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Controllability of 2-D Systems

Paula Rocha and Jan C. Willems, Fellow, IEEE

Abstract—The concept of controllability of 2-D systems is introduced
in a behavioral framework. This property is defined as a systems concept
and is characterized in terms of system representations. Further, state-
space realizations for controllable 2-D systems are presented. These
realizations do not depend on any assumptions concerning causality.

I. INTRODUCTION

N this paper, we introduce a controllability property for 2-D

systems and give a characterization of this property in terms
of system representations. Moreover, we consider the question
of state-space realization for the class of autoregressive (AR)
2-D systems. We introduce a state-space model which can be
used to describe controllable AR systems.

Our approach to 2-D systems is inspired by the behavioral
approach to (1-D) dynamical systems developed in [11], [12]
and it consists in viewing a 2-D system simply as a family of
trajectories defined over a 2-D index set. From this point of
view, it is natural to define properties of systems in a set
theoretic sense, i.e., as properties of the system signals instead
of as properties of its representations.

Intuitively, a system will be called controllable if it has a
limited memory range, i.e., if the system is defined in T & R?,
the values of its signals on two arbitrary subsets 7; and T, of T
will be independent provided that 7| and 7T, are at sufficiently
large distance.

This definition illustrates some essential points of our ap-
proach. First, no reference is made to ‘‘inputs’’ and ‘‘outputs’’
but only to ‘‘signals.’’ Indeed, in this paper, we will not place
ourselves in the classical input-output framework. Second, con-
trollability is introduced as an adirectional property, since no
restrictions are imposed on the sets T; and 7,. This reflects our
wish to avoid the choice of a preferred direction in the plane,
and to make no assumptions on the existence of causal relation-
ships between the system variables.

Characterizing system properties in terms of the parameters of
system representations is an important issue. Here we will show
that, for AR 2-D systems, our concept of system controllability
is equivalent to a 2-D primeness condition or, alternatively, to
the existence of a moving-average (MA) representation. More-
over, - it turns out that controllable AR systems correspond
exactly to those systems which can be represented by transfer
functions in an input-output framework. Thus, when consider-
ing controllable AR 2-D systems we will be dealing essentially
with the same class of systems as considered in the classical 2-D
approach [2], [3], [7], with the difference that we will not be
assuming an input-output structure. This fact becomes particu-
larly interesting when we analyze the question of state-space
realizations for controllable AR systems.
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The main purpose of constructing state-space models is to
provide first-order descriptions of systems, which moreover
correspond to a convenient first-order updating scheme. This
turns out to be a difficult problem within the input-output
framework. The models introduced by Roesser [9] and Fornasini
and Marchesini [3] provide a first-order recursive representa-
tion, but only for the class of 2-D quarter-plane causal transfer
functions. Noncausal transfer functions are represented in [8]
and [5] by first-order relations but not in recursive form. This
indicates that within an input-output framework the assumption
of causality is crucial for obtaining first-order recursions. As we
will show, once the input-output structure is no longer imposed,
this causality assumption need not be made. The state property
that we introduce here for 2-D systems leads to a first-order
recursive state/driving-variable model which can be used to
represent any controllable AR system.

The organization of this paper is as follows. Section II deals
with controllable systems, and Section III with state-space sys-
tems. In Section IV, we analyze the structure of state-space
systems and introduce and characterize the notions of trimness,
reachability, and observability. Section V contains concluding
remarks. Proofs are collected in the Appendix.

II. CONTROLLABLE 2-D SYSTEMS

Controllability is a notion of central importance in systems
theory. Usually, this notion is defined as a property of the
state-space realizations of a system. In this section, we give an
alternative definition of controllability of a 2-D system as an
intrinsic property of the system external behavior and not of its
representations. Intuitively, we will say that a system defined
over T < R? is controllable if its memory has a limited
range—thus, no matter what system signal is givenon 7" C T,
at sufficiently large distance from T”, every other system signal
can occur. This generalizes the definition of controllability given
in [12] for (1-D) dynamical systems. We will consider in
particular the class of autoregressive 2-D systems and develop
tests to check controllability for systems in this class. It turns
out, that our notion of controllability is closely related to the
notion of 2-D modal controllability introduced in [7] and [8].

