable, I /O ,  smooth 
models of D. Assuming that  there exist controllable mod- 
els of D, there exist controllable, I/O,  as well as  control- 
lable, I/O, smooth models of D. Clearly, minimal-com- 
plexity models with the above properties exist as well. 

The class of controllable elements of Lq will be denoted 
by L9,,,,,. An MPUM in L9,,,,, will not exist in general. 
This is due to the fact that controllability is not preserved 
under intersection of behaviors. For example, let Oi :- (ai 
b,) E klx2[s], i = 1,2, satisfy: a,,,b, co-prime for i = 1,2, 

and det O,, # 0, where O,, := ( From (3.10b) 

follows that  the intersection of ;he contkollable systems 
with behaviors B ( 0 , ) , B ( 0 2 ) ,  is an  autonomous system. 
Furthermore, if L!.,,,, is nonempty, each Z E L4,,,,, with 
p ( X )  fixed, is an undominated system, irrespective of its 
complexity. These facts are illustrated in the following 

Example 3.22: Let q = 2, and consider the data set 

D : = ~ ~ ~ ~ e ~ ' , ~ ~ ~ ~ , i . e , , A , =  - l andh ,=O. I t r ead i ly  
follows that X(@* ), where 

is the MPUM of D in L'. The family of systems X O ( a ) ) ,  
where 

satisfies X(@*) c Z(O(a ) )  for all CY E k, i.e.  by (3.11) 
Z ( O ( a ) )  is a family of linear models of D. These systems 
are controllable for a # - 1. According to Section 111-D-3) 
for these systems rn = n = 1, Le., their complexity (1,l)  is 
minimal. Thus the family of systems just described, is the 
family of all minimal-complexity controllable models of D. 

Let 0, := ( s  + 1 a,s - 1)  CY^ z -1, i = 1,2, CY, # aZ. 
It follows that  the  greatest  common right divisor of these 
two matrices is O*. Thus, according to (3.10b) the inter- 
section of the two families NO,), i = 1,2, of controllable 
models of D, is equal  to  the MPUM of D. Clearly, there is 
no controllable MPUM in this case. The family of all 
controllable models of D can be obtained using the above 
formula, where the  parameter a is any polynomial satisfy- 
ing a( - 1) # - 1. It is readily checked that  each one of 
these models is undominated. 

In the  sequel we  will make use of the following classes 
of linear models of D, parametrized in terms of vector 

parameters a, p ,  y of appropriate dimension: 

2,,,,( 0: : minimal-complexity controllable models; 

c : ~ , ~ ~  := (3.23a) 

X:,,( p ) :  minimal-complexity controllable 1 / 0  models; 

c , * , ~  := c(X,*,o( P I )  (3.23b) 

Z;,(y): minimal-complexity controllable smooth 1 / 0  

models; cp*, := c (Z: , ( y ) ) .  (3 .23~)  

In fact, these  parametrizations can be taken as affine in 
the  parameters (see Theorem 9.9 and  Remark 9.20a). It 
should be remarked  that  the members of the above three 
families are undominated models, and  therefore  these 
families can be compared with one-another only by means 
of their complexities. 

Proposition 3.24: The complexities of the MPUM  and 
of the above three families of models of D, satisfy the 
following inequalities: 

c* < ccon,r s * C T  " 5 c;, 

Example A of Section XI, illustrates the facts related to 
Lemma 3.21. It also demonstrates  that  the inequalities 
above can be strict. 

1) The Transfer Funciion 
As already mentioned. given the 1 / 0  system (3.13a, b), 

the matrix of rational functions Z defined by (3.15a) is 
called the transfer function. Two 1 / 0  systems may have 
the  same  transfer function without having the same be- 
havior, since the common factors of T  and Q might be 
different in the two cases. However, it can be shown that 
two controllable 1 / 0  systems have the same transfer 
function if, and only  if, they have the same behavior. 
Consequently, the  transfer function parametrizes in a 
unique way the controllable 1 / 0  systems (in Willems [291 
this is referred to as a trim parametrization). 

2) Moving Average (MA)  Behavioral Equations 
Following the general theory of the behavioral frame- 

work (see above mentioned  references) it follows that any 
X,,,,, = (T, kq, B,,,,,) E L4,,,,,, can be represented in 
terms of moving average (abbreviated MA) behavipral 
equations. Recall (?.13a, b). Let Q E k p x m [ s ]  and T E 
kmxm[s], with detT # 0, be right co-prime polynomial 
matrices satisfying: 

Q? = TQ. 

It follows that the columns of define a basis for the 

kernel of 0 = (Q -TI. Thus, from (3.13a) (u,y) E B,,*, 
defined by (3.14) if. and only if, thereAexists  a sufficiently 
smooth a:T --f k"', such that  u = T(d/dt)a and y = 

Q(d/dt)a. This  means that the behavior B,,,,, can be 

(:I 
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expressed as the image of an appropriately defined poly- 
nomial operator \y,,,,, in the derivative operator @/&): 

Thus, w = Yc, , , , (d /d t )a  for a as above. The entries of a 
are  the alcxiliary variables mentioned at  the beginning of 
Section 111-C. The MA representation  thus provides a 
direct'* characterization of the controllable behaviors. 
Notice that  the  transfer function (3.15a) can be written  as 
a left or right matrix fraction: 

A A  z = T - 1 ~  = Q T - ~ .  

This means that for controllable systems, AR representa- 
tions correspond to left co-prime matrix fractions of Z ,  
while (observable) MA representations  correspond to 
(right) co-prime matrix fractions of Z. 

F. The  Main Problem (Precise Statement) 
Find all linear models of the data set D defined by 

(1.1)-(1.3). This means, find all t = (R, kq,B) E Lq such 
that D c B. According to Section 111-B, this amounts to 
computing the MPUM B* of D. Subsequently, find behav- 
ioral equation  representations of B* [cf.  (3.6a),  (3.7a)l. 
Special attention is to be paid to  questions of recursiveness 
in the number n of time series. Furthermore, the recur- 
sive update of both the MPLJM B* and of its behavioral 
equation  representations is to be worked out. Important 
properties of the models to  keep  tract of, are model 
complexity [cf. (3.19)] and model controllability (cf. Section 
111-V). In particular, the recursive update of minimal- 
complexity controllable models (C-MCUM's) is to be de- 
scribed. Other properties to be considered are a priori 
imposed input-output  structure [cf.  (3.14)] and model 
smoothness (6. Section 111-D). 

IV. THE MPUM (MOST POWERFUL UNFALSIFIED 
MODEL) I* OF D 

Consider the  data  set D defined in  (1,1)-(1.3). From the 
given time series w,, we generate  a  set of related  time 
series by differentiating an  appropriate  number of times: 

r -  1 

w L , , - l = [ g - A , ]  w,=p, , r - lexp, , ,  ' € E i ,  

l1 TcY,,,, ,(d/dt) is interpreted  as  a  map from CYR, kq) to CYR, kp), 
l 2  Dwect/Annihilating characterization of a behavior: characterization 

as  the Image/keme[ of an  operator. 

where 
dr- 1 t1-r 
dtr- '  J=' ( j  - r ) !  

p z , , - l ( f )  := - p , ( t )  = zpt,x,-, -. 

Thus, wj,o = wj. Using the above set of time series, we 
define the following linear spaces: 
BT := spank(wi.,-l: r E _K~), i E andB* := B:. 

(4.2) 

For subsequent use, to B:, B* we associate the polynomi- 
als 

vi := (s - A,)"' and T := II rTT,, (4.3) 

respectively, which will be referred  to  as  the characteristic 
polynomials. The main result of this section, which  solves 
our modeling problem on the level of behaviors, is the 
following theorem. 

Theorem 4.4: The system I* = (R, kq, B* 1, where B* is 
defined by  (4.21, is the MPUM (most powerful unfalsified 
model) of the  data set D, defined by (l.lb(1.3) in the 
class of linear systems L4. 

The characterization of this and all other models of D 
in Lq in terms of equations (which we have called behaa- 
ioral equations) is  given  in the following three sections. It 
should be remarked  that  the results of these sections have 
connections with the theory of polynomial models and 
shifi realizations introduced by Fuhrmann [14], [161. These 
connections will be pursued elsewhere. 

Boot By construction, B: is a linear space. A 
straightforward computation yields the identity 

T T ?  

ieg 

i E g  

( "TWj = wj,o + p 1  + T W l . 2  + ..' 
T V '  

+- ( K ,  - l ) ! w ~ , ~ , - l  expA,(T), '1 
where u denotes the backward shift, and the time series 
w, ,~  are defined in (4.1), Clearly 
span,.oTwi:TE R) = span,(w,,,,~,,,;..,w~,~,-~) = BT. 

Therefore, BT is the smallest linear, shift invariant space 
which contains the time series w,. Moreover, it  is differ- 
ential. Consequently, B* is the smallest linear, shift in- 
variant, instantaneous specified subspace of (k9IR which 
contains D. Therefore X* is indeed,  the MPUM of D in 
L'. 

