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CONTROLLABILITY OF /2-SYSTEMS*

FABIO FAGNANI AND JAN C. WILLEMS

Abstract. This paper is devoted to an investigation of controllability and almost controllability
of/2-systems. These concepts are defined in terms of the possibility of steering one system trajectory
to another. It is proved that a controllable/2-system always has finite memory. The main result on

almost controllability states that this is equivalent to the existence of a scattering representation. The
paper ends with an investigation of the relation of almost controllability and state representations.
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1. Introduction. Controllability has played an instrumental role in the devel-
opment of control theory during the past three decades and is now a fundamental
concept in mathematical systems theory. It plays a central role in control synthesis
questions, related to the very possibility of exerting effective control. As such, it en-
ters as a crucial "existence" condition in many engineering-type questions, such as
stabilization and optimal control.

The notion of controllability is usually introduced for state space representations
[1], [10], where it refers to the possibility of transferring the state from an initial to a
terminal value. For finite-dimensional, linear, time-invariant systems, controllability
then implies that any initial state can be exactly transferred to any terminal state
in finite time. For nonlinear systems, we must often be satisfied with a local version
of this property. For infinite-dimensional systems, on the other hand, approximate
controllability and/or variations in which we allow the transfer time to go to infinity
have proved to be more relevant. In fact, the question of which, and in what sense,
systems described by partial differential equations are controllable is far from settled
(see [9]).

Recently, a notion of controllability was introduced, where it becomes an intrinsic
property of a dynamical system, and not just of a state space representation [12], [13].
The basic idea is to call a system controllable if an arbitrary past trajectory compatible
with its behavior can eventually be concatenated with an arbitrary future trajectory.
This notion is appealing from many points of view. It does not refer to a particular
representation, and, in particular, it applies to systems that are not in state space
form. In [12] and [13], mainly finite-dimensional, linear, time-invariant systems have
been considered. Also, here we find that in controllable systems any past can be
made exactly compatible to any future by a judicious choice of the input over a finite
time interval. As may be expected, this property proves to be too demanding for
infinite-dimensional systems.

The purpose of this paper is to study controllability using this vantage point for
a class of infinite-dimensional systems. Specifically, we study (approximate) control-
lability for linear systems whose behavior is a shift-invariant, closed, linear subspace
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of/2(Z, Cq). We also study state representations of such systems and prove a sort of
state space isomorphism theorem for almost controllable systems.

The mathematical techniques and methods of proof used here are inspired
by functional analytic methods (H and the like), particularly the work of Fuhrmann

To discuss systems, we follow the so-called behavioral approach, as introduced
and developed in [12] and [13]. h dynamical system is a triple E (T W, B) with
T C R the time axis, W the signal space, and B c WT the behavior. In this paper,
we only consider discrete-time systems with T Z or continuous-time systems with
T R. Moreover, we assume that our systems are time-invariant; that is, that
atl3 13 for every t E T (shift-invariance), where a WT --- WT is the t-shift defined
by (atf)(t’) := f(t + t’). We also only consider systems with W Cq and with B
a linear subspace of WT (linear systems). For most of this paper, we focus on the
following class of linear systems:

/:q2 {G (Z, Ca, B)with B a closed shift-invariant linear subspace of lq2},

where lq indicates/(Z, Cq) the Hilbert space of the Cq-valued square-summable se-
quences over Z. We often refer to a system in/:q2 as an 12-system.

Example. (1)12-systems defined by input/output maps. Let T" 12 -- lp2 be a closed
linear map that commutes with the shift a. T induces the system

:= (z, C(T)) e m+p

where G(T) is the graph of the map T. These input/output systems have been widely
investigated in the past (see [5] and [3]); an important case is when T is a convolution
operator induced by an/1-kernel.

(2) 12-systems as restrictions of other systems. To determine how flexible it is
to work with systems as a set of trajectories (the behavior), compared with simply
input/output relations, suppose that we have linear input/output map T" (Cm)z --(CP)z commuting with the shift. If T(12m)

_
12p, T does not induce an input/output

/2-map in the classical sense; nevertheless, we can consider the dynamical system
2 Under certain conditions (for example,E (Z, Cm+p, B), where B := G(T)N Im+p

2when G(T) is closed in the pointwise convergence topology) we have that E_ E m+p
and that E completely determines the original behavior G(T). Therefore the theory
of/2-systems can be used to analyze E and thus to infer properties of the map T.

For a given map w T -- W, we define w- WlT(_,0) (the past of w) and
W+ :--" WlTN(O,+oc) (the future of w). If 13 C WT, we indicate with B- and B+ the sets
of, respectively, the past and the future trajectories of B.

DEFINITION 1.1. A time-invariant dynamical system E (T, W, B) is said to be
controllable if, for every wl and w2 in B, there exist t >_ 0 and w B such that

w- w{- and (at’w)+ w+2.
This notion of controllability plays a fundamental role in the theory of linear, time-

invariant, finite-dimensional, state space systems, but it proves to be very restrictive
when we consider general/2-systems, for which we propose the following.

DEFINITION 1.2. A linear time-invariant system E (Z, Cq, B) q2 is said to
be almost controllable if there exists K > 0 such that, for every Wl and w2 in B, there
exists Vn B for n 1, 2,..., yielding the following:

((T--EVE) --+ W, ((TnVn)+ W+2 IIvnlle <-- K ([[w{-[[2 +
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where --+ denotes limit in the/2-topology for n --Remark. It is not obvious, from this definition, that a controllable system in 2q
is almost controllable. This is indeed the case and is shown later.

Remark. The uniform boundness requirement on the V’nS in Definition 1.2 is es-
sential. Indeed, if we drop this, then any system in :2 would satisfy the property;
indeed, let Wl, w2 E B and consider vn :- (7-nw2 nt- (Tnwl Then Vn B for all n, and
it is evident that ((Tnvn)+ "-+ W+2 and (o’-nvn) --- W in the/2-topology.

2. Controllable systems. The main result of this section concerning/2-systems
shows that controllable systems in the sense of Definition 1.1 have automatically finite
memory.

THEOREM 2.1. Let E (Z, Ca, B) be in 2q. Then is controllable if and only
if B can be expressed as the 12-solutions of a linear constant coelCficients difference
equation; that is, there exists R(z,z-1) Cgxq[z,z-1] such that

(2.1)

where R(a, (7-1) (cq)Z -- (cg)Z i8 the operator in the shift a induced by the poly-
nomial matrix R(z, z- 1).

To prove Theorem 2.1, we must establish a few intermediate results, which have an
interest of their own. Also, we work in a somewhat more general setting encompassing
/2-systems, since we believe that, in this way, a more complete picture of the situation
can be drawn without additional effort.

For wl, w2 WT and t T, we denote by the symbol wl At w2 the concatenation
of Wl and w2 at time t; i.e., w At w2(t’) Wl (t’) for t’ < t and Wl At w2(t’) w2(t’)
for t’ >_ t. We also use the symbol At to concatenate restrictions of functions such as,
for example, w- Ao w2+.