A. The Notion of Controllability

In order to define controllable systems, we start by stating our
definition of a 2-D system.

Definition 1: A 2-D system is characterized by an index set
T S R?, a signal space W, and a subset B of W7 (the set of
all functions T — W), called the behavior of the system. The
system X defined by 7, W, and 9 will be denoted by X :=
(T, W, %)

This definition can be interpreted as follows. A 2-D system
describes a phenomenon defined on T which is characterized by
attributes taking values in the set W. Thus, every manifestation
of the phenomenon gives rise to a signal w:T— W. The
behavior 8 species the laws which govern the phenomenon by
indicating which signals are compatible with these laws.
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In this pager, we will always consider discrete 2-D systems
with T = 2%,

Definition 2: A 2-D system % = (Z2, W, ®) is said to be
controllable if the following condition holds. There exists a
positive real number p such that {w,, w,e®; I, , € 2%
d(Il’ Iz) 2 p} = {w, IIl A Wy |12 eV | Il U 12} Here d(ll’ 12)
stands for the Euclidean distance between 1, and I; wy|, A
W, |;, denotes the signal we W/1Y%2 such that w|, = w, |,
and w |’2 = W, |;,, and is called the concatenation of w, with
w, relative to (1,2, L).

Two aspects of this definition should be stressed. First, note
that the system signals w are not split into inputs and outputs.
Second, as no restrictions are imposed on the sets I; and I,
controllability is not related to the choice of any preferred
direction Z%. Roughly speaking, we may say that I, is sur-
rounded by a band of width o beyond which all the information
about the phenomenon w, |, occurring in 7; is lost. In this
sense, p measures the memory range of the system.

B. Autoregressive 2-D Systems

In the sequel, we will be concerned with aquforegressive 2-D
systems. These systems have as parameter set T = 22, as signal
space W = RY, for some positive integer g, and their behavior
is given as the kernel of a polynomial operator in the shifts. That
is, it can be described by behavioral equations of the form R(o,,
o', 6, 67 Yw = o, with R(s;, 57, 5,5, 57 1) a g X ¢ polyno-
mial matrix (for some positive integer g), and o, and o,,
respectively, the left- and downshift. These are defined as
follows: @, associates with a function w: 22— RY a function
oyw: 2 = R such that o,w(t,, £,) = w(t, + 1, t,) for all (¢,
1,)€ 22; 0, acts in a similar way, with o,w(t;, 1;) 1= W(t,, I,
+ 1). Thus, an autoregressive (AR) 2-D system 2 =
(2%, RY, B) is characterized by a linear operator R(oj,
orl, o3, o5y (IR")22 -+ (R%)% such that B = ker R(0,
o7, 05, 05 V). '

1 > 02, 03

Clearly, the behavior B of such a system is a linear shift-
invariant subspace of ®%)%’, ie., 6,8 = B, i = 1,2. More-
over, 8 = {we®R)Z | w|r€DB |1, for all finite subsets I C
Z?)}. This property means that, in order to check whether or not
a signal is compatible with the laws of the system, it is sufficient
to check if it satisfies these laws on finite subsets of 2. This is
known as completeness. It was shown in [10] that the converse
of the aforementioned also holds true, i.e., every linear, shift-in-
variant, and complete system is an autoregressive one.

Note that, due to shift invariance, B = ker R(ay, o7 !, 05,
o7 1) can always be represented as B = ker R'(0}, o) for some
polynomial matrix R'(s;, s,); just take R'(s,, 5,) = R(s,, s7 ',
53, 57 Y)sfisi2, where I, and I, are, respectively, the exponents
of the highest power of s;! and s; ! appearing in R. For
simplicity, and without loss of generality, from now on we will
consider only this type of AR representation.