From (4.1), (4.2) follows that dim, BY = K, .  Recall (1.4l 
From (4.2): 

dim, B* =: N* 5 N = K ]  + ...  + K , .  (4.5) 
Clearly, equality holds if, and only  if, the sum in  (4.2) is a 
direct sum, in other words if, and only if, B: n BT = 0, 
i # j .  In Proposition 4.7 below we shall express this condi- 
tion directly as a condition in terms of the time series 
(1.1); notice that in (1.1) the case A, = A,, i # j ,  is not 
excluded. To achieve this goal, we need  to  partition D 



according to the different frequencies of the time  series 
w,. Among A,, i E E ,  let there  be I I n different frequen- 
cies, denoted by: 

with m, time series at each one of these  frequencies ii, 
i E 1. The data set D is  now partitioned accordingly: 

D = Dl U D, U ... U D, (4.6b) 
where 

D, := P, expi,, Pi E kqx"i[.], 

m, + m2 + ... +m, = n ;  (4 .6~)  

thus, P, is a polynomial matrix, whose columns consists of 
all those polynomial vectors pi in (1.11, which correspond 
to time series having the same frequency. Mainly, for  later 
use, we also introduce  the positive integer 

rn := max{m,] 2 1. (4.6d) 
I € !  

We are now ready to answer the question  posed  earlier. 

the following statements  are equivalent. 
Proposition 4.7: With the  notation  introduced above, 

i) N* = N.  
ii) BT n BT = 0 for i # j .  
iii) Each one of the polynomial matrices F',, i E I ,  is 

column reduced. 
For a definition of column reducedness, see Kailath [19]. 
Next we  will show that any one of the data sets D, defined 
in (4.6~) can be pre-processed so that condition iii) of the 
above proposition is satisfied. 

Proposition 4.8: Given the time  series w, = p,exp,, i E 

r n ,  and  the associated linear spaces BT, there exist time 
series G, = p,,exp,, p ,  E kq[.], such that  the associated 
linear spaces BF, satisfy: 

C B T =  CB? and @ ? B y = O  f o r i # j .  

Proof: For simplicity, suppose  that rn = 2, degp, = 
K~ 2 K ,  = degp,, and let Proposition 4.7-iii) not be satis- 
fied. This means that = upz,,,, for  some a E k, that 
is BT n BT # 0. Define 

i s i n  I E m  

Wznc" := p;'"exp, and p;'" := p , , K l - K 2  - ap;ld, 

where,  as in (4,1), p,, x denotes the Kth derivative of p1 
with respect to time. Clearly the  degree of p!'" is 
strictly less than ~ 2 " ' ~  := K,. Moreover, 

BY + B: = BY + BZ'"ew. 

If BY n B : , n e w  = 0, take 8, := ~ 2 ~ ' " .  Otherwise, repeat 
the above procedure with w2 replaced by wgew. This 
algorithm can readily be generalized to more  than two 
time series. 0 

Remark 4.9: To summarize, the dimension of B* is 
bounded from above by the sum of the  degrees of the 
underlying polynomial vectors p,. In order for equality to 
hold. for each group of time series having the same 

frequency, the column reducedness condition iii) of 
Proposition 4.7 must hold. The algorithm for obtaining 
such a column reduced matrix, which is described above 
in the time domain,  does not correspond to the usual 
postmultiplication of P, by a unimodular matrix. It is easy 
to check however, that this property does hold if these 
operations are performed in the  s-domain, 0 

V. SV (STATE VARIABLE) BEHAVIORAL EQUATIONS 
FOR x* 

The  MPUM IC of D in the class of linear systems Lq, 
computed in the previous section has finite-dimensional 
behavior [cf. (4.5)]. As already mentioned in Section III- 
D-31, the latter property implies that I* is autonomous. It 
follows from  the general theory developed by Willems 
[27],  [29], that the MPUM can be represented in terms of 
SV (state variable) equations of the form (3.6a). We  start 
by writing state variable behavioral equations  for BT based 
on (1.11, (1.21, (4.11, Consider the  equations 

d 
dt 
- X ,  = F,x,, w = H,x, 

w h e r e 4  := h , I + J ,  Hz := ( p ! , "  . . . p , , , , _ l ) ;  (5.1) 

I is the identity matrix of size K , .  J is the  nilpotent matrix 
of the  same size with 1s on  the superdiagonal and Os 
elsewhere, and x, E (k" lR. Notice that  the characteristic 
polynomial r j  of B: introduced in the previous section, is 
equal to  the characteristic polynomial of F, defined above: 

rTT, = det ($1 - F , ) .  (5.2) 

Furthermore, Ht ,  F, is an obsen'uble pair because. by 
(1.21, pt,o f 0. The following holds true. 

Lemma 5.3: Equations (5.1) constitute a minimal-com- 
plexity SV equation  representation of BF. 

Proof The expression 

exp(F$) = exp (A+) I + Jt + ...  + J " f - '  - 
can be readily computed from (5,1), Therefore  the pair 

i ( K ,  t ' - '  - I)! I 
2 := exp(Fif)u, + := HI%, 

satisfies the  equations in (5,1), for all L' E k"1. It follows 
that if we let 1; := l,, the rth unit vector, iv = w { , ~ - ~ ,  r 
E Therefore by linearity, every trajectory contained in 
BT is generated by (5.1) and conversely, every trajectory 
generated by (5.1) belongs to BT. Finally, minimality is a 
consequence of the observability of the pair H,, F , .  0 

A state variable representation of the  MPUM I* for 
B* can now be put together  as  a direct sum of the 
representation of the MPUMs of the time series com- 
puted above. let 

- 

H := (H, ... H, . . .  H,!) E kq'.', 

F := diag(F, ;... F,;..,  F,) E k,"-'. (5.4) 

The following result holds. 
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Theorem 5.5: Equations  (3.6a), with H ,  F defined by 
(5.41, constitute  a SV equation  representation of the 
MPUM 2* of D, constructed in Theorem 4.4. 

Analogously to (5.21, from (4.3) and (5.4) follows that 
n- = det (SI - F ) .  Moreover, from Proposition 4.7 follows 
the corollary below. 

Corolluty 5.6: The SV representation of the theorem 
has minimal complexity if, and only if, the equality N* = N 
holds if, and only if, the pair H ,  F is observable. In this 
case with the  notation introduced in (3.6b), B* = B(H,  F ) .  

VI. AR (AUTOREGRESSIVE) BEHAVIORAL EQUATIONS 

The SV behavioral equations discussed in the previous 
FOR x* 

section can be re-written in the form: 

x E ( k v ) R ,  w E (kyIR. (6.1) 
In the above expressions s is to be interpreted as  the 
derivative operator. Let  the polynomial matrices 

'= I E kqxr[s],  O* E kYx9[s] ,  (6.2) 

be left co-prime, and satisfy 

E ( s I  - F )  = O*H.  (6.3) 
Recall notation 3.9. The following crucial result holds. 

Theorem 6.4: O* is an autoregressive equation  repre- 
sentation of the  MPUM I* of D. In other words H* = 

X(@*), Le., 

@* - w = 0 fo ra l lwEB*,  ( 3  
where O* is defined by (6.2, (6.3). 

Root  We will assume that B* is parametrized in 
terms of the observable pair H, F ,  Le.,  by corollary (5.61, 
B* = B(H,  F ) .  Thus, we need  to show that NO*) = 
B(H, F). 

L e t  w E B(H, F ) .  It follows that  w = H x  and s x  = F x  
for an appropriate x. Upon multiplying (6.1) on the left by 
(2 -@*I, we obtain O* w = 0, which shows that  w B 
NO* 1, 

Conversely, let w E B(O*), Le., O*w = 0. We will  show 
that there exists a  state trajectory x, such that w = H x  
and sx = F x .  For  the proof of this inclusion, we need to 
use the following fact which can be found, e.g.,  in Kailath 
[19, ch. 6.41. Given the observable pair H ,  F and  the left 
co-prime matrices E ,  @* as defined above, there exist 
polynomial matrices A ,  B of appropriate size, such that 
the following properties hold: 

with det K = 1  and K - i H 1 = M  

Define x := Ew. Then 

= = 0 - E kerKR. 

Since K is unimodular, by Proposition 3.10-a3) ker KR = 
ker a. Thus, w E B( H ,  F), and the proof is complete. 0 

From (3.11) furthermore, we obtain  a result which  will 
be used in Section VI;, on recursiveness. 

Theorem 6.5: Let P(O) be a model of D ,  Z(6) = X.(@* 1, 
if, and only if, the invariant factors of 0 and O* are  the 
same, say AllA21 ... l A q .  