DEFINITION 2.2. Let X be a linear subspace of (Cq)z and let I1" I[z be a norm
on Z. (X, I1" IIx) is said to be a memoryless Banach space if the following hold:

(1) (X, I1" IIz) is a complex Banach space,
(2) X is shift-invariant (aX X) and a" X X is an isometry,
(3) X is memoryless (w, w2 X = Wl At w2 E X for all t Z).
Remark. If X is a memoryless Banach space, w X, and I C Z, we often identify

wli with the trajectory in X, which is equal to w on I, and 0 outside of I. Through
this identification, the spaces X- and X+ are seen as the subspaces of X consisting
of the trajectories with support in, respectively, (-cx, 0) and [0, +cx). It follows
that X- and X+ are closed in X and, by condition (3) of the preceding definition,
X X- @ X+. We indicate with P- and P+ the linear bounded projections from
X on X- and X+, respectively. Once a memoryless Banach space X has been fixed,
the convergence of a sequence in the norm of X is simply denoted by the symbol 4,

with no further specification when no confusion can arise.

Example. We now present the following examples of memoryless Banach spaces,
which are considered later in the paper:

(1) The space l (1 _< p < +;q N+) of the Cq-valued sequences over Z
whose pth power is summable, equipped with the norm
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(2) The space l (q e N+) of the bounded Cq-valued sequences over Z, equipped
with the norm

I1 11 := sup
fEZ

(3) The subspace cq of l, consisting of the sequences converging to 0 as t
approaches d-ec, equipped with the norm [[. [[o.
Note the following chain of inclusions:

If X is a memoryless Banach space contained in (cq)z
class of linear systems:

we consider the following

x := {E (Z, Cq, B) with B a closed shift-invariant linear subspace of X}.

In the case where X lp, we also use the notation :qP for x.
Let E (T, W, B) be a time-invariant system and A a positive number. E is

said to have A-finite memory if Wl, w2 E B and wll[o,a) w2[[o,a) implies that
Wl Ao w2 E B. E is said to have finite memory if it has A-finite memory for some A.

Our first goal is to study the structure of finite memory systems in /:x. To
do this, we must introduce the important system-theoretic concept of completeness.
Let E (T, W, B) be a time-invariant system; it is said to be complete if, given any
w WT, we have that w B if and only if w[i B[I for every finite interval I C T
(with obvious meaning of B[z). The structure of the complete time-invariant linear
systems is studied in much detail in [12] and [13]; in particular, there is the following
important result.

THEOREM 2.3. Let E (Z, Ca, B) be a linear, time-invariant system. The fol-
lowing conditions are then equivalent:

(1) E is complete,
(2) B C (Ca)z is closed in the pointwise convergence topology,
(3) There exists R(z,z-) e Cgq[z,z-1] such that 13 kerR(a,a-).
From (3) of Theorem 2.3, it is clear that any complete linear system over Z indeed

has finite memory. In general, systems in/:x are not complete; we can actually prove
that, if B c cq, then E is complete if and only if B {0}. Nevertheless, the concept
of completeness proves to be useful in our investigation. In fact, we have the following
result.

PROPOSITION 2.4. Let X be a memoryless Banach space contained in Cq and let
] (Z, Ca, B) be in x. Then E has finite memory if and only if B Bcmpl CI X,
where Bcmp is the completion of B (defined as the smallest subspace of (Ca)z that is
shift-invariant, complete, and contains

Proof. Observe that B c Bcmpl CJ X. Assume that E has A-finite memory and
let w E Bcmp CI X. Then there exists a sequence Wn 13 such that

Wn[[--n,n] W[[--n,n] Vn N.

Consider now the linear map PA B- @ B+ B-l[-/x,0) (R) B+[[0,A) given by
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Since PA is surjective, there exists a linear map QA B- I[-zx,0) B+l[0,) -+ B- B+
such that PA o QA Id. Since E has A-finite memory, we can assume that

((o’--n+Awn)--,(o’n--AWn)+) ---QA ((o’--n4"AWn)-- I[_A,O),(o’n--AWn)+I[O,A) )
By (2.2), for n sufficiently large, we then have that

(2.3) ((o’--n+AWn)-- (o’n--AWn) "+’) Qzx (wl[-=,-=+), wl[=-,))

Since w E X c Cq, we have that

(2.4) (WI[_n,_nA_A), Wl[n_A,n)) 0 as n -4-oo.

QA is bounded, since it acts on a finite-dimensional vector space; therefore, by (2.3)
and (2.4), we have that

which implies, together with (2.2) and condition (2) of Definition 2.2, that wn --* w.
This yields w E B. The other implication follows from Theorem 2.3.

Remark. Proposition 2.4 still holds true if X l and if we assume that B is
closed in the weak*-topology of l; the proof is identical.

Let us now state the main result of this section.
THEOREM 2.5. Let X be a memoryless Banach space and let E be a controllable

system in z. Then E has finite memory.
We first prove a proposition based on a technical lemma whose proof is omitted

since it follows from a straightforward application of the Douglas factorization theorem
(see [5]).

LEMMA 2.6. Let X, Y, and Z be Banach spaces and let A X -- Z and B Y
Z be linear bounded maps. If there exists Xo c X subspace of second category in X
such that T (A[xo) c TE(B), then T(A) C T(B)

We now state a result that claims that, under certain conditions, controllability
may always be achieved in a uniformly bounded finite number of steps, if it can be
achieved at all.

PROPOSITION 2.7. Let X be a memoryless Banach space and let E x be a
controllable system. Then there exists no N such that, for all wl and w2 in 13, there
exists w 13 such that

w- w and (anow)+ w+2

Proof. Let us consider the following sequence of linear bounded maps:

(2.5) T :B - X- X+,

given by T(w):= (w-, (a’w)+). By controllability, we have that

[.J n(Tn)
n>O
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Proposition 2.7 will be proved if we show that there exists no E N such that 7 (Tno)
B- @ B+. Let us introduce the map

T B@B X- X+

given by T(wl, w2) := (w-, w2+). Consider Mn T-l’(Tn). Then

U M,-BB,
n>O

and, since B B is a Banach spce, it follows, by a standard category argument (see,
for example, [11]) that there exists no E N such that Mno is of second category in
B B. Applying Lemma 2.6 to the maps T and T, it follows that T(T) c 7 (Tno),
which implies that 7 (Tno) B- B+.

More can be said about the range of the map To introduced in (2.5). In fact,
consider the map

B -- X- X+ @ B][0,no)
with i Tno (R) Pno, where Pno B Bl[0,no is the restriction to the interval [0, no).
It is clear that is a linear bounded embedding (injective with closed range) and that

Pno has finite-dimensional range; it is then a standard result from functional analysis
(see, for example, [2]) that Tno also has closed range. This yields the following result.

