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Continuity of Dynamical Systems: 
The Continuous-Time Case* 

J. W.  Nieuwenhuis~" a n d  J. C. Willemst 

Abstract. The purpose of this paper is to study continuity of the parametriza- 
tion of continuous-time linear time-invariant differential systems having a finite- 
dimensional state space. We show that convergence of the behavior of such systems 
corresponds to convergence of the coefficients of a set of associated differential 
equations. For this to hold, both the behavior and the convergence need to be 
appropriately defined. 
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1. Introduction 

This paper is a sequel to [NW] where we have studied the continuous parametriza- 
tion of discrete-time linear systems. For  easy reference, we repeat the main result of 
[NWJ. The class of dynamical systems considered there consists of those defined 
by ~ = (Z, R 4, ~)  with ~ a closed linear shift-invariant subspace of(Ra) z, equipped 
with the topology of pointwise convergence. We denote this family of dynamical 
systems (or their behavior) by .~g (q for the number of variables and d for discrete- 
time). A basic result [W] is that & e .Lag if and only if it is the kernel of a polynomial 
operator in the shift: ~ = ker R(o', o--1) for some R(s, s - l )  ~ R-x q Is, s - l ]  (the family 
of polynomial matrices with q columns). Stated otherwise, RX~[s, s -1 ] is a para- 
metrization of -~,f. Let R)X~l's, s -1 ] denote the elements of R" • s -1 ] with full 
row rank. Now ~ E ~ff if and only if g = ker R(tr, tr -1) for some R(s, s -1) 
R~X~Es, s - l ] .  Let R~(s, s -1) ~ R~XqEs, s -1 ] for ~ _> 0. 

Define the convergence R~ ~ Ro if there exists an L (independent of e) such 
that the coefficient matrices of the same power of s converge, as e --, 0, to the 
corresponding one of Ro, and if the coefficient matrix of J is zero for all e > 0 when 
1~1 - L. Take ~ ~ ~o to mean the following: 

(i) w~ ~ &~, e > 0, and w ~ Wo (convergence in the topology of pointwise 
convergence) implies woe  &o and 

(ii) for each Wo ~ ~o  there exists w~ ~ ~ such that w~ ~ Wo. 
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Finally, let us define the lag associated with an element Z ~ Leg. For each 8 e Leg 
there exists a minimal number L (8) such that 8 = ker R(cr, a -x) with L (8) the 
degree of R(s, s -1) (the degree is defined as the difference between the highest and 
lowest power with a nonzero coefficient). For simplicity we denote L~ := L (8~). 

In [NW] we proved that the parametrization R)• q[s, s -t ] of Le,~ is a continuous 
one in the sense of the following theorem: 

Theorem 1. 

1. Assume that R~(s, s -I) ~ R}Xq[s, s - l ] ,  e >_ O, satisfy R~ ~ R o. Let 8~ := 
e.-',O 

ker R~(cr, cr -t  ). Then ~ ~ 80. 
2. Assume that 8~ ~ Le~, e > O, satisfy 8~ ~ 8 o and that there exists an L ~ 7/+ 

such that L~ < L for all e sufficiently small. Then there exists R,(s, s -1) 
R'r~[s, s- t] ,  e >_ O, such that R, ~ R o and 8,  = ker R~(tr, a-t).  

The purpose of this paper is to study the analogous problem for continuous-time 
systems. The results obtained are very similar to the discrete-time case, but due to 
the nature of continuous-time systems the statement of  the results as well as the 
proofs are much more technical in nature. Because of the intrinsic importance of 
continuous-time systems in engineering and physics, we feel that it is important to 
have these results available in the literature. Our exposition is rather brief since 
much of the paper is an adaptation of [NW]. However, both the methods and 
the techniques used in the proofs depart !n essential ways from the discrete-time 
case. 