In the  sequel we  wlll compute these invariant factors in 
terms of the characteristic polynomials T, ,  i E 2 .  For this 
purpose we  will assume without loss of generality, that  the 
data  set has  been pre-processed so that Conditions 4.7-iii) 
are satisfied, Le., so that the SV representation has mini- 
mal complexity. According to Corollary 5.6 this is equiva- 
lent to  the observability of the pair H ,  F (Le., the right 
co-primeness of the polynomial matrices H ,  SI-F);  since 
E,@* are left co-prime, it follows from (6.3) (see e.g., 
Fuhrmann [14] or Kailath [19, Section 6.4.211) that  the 
nontrivial invariant factors of (SI - F )  and @*(SI are  the 
same. Recall the Definitions 4.3, 5.2 of the characteristic 
polynomials. Using the abbreviation gcd for greatest com- 
mon diuisor, we define the following n polynomials: 

6, := gcd(x, ,  i E E ) ,  

5 :=r ' " T  . . .  r = r  

Consequently, with F given by (5.41, it follows that  the 
invariant factors of O* are 

n 1 ! n l .  (6.6) 

(6.7a) 

if n < q, there are q - n additional unity invariant fac- 
tors; if n 2 q,  at most the first q of the above invariant 
factors will be different from unity. Clearly, det Or = A ,  
... A, = T # 0. Actually, with m defined by (4.6d), there 
are exactly mI3 nontrivial (Le., nonunity) invariant factors 
among the Ai, namely: 

A q , A q - l , . * . ,  A9- , , , -* ,  A 9 - m + l ,  I , * * * ,  1. (6%) 

Remark 6.8: i) If there is only one polynomial-exponen- 
tial time series at each frequency, Le.,  in (1.1) Ai # Aj, 
i # j, any two n-,. i E 2, are co-prime and hence, in this 
case, the invariant factors of @* are T ,  l;.., 1. ii) Other- 

"According to Remark 6.10, it can be assumed w.1.o.g. that m < q .  
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wise, let the column degrees of the polynomial matrix P, 
in (4 .6~)  be: el I ... s ern,. It follows that 

Using this fact, given the  data set D and its partitioning 
defined in (4.6a-c), the invariant factors of the MPUM 
can be written down by inspection. 0 

Remarks 6.9: a) The AR equation  representation @* of 
X" derived above, and  the  unimodular matrix W which  is 
the main tool in Antoulas [l], are closely related.  Without 
loss of generality, assume that @* is row reduced with 
row indexes ul,"', uq. L e t  

6 ( s - l )  := diag(s-'l,~~~,s-'~)@*(s). 
It readily follows that 6 is a polynomial unimodular 
matrix in the variable 3 - l .  Thus 

W(s) = 6(s) .  
This shows that up to a change of variables, the W matrix 
introduced in Antoulas [l, (4.4a)l is indeed an AR equa- 
tion representation of the MPUM of the corresponding 
modeling problem, i.e.,  the realization problem (see also 
Problem D of Section 11). 

b) Theorem 6.5 gives a condition for the minimality of 
the  autonomous models simply in terms of their invariant 
factors. The corresponding result in the  framework of [l], 
is  given in Antoulas [9]. 0 

Remark 6.10: Assume that  the data contains  the follow- 
ing set of time series 

D, := (Plexp,,pzexp, ,..., p,exp,; P, E W, 
where rank [ p l   p z  ... p,] = q. This implies that 

& exp, E B,, for all i E q ,  

where it denotes  the ith unit q-vector. It follows that  the 
MPUM of D, is Z, = (R, k9, B,), where 

B, = exp, kq. 

- 

Therefore, using Notation 3.9, 2, = X(@,), where 
0, = (S - A ) I q .  

Since 0, commutes with  any matrix, it follows that the 
AR equation 0 of the MPUM of D containing D, will be 
of the form 

for an  appropriate 8. Therefore,  whenever D, c D we 
need only model the time series contained in D := D - DA, 
subsequently making use of the above formula. 

Notice also that this case represents  a  sharp departure 
from the usual interpolation problem which can be associ- 
ated with the modeling of time series  (see  Problem C in 
Section 11). The formula for @* given above, implies 
namely, that the frequency A is both a pole and  a  zero of 
any resulting 1/0 system; cancellation is not allowed. 
This means in turn, that in such a case, by Proposition 
3.20, there is no nontrivial controllable model of D. 0 

Remark 6.11: One way  of computing @* is by determin- 
ing the linear dependences of the rows of the observabil- 

ity matrix of the pair H ,  F defined in (5.4). For details, see 
e.g., Antoulas, Ball, Kang, and Willems [8, Section 81. 

VII. AR AND MA BEHAVIORAL EQUATIONS FOR 

CONTROLLABLE MODELS 
After the SV and AR equation  representations of X", 

we turn our attention  to behavioral equation  representa- 
tions of controllable models of D. We  will describe both 
AR and MA, i.e., moving average, ones  (see Section III-E- 
2)). 

In general, an AR equation  representation of the mini- 
mal-complexity models Zz,,,, E L!,,,, of D, can be com- 
puted from @* as follows. Recall from Section 111-E that 
a system  is controllable if, and only if,  any AR equation 
representing its behavior has constant rank for all com- 
plex frequencies. Consider the Smith form decomposition 
of @* (for a definition see, e.g., Kailath [19, p. 3901): 

@* = UAV, 

where U, V are units in kqX4[s], and A is a diagonal 
matrix, composed of the invariant factors A z ,  defined by 
(6.7a, b). Notice that in this decomposition, the invariant 
factors are unique, while U, V are not unique. Recall 
(4.6d) and define p so that 

p + m = q ;  

according to (6.7b) the integer p is the number of unity 
invariant factors of 0". Thus, we can write 

A = diag(h,Ip) ,  := d i a g ( A q , h , ~ l , ~ ~ ~ , A q ~ , , l )  

where according to (6.7b) all diagonal elements of are 
nonunity polynomials. It follows that 

= S<O,*n,,) where 0,*,,,, := (0 I,)Vl4 (7.1) 

is a minimal-complexity controllable model. Actually, an 
AR equation  representation of the  other minimal-com- 
plexity controllable models of D can be obtained by means 
of the above formula, by letting V vary over all allowable 
units in the Smith form decomposition. As mentioned in 
Section 111-E, it will be shown in Section IX-A, that  the 
family of least-complexity controllable models can be 
parametrized in an affine way.  Now  following Section 
111-E-2) the corresponding MA behavioral equation  rep- 
resentation of these systems is given  by: 

w = qznt1( :)a where Y&,, := V - : [ k ] ,  (7.2) 

the  entries of a in the above equations being the so-called 
auxiliury variables. 

Recall that the superscript x denotes  least-complexity-related q u a -  
tities. 
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VIII. RECURSIVE UPDATE OF THE MPUM AND OF 
THE ASSOCIATED SV AND AR EQUATIONS 

Let the data D be updated by conducting a new experi- 
ment: 

D I= D u D,,," with D,,, I= {w, ,+~ := pntlexpAn+,). 

There  are two basic cases to consider. First pnil  is 
constant, Le., using Notation 1.2 

pn-l  = : p n + 1 , o  E k q ,  pn+1,o + 0. (8.1) 

Second, A,, = A,, for some h E 5 ,  and in addition pn+  
is a polynomial such that 

dPn- 1 - =  
dt P h '  

where ph is defined in (1.2). Integrating the above rela- 
tionship we get: 

K h  t j  
Pn-1 : = P h . r ,  + C P h , x . - j T .  (8.2) ,= 1 

Thus, in the  former case a  pure exponential time series is 
provided at a frequency which might or might not be 
different from the previous ones. In the latter case the 
new datum  corresponds  to  adding  a new term to an 
already existing time series. To be  more specific, the 
existing hth time series having frequency A,, is updated 
by integrating the polynomial ph; the new constant enter- 

Let 1 .- (R, k4, B ), denote  the MPUM of D in L4. It 
is obtained from 2*,  defined in Theorem 4.4, by updating 
B* as follows: 

$ := B* + B,- where B,-  := span,(w,,,). (8.3) 

Moreover, the characteristic polynomial of 9, defined in 
Section IV, is ir := (s - A, , where c is the charac- 
teristic polynomial of B*. It follows that in the above two 
cases the MPUM is updated by adding  a one-dimensional 
subspace of (kq)R. Other cases can be reduced to  either 
one of the above two [cf. Remark 8.22-a)I. 

The problem now  is to update  the SV and AR equation 
representation of B* given in Theorems 5.5 and 6.4,Ain 
order  to  obtain  the corresponding representations of B*. 

The updated SV equation  representation is determined 
as  follows. L e t  

ing 's RhiK;; 

fi E k q X ( N - 1 1 ,  i. E k ( N + l ) x ( N + l )  

If (8.1) is satisfied, Formulae 5.4 are updated by attaching 
a new block: 

fi := ( H  pn-l ,o) ,  := diag(F, A n + , ) .  (8.4) 

Is  It might happen  that D = D. 

If (8.2) is satisfied, the hth block of H ,  F is updated: 

6 := (H1 . . .  fib .. .  H,) 

where f i h  := (Hh Phlxh)  E kqx('htl), (8.5a) 

8 := d i a g ( F , , . ~ ~ , ~ , ; . . , F , , )  

where $, := A h I  + J E k(*h+l)x(Khtl)  . (8.5b) 

It is  now a simple matter, foLloying Theorem 5.5, to show 
that  equations (3.6a1, with H ,  F as defined above, consti- 
tute indeed an SV equation  representation of B*. 