PROPOSITION 2.8. Let X be a memoryless Banach space and let E (Z, Ca, B)
x be controllable. Then B- and B+ are closed subspaces of X.

Proof of Theorem 2.5. Consider the following subspace of B+:

0+ := {w+ t+lo 0 w+ t}.

Define the linear map

where no is the same as in Proposition 2.7, by R(x) v (mod B0+), where v is any
trajectory in /3+ such that 0 A0 x Ano a-nv 13. It is easy to verify that R is a
well-defined linear map, and that it is surjective. Since the domain of R is finite-
dimensional, it then follows that B+/B+ is also finite-dimensional (this is actually a

state space of ). Therefore there exists a finite-dimensional subspace N of B+ such
that B+ B0+ N. Now consider the following decreasing sequence of subspaces of
B+:

Hn :-- {w+ + W+l[0,n)- 0}.
Then

Hn --(0).
n>O

Consider Kn PNHn, where PN is the projection operator on the subspace N. {Kn}
is a decreasing sequence of subspaces of N with null intersection; since N has finite
dimension, it then follows that there exists > 0 such that K (0), which implies
that H C Bo+. We now claim that E has -finite memory; in fact, let wl, w2 B
such that wll[o,) w21[o,a). Then

(:- )+ H c/So+,
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which implies that

We conclude this section with the following summarizing result, which encom-
passes Theorem 2.1, stated at the beginning of the section.

THEOREM 2.9. Let X be a memoryless Banach space contained in Cq and let
E E x. Then the following conditions are equivalent:

(1) E is controllable,
(2) E has finite memory,
(3) there exists a polynomial.matrix R(z,z-1) e CgXq[z,z-1] such that

( e X IR(,-) 0}.

Proof. (1)=(2) is Theorem 2.5. (2)=v(3) is contained in Proposition 2.4 and
Theorem 2.3. Finally, (3)(1) follows from standard results of the theory of complete
systems: [13] and [14] contain a proof for the case where X lq2, which is easily
generalizable to our case. []

Remark. The condition that X C cq in Theorem 2.9 is essential. In fact, it follows
from the results of [13] that Theorem 2.9 is false for l.

3. Almost controllable systems. In this section we specifically consider 12-
systems, since we believe that the Hilbert structure plays a fundamental role in this
context to achieve nice representation results. We make use of frequency domain
techniques including Hardy spaces theory; our main references for these matters are

[4], [6], and [7].
We start with the following interesting topological characterization of almost con-

trollability.
PROPOSITION 3.1. Let E (Z, Ca,13) be an 12-system. Then the following two

conditions are equivalent:
(1) E is almost controllable,
(2) 13- and 13+ are closed in 12q.
Proof. (1)=(2). By (1), there exists k > 0 such that, for every w- B-, there

exists Vn 13 such that

(o’nVn) W--, (o’--nVn)+ - o, llvnll= < KIIw-II.
Consider Wn o’nVn; then

(3.1) w w-,

(3.2) IlWn+ll2 IlWnll2 Kllw-112,

By (3.2) we can assume, taking a subsequence if necessary, that

(3.3) Wn+ - v+ lq2+ weakly.

Equations (3.1) and (3.3)yield

Wn W AO W+n --+ W- AO vA- weakly,
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which implies that

(3.4) w- A0 v+ E B

and, by (3.2),

From (3.4) and (3.5), it follows, by a standard argument from functional analysis, that
T(P-I B- is closed. In an analogous way, we see that 13+ is also closed.

(2)=(1). Since the two proj.ections P- and P+ both have closed range, there
exists K > 0 such that, for all w- E B- and w+ B+, there exist Wl and w2 in B
such that

w+, Ilw ll2 Kllw+ll2.
Now consider Vn anwl + ff-nw2. Then

(o.--nVn)-- W 2t- r--2nw2 --+ Wl
+ +

which yields (1).
Remark. By Propositions 2.8 and 3.1, it is now evident that, for/2-systems, con-

trollability indeed implies almost controllability.
We now study representations of almost controllable systems, and this is the

subject of the remainder of this article. We show how it is possible to represent an
almost controllable system as the image of/2-maps, while, in next section, we study
state space representations. The common feature underlying these two representations
is the presence of latent variables, namely, variables that are not part of the external
signal, but that are introduced to express the internal structure of the system. We
return to this point later.

Let T C R and W1, W2 be sets; consider B1 c WT and B2 C W2T. A map
F" B - 2 is said to be causal if wl(t) w2(t) for all t < t’ implies that (Fw) (t)
(Fw2) (t) for all t < t’; F is said to be anticausal if w (t) w2(t) for all t > t’ implies
that (Fwl)(t)= (Fw2)(t) for all t _> t’.

The following is the main result of this paper.
THEOREM 3.2. Let E (Z, Ca, 13) be in 2q. Then the following conditions are

equivalent:
(1) E is almost controllable,
(2) 13- and 13+ are closed subspaces of 12q,
(3) There exist a number g N and two linear bounded maps

satisfying the following properties:
(i) 7 (F-) B 7 (F+),
(ii) F- and F+ commute with a,
(iii) F- is anticausal and has an anticausal bounded left inverse,
(iv) F+ is causal and has a causal bounded left inverse.
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Moreover, if any of the three above equivalent conditions is satisfied, then the maps
F- and F+ in (3) can be chosen to be isometrics. If we assume that this is the case,
then g is unique, and F- and F+ are unique up to right multiplication by unitary
isomorphism on Cg.

The proof of Theorem 3.2 is rather involved. We first discuss some easy aspects.
Proof of Theorem 3.2 (Preamble). Note that the equivalence between (1) and (2)

is proved in Proposition 3.1.
Also, it is easy to show that (3)=(2); in fact, consider the maps

A-P-oF+oP-

and
B" lq2- --, l2-, B P- o/+ o P-,

where F+ is the causal left inverse of F+, and P- here indicates both the projection
la2- and lq2-. We have thatoperators on

B o A P- o + o P- o F+ o P- P- o + o F+ o P- Idl]_

which implies that T(A) B- is closed. In an analogous way, using F-, it follows
that/3+ is closed.

It therefore remains to be proved that (2) implies (3), and the remainder of this
section is devoted to this implication.