2. Linear Time-lnvariant Differential Systems 

We study continuous-time linear time-invariant dynamical systems g = (R, R ~, 8 )  
with, as indicated, time-axis •, signal space R r and with behavior 8 ~ (Rq) R 
described by a finite number of linear differential equations. That is, we assume that 
there exists a polynomial matrix R(s)~ R'X~ls] such that w e 8  if and only if 
R(d/dt)w = O, i.e., if and only ifw e ker R(d/dt). We have to clarify what this means. 
In fact, we may consider various choices for this kernel but we need to take an 
appropriate choice, partly dictated by what we are able to prove later. We consider 
the following class of solutions of the set of differential equations R(d/dt)w = 0 as 
the behavior 8 :  

{wEker R ( d ) }  if and only if {w e ~ ( R ;  Rq), 

w is ofclass r and R ( d )  } w = 0  . 

We say that w ~ c~(R; C ~) is of class ~f if for all n e 7/+ there exists a ~ R such 
that d"w/dt" ~ L](R; C ~) with L](R; C q) := {f: • - ,  Cq[j'~oo llf(t)lle -~Itl dt < ~}.  We 
denote the family of dynamical systems (or their behavior thus obtained) by Le# (q 
for the number of variables, c for continuous-time). The requirement that w be of 
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class g and in particular be of exponential growth is a bit annoying, and we would 
like (but were unable) to prove the main result without this assumption. It is, 
however, very similar to what Hazewinkel [H]  had to impose in an analogous 
context. 

It is easy to see (for example from the Smith form) that ~ e LP# if and only if there 
exists a R(s) ~ R~X~[s] (the full row rank polynomial matrices with q columns) such 
that ~ will be described by R(s). This implies that R~• is a parametrization of 
A~ Moreover, if R l(s) and R 2 (S) are in R j- • ~ [s], then ker R t(d/dt ) = ker R 2(d/dt) if 
and only if there exists a unimodular polynomial matrix U(s) such that R2(s) = 
V(s)R~(s). 

Let us next consider families of such systems and define their convergence. We 
consider dependence on a real parameter e _> 0 (see, however, remark 4.4). Let 
&, ~ Aa~, for all e > 0. Then we define convergence ~ ~ ~o to mean 

(i) w e E ~e and w e ~ w o imply w 0 ~ &o, and 
(ii) w o ~ ~0 implies that there exist w e ~ ~ such that w~ ~ w o. 

It remains to define what we mean by w~ ~ Wo. We say that w~ converges 
to w o as e -o 0, written as w~ ~ w o, if, for all n ~ Z+, 

dnwe d"w o 
~i  ~ (t) ~-o' dt ~ (t), 

uniformly on bounded subsets of R. 
We now define convergence of polynomial matrices. Denote Rt(s ) = R~L'sZ" + 

L -i .L -t  "" R~s o R~' ~" + '  + + R~. Then we say that Re(s ) ~ o  Ro(s) if 

(i) there exists L ~ Z+ such that L, < L for e > 0 sufficiently small. 
(ii) R~ ~ R~ for all k. 

Now, for each & e Aa~ ~ there exists a minimal L such that g is described by R(s) 
with R(s) ~ ~)• of degree L. We denote this minimal L a s  L(~)  and call it the 
differential order of(R, R q, ~). L, is shorthand for L ( ~ ) .  

3. The Main Result 

The main result of this paper is stated as follows: 

Theorem 2. 

1. Assume that Re(s)~R'~• ~>0, and that R ~ o  R o. Let ~ e = k e r  R~(d/dt). 
Then ~e ~ ~o. 

2. Assume that ~ e ~ .s for all e >_ O, and that for some L ~ Z+ we have L~ < L, 
for all ~ > O. Then &e ~ ~o implies the existence of polynomial matrices 
Re(s ) ~ R~• ql's "] such that ~,  = ker R~(d/dt) and such that R~ ~ R o. 