The next step is to update  the Mequa t ion  representa- 
tion @*, which we  will denote by @*. The key tool for 
solving this problem is the  characterization of AR equa- 
tions representing  MPUMs given in Theorem 6.5. We will 
call e, , 1, defined by 

(8.6) 

the error time series associated with w,+ Given the 
function f(x), we  will denote by f(!)( a )  its jth derivative 
with respect to x ,  evaluated at x = cy. 

Proposition 8.7: The  error time series is purely expo- 
nential: 

en,, = % + 1  exP,"-,' 

If p n + ]  is  given by (8.11, we have 

= @*(A,,_1)pn-1,o E k4.  ( 8 . 8 )  

If p,+ , is  given by (8.21, we have 

(8.9) 

Roo$ For a, b E Ns], the following identity holds: 

The identity holds equally if a is a matrix polynomial and 
b a scalar polynomial. Consequently, for any matrix poly- 
nomial a = 8, the scalar polynomial b = s", x = t ,  and 
y = A, the above formula yields 

This, in combination with (8,1), (8.2) implies (8.8) and 
(8.9). 0 

Let the first nonzero  entry of E,-  from the top, be the 
rth.  We can always normalize the error so that it has the 
form 
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and  the 0 has dimension r - 1. An AR equation  repre- invariant factors of the product of two diagonal matrices, 
sentation of the error  MPUM is namely: 

T,-,(s) := 0 3 - A,,, 
diag (I ,-  s, Iq -, 1 , diag (i, I q - , , ) .  (8.19) 

0 Combining (8.17) with (8.81, we conclude that, if (8.4) is 

Clearly, r, + I = I whenever E ,  - = 0. Finally, let satisfied, then r > n. Thus, from (8.19), the  (ordered) set 
of degrees of the invariant factors of O* is the same as 

(8.17) and (8.9) shows that if (8.5) is satisfied, r = i < n. 

invariant factors of @* is given by (8.16), as required. 

6* := r,,,@* E kqXq[s].  (8.12) (8.15). On  the  other hand a simple calculation involving 

The following result solves the  problem Of This implies that thz  (unordered) set of degrees of  the 

L3 
is an AR equation  representation Of the MPUM x* Of D. For use in the next section, we  now state without proof, 

updating an AR representation of the  MPUM. 
Theorem 8.13: With the  notation  introduced akove, @ me proof of the theorem is thus complete, 

It is obtained by updating the AR equation  representation  the following result, 

with r,, 1, as defined in (8,11)-(8.12). 
O* of the  MPUM E* of D by means of premultiplication 8.20,. kt 0 E k p x 9 [ s ] ,  be row re- 

Corollary 8.14: If @* is  row reduced with ordered row also € E kp, E + o. There a constant p = duced with equal row degrees deg 8, = u,  i E E .  Given is 

$dexes L', s c,+,, where ci := de&, i E q, the  updated kpXP,$et p + 0, such  that 
@* defined by (8.121, is also row  reduced: - a) O := P O  remains row reduced with equal row in- 

According to Theorem 6.5, therefore, in order  to show 0 
that @* defined by (8.12) is an AR representation of the 
MPUM of D, i; suffices to show that  the nonunity invari- 
ant factors of e*. defined by (8.121, are the  same  as  those  b) The given vector E transformed to = 

, 
. 

of SI - F ,  where F is defined by (8.4), (8.5b). To prove 0 
this equality. we  may assume without loss of generality, I /  
that Corollary 8.21: Let E = en+ defined by (8.10). We  may 

A, = 0, i E 11 + 1, assume without loss of generality that O* is  row reduced 
and  the degree of the rth row of @* is (strictly) less than 

Proofof8.13: It is readily shown that @* is unfalsified. dexes 

'= 

~ 

i t . ,  T = s '. and COnSeqUently. all iIIVariant factors are the  degree of the (r + 1)" row: 
powers of s. We will also assume for simplicity, that 
K ,  I K , + ] ,  i E 11 - 1. 

There are twocaSes to consider. If is defined by (8.4), 
deg Or < deg O , + l .  

the  (ordered) set of degrees of its nonunity invariant n i s  corollary says that if the ( r  + 1)s' entry of the 
factors is: error E , + ~  is nonzero,  and deg e,+, = deg O,, by pre- 

of the first nonzero entry of E,,-  [defined by (8.10)l may 
If f: is defined by (8.5bl on the 0 t h  hand, the (Possibly be replaced by + 1. Eventually, 
unordered) set of  degrees of the nonunity invariant fac-  dure,  the degree of the row of corresponding to the 
tors is: first nonzero entry of the  error E,, will be strictly 

achieved moreover, without affecting row reducedness. 

K,, ,  K , - 1 . " ' ,  K 1 ,  1. (8.15) processing and reordering of the rows of 0*, the index r 

repeating this proce- 

K , , " ' ,   K h  + l;.., K 1 .  (8.16) greater  than  the  degree of the next row. This can be 

By (3.10a) O* is uniquely determined up to left multi- Remarks 8.22: 
plication by a unimodular matrix. Recall the Smith de-  a) Suppose that the new datum w, - is such that p, - composition of Section VII. We  may thus assume without has the 
loss of generality that (1,2) with deg , o, but (8,2) is not satisfied, 

i.e., (dp,, , /d r )  # pi ,  for any i E rz, such that A, = A n i l .  
@* = AV, A := diag ( 3 ,  I q - " )  In this case  the time series is  new and  the problem is 

equivalent to providing the following set of time series [cf. 
where := diag ( ~ ~ n ; . . ,  s K I ) ,  (8.17)  (4.01: 

while V is unimodular. Thus, the expression for (8.12) 
becomes 

* -  1 

o* := r,,- 1 ~ ~ ,  (8.18) 

which implies that the invariant factors of 6* are the where i = 1,2;.., degp + 1. 
same as the invariant factors of the  product r,+,A, where b) Theorem 8.13 generalizes a result given in Willems 
r,,, is defined by (8.11). Clearly. these are equal to  the [29, p. 2891. Therein, the error  MPUM is expressed in a 



ANTOULAS AND WILLEMS A BEHAVIORAL APPROACH TO LINEAR EXACT MODELING 1793 

representation  independent way. Here is a variation of 
that  formula, valid for all A,: 

Formula 8.11  which  we have adopted  here, although not 
representation  independent, has the advantage that it 
facilitates keeping track of the update of (1) the invariant 
factors, and (2) the row degrees of @*, by virtue of 
Corollary 8.14. (1) was used above for  the update of the 
AR equation  representation of the  MPUM of D, while (2) 
will be used in the next section for  the  update of the 
minimal-complexity controllable models of D. 

c) From  the proof of Theorem  8.13 we conclude that if 
A,, # Ai,  i E rz, or if A,+]  = A, for  some h E E, and 
(8.1)  is satisfied, the number of invariant factors divisible by 
s - A, , increases by one. If however, A,+ = A, for 
some h E rz, and (8.2) is satisfied, rhe number of invariant 
factors divisible by s - A,, remains  constant. It is as- 
sumed of course,  that  the  error  MPUMAis not zero (Le., 
p , +  # 0 and/or that  the  elements of D satisfy the col- 
umn-reducedness condition of Proposition 4.7-iii). 

From (5.0, (5.41, (5 .5)  follows that  the positive integer 
m, defined in (4.6~1, is equal  to  the  number of Jordan 
blocks in F at the frequency A,,  i E E. Thus, in the  latter 
case, the number of nonunity invariant factors remains 
constant, while  in the  former,  the  number of these invari- 
ant factors will increase if 

m = m,,, 

for the subscript h defined above. As shown in the next 
section, the consequence of this fact is that  the  number of 
inputs of least-complexity controllable models might in- 
crease during an  update. 

dl Given the polynomial-exponential data  sets D,,D,,  
let 0:,0; be AR equation  representations of the respec- 
tive MPUMs, namely BT, BS I It follows from P;foposition 
3.10-e), t ja t  anA AR equation  representation @* of the 
MPUM B* of D := D l  U D,, is obtained  as  a least com- 
mon left multiple of @ T , @ T  : 

8* := Iclm(O7, e;). 
The lclm can be determined by computing a factoriza- 

tion of the rational function 

@;(e:)-' = Ar'A , ,  

where the polynomial matrices A , ,  A ,  are left co-prime. 
It follows that 

b* = A  @* = A  O* 2 1 1 * 2 ,  

is the desired MPUM. Notice that by Proposition 3.10-b), 
whenever BY n BT # 0, 0: and 0: are not right co- 
prime. In this section an explicit construction of the lclm 
is  given for the case where D, = D and D, = D,,,. It 
turns  out  that A? = r,, 1, 

IX. RECURSIVE UPDATE OF THE MINIMAL-COMPLEXITY 
CONTROLLABLE MODELS 

Having described the  update of AR equation  represen- 
tations of the  MPUM 2*, our next goal is to describe the 
update of the controllable part of these AR equations. 
This will show how the family of controllable minimal- 
complexity unfalsifed  models, abbreviated C-MCUM  and 
denoted [according to (3.23a)I by Z:onrr(a),  is updated. 
Recall that a is the vector parameter parametrizing this 
family. The plan we are following is: 

jp x G* 4 d* 
conr r ( (2 )  - q:"t*(a). 