Remark. For finite memory/2-systems, Theorem 3.2 is already obtained in [14].
We now first introduce the important frequency domain description of an 12-

system. If E (Z, Cq, B) e/2q2, consider/ the closed subspace of n2q L2 (W, Cq)
(the Hilbert space of the Ca- valued Lebesgue square-integrable functions on the unit
circle T) obtained as the image of B through the Fourier transform $’q "lq2 -- Lq2. It
is well known that / is a doubly invariant subspace of L2q with respect to the shift
S" Lq2 Lq2, given by (Sw)(eiO) eiw (ei). Namely, Sn for all n e Z.
Doubly invariant subspaces of Lq2 have been widely studied in the past (see [6]); we
must recall only a few fundamental facts. A range function J J (eiO) is a function
on the circle T taking values in Gq (the family of all the subspaces of Cq); J is said to
be measurable if the orthogonal projection P (e0) from Cq on J (e0) is measurable.
If J is a measurable range function, we can consider that

3//j {zb b e Lq2 and zb (ei) e J (ei) a.e. on T},

and it is easy to show that Adj is a doubly invariant closed subspace of Lq. A
fundamental fact is that all closed, doubly invariant subspaces of Lq2 are of this form,
and also the correspondence between J and JMj is one-to-one, under the convention
that range functions are identified if they are equal almost everywhere. A measurable
range function J is called analytic if there exists a finite number {F1,..., Fg} of
elements of Hq2 (the closed subspace of Lq2 consisting of the functions whose negative
Fourier coefficients are zero) such that g (ei) is the span of {F (e) ,... ,Fg (e)}

--2
almost everywhere on T. In a similar way, using the conjugate space Hq, we can
introduce the concept of coanalytic range function. If J is a range function, we can
define the orthogonal range function J+/- by J+/- (e0) (J (e)) +/-, where the last
orthogonal must be considered in Cq with respect to the canonical Hermitian inner
product; it can be proved that J is analytic if and only if J+/- is coanalytic.
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Let us now introduce the spaceLq of the g q-matrices of L-functions defined
on T and the subspace Hq consisting of those whose negative Fourier coefficients
are zero. If F E Lq, we will denote by MR the multiplicative operator induced by
F, namely, MR "L2q - L2g, given by (MEw)(ei) F (ei)w (e). The following
proposition clarifies the relation among all of these concepts. The proof is practically
contained in [6]; therefore we only give a sketch of it.

PROPOSITION 3.3. The following conditions are equivalent:
(1) J is an analytic range function,
(2) There exists F Ug such that /[j n (ME),
(3) There exists L e gq such that A/Ij ker (ML).

Moreover, if any of the above equivalent conditions are satisfied, then F in (2) can be

chosen to be outer (J4jNH2q T (MFIH)) and rigid (F (ei) is an isometry almost

everywhere). With this choice, g is uniquely determined by the relation g dim J (eie)
almost everywhere, and F is also uniquely determined up to right multiplication by
constant unitary matrix.

Proof. (1)=v(2) Consider that 4j ]/[jNHq. ,4j is a closed S-invariant subspace
of Hq; therefore, by the Beurling-Lax theorem (see [6] and [7]), there exist g e N and
F Hq with F rigid such that .Aj FH2g. Since J is an analytic range function, it
is evident that ./j T (MR). Moreover, F is outer by the way it has been defined.

(2)=(1) is trivial.
(3)=(1). Suppose that A/tj kerML. Write L as n (nl,...,nl)t, where

Lj H1. Then

{w e A/[j} = {L}w 0 j 1,...,1} = {w_l_j j 1,...,1}.

Let J’ be the coanalytic range function spanned by the family {1,’’’, l }. Since

J- (J’)+/-, this shows that J is analytic.
Reversing this argument, we see that (1)=(3).
Uniqueness of F and the fact that g dim J (eiO) almost everywhere simply

follow from the Beurling-Lax theorem and the fact that F is outer and rigid.
Of course, we have the following symmetric result.
PROPOSITION 3.4. The following conditions are equivalent:
(1) J is a coanalytic range function,
(2) There exists F HqCxg such that .A/[j (M),
(3) There exists L e Hlq such that /[j ker (My).

Moreover, if any of the above equivalent conditions are satisfied, then F in (2) can
be chosen to be outer and rigid. With this choice, g is uniquely determined by the
relation g dim J (eie) almost everywhere, and F is also uniquely determined up to
right multiplication by constant unitary matrix.

We are now ready to state and prove the main mathematical result.
LEMMA 3.5. Let A/[ be a closed, doubly invariant subspace of L2q. Then the

following two conditions are equivalent:

(1) A/I- (the projection of /[ on g- (H2q) +/-) is closed,
(2) There exist F e Hang and F e Hgq such that J4 n (MR) and FF Idg.

Also, if either of these two conditions is satisfied, then F in (2) can be chosen to be
rigid and outer.

Proof. (1)=(2). A/I- is closed, and it is invariant for the adjoint of the left
shift acting on Hq2-. Therefore, by the Beurling-Lax theorem, there exists a rigid
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E Hqk, with k _< q, such that

(3.6) .A/I- 2 _L

where the orthogonal is taken with respect to the space H2- (and not with respect to
all of L2!).

If f E L2, let us indicate by f- and f+ the projections of f on, respectively, H2-

and Ha2. Now, for any f e A/I, we have that f-l-H- by (3.6), and also f+l-H-.
Therefore fl-H- for allf Az[, or, equivalently,

(3.7) C f_LH Vf e .Azl

Since is a doubly invariant subspace, (3.7) implies that Ctf 0
We now prove that, in fact,

for all f A/[.

(3.8) Ctf 0 f E J/[.

Let f be in Lq2 such that Off 0; it follows that Orf+ + Orf- 0, and therefore
tf-_LH-, or, equivalently, f-_L-H-. By (3.6), it then follows that f-
Since A/[ is doubly invariant, we also have that

tS-nf O Vn N,

which, by the preceding argument, yields

(S--nf) .A- Vn N.

Therefore there exists a sequence Vn H2q such that

(3.9) S f)- + Vn J Vn N,

and, since A/I- is closed, we can choose Vn such that

(3.10) Ilvnll2 Ilfl12,

for all n. It follows immediately that Sn (S-nf) f, and, by (3.10), we can
assume--taking, if necessary, a subsequence--that Snvn 0 weakly. Therefore

Sn ((S-nf) -- Vn) f weakly,

which, by (3.9), implies that f AA. This yields (3.8), which can be equivalently
expressed as A/[ ker (M0t). By Proposition 3.3, this implies that there exists F
Hqg such that A/[ T (MF), and F can be chosen to be outer rigid.

We must still prove that F admits an H left inverse. This may be seen as
follows. Consider the linear bounded map A" Hg2- -- H2-, given by

A P- o MF[H-
where P- denotes the projection onto the subspace H2-.
adjoint of A:

A*’H-H-, A* MR-.

Consider the following
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Since F is outer and rigid, it is easy to see that A* is surjective. Consequently, A is
injective and has closed range. We now use the fact that a function in a Hardy space
(Hq2, HgCxq can be holomorphically extended to the open unit disk D (see [7]); for
simplicity of notation, we use the same symbol for a function on T and its extension
to D. If h E H and ( E D, we have that

[h (ei)- h(a)] (1 Oe--iO) -1 e H.
Consider that

f (1- IclU) /= (1- ce-ie)-It is a matter of computation to show that .f e H2- and llfll 1 for all c e D.
Let { e Cg, with I1{1[ 1. We can then show that

A (f) F(o) (f)

Assume now that there exist sequences {Cn} C D and {n} C Cg, with IIn 1, such
that F(Cn), - O. By (3.11), A(nfa) --+ 0, and IInfanll2 1. This is absurd,
since A is injective and has closed range. By the vectorial Corona theorem (see [5]),
it then follows that there exists F Hgq such that FF- Ig.