The proof of our main result uses the following lemmas, some of which we believe 
to be important in their own right. 
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Let R(s) ~ R~• Define the McMillan degree of R, n(R), to be the smallest 
degree of all the q x q minors of R(s). If R(s) ~ R~• then n(R) = degree (det R). 
For  M a matrix with entries in C, take M* := ~ r ,  where M is the complex conjugate 
of M and the superscript T denotes transpose. 

Lemma 1. Let P(s) ~ R~ x q[s] be such that det P ( -  4) = O for some 2 ~ C. Let a ~ C q 
have norm 1, and be such that a ' P ( -  2) = O. Then there is a unique polynomial matrix 
P(s), with n(/3) = n(P) - 1 such that 

e(s)  = Ix + aa*(s - 1 + 2)]P(s). (1) 

Next,  assume that 0 ~ # ~ C and det P ( -  1//~) = 0. Let b ~ C q have norm 1 and be 
such that b ' P ( -  1//~) = 0. Then there is a unique polynomial matrix P(s) with n(ff) = 
n(P) - 1 such that 

e(s) = I t  + ~,bb*s]P(s). (2) 

Proof. Define the rational matrices P(s) and/~(s) by formulae (1) and (2). We now 
prove that these matrices are polynomials. 

1. Let V e C q• be such that VV* = I and such that Va = e := (1, 0, . . . ,  0) x e C ~. 
Then VP(s)V* = [I + eer(s - 1 + 2)]VP(s)V*. Notice that erVP(s)V * = 
a*P(s) V* is the first row of VP(s) V* and is equal to zero for s = - 4. Therefore 
this row is divisible by s + 2 and hence VP(s)V* is a polynomial matrix and 
consequently so is/3(s). 

2. Let W ~ C ~a  be such that W W *  = I and such that Wb = e. Then WP(s)W* = 
[I + peers] WP(s) W*. Therefore 

WP(s) W* = 0 1 WP(s) W*. 
�9 "Oo 

0 

The first row of WP(s) W* is zero for s = - 1//~ and hence is divisible by 1 +/~s. 
However, this implies that WP(s)W*, and hence/3(s) as welt, is polynomial. 

The following generalization to matrix polynomials of the factorization of scalar 
polynomials can be deduced from Lemma 1. Let P(s) ~ R~X~[s] have determinant 
Pn sn + "'" + Po with p. ~ 0, and roots 2t,  2z . . . . .  2. ~ C. Then P(s) may be factored 
a s  

e(s) = el (s)e2(s) . . .  Pn(s) (3) 

with all the P~'s of McMillan degree 1 and with det P~(2i) = O. 
Lemma 2 considers polynomial matrices depending on a parameter and the 

behavior of the factorization in McMillan degree 1 factors which was obtained in 
Lemma 1. 
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L e m m a  2. Let P~(s) ~ R~"~[s] and degree (det P~) = n, for all ~ > O. Assume further 
that P~ ~ Po. Then P~(s), e > O, admits the following factorization: 

[a~a~ ( s - 2 ~ ) + ( l -  i ~, . = a~a~ ) ]  [ I -  i ~ ,  . P#) II ' ' *  II,b~b: "1 C(s), (4) 
i----i i = / + 1  

i and b~ all have norm 1. Further, the where C,(s) is unimodular and the vectors a, 
�9 i " following limits hold: 2~ ~ 2'0, i = 1, 2 . . . . .  k, and It, ~ lz~, i = k + 1, k + 2, 

. . . .  n, I~ = O, i = k + 1, k + 2, . . . ,  n. Moreover, every sequence {e' ~ 0} will contain 
a subsequence {d' ~ 0} such that a~,,, b~,,, and C,,,(s) converge. If, in addition, q = 1, 
then all the entities indexed by ~ converge. 