VI1 

The first arrow has  been discussed in Section VIII; the 
second arrow will be discussed below; the last arrow will 
not be discussed explicitely; it can be completed using 
Formula 3.25 or Formula 7.2. 

According to Section 111-D-2) we  may assume without 
loss of generality that 

@* is  row reduced with row indexes c 1  I . . .  I cq .  

Assuming that condition iii) of Proposition 4.7 is satisfied, 
it readily follows that N ,  defined in (1.41, is equal  to  the 
sum of the q's:  

N = L' + ... + t ,  + ... = ,,(z*), 
Recall 3.19: The following is a characterization of the 

Proposition 9.1: Let I(@), 0 E kgXXY[s], be a model of 

a) B is the  MPUM,  denoted by Z*, if, and only if, 

MPUM and of the C-MCUM's of D. 

D. Among all models of D: 

c ( Z )  is minimal, i.e.. 

g = q and n ( Z )  is minimal: 

b) 8 is a  C-MCUM,  denoted by ZF,,,,, if, and only 
if, the invariant factors of 0 are unity, and c(8)  is 
minimal, Le., 

g = p and n ( I )  is minimal, 

where p is the  number of unity invariant factors of 0* .  
A  consequence of the above proposition is that in order 

to  update the MPUM we do not need  to keep tract of the 
individual row degrees of @* ; only their sum N is needed. 
On  the  other  hand, in order  to  update  the C-MCUM's, we 
need to keep track of the individual degrees of the rows of 
@*, due  to  the fact that n(X~o, , r , )  is not readily com- 
putable from D. A consequence of Corollary 8.14 is the 
fact that  the rth row degree of the  updated AR equations 
is increased by one: 

n ( 9 )  = N + 1 = c l  + ...  +(c, - 1) + ...  + c q .  

Having obtained @* ;nd a*, using Formula 7.1 we can 
compute all @,*,,,, and OT,,,,,. In order, hpwever, to make 
the transition from @To,,, to  the  updated @~o,,, as explicit 
as possible, we need to keep track of the  update of the 
rows and  the row degrees of 0*. We proceed in  two steps. 
In Section IX-A we  will show how the family Z:o,,i,(cu) 
can be parametrized. given 0" and one controllable 
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model. The second step consists of simultaneously updat- 
ing 0" and one controllable model (Section IX-B). Fi- 
nally, Section IX-C is devoted to the proofs to the main 
results. 

A.  Affine Parametriration of Minimal-Complexity 
Controllable Models 

First,  some  notation is introduced.  Let p ,  as before, be 
the number of unity invariant factors of @*; by Remark 
6.10, we  may assume without loss of generality that p < q. 
The index set 

I := {i1 E g, j ~ p ) ,  (9.2) 

and  the associated partial permutation matrix: 

= I  

ll := 1 j p  ] E kPXq where r j  := (9.3) 

are defined. A key result is the following. Its proof is  given 
in Section IX-C. 

Main Lemma 9.4: An AR equation  representation @* 
of the MPUM 8* of D, which is computed in Section VI 
and  updated in Section VIII, can always be chosen to 
satisfy the following properties simultaneously. 

a) It is  row reduced with row indexes ordered in 
increasing order. 

b) There exists an index set I, such that no*, has 
full  row rank p for all A E C, where p is the number of 
unity invariant factors of O*, and the sum u,> + ... +vi, is 
minimal. 

The above result implies that one controllable model of 
minimal complexity is composed of the rows of an  appro- 
priate @*, which are indexed by the set I :  

@,*,,,, = no*. 
Given this model, all other minimal-complexity control- 
lable models can be obtained by adding to each row with 
index i E I, polynomial multiples of all rows with index j 
satisfying: j E q,  j E I, and deg el 5 deg vi. 

Our goal in t l e  sequel is to determine this parametriza- 
tion explicitly. To simplify the  presentation, we will as- 
sume for the remaining of Section IX-A, without loss of 
generality, that  the rows  of @* have been  permuted so 
that 

I = p ,  e, 5 i E P  - 1, - - 
cp- ,  I c ~ - ] + , ,  j E m  - 1; (9 .5)  

as before, p + m = q. @,*,,,,, is thus composed of the first 
p rows of @*: 

- 

@:o",, = ( Ip  O)@*. 

The degrees of these p rows are ordered; so are the 
degrees of the m subsequent rows. The family of C- 

l 6  We use to denote the Ith row unit g-vector. 

~~ 

MCUM's defined by (3.23a) can now  be parametrized  as 
follows: ZFOontr(a) = ~ ( @ ~ , , , , ~ ( c r ) ) ,  where 

cy := ( I ,  A( cy I)@* (9.6a) 

A is a matrix, whose entries  are arbitrary polynomials of 
appropriate  degree: 

A ( a )  E kPxm[s], 
deg a i j  = ui - u p - )  if e, 2 u p + ]  and a i j  = 0 otherwise. 

(9.6b) 

The  parameter (Y consists of the coefficients of each one 
of the nonzero polynomials a i j ,  it has K entries: 

(Y E k", K := Z(C, - + 11, 

where  the  sum is taken over all indexes i E p ,  j E rn,  such 
that ui 2 u p + j .  By construction, @T,,,,,,(a) is row reduced 
with the  same row degrees as @~o,,,. Moreover, since 
A ( ( Y )  is linear in the  parameter a, the  Parametrization  9.6 
is afine. For controllability, according to Section 111-E 
certain values of cr in k" have to be excluded. The 
condition which has to be satisfied is 

rank @:o,,rr(A, a )  = p ,  A E C.  

Since however det @*(A)  # 0. for A # A,,  i E g,  this con- 
dition is equivalent to 

rank@,*,,,,(h,, a )  = rank(I, A ( h , ,  cy))@*(A,I = p ,  

i E g .  (9.7) 

Because of (9.4b), there exist constant matrices M, E 
k q X P ,  N, E k m x P ,  such that 

The following n multi-linear functions of cy will  be needed 
below: 

f i ( a )  := det(Z, + A ( & ,  a)N,) = det(I,,, + N,A(h , ,  a)), 

i E g.  (9.8a) 

If p is the maximum between p and  the number of 
nonzero columns of A ,  the f,'s are actually p-linear 
functions of the  parameter a. A simply argument shows 
that (9.7) is equivalent to  the condition 

f , ( a )  # 0, i E g .  (9.8b) 

The following special cases are worth noting. Recall the 
Assumption 9.5. i) If cp < c I ,  A( a) = 0; thus there 
exists a  unique C-MCUM. iif.-If u p -  5 up < c p - 2 ,  the 
matrix A has one nonzero column, and hence constraints 
(9.8) are linear. The same holds true if p = 1. iii) If 

5 u p + 2  s cp < c p - 3 ,  the  parameter matrix A has 
two nonzero columns and  thus constraints (9.8) are in 
general bilinear. The same holds true if p = 2. There 
follows an example illustrating some of the above consid- 
erations. More instances of computation of the family 
ZFonrr.(a) can be found in Section X I .  
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Example: Let D be such that A, = 0, A, = -1,  and  the 
behavior of the MPUM is B(@* 1, where 

@* = 

Assumptions (9.5) are fulfilled. Following (9.61, the family 
of all  minimal-complexity  controllable  models 
Z@~,, , , , (a))  or D can be parametrized  as follows: 

O:onrr(~, a )  = [sl, (s + l ) A ( a )  + 12]  E k 2 x 4 [ ~ ] ,  

It follows that N, = I ,  and N2 = 0. Hence, f l  = det(1, 
+ A ( a ) )  and f2 = 1. Therefore by  (9.8), the parameter 
vector a := (a , ,  a,,  a3,  a,) has to satisfy the bilinear 
constraint ( a ,  + 1Xa, + 1) - a,  a3 # 0. 0 

The above considerations are summarized in the follow- 
ing theorem. 

Theorem 9.9: AfFne parametrization of minimal-complex- 
ity controllable models of D. With (9.5) holding, given one 
minimal-complexity controllable model X:,,,, = X(@,*,,,,), 
all others C:o,,r(a) = B(@~,,,,(a)), are obtained by For- 
mula 9.6. The coefficients of each nonzero entry of the 
polynomial matrix A ,  make up the parameter vector a; 
the range of a is k", with the exception of the p-linear 
surfaces defined by (9.8). 

We thus conclude that in order to update  the family 
I ~ , , , , ( a ) , , ~ e  first need to update one of its elements, say, 
Z:onl, to C;,,,,,, and  then apply the above theorem. The 
next section is thus devoted to the computation of the 
update C:T,,,,, of X:,,,,,. 