(2)=>(1). Simply observe that A admits a left inverse given by B := P- oM,>[H-.
Therefore Nl- 7(A) is closed. 0

Naturally, we also have the following symmetric result.
LEMMA 3.6. Let N[ be a closed doubly invariant subspace of L2q. Then the fol-

lowing two conditions are equivalent:
(1) N[+ (the projection of A4 on H2q) is closed,
(2) There exist F e HqCxg and " e Hxq such that N[ :R (M) and ’F

Idg
Also, if either of these two conditions is satisfied, then F in (2) can be chosen to be
rigid and outer.

Proof of Theorem 3.2 (End). (2)=>(3). Consider the Fourier transform q’12q --+

nq2. If Jeq(B) Ad; then ’q(B-) A/l-, Jq(B+) Nf+, and both are closed in nq2.
By Lemmas 3.5 and 3.6, there exist G1 and (72 in Hxg rigid, outer, both having H
left inverse, and such that

T (Ma,) A/[ g (M=)
(note that g is the same for G1 and G2 by Propositions 3.3 and 3.4). Consider now
that

F+ "l --+ lq, F+ "-- ,"--1 0 Ma o

and
F- "l2 + lq2, F- :-- .---1 o M2 o ’g.

Because of standard properties of the Fourier transform, it follows immediately that
F- and F+ are isometries and that they satisfy properties (i)-(iv) of (3). Finally, the
uniqueness of g, F+, and F- also follows from Propositions 3.3 and 3.4. [

Remark. The representation expressed by condition (3) of Theorem 3.2 is classi-
cally known as the scattering representation, and it is investigated in [8]. It is worth-
while to note that, while in [8] the scattering representation is derived from the ex-
istence of a pair of orthogonal subspaces (the incoming and outgoing subspaces) of B
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satisfying certain properties, here such a representation is independently derived from
the topological assumption expressed by condition (2) of Theorem 3.2.

Remark. It is worthwhile to relate the result of Theorem 3.2 with the result of
[13], which states that, if E (Z, Cq, B) is linear time-invariant and complete, then E
is controllable if and only if B 7 (M(a, a-1)) for some polynomial matrix M(s, s-1).
Actually, if this is the case, then there exist polynomial matrices left-invertible M1
and M2(8) such that 7(M(a)) B 7 (M2(a-)). Moreover, M(a) and M2(a-1)
can be chosen to be injective. In a sense, Theorem 3.2 generalizes this to/2-systems.

We conclude this section with an analysis of input/output, almost controllable
systems. Let T" 12m --* lp2 be a linear bounded map that is causal and commutes with
a; consider the induced/2-system ET (Z, Cm+P, G(T)) (see part (1) of the example
in the Introduction). We want to obtain necessary and sufficient conditions on the
map T such that ’]T is almost controllable. Consider now the Hankel operator -T
associated with the map T, namely, 7-/T" 12m lp2, given by ’T :--" P+ o Tll2m-.

PROPOSITION 3.7. ST i8 almost controllable if and only if the Hankel operator
’T has closed range.

Proof. It is evident that (t denotes transposition)

(3.12) /3 7 (Ildm, T]t).
Note that

[Idm, 0] o [Idm, T]t Idm,

which implies, by Lemma 3.5, that B- is closed. Therefore by Theorem 3.2, ]T is
almost controllable if and only if B+ is closed. Therefore it suffices to show that B+
is closed if and only if -T has closed range. Assume that ’T has closed range and
let fn E L2m be a sequence such that

P+ [Idm, T] fn [)1, )21 e 12m lp2

Then

In+ -+ )1, P+Tfn - 2,

which imply that P+Tf 2 P+TI. Since ’T has closed range, it follows that
there exists f- 12m such that

P+Tf- 2 P+TI,

which yields 2 P+T ()1 -- f--). Hence, by (3.12), [1, 2] B+. This shows that
B+ is closed. On the other hand, if ’T does not have a closed range, then there exists
a sequence f- 12m such that

(3.13) uvf n

There holds that P+ [Idm, T]t f -- [0, Cir. We claim that

[0, ]t n ([Idm, Tit).

Indeed, assume that there exists f 12m such that

P+ [Idm, T]t f [0,
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This implies that f+ 0 and P+Tf- , which by (3.13) yields a contradiction.
This shows that B+ is not closed. [:]

Remark. In the scalar case (m=p-1), the condition for -T to have a closed range
can be expressed nicely in an equivalent way. Consider that " L2 -- L2, given by

It is a standard fact that is a multiplicative operator with symbol H E H (called
the transfer function of ET). Note that 7-/T is completely determined by H, and it
can be proved that 7-/T has a closed range if and only if H admits a factorization of
the kind H CK, where E H is inner, K Ha, and also there exists 5 > 0 such
that

I(z)l+lK(z)[_>5 VzeD.

Consequently, a sufficient condition for the almost controllability is, in this case, that
H is purely inner or, more generally, that its outer part is rational.

4. Hilbertian state models We start this section with a few words about
general latent variables models, before focusing on state models. A dynamical system
with latent variables is defined as a quadruple

I (T, W, L,/3i)

with T and W as in the definition of a dynamical system given in the introduction; L
is the set of latent variables; and 131 c (W L)T the (full) behavior. As for dynamical
systems, we always assume that T Z (or T R) and that our latent variables sys-
tems are time-invariant (the definition is analogous to the one for dynamical systems);
also we assume linearity, namely, that W and L are vector spaces and/31 is a linear

subspace of (W L)T
(T, W, PwBI)

(where Pw is the projection on the first factor of W L) is said to be the manifest or
external dynamical system induced by EI; PwBI is called the manifest (or external)
behavior. EI is said to be a latent variable representation of E. EI is said to be
externally induced if there exists a map (called the observability map)

F" PwBI PLBf

such that
{(w,g) eBf}vv{wePwBI and g=Fw}.

EI is said to be past externally induced (future externally induced) if the map F is
causal (anticausal).

If (Z, Cq, B) is an almost controllable system, the scattering representation
of introduced in Theorem 3.2 (3) naturally induces the following two latent variables
representations of :

(z,
where B ((w, g) e 12q (R) 12g F+g w}. The existence of a causal (respectively,
anticausal) left inverse of F+ (respectively, F-)implies that Z (respectively, Z)-)
is past (respectively, future) externally induced. Note also that, in both cases, the
observability map F (given by the left inverse of, respectively, F+ and F-, restricted
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to B) is bounded. Indeed, observe that, whenever E and El are/2-systems and El
is an externally induced latent variable representation of E, the observability map F
has closed graph (G(F) Bf) and therefore is always bounded.