An important distinction between 2-D and 1-D AR systems is
the following. While 1-D AR systems can always be described
by means of 1-D polynomial matrices of full-row rank [11], this
does not hold true for the 2-D case. In particular, we may need
to take g > g. A simple example of this situation is, for
instance, a single-variable system I = (22, ®, 8) which only
allows for constant signals: the minimal number of AR equations

necessary to describe 8 is two, namely B = ker 22 - , and
1

-1
thus g =2 > 1 = g. However, we will see that controllable
AR systems can always be described by a full-row rank polyno-
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AR representations provide a system description in terms of
relationships involving the system signals alone. There are how-
ever situations where it is convenient to introduce auxiliary
variables in order to simplify the description and analysis of a
system.

A 2-D system with auxiliary variables is defined as X°:=
(T, W, A, B9 with the index set T S R?, the external signal
space W, the auxiliary variable space A, and the internal
behavior of the system B° € W7 x A7, The external behav-
ior of £°is given by I1,8°:= {we WT|3ae AT s.t. (w, @)
eB%. 2% = (22, RY, R’, B9 is said to be an ARMA (autore-
gressive-moving average) system if it can be described by
behavioral equations of the form R(g,, 0;)w = M(a,, 0,)a for
some polynomial matrices R(s,, §,) and M(s,, s,); the left-hand
side of the foregoing equations is called the autoregressive part,

-while the right-hand side is called the moving-average part. In

particular, if R(s;, s;) = I, we will say that Z¢ is an MA
system.

Clearly, every AR system can be viewed as an ARMA system
of special type where the MA part is absent, i.e., with
M(s,, s5) = 0. On the other hand, the external behavior of an
ARMA system can be described in AR form. This is stated in
the following proposition.

Proposition I: Let £° = (2%, R, R, B9 be an ARMA
system, and define 9 = I1,8° Then I := (22, R, B) is an
AR system.

Proof: Appendix.

Thus AR and ARMA representations constitute alternative
descriptions for the same class of systems, namely for linear,
shift-invariant, and complete ones. MA systems form a strict
subclass of the foregoing. In the sequel, we will show that a
linear shift-invariant complete system is MA if and only if it is
controllable.

C. Controllable AR 2-D Systems

In order to characterize controllable AR systems, we next
introduce some preliminary definitions. Let R[s;, s7°, 55, 55 ']
denote the ring of polynomials in the indeterminates <, sy %, s;,
55! with real coefficients, and R¥1*¥2[s,, 57}, 55, 53] the set
ofall k, X k, matrices with entries in R[s,, s7 !, §;, 53 ']—note
that if kK, = k,, this set is a ring. A k x k polynomial matrix
U(sy, sy %, 8, 55°Y) is said to be umimodular if it is invertible
within the ring R***[s,, s7', s,, 57 !]. Given a polynomial
matrix R(sy, 571, 85, 551), we will call D(sy, 57,55, 557" a
left divisor of R if D is square and there exists a polynomial
matrix R(sy, s7%, 52,57 1) such that R = DR, If all the left
divisors of R are also left divisors of D, we will call D a
maximal left divisor of R. A g X g polynomial matrix
R(sy, 571, 5,, 53 1) of full-row rank is said to be left prime if
all its maximal left divisors are unimodular. Similar definitions
hold for right divisor and right primeness. In this paper, when
using the aforementioned notions for polynomial matrices
R(s,, s,) in the indeterminates s,, s,, we will be viewing these
matrices as elements of R*1*%2{s,, 571, 5,, 57 '1, for some (k;,
kz).

A subset I of 22 of the form I= {(k,e2%|k, <k<
ky,ly<l<l,} for some —o sk <k,< +®, ~» </
<l s +, will be called an interval of 22 and denoted by
I=(ky, ky) x (), ). If ky, ky, I}, I, ere finite, T will be
called a finite interval. The subspace of compact support sig-
nals in B will be denoted by B°™P* ;= {weB |3/, finite
interval of 22, s.t. wlgz. ;= 0}. For € C RHZ, cl(Q)
indicates the closure of { in the topology of pointwise conver-
gence.
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We are now able to state our result on the characterization of
controllable AR systems.

Theorem I: Let £ = (Z%,R% B) be an autoregressive 2-D
system. Then the following statements are equivalent.

1) ¥ is controllable.

2) B = cl(Boomey,

3) There exist a positive integer g < g and a