B. Recursir'e Update of a C-MCUM 
Recall (8.10)-(8.13). Corollary 8.14 asserts that, with 

r,,, defined by (8.11), therow reducedness of @* implies 
the row reducedness of @*. Furthermore, by Corollary 
8.21,  we  may assume without loss of generality that deg 0, 
< deg e,-,." Let 

A := E k9'9, a E k9-'. (9.10a) 
ff l I  19-' 

In the sequel instead of  (8.121, the following modified 
form of the  updated  MPUM will be used 

6 * ( s )  := Arn-,(s)@*(s).  (9.10b) 
Due  to 8.21 8* just defined is also row reduced. Given a 
matrix M* with q rows and  a  set I c q ,  M, denotes  the 
submatrix of M *  composed of those rows which are 
indexed by I. 

Here is the key result of this section. It says that  the 
update can be arranged in such a way that the rows 
indexed by I have full row rank for all frequencies, with 
the possible exception of the (n + l)", in  which case the 
rank might drop by one. Its proof is given  in Section IX-C 
below. 

Recall from (8.10) that r '= min{l E q:  6, # 01. 

Proposition 9.11;. With the  notation  introduced above 

rank@,(A,+,) r p  - 1 (9.11a) 

and I as in (9.2), O* defined by (9.10) satisfies for all a 

while there exists a E kq-', such that 

rank bI(A) = p ,  VA # A n + l .  (9.11b) 
We are now ready to define the indexes k ,  1 which  play 

1 := min i E I c q :  ii( A,+ ,) linearly dependent on 

a  central  role in the  C-MCUM  update. 

{ -  
G j ( A n + , ) ,  j e i ,  j E I} (9 .11~)  

(9.11d) 

Both of the above indexes might fail to exist. From  the 
proposition it follows that  the index 1 does not exist, iff 
r e I and e,(&+ ,) is linearly independent from the rows 
of 0,; moreover, if r E I, 1 = 1. If 1 exists, k does not 
exist, iff the number of non-unity invariant factors of the 
MPUM increases during the  update;  as already men- 
tioned,  this will happen if the new measurement is linearly 
independent and  there is a majority of measurements in D 
at  the frequency A,, (see also Remark 9.20b). From 
Proposition 9.11 and the definition (9.11c, d) of the in- 
dexes I ,  k ,  follows the classification of the C-MCUM 
update problem. For the  proof, see Section IX-C. 

Lemma 9.12: The update of a  C-MCUM. L e t  O~o,,, be 
composed of those rows of @* indexed by the elements of 
I defined in  (9.2). With the  updated MPUM @* given by 
(9.10), a  C-MCUM @&,,, $ given  as follows: ~ 

a) If 1 does not exist, I = I and @:,,,, = 0,. 
b) If 1 exists but k does not exist, I = I - (1)  and 

. .  

&,*,,,, = [&  ,-(, ) A  a i ,  + ik], where the constant a E k is 
chosen so that O~o,,r has fu l l  row rank p for all frequen- 
cies A. 

Corollay 9.14: L e t  the set of degrees S of the  C-MCUM 

. .  . 

X", be: 
s := { u i / - , c , ) ,  

The set of degr5es 8 of the  updated  C-MCUM BT,,,, is: 
a) Either, 6 = 6; 
b) Or, = Si := S - tuc ) .  
c) Or, 6 = 61 u max{u, + 1 , ~ ~ ) .  

Remark 9.15: Although (9.12) provides the solution of 
the C-MCUM update problem, this is not the  end of the 
story. The reason is that in order  to be ready for the next 
update, we need to account for the remaining rows (Le., 
those rows  which are not part of the  C-MCUM consid- 
ered). The need for keeping track of these rows is readily 
seen by considering Definition 9.11; the kth row  which 
enters in the  update of the  C-MCUM is not part of the 
C-MCUM at the previous stage. 
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To achieve this goal, the definition of a few more which in turn  corresponds  to case b) of Corollary 9.14. In 
quantities is needed. Recall Definition 9.3 of lI. other words, whenever we want to model an  additional 

II; E k'p- ' ) ' q :  contains the same rows as II polynomial-exponential time series having frequency A,_ 
equal to the frequency of a time series already modeled, 

with 5, eliminated, (9.16a) but which has different direction in k9 [that is (8.1) is 
fulfilled)], if there Ais a majority of time series at the 
frequency A , + ]  in D, then the  number of input variables 

with 5, replaced with &. (9.16b) of the model increases at the expense of the  number of 

II,, E kPXq: contains the same rows as l7 

Finally, let A E kqXq, det A + 0, be defined as follows: 
output variables [see also Remark 8.19-c)]. 

c) A nonrecursive result similar to Lemma 9.4 was 

( A ) ~ , I  := a , ( A ) k , k  := 1 (9.17~) 
all other entries in (9.17b, c) are zero. We are now ready 
to  state  the main result. Cases a), b), c) in Lemma (9.12) 
correspond to  the three cases listed in the theorem below. 
Recall (8.10)-(8.12). 

Theorem 9.18: Simultaneous  update of the MPUMand of 
a C-MCUM. With the  notation  introduced above, an AFZ 
equation  repfesentation of the  C-MCUM I~o,,,,, and of 
the MPUM I*, of D, is 

6;o,,, = fi6*, a* :=Ar,+l@*, (9.19) 

where fi is defined as folloys: 
a) If I does not exist II := II. 
b) If 1 exists but k does not exist, fi := ". 
c) If 1 and k exist, II := II if 1 > k ,  and II := I I r k  for 

r < k .  
Remarks 9.20: 
a) In the above considerations we concentrated our 

attention  the class of minimal-complexity controllable 
models XFonr,(a), introduced in (3.23a). It is  now a 
straightforward matter to look for the 1/0 controllable 
models of minimal complexity, denoted by p) ,  and 
for the smooth 1/0 controllable models of minimal com- 
plexity, denoted by Zz,(y), of the data D [see (3.23b,c)]. 
Property b) of main Lemma 9.4 has to be appended by 
requiring, in addition,  that 

detT # 0 and degdet T = u,, + +uip ,  

respectively. That such properties  can always be satisfied, 
can be proved recursively by appropriately modifying the 
proof of (9.4) given  in Section IX-C below. 

b) The number of unity invariant factors of @*, which 
we have denoted by p above, is actually equal to  the 
number of output variables of the 1/0 system associated 
with any C-MCUM as discussed in remark a) above. 
Consequently, rn := q - p ,  is the corresponding number 
of input variables. 

It is interesting to  note in this context, that according to 
the above results, the  number of inputs of C-MCUMs will 
either remain constant, or will increase during the  updat- 
ing procedure. This happens in case b) of Theorem 9.18, 

( A ) , , ~  := 1 , (~) / , ,  := a ;  (9.17b) 4.13  of the same  reference. 

if 1 and k exist and 1 < k then ( A ) ) , ,  := 1, i E q ,  i z 1 and d) In  the case where q = 2, and rn = p = 1, Corol- 

8:,,,,, 8:o,,, be v i ,  C l ,  respectively. It follows that 6, can 
take one of the following values: 

- lary 9.!4 is simplified as follows. Let the complexity of 

u , ;  or c, provided c 2  > v i ;  or c1 + 1. 

Notice that  the value L 2  + 1 is not allowed. 
e) Corollary 9.14 provides the generalization of the 

corresponding result for the recursive update in the  real- 
ization problem given  in Antoulas [ l ,  proposition 6.181. In 
Antoulas and Anderson [2, proposition 3.61 the possible 
degrees of a recursive update in the scalar interpolation 
problem are derived; this latter result is formally identical 
to  the result quoted in remark d) above. Notice also that 
in the special case of the recursive realization update, in 
addition to the value r2  + 1, the value c1  + 1, is not 
allowed either. 0 

C. Proof of Proposition 9.11 and Lemma 9.12 
As already mentioned,  the key result for the recursive 

update of a  C-MCUM is Proposition 9.11 whose proof is 
given  below. The first consequence is Lemma 9.12 which 
classifies the  update problem into  three cases; its proof is 
also given below. The proofs of Theorem 9.18 and Lemma 
9.4 are immediate corollaries of (9.11) and (9.12) and are 
omitted. 

Proof of Proposition 9.11: We will prove the proposi- 
tion assuming that r = 1 and that  the new measurement 
satisfies condition (8.1), The proof for r > 1, and/or in 
case condition (8.2) is satisfied, follows along the  same 
lines. Let O1 denote the first  row of @* and 0* := 

( 8, @z). From (9.10) the  updated MPUM is 

Case 1: r E I (Le., the first  row of Or belongs to the 
C-MCUM at the nth step). For appropriate x ( a )  E kP-' 

It readily follows that conditions (9.11a, b) are satisfied, 
the  former with equality sign; this holds for all a.  
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Case 2: r P I. The following expressions holds [recall 
(8.8), (8.1011: 

6,(s) = ~ , ( s )  + [ (s  - ~ , , _ , ) a ,  - Z,]O,(S) (9.21a) 

which implies 

= @I(A,-l)p,-i,o. (9.21~) 

Evaluating (9.21a) at s = A, and using (9.21b)  we ob- 
tain 

6AAn*l) = @I(Antl)[Iq -Pn+l.o~l(An+l)]. 