Proof. The factorization is a consequence of Lemma 1. Since det P,(s) ~ det Po(s), 
the convergence of the 2~'s and g~'s follows. It remains to prove the convergence of 
C,.,(S). In order to do that, write P,(s)= V~(s)C,(s), 8 > O. We may assume that 
V~,,(s) ~ Vo(s ). Since by assumption P~(s) ~ Po(s), it now easily follows that 
C~,,(2) ~ Co(2) for all but a finite number of points 2 e C. From the proof of 
Lemma 1 it also follows that the degrees of the polynomials in V,(s) and C~(s) are 
uniformly bounded. This yields that C,,(s) ~ Co(s). In order to see this, write a 
typical element of C~(s) as f~(s) = f~s ~ + "" + f o, for all e > 0, with f~  # 0. Now 
assume that f,,,(s) ~ fo(s). Then we may assume without loss of generality that 
there is a subsequence g ~ 0 and an integer k e (0, 1, 2 . . . . .  n} such that f~ k ~ +oo 
and such that (f~)-~f~ converges for g ~ 0 and for all i ~ {0, 1 , . . . ,  n}. Let ~ e C 
be such that f~,(2),,,-Tr~o fo(2). This yields a contradiction since at the same time 

we will have that ( f~k , , ) - l f , . (2)~ 0 and that (f,~)-lf~(s) converges to a nonzero 
polynomial. 

In the next lemma we consider some convolution integrals appearing as basic 
building blocks in the proof of our main result. 

L e m m a  3. Let 2 ~ C and a E C ~, with a*a = 1, be given. Let u(-) e Llt~ R q) and 
y(-) ~ L~(R;  •q) be related by: 

1. y ( t ) =  ( I -  aa*)u(t) + Stoaa*e-Z~t-*~u(T) dz Then u(-) and y(.) defined by this 
expression obey the following differential equation: 

I + aa* -- 1 + 2 y = u. (5) 

2. y(t) := (I -- aa*)u(t) + ,1-1St_~o aa*e-~-'~'-*~u(z) cIz, with u(-) ~ L~~162 R ~) such 
that this infinite integral exists for all t ~ ~. Then u(-) and y(-) related by this 
expression obey the following differential equation: 

+ . d  
( l  2an - ~ ) y  = u. (6) 

Proof .  These conclusions follow from straightforward computations. 
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In the next  two lemmas we study convolu t ion  integrals of the types int roduced 
in Lemma 3, parametr ized by e > 0. We only consider the case q = 1 (scalar-valued 
functions) since the extension to the case q > 1 is easy. 

We call a collection of functions f,: R --, C, t > 0, boundedly uniformly converging 
(buc) if: 

(i) f~ ~ C~~ C) for all e _> 0. 
(ii) Fo r  all n ~ Z+, there exists ct ~ R and C ~ R+ such that  

af, f:~ d-~(t) < C, e-~ltl dt 

for  all e > 0. 
(iii) F o r  all n ~ Z+, ( d " f ~ / d t " ) ( t ) ~  (d"fo/dt)(t), uniformly on bounded  inter- 

vals of R. 

L e m m a  4. Consider for e >_ 0 the following scalar differential equation, 

dy~ 
d--'t + 2~y~ = u~, (7) 

and assume that 2~ ~ C, 2~ ~ 2 o. Let {u~, e > 0} be buc. Then there exists a 
solution ~ of  this differential equation such that ~ ,  ~ >_ O, is buc. 

Proof.  Consider  the following solut ion to (7): 

~(t) = f~ e-~'('-%,(~) dr. 

The result then follows from straightforward estimates. 

Lemma 5. Consider for e > 0 the following scalar differential equation, 

dy, 
p~ ~ + y, = u~, (8) 

and assume that #~ ~ C~, /~ ~ #o = O. Let u~, ~ > O, be buc. Then in each of the 
four following situations there exists a solution ~ to (8) such that ~ ,  e > O, is 
buc: 

1. Re/~-1 __, oo. 
2. Re/z71 --* - o o .  
3. Re i.t[ 1 --, c and Im lt~ -1 --, co. 
4. Re lz71 ---, c and Im p~-i ..., - o o .  