If E (T, W, B) is a dynamical system and El (T, W, L, Bf) is a latent variables
representation of E, then El is said to be a state space representation of E if the
following holds true:

[(Wl,/1), (w2,/2) e Jf and /l(t) =/2(t)] = [(w1,/1) At (w2,12) e Bf].

For state space representations, we use the notation Es for EI. In [12] and [13], a
general theory of state space representations of a dynamical system is developed, and
a notion of complexity is introduced, as well as a notion of equivalence. In particular,
it is proved that, if E is a linear system, then the linear time-invariant state space rep-
resentations of E, of minimal complexity, are all equivalent to each other; moreover, it
is shown how to canonically construct a minimal state space representation. However,
when we study dynamical systems carrying a topological structure on the behavior
(as /2-systems), then it is of interest to consider topological structures on the state
space, also, and, consequently, to have notions of complexity and equivalence where
these topological concepts are also considered. One of the main effects of this new
setting is the loss of the equivalence of all the state space representations of minimal
complexity, even for a linear system. The main result of this section is to show that,
for almost controllable /2-systems, this equivalence is actually preserved! We start
with an interesting definition, which induces a topological structure on state space
representations.

DEFINITION 4.1. Let E (Z, Cq, B) E /:2 and let E (Z, Cq,X,B) be a
time-invariant state space representation of E, with X a complex separable Hilbert
space. Es is said to be a Hilbertian state space representation of E if the following
condition holds true: For every A open subset of l2 such that B c A, there exists an
open neighborhood N of 0 in X such that

(4.1) [(wl,x), (w2,x2) e Bs and x(0) x2(0) e N] = [w Ao w2 e A].

Condition (4.1) simply says that if two trajectories in B have states that at t 0
are "very close" to each other, then the concatenation of these two trajectories will
also be "very close" to B.

We denote by H the set of all the Hilbertian state space representations of the
/2-system E. If Es (Z, C, X, Bs) H, define

(4.2) Xeft := { e X 3(w, x) e Bs such that x(0) }.

Xeft is a subspace of X (not necessarily closed), and it is called the effective state
space of Es.

DEFINITION 4.2. E H is said to be trim if Xff X; it is said to be almost
trim if Xff X.

If Es H is externally induced, then we can define a linear map

(4.3) g B X,

given by g(w) := x(0), where x e Xz is such that (w, x) e Bs. With a slight abuse of
notation, we also call g the observability map of Es.
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DEFINITION 4.3. ES E H is said to be boundedly externally induced if g is
bounded.

We now give some examples of such state space representations.
Example. (1) If E (Z, Cq, B) e/q2, consider that

(4.4) ’]rivial (Z, Cq, , rivial)

where

rivial :__ {(W,X)IW e and x(t) atw}.

rivial is usually called the trivial state space representation of Z, and it is immediate
to see that rivial HE, is trim, and boundedly externally induced.

(2) A more important state space representation of E is the following"

(4.5)

where
D := {w BIT A0 0 B}

and

B := {(w, x) w e B and x(t) crtw (mod D)}.
It is called the canonical state space representation of E. It is well known [13] that

E is a trim, past and future externally induced state space representation of E. It is
easy to see that E is also boundedly externally induced. Moreover, E H if we
consider BID with the natural quotient structure, after noting that D is closed in B.
Indeed, fix (wx,xl) and (w2, x2) in B, and assume that

IIxl(0) x (0)ll

This means that there exists v D such that [[wl w2 + v[[ _< 5, or, also, that

+ o Jo v) v Jo o)II, -<
Now wl A0 w2 (Wl + 0/0 V) (W2 V/0 0), and, therefore,

IlWl A0 we Wl -- 0 /0 vll 5.

This shows that Es H.
DEFINITION 4.4. Let E (Z, Cq, Xi, Bis) be in H for 1,2. E is said

to be more complex than E (E _> E) if there exists a linear bounded surjective
map f’X --. X2 such that, for every (w, x2) e B, there exists x e Xz such that
(W, Xl) e B and f o Xl X2.

DEFINITION 4.5. Let E and E as in Definition 4.4. E is said to be equivalent
to E (E

___
E) if there exists a linear bounded bijective map f" X1 -- X2 such

that (w, Xl) e B if and only if (w, f o x) e B.
Note that _> is a preorder on H, while

_
is an equivalence relation.

We indicate with H the set of all the minimal elements ofH with respect to the
pre-order _>; namely, Es H if and only if Es E H and [Es _> E] = [Es E].
We later show that the canonical representation E is always minimal and that, if E
is almost controllable, then any other minimal representation is, in fact, equivalent
to E.
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Let us now investigate in more detail the continuity requirement in Definition
4.1 of a Hilbertian state space representation. Assume that F,s (Z, Ca, X, Bs) is a
linear time-invariant state space representation of F, (Z, Ca, B), and assume that X
is a complex separable Hilbert space. Define the map

) (S) Xeff lq2/j

(Es)(x) := wl Ao w2 (mod B),

where Wl, w2 is any pair of trajectories in B such that there exist xl and X2 in Xz with
(wi, xi) E Bs for 1, 2 and x (0) x2(0) x. To better understand how the map
(Es) really acts on Xeft, observe that the codomain of (F,s) can be canonically

identified with 12q’-/’+0-1/.t where

Bo+ := {w+ E l2+ such that 0 Ao w+ B}.

Through this identification, (Es) acts as follows: Given x e Xeft, (Es)(x) is the
equivalence class (mod Bo+) of all the possible futures of the system B compatible with
initial state at time t 0 equal to x. An analogous identification can be made with
respect to the past.

LEMMA 4.6. (Es) is a well-defined linear map.
It l/Proof. Let (w, xi) and (wi, xi be in Bs for i= 1, 2 and assume that

(4.7) xl (0) x (0) x xi’(0)

II IIConsider (w- wi ,xi- xi for i- 1, 2 and observe that, by (4.7),

(xl (0) xi’(0)) 0.

Therefore (w w) A0 (w w) e B, or, equivalently,

which shows that (Es) is well defined. A straightforward calculation shows that
(Es) is linear. 13

Using this lemma we can obtain the following nice characterization of Hilbertian
state space models.

PROPOSITION 4.7. Es is in Hr. if and only.if (Es) is bounded.
Proof. The proof is an immediate application of the definition of H..
If Es Hr,, then (Es), being bounded on Xeft, can be extended in a unique

way to a linear bounded map acting on Xe; for simplicity of notation, we denote this
extension also by the symbol

If Es (Z, Cq, X, Bs) Hr., denote := (Es) and consider that

(4.8) E := (Z, Cq, X/ker, B),
where

B "-{(w,)E (Ca X/ker)
z
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where 5 denotes the equivalence class of x (mod ker ). We have the following result.
PROPOSITION 4.8. is a Hilbertian externally induced state space representa-

tion. Moreover,
Proof. Let us prove that E is a state space representation of E. Fix (w,, Xl) and

(w2,x2) in Bs, and assume that

X0 Xl(0) X2(0) e ker b.