The expression in brackets has rank nn- 1 and its left 
kernel is spanned by O,(A, , -  l). Hence, has full 
row rank p iff O1(hn, 1) is linearly independent from the 
rows  of Otherwise, the rank is p - 1. This 
shows the validity of (9.11a) in case r E I. 

To show (9.11b). we first notice that if Ol(A), A # A,,,, 
i;s linearly independent from the rows of @,(A), then 
@,(A) has full row rank p for all choices of a. There 
remains to show (9.11b) in case the relationship 

Q , ( A )  = y,O,(A). yA E k l X p  

holds, for some frequency A # A,- 1. Evaluating (Y.21a) at 
s = A and substituting the above expression we obtain 

6,(A) = [ I ,  + ( A  - A, ,_ , )a ,y ,  - E , ~ , ] @ , ( A )  

By construction, @,(A)  has full row rank p .  Hence, 6 ) , ( h )  
has full row rank p iff the matrix in brackets has  nonzero 
determinant. Using the fact that  det [ I  + A B ]  = det [ I  + 
BA] we obtain  the following constraints on the  elements 
of the vector a :  

y h [ ( A  - h n t l ) a 1  - eI ]  + 1 # 0. (9.11e) 

This shows that for (9.11b) to  hold,  the  components of a 
indexed by I have to avoid the hyperplanes (9,lle). This 
completes the Proof of 9.11. rn 

Proof of Lemma 9.12: Cases a) and b) are immediate 
consequences of Proposition 9.11 and definition (9.11c, d) 
of the indexes I and k .  There remains to  shoy  that in case 
c), the  constant a can be chosen so that O~onir has full 
row rank p .  By constrytion, for s = A n + l ,  a O ( A n + l )  is 
linearly dependent  on Hence OZontr(An+I) 
has $11 row rank irrespective of the value of a. Let s = A, 
det @*(A)  = 0, be such that 

;,(A) = ah61-{ , l (A)  + &$, (A) ,  ah E KIxp- ' ,  PA E k. 

It readily follows that  the constant a has to  be such that 
a + PA # 0. This completes  the Proof of 9.12. rn 

X. SYSTEM-THEORETIC INTERPRETATIONS AND 
LINEAR FRACTIONS 

Consider the system Z := (R, k2q, B) with manifest vari- 
ables 

As before q = m + p .  The behavior B is 

T E kpxp[s], detT # 0. (10.2) 

Identifying u,U as  inputs  and y,y as outputs, because of 
the nonsingularity of T, by (3.13b1,  (3.14) Z is an 1 / 0  
system. It is sometimes referred  to as a  (linear) twoport; 
0 is known as  the chain parameter matrix relating W and 
W: 

This two-port is depicted in Fig. 1. Following the results of 
Section 111-E, since the rank of (1, -@(A))  is equal to q 
for all complex frequencies A, Z is controllable. Hence, it 
can be equivalently described in terms of the  transfer 
function Z which relates  the inputs (i] to the  outputs 

This is known in the  literature (see e.g., h t o u l a s  [41) as 
the transfer pammeter matrix of the two-port associated 
with the above chain parameters. 

We now define two more systems: 3 := (R, kq,B), with 
behavior 

- 
B := ker r 

where r := (a -TI E k P X 4 [ s l ,  T E kPXP[s] ,  
(10.3a) 

and 2 := (R, kq, k), with behavior 

B := ker r@. (10.3b) 

If we interconnect P and by imposing the constraint 

it follows that 
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The converse holds also, Le., if w E B then W := Ow E B .  
Such an  interconnection is called a cascade interconnec- 

8;  it is shown in Fig. 2. The overall system 2 has  input u 
and  output y. From  the above expressions we get 

- tion of the two-port system 2 with the (one;port) system 

r@ = (-(OR + TQ) (GU + 'TT)) E kpx9[s]. 
If r0 evaluated a' e v e y  complex*frequency has constant 
rank q, and  det (QU + 'IT) # 0, 2 is a controllable 1/0 
system. It can be equivalently described by means of the 
transfer function 

,Z? = (OU + !h) - ' (QR + TQ). (10.4a) 
If,  in additio?, det T # 0, 1 is also a  controllable 1/0 
system, and Z can be written as 

2 = (ZU + T)- l (ZR + Q) where := T-lQ. 
(10.4b) 

In this case we  say that i j s  expressed as  a  linear (left) 
fraction involving @* and Z .  

The cascade interconnection of n two-ports is readily 
defined. Let 8, := (R, k'q, B,), with Bi := ker(Z -Oil ,  

and manifest variables : (:I 
If the  interconnection constraint W, = wiC1, i E n - 1, is 
imposed, the overall system I is a two-portrelating 

:= E and w := w 

2 is the cascade interconnection of the two-ports Hi, as 
depicted is Fig. 3. 

The above considerations readily apply to  our polyno- 
mial-exponential modeling problem. Recall the  MPUM 
B* of the data D, and  the AR equation  representation @* 
derived in Section VI. For any choice of the input  and 
output variables, the rows of @* can be  permuted so that 
the nonsingularity of T in the  partitioning (10.2) is as- 
sured.  Then according to  the above remarks, @* can be 
interpreted as a  two-port.  Moreover  the  parametrization 
of all models given by  (3.111, (3.12) can be interpreted as a 
cascade interconnection of this two-port genoted by 2, 
with the terminating system denoted by H, as shown in 
Fig. 2. Since O* depends only on the data while r is 
arbitrary, we sometime refer to O* as  a generating system 
for all models of D. 

Following the discussion of Section XIII, the  MPUM of 
D can be recugively constructed  from  the successive error 
MPUMs. Let  r, by AR equations  for  these error MPUMs. 
An AR equation @* for the overall MPUM is given by 

their  product: 
@* . . . Fn . . . f 2 f l .  

The recursive solution of the polynomial-exponential time 
series modeling problem, has therefore  the  interpretation 
of the cascade interconnection H of the Atwo-ports H i ,  
each defined in terms of the corresponding r,, as depicted 
in Fig. 3. 

The parametrization of all controllable 1 / 0  models 
(including minimal-complexity ones) can be expressed in 
terms of linear fractions as in (10.4a, b). The same holds 
true for  the recursiue update of the controllable 1 / 0  
models. It should be mentioned  that  the  parametrization 
of minimal-complexity controllable solutions, as  well as 
their recursive update by means of linear fractions, was 
first derived for  the realization problem by Antoulas [l, 
Theorems 3.5 and 5.81. For an overview, see also Antoulas 
H I .  

X I .  EXAMPLES 
Example A: Consider the  data set D := (w, = p1 E 

(R4lR, w2 = p2 E (R4)R], with A1 = A, = 0, pl(t) := p l ,+  
f p , , ,  i.e. K ,  = 2, and p , ( t )  : = ~ ~ , ~ ( f ~ / 3 ! )  +p2,,(t2/2!) 
+ p 2 , , ( t / 1 ! )  + p 2 , 3  i.e. K = 4; 

With N := K ,  + K~ = 6, the MPUM of D is X(@*)  where 
i s  1 0 o \  

\ o  0 0 s q  
In this case, there is a  unique minimal-complexity control- 
lable model S(O&,,) [cf. (3.23a11, where 

The corresponding 1 / 0  models [cf. (3.23b)I are  para- 
metrized in terms of three parameters, Le., p = ( &, &, 
P J :  

* cTl0 = (2,3). 
For  the above family of models to be controllable, Condi- 
tion 9.8 implies p2 # 0. Finally, the smooth 1 / 0  models 
[cf.  (3.23c)I are parametrized in terms of four  parameters, 
i.e., Y = ( Y ~ ,  y 2 ,  y 3 ,  y4): 
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For  the models of the above family to be controllable 
Condition 9.8 implies y2y4  # 0, i.e.. y2 # 0, and y4 f 0. 
Thus, in the lexicographic ordering: 

(0,6) < ( 2 , 2 )  < ( 2 , 3 )  < (2,4), 
which illustrates Proposition 3.24. Furthermore,  each one 
of the  three families defined above contains  undominated 
models, and consequently, no inclusion among  them is 
valid. 

The data set D can also be interpreted  as containing 
discrete-time  measurements from a 2-input, 2-output dis- 
crete-time system. Each experiment starts at time  zero, 
the system being at rest for t < 0. The first experiment 
consists of two measurements: 

the second experiment consists of four  measurements: 

The problem is to find all minimal-complexity control- 
lable, 1 /0  models which fit the above data. According to 
part G of Section 11, by substituting the forward shift f 1  

for s, we obtain the following models of the discrete-time 
data set given above: the  (unique) minimal complexity 
controllable model @rOnt,(u-'); the family of all minimal 
complexity controllable and 1 / 0  models O&o(u-l,  p) ,  
0, # 0; the family of all minimal complexity causal (non- 
anticipating) and 1 / 0  models given by p),  
where = pz = 0; notice that  the models In the latter 
family are not controllable. 