Proof .  We only consider cases 1, 2, and 3, since 4 is similar to 3. In case 1 consider 
the following solut ion to (8): 

9~(t) := f '  /t~'l exp(#~'l(t - z))u~(z) dz, t ~ R. (9) 
d -  oO 
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In case 2 consider the solution 

~(t) :-- /221 exp(-/221(t - T))u,(r) dr, t s R. (10) 

In case 3 define first A, := y, - %. The equation for A. becomes 

dA, 
# ~ - ~  + A~ = v. (11) 

with v~ := /2~(duo/dt ) + u~ - u o. Hence v~, e _> 0, is buc and L ~ 0. Now con- 
sider the following solution to (11): 

= Ji/2~ e x p ( - # T t ( t  - z))v~(z) dr, t E R. (12) ~(t) 

Let us now analyze case 1 in more detail. Integration by parts yields 

S~ du~ ~.(t) = u,(t) - ~ e x p ( - # / l ( t  - r))-~-(r) dr. (13) 

Differentiating and once more integrating by parts yields: 

dn~"(t) f~ dn dt ~ #71 exp(_/271( t u~ - co - ~))-d~-(r) dr, (14) 

f~  dn+l u e d~(t)  - d~u~ exp(-/27x(t - z)) dt--~-~T (z) d~. (15) 
dtn dt~ ~o 

Using (14) it follows that ~ ,  e >_ 0, is buc. This can be seen as follows. Since the 
sequence u~, e _ 0, is buc, there is an ~ > 0 and a C ~ ~ such that 

~oo lu~(t)le-~l~t < e >_ O. dt C for all 

Write Re(1//2~) = 1/~, hence 1/~ ~ oo in case 1. Take ~ > ~ and consider 

f ~oo ly(t)le-~l~l dt 

<- f f~o exp(-~ltl - l t )  f~ exp(lt' + ~lt'l - ~lt'l)lu~(t')l dt' dt 

C f~o~ et~-~)ltl dt for e sufficiently small. _< 

Applying the same argument to the derivatives of ~ and using (15) in a similar way 
to prove that (d'~/dt~)(t) ~ (d~uo/dtn)(t) it follows that ~,, e > 0, is buc. 

Similar manipulations yield cases 2 and 3. 

Proof  of  Theorem 2. 1. We need to show that ~ ~ ~o- This requires proving 

(i) {w~ ~ ~ ,  e > O, w~ ~ Wo} =~ {Wo ~ ~o}, and 
(ii) {w o 6 ~o} =~ {3w~ E ~ such that w~ ~ Wo}. 
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Part (i) is trivial. Part  (ii) is proved by induction. Let Ro(s) = [Po(s), -Qo(s) ]  with 
det Po(s) # 0 (this can always be achieved by permuting, if need be, the columns of 
Ro(s)). Let Re(s) = [P~(s), -Q , ( s ) ]  and assume that degree (det P,(s)) < N for all 

> 0. Our proof is inductive in N. Let N = 0. Then Pc(s) is unimodular for e > 0 
and ~e is described by 

Let 

Yo/ 

and observe that 

d d 
p,-1 ~ Oc ~ Uo 

no j 
Po ~ Qo ~ Uo 

Next, assurrie that if degree (det P,(s)) <_ N, the following induction hypothesis 
holds: Po(d/dt)yo = Vo and vc, 8 _ 0, buc, imply the existence of a collection y,,, >_ 0, 
buc, such that P,(d/dt)yc = v,. Now assume that degree (det Pc(s)) = N + I, and 
write, following Lemma I or 2, 

P~(s) = F~(s)IYo(S) with P'(s) ~ P~(s) and degree det P'(s)) = N 

and 

or 

F,(s) = a#*(s  - 2c) + (I - a~a*), 2~ --+ ~o, a~--+ ao # O, 

and express it as 

F, ~ y ; = Q ,  ~ u~, (16) 

p" ~ y,--y;. (17) 

Notice that {ylF.(d/dt)y -- 0} is a one-dimensional vector space and that for all 
Yo such that Fo(d/dt)yo -- 0 there i s a  collection y,, 8 > 0, buc, such that y~ - - - *  Yo 

m 11_+ 0 

and F,(d/dt)y, = 0. In order to see this, note that 

( )) I + a,a, -~ - 1 +  2~ a,e -~a = O for all t ~ R .  