We must only prove that

(4.9) (Wl, 51) Ao (w2,52) e .
Since xo E ker g Xeft, there exists (w, x) Bs such that x(0) xo and w Ao 0 B.
Let x Xz be such that

(4.10) (w A0 O, x’) Bs

and let x" x x; then

(4.11) (0 A0 w,x") Bs.

Consider now

(w,+(0Aow),x+x") and (w2-(wAo0),x2-x’).

These are elements of B$ and (Xl -- x")(0) (x2 x’)(0) 0. Therefore

(4.12) 0

+ (0 ,o + x,,) A 0), x,)
0

By (4.10) and (4.11), it is evident that (x’(t)) 0 for all t _> 0 and (x"(t)) 0 for
all t <_ 0; this, together with (4.12), yields (4.9).

The fact that E E Hr, follows from the commutativity of the following diagram:

Xeff

___
/,

Xe/ker g Xeft

where ’ := (E).
To prove that E is externally induced, assume that (0, 5) B; then x(t) ker

for all t Z, which implies that 5- 0.
Finally, the projection

r" X --. X/ker
yields Es _> E in the sense of Definition 4.4. D

PROPOSITION 4.9. Let Es (Z, Cq, X, Bs) H The following conditions are
then equivalent:

(1) Es e H,
(2) Es is almost trim and b (Es) is injective on X.
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Proof. (1)=(2). Consider that

-]esff (Z Cq Xeff ]s)
It is evident that Es _> Eel, which yields Es - E}ft. This shows that Es is almost
trim, since Eff is. Analogously, by Proposition 4.8, Es - E’s, where E has been
defined in (4.8). Therefore there exists an isomorphism

S" X _X/ker
such that

() o f (s),

which proves that (Fs) is injective.

(2)=v(1). Assume that there exists ]s (Z, Cq, f(,ls) E g such that s _>

s. From Proposition 4.8, it follows that Es and ]s are externally induced; moreover,
we have that the following diagram commutes:

g

(4.13) $ /S
X

X

where g (respectively, ) are the observability maps of Es (respectively, s) as defined
in (4.3), and f is the linear bounded surjective map yielding the preorder _> between
Es and s. Fix now (w, x) E Bs; by (4.13) it follows that (w, f o x) /s. It is then
clear, by Definition 4.5, that to prove that E

_
s, it suffices to prove that the map

f is injective. To prove this, consider the following diagram:

where b b(Es) and b(s). It is evident that og= o. Using the

commutativity of (4.13), we obtain that o g o f o g, which implies that

Since Xeft X and since all the maps involved are bounded, it follows that o f.
Since is injective, this shows the injectivity of f, as desired. [3

COROLLARY 4.10. It holds that ES H.
Proof. F is trim; therefore, by Proposition 4.9, we must only prove that c :--

(E) is injective on X. Observe that

is given by c (w (mod D)) (w A0 0) (mod B). Therefore

c (w (mod D)) 0 == w A0 0 e B
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lent:

4= w E D= w (mod D) 0. D

PROPOSITION 4.11. Let Es be in H. The following conditions are then equiva-

(1) E is minimal, trim, and boundedly externally induced,

Proof. (1)(2). Let us denote by X the state space of Es, and by A that of E.
For x E X, consider that

{w e e xZ (w, z) e and z(0) x}.

Similarly, define B(a) for a A. It is easy to see, since B ispast and future externally
induced, that, for every x X, there exists one and only one a A such that
B(x) c B(a). This yields the existence of a linear surjective map f X -- A such that
(w, z) 13s if and only if (w, f o z) E B. We now prove that f is bounded. Consider
the following commutative diagram:

(4.14)

g

A

X

where g (respectively, go) are the observability maps of Es (respectively, E). Let
C c A be an open set. We have that

f-l(C g (g-l(c))

Since gc is bounded and g is open (it is surjective and bounded by (1)), it follows that
f-l(C) is open in X. Therefore f is bounded and Es _> E. Since Es is minimal, it
follows that Es E.

(2)=(1) is contained in Corollary 4.10. r]

We now focus on almost controllable systems.
PROPOSITION 4.12. Let E (Z, Ca, B) /:q2 be almost controllable. Then any

minimal Hilbertian state space representation Es of E is trim and boundedly externally
induced.

Proof. Consider that := (Es), as defined before. It is evident that

9 (lXe,,) B- Ao +/B,

which is, by the assumption of almost controllability, closed in 12q/B. Since Xef X,
it follows that

n ()

Since is injective, this implies that Xerr X.
By Proposition 4.8, Es is externally induced. We then have the following com-

mutative diagram:
B - X

B- A0 B+/B
where (w) w A0 0 (mod B). Since is bounded and is an isomorphism, it follows
that g is bounded. This completes the proof.
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We now state the main result of this section. It consists of a state space isomor-
phism theorem for Hilbert space systems, with the state space isomorphism induced
by bounded linear maps. Note that almost controllability plays an essential role in
this result!

THEOREM 4.13. Let E 2q be almost controllable and let Es H. Then the
following conditions are equivalent:

(1) Es e H,
(e)
(3) Fs is trim and past and future externally induced.

Proof. (1)=v(2) follows from Propositions 4.11 and 4.12. (2)=(3) follows from
Proposition 4.11 and the definition of E}. Finally, (3)(1) follows from Proposition
4.9 and the evident fact that, if Es satisfies (3), then (Es) is injective. [:]

As already mentioned, almost controllability is essential to have the isomorphism
result expressed in Theorem 4.9. In fact, we have the following proposition.

PROPOSITION 4.14. Let E (Z, Ca, B) E ,q2 be not almost controllable. Then
there exists Es H, which is not trim.

Proof. Consider the following state space representation of E:

Es (Z, Cq, X,

where

and

X := B- Ao B+/B

Bs {(w,x) (Cq (R) X)z w B and x(t) (atw) A0 0 (mod B)}.
It is easy to check that this is indeed a state space representation of E and (Es) is

simply the inclusion map on 12/B. It then follows that Es H; on the other hand,
Es is not trim, since either B- or B+ is not closed. D

Remark. If E q2 is almost controllable, then the minimal state space represen-
tation E} can be represented in the following familiar way. There exist

A X X B C X, C:XCq, D:CaCq

linear bounded maps yielding the following representation: (w, x) E B} if and only if
there exists v l such that

ax Ax + Bv, w Cx + Dv.

Such a representation is called a driving variable representation. The details of the
construction of such a representation are not presented here, since it is completely
analogous to the so-called shift realization that has been investigated for input/output
systems in [5].