Example B; This is an example of rational  interpola- 
tion. The data  are values Z(h , )  if a 2 X 2 rational matrix 
Z ,  at the frequencies: AI = 0, h2 = 1, A, = 2: 

Following part C of Section 11, the above data give rise to 
the following set D of purely exponential time series 
w, E (R4IR: w1 = p l ,  w2 = p2,  w3 = p3e', w, = p4ef, w, = 
p5e2', w, = p6e2' ,  where 

The purpose of this example is to recursively model D. 
Making use of the results of Sections VI11 and IX, both 
the MPUM and all C-MCUM's will be computed. 

Step 1: The generating system for w, is obtained by 
means of Formula 8.11; its rows are  permuted so that the 

row degrees are ordered in increasing order [row proper- 
ness is guaranteed from the  structure of (8.11)l: 

/ 0 1 0 0 \  

\ s o o o )  

By (9.2) I, = {1,2,3) and since c4 is greater than the first 
three u j ,  there is a unique C-MCUM composed of  the 
first three rows of 0: : 

/ 0 1 0 0 \  
0,*,,,,(s) = -1 0 1 0 

l o o 0 1  I 
Step 2: From (8.61, (8.8) we obtain the second error 

time series e, = w2,  Le., c2 = p l .  In order to satisfy the 
condition of corollary (8.20, we need  to  pre-process 07, 
so that among the entries of the error time series corre- 
sponding to rows of 0: having the same degree, only one 
is nonzero.  This is achieved by premultiplying with the 
constant matrix P,, det P2 # 0, which amounts to sub- 
tracting the third from the first row and leaving the  others 
unchanged. The new 0:. the resulting error.  and  the 
generating system at the second step  are thus given by the 
expressions: 

' 0 -1  0 1 \  
-1  0 1 0  

i s  o o o /  
&(s) = P @ y ( S )  = * & = P 2 e 2  

I 0 -1 0 11 
- - -1 0 1 0  

0 0 0 s  
\ s  o o o /  

An index 1 exists and k does not exist. Hence, we are in 
case b) of (9.12),  which means that  the third row has to be 
eliminated; this implies I ,  = (1,2). Since the  degree of the 
third row  is greater  than that of the second, there is again 
a  unique  C-MCUM which consists of the first two rows  of 
0;. 

Step 3: Again, from (8.6), (8.8) we obtain  the third 
error: e3 = 0T( l )p3  = ( -  1 1  O O Y .  Since the rows  of 0; 
corresponding to the nonzero elements of the  error have 
the same degree,  to satisfy (8.21) preprocessing by a 
constant matrix P3 is required; it amounts to replacing 
the first row of 0; by the sum of the first  two  rows and 
leaving the others unchanged. The new a;, the corre- 
sponding error, and  the  generating system at the third 
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step are: 

' - 1  -1 1 1 \  

6; (s) = P,o; (s) = 
0 0 0 -13=p3e3 

-1  0 1 0  

\ s  0 0 0 1  

' 0  
- 

10 
0 
1 

i 

- 

- 1  -1 1 1 
- - ( s - l )  0 s - 1  0 - 1  : 0 0 s .  

0 0 01 

To recover a controllable minimal-complexity model we 
notice that r = 2 ,  and k can be chosen either k = 3 or 
k = 4, since that last two rows of 0: have the  same 
degree  and satisfy Condition 9.11d. Hence, case c) of 
(9.12) applies and we need  to  make use of the matrix 
defined by  (9.17b1, denoted by A, .  A ,  is thus chosen to 
add  the last row to  the second row and leave the others 
unchanged. The new 0; is 

' - 1  -1 1 1 
1 0 s - 1  0 
0 0  o s  

\ s  0 0 0 ,  

Q ( s )  = A , O ; ( s )  = 

Thus, I, = (1.2). and a  controllable minimal-complexity 
model is given by the first two rows  of 0;. A parametriza- 
tion of all such controllable models is  given by adding to 
the second row (scalar) multiples of the third and  the 
fourth rows. According to (9.8) the two parameters a, 
and a2 have to avoid certain hyperplanes: 

a = ( a , , a 2 )  and a 1  # -1 or CY, # 0. 

Step 4: The fourth error is e4 = @(l)p, = (0 1 1 1)'. 
Since the last three rows of 0; have degree  equal to  one 
and the corresponding entries of e4 are all nonzero, to 
satisfy the condition of (8.211,  we pre-process by P4, in 
order  to have just one of these  entries  different from zero. 
This operation  amounts  to replacing the second row by 
the difference of the second and  the  third;  the third by 
the difference of the third and  fourth; and  the last by the 
second. In so doing row reducedness is preserved. The 

new 03, the  fourth error, and  the resulting 0: are: 
i - 1  -1 1 1 \ 

\ 1 0 s - 1  0 1  
I O '  

= pde4 = a = r4(s)6;(s) O 
0 

\ I /  
I -1 -1 1 1 \  

- - 1 0 s - 1  -s  
s o  0 -s  . 

\ s  - 1 0 ( s  - 1), 0 / 

At this step the first two rows are not involved  in the 
update, I, = {1,2}, and hence case a) of (9.12) holds. A 
parametrization of all controllable minimal-complexity 
models is  given by adding a (scalar) multiple of the  third 
row to  the second row. By (9.8) this scalar has to avoid the 
value - 1: 

a # -1. 
Step 5: Here, no pre-processing is required. The vari- 

ous quantities  are 
' 0  

-1 
0 

\ 1  

' 1  0 0 
- 0 s - 2  0 

\ o  1 0 
/ -1 - 

E5 = 0: ( 2 ) p ,  = 

- 
0 0 1  

I 

-(s - 2) 0 - ( x  - 2)(s - 1) s(s - 2) = I ;  0 0 s(s 0 - 1) --s -S 1 .  
It turns out that r = 2 and k = 3; thus case c) of (9.12) 
holds. A,,  defined by (9.17~1, is needed; it amounts to 
adding  the third row to  the second and, in order to 
simplify O:, we subtract  the third row from the last: 

Q(S, = A,@? (SI 
I - 1  - 1  1 1 '  

2 0 - ( s  - 2)(s - 1) s(s - 3) 
s o  0 -3 

0 0  s(s - 1) o /  

- - 

It follows that I,  = (1,2); a  parametrization of all mini- 
mal-complexity controllable models is obtained by adding 
to  the second row a polynomial multiple of the third row 
and  a scalar multiple of the  fourth: 

1 1 
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According to (9.8) the vector parameter a = (a , ,  a2 ,  a,) 
has to avoid the hyperplaces given by 

a ,  + a 2  + 2 # 0 and either 2a ,  + a2 + 1 # 0 or a3 # 0. 

Step 6: Finally, we get: 

c6 = o; (2lP, = - rh(s) 1:: , = I  
~ 0 0 s(s - l ) (s  - 2) 0 1.  
1 0 0  0 

0 0 1  0 
0 0 0 s - 2 1  
-1 -1 1 

s o  0 --s 

O O O -o;(s)=r6c-s)6;(s) 

- 2 0 -(s - 2)(s - 1) d s  - 3) - 

The first  two  rows were not involved in the sixth update 
and hence case a) of (9.12) holds. I, = (1,2). All control- 
lable minimal-complexity models are obtained by setting 
a ,  = 0 in @ ~ o n i , , z :  

@T"nrr .h(S .  a )  = a l s 2  + + 2 0 i - 1  - 1  

a,  + a2 + 2 # 0, 

Thus, the  generating system of D is equal to  the product 
of  the,g,en,er,ati?g, systems of the six error time series: 
0: = r6rjr4r3r2r1. where in the  notation used above 

f , := @* I ,  f2  := r2p2. f,  :=A,r,P,, t4 := r,p4, 

F5 : = A 5 r 5 .  fh .= r,. 
The cascade interconnection of the two-ports defined by 
the  error  generating systems as shown in Fig. 3, provides 
the system theoretic  interpretation of the recursive up- 
date. 

In order  to solve the original interpolation  problem, we 
need to consider only controllable systems. According to 
the definition of D, the first two entries of w must be  the 
input variables and the other two entries must be  the 
output variables: w = (u, u2 y1 y2Y. It  turns  out that the 
2 X 2 matrix formed by the last two columns of 
O~onir,6(s, a )  is  always nonsingular; hence all controllable 
systems are also 1 / 0  systems. Finally, it is easy to check 
that smoothness implies the  additional  constraint o1 # 2. 
A  parametrization of all transfer functions (interpolants) 
which have minimal McMillan degree  equal to 2,  is: 

1 
= (2 - a , ) s 2  - ( a 2  + 6)s + 2 

(s - l ) (s  - 2) (1 - a,)s2 - ( a 2  + 3)s 
(1 - a,)s2 - ( a ,  + 3 ) s  

were the  parameters u2,  u2 satisfy the constraints given 
above. Furthermore, notice that  the 1/0 and smooth 1 / 0  
families of controllable systems and their complexities, 
defined by (3.23a-c), are given by 

Finally (1,O) < (2,O) < (2,l)  = (2,l)  < (2,2) = (2,2)  are 
the complexities of the controllable minimal-complexity 
models at each one of the six steps described above. 
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