F,(s) = t~,bcb*s + I, lt, ~ O, bc --" bo # O. 

Now write the behavioral differential equation for ~ as 
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Let Yo and u o be C ~~ functions satisfying 

Po ~ Y o = Q  ~ uo- 

Rewrite (18) as 

(18) 

d 

Take in (16) u~ = u o for all e > 0. By Lemmas 1-4 and the observation above 
about the kernels of F~ there is a buc sequence y~ ~ y' such that F~(d/dt)~ = 
Q~(d/dt)u o. Applying the induction hypothesis yields a sequence y~, e > 0, buc, such 
that y~ ~ Yo with P~(d/dt)y~ = y'~. 

We conclude that for all sequences {e' -~ 0} there is a subsequence {e" - ,  0} such 
that there exist solutions such that w~' ~ w o. Scrutinizing the proof we can 
however deduce the following: 

Take an arbitrary collection of finite intervals Ii in R such that U Ii = R, and 
define 

6~(~) := inf Isup llw~(t)- Wo(t)ll, t ~ I i, w ~  ~ l -  
w~ L t ) 

Then the proof (all the sequences are but!) shows that lim~o 6~(~) = 0, for 
all i. 

It is now straightforward to construct a sequence ~ s ~ ,  such that ~, ~ w o. 
2. The proof of this part is completely analogous to the proof of the main result 

in [NW] and is therefore be omitted. 

4. Extensions 

4.1. Whether our main result remains valid with the behavior ker R(d/dt) defined 
as the C ~ solutions, without the exponential growth conditions imposed by g, or 
defined simply as distributions satisfying R(d/dt)w = 0, remains a matter of conjec- 
ture. In this case we were unfortunately unable to prove that wo ~ ~o implies the 
existence of we ~ ~ ,  such that w~ - - -*  Wo. It is clear that a proof without involving 

e'-*O 
class g will require different methods than those used here. 

4.2. Consider the systems 

d u 

with Pc(s) e •P• Q~(s) 6 RP• and det Pc(s) ~ 0, e > 0. Now assume that 
Pc(s) ~ Po(s) and Q ~ ( s ) ~  Qo(s) with [Po(s), Qo(s)] e R~• Then three 
things may happen: 
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1. det Po(s) ~ 0 and PoX(s)Qo(s) is strictly proper. 
2. det Po(s) ~ 0 and Pol(s)Qo(s) is not strictly proper. 
3. det Po(S) = O. 

According to our  main results the behaviors converge in all three cases. What 
can we conclude about the behavior of the impulse response? In case 1 the impulse 
response converges in the sense of L] ~ in case 2 in the sense of distributions. In case 
3, however, the impulse response from u to y is not really defined for the limit system 

= 0. This shows that our notion of convergence is distinct from what would have 
been obtained in an input-output  approach, as for instance adopted by Hazewinkel 
in [HI,  where systems are viewed as input -ou tput  mappings, with signals starting 
at time zero. Despite the difference in our approach, the function-spaces and notions 
of convergence used here are very similar to those considered by Hazewinkel. 

4.3. The results of [NW] and our main result remain valid when instead of ~ e R 
we take a vector consisting of a finite number of parameters e = (et, ~2 . . . . .  ~,), and 
let e ~ O .  

4.4. From the proofs it follows that we could enlarge the solution space of R(d/dt)w 
= 0 without losing our continuity results. In particular, we only need to require 
convergence of a finite number of derivatives. However, this number will depend 
on the matrices R,(s), and so we have chosen to state the results as we did. 

4.5. For a treatment of continuity of dynamical systems with latent variables, see 
[WN].  
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