We close our study of state space representations by a discussion of the relation
between our concepts of controllability and the classical concept of state controllability.
In [12] we have defined state point controllability as the possibility of transferring the
system between any two states in finite time. The appropriate version of almost state
point controllability proves to be the following.
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DEFINITION 4.15. Let E E 2 and Es (Z, Cq, X, 13s) H. Es is said to
be almost state point controllable if there exists K > 0 such that, for every pair of
elements Xl and x2 in X, there exists a sequence (vn, y,) Bs yielding the following:

yn(-n) -- Xl, y,(n) --. x2, IlVnll2 <_ K (llxlll- + IIx211+),

where the convergence is in the Hilbertian topology of the space X, and where
and I1" + are defined as follows:

(4.15) Ilxll- inf {llv-112 13y e Xz with (v, y) e Bs and y(0) x},
Ilxll + "= inf {llv+l12 3Y e Zz with (v, y) e Bs and y(0) x}.

It is possible to prove that, for minimal state space representations, almost con-
trollability and almost state point controllability are indeed equivalent.

PROPOSITION 4.16. Let E- (Z, Ca, B) q2 and let Es (Z, Cq, X, Bs) H.
Then the following conditions are equivalent:

(1) E is almost controllable,
(2) E is almost state point controllable.
Proof. (1)=(2). By Theorem 4.13 we can assume, without loss of generality, that

Es E. Let xl and x2 be in X. Then there exist Wl and w2 in/3 such that

xi-wi(modD) fori-l,2

and

By (1), there exists a sequence v /3 such that

(4.17) (O’-nVn) -> W-, (o’nVn)+ W+2
and

(4.18) IIvnll2 K (lIw{-I] + IIw2ll),
where K is a positive constant depending only on E. Now, consider y Xz, given
by

yn(t) atVn (mod D).
By (4.17) and by the fact that /3- is closed (see Proposition 3.1), it follows that
yn(-n) --+ Xl. Analogously, yn(n) --+ x2. By (4.16) and (4.18),

Ilvnll2 2K (l[xlll- + IIxll+),

This yields (2).
(2)=(1). Let Wl and w2 be in B and let Xl and x2 E Xz be such that (wi, xi) Bs

for 1, 2. By (2) there exists a sequence (y,, vn) Bs such that

(4.19) yn(Tt)-- x2(0), yn(-n)-> Xl(0)

and

(4.20) IlVnll2 K (l[xl(O)ll- + IIx(O)ll+).
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Consider that

(4.21) Zn (TnWl A-n Vn An a--nw2 E 12q.

By (4.19), and by the fact that Es E H, there exists 2n B such that

II ’n Zn o for n

In particular, (o’-n;n)-- (o’--nZn) O, which implies, by (4.20)and (4.21), that

(4.22) (o’-nn) -- w-.
In a similar way, we can prove that

(4.23) ((Tnn)+ --- Wt
By (4.20) and (4.21), we also have that

IlZnll < (1 + K)(llw -II + I1  +11),

and, on the other hand, it is not restrictive to assume that 11511 <_ 211Znll. This,
together with (4.22) and (4.23), yields (1). [

Classically, of course, controllability is always studied for systems with inputs. We
now briefly analyze the concept of almost state point controllability for state space
representations of causal input/output /2-systems, and we establish a relation with
the classical notion of exact controllability as considered, for example, in [4] and [5].

Let T" lm lp be a linear bounded causal map commuting with the shift and
let

(z,

be the induced/2-system as defined in part (1) of the example in the Introduction.
Let Es be in HT and assume that it is past externally induced. It is then possible
to consider the following linear map (the reachability map of

(4.24) R" (l)- X,

given by

Rv- g
Tv-

where g is the observability map defined in (4.3). As in [5], we call a state space
representation exactly state point controllable if R is bounded and surjective. If Es is
trim and almost state point controllable, then Es is exactly state point controllable. In
fact, in this case, ST is almost controllable by Proposition 4.16, and an easy argument
using the commutative diagram (4.14) shows that E8 is boundedly externally induced.
This yields that Es is exactly state point controllable. In particular, by Theorem 4.13,
it follows that, if Es is minimal and almost state point controllable, then Es is exactly
state point controllable.

On the other hand, exact state point controllability does not, in general, imply
almost state point controllability; it is easy, in fact, to see that the canonical repre-
sentation E is always exactly state point controllable, but, by Proposition 4.16, it is
almost state point controllable if and only if ST is almost controllable. Nevertheless,
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with the additional assumption that the norm II" + (see (4.15)) is equivalent to the
original norm I1" IIz of X as a Hilbert space, then exact state point controllability
implies almost state point controllability. In fact, using the facts that R is an open
map and that the two norms are equivalent, it is easy to prove that, for every x E X,
there exists (v, y) Bs such that

(4.25) y(O) x, y(-n) - O, Ilvl12 <_ Kllyll +

for a suitable constant K > 0. On the other hand B_ is closed by Proposition 3.1,
and this implies that, for every x X, there exists a sequence (Vn, Yn) Bs such that

(4.26) yn(O) -- x, yn(n) --+ O, IlVnll2
_

K’IIxlI-
where K’ is a suitable positive constant. It is evident that (4.25) and (4.26) yield
almost state point controllability. Let us conclude by noting that the two norms

I1" + and I1" I[x are indeed equivalent for the so-called "restricted shift" state space
representations, which have been investigated in [5].

5. Conclusions and extensions. In this paper we have investigated the no-
tion of controllability as the possibility of concatenation of arbitrary trajectories. For
discrete-time systems, we have seen that the possibility of concatenation of trajec-
tories in finite time requires the system to have finite memory, which is equivalent
to it having a finite-dimensional state space representation. For infinite-dimensional
systems, therefore, we introduced the notion of almost controllability. Our main re-
sult is Theorem 3.2, where it is shown that almost controllability is equivalent to the
existence of a scattering representation.

As a first application of almost controllability, we obtained in Theorem 4.13 a
state space isomorphism result for almost controllable systems. Also, we related our
notion of controllability to the classical notion of state point controllability. Under
suitable conditions, these notions indeed prove to be equivalent.

Many of the results presented here for the discrete-time case are actually extend-
able to the continuous time case: in particular, 3 on the representation of almost
controllable systems, and 4 on state models. On the other hand, the characteriza-
tion of the controllable systems in the continuous-time case is more involved and still
incomplete. In particular, it is reasonable to conjecture that finite memory and con-
trollability will also be equivalent here. However, in this case, finite memory is not
equivalent to the existence of a finite-dimensional state representation.

We believe there are two extensions worth investigating: (i) constructing a rep-
resentation theory in the fashion of 3 and 4 for/2-systems where autonomous phe-
nomena are present, and investigating systems embedded in other memoryless Banach
structures: of particular interest it would be to work with behaviors B in l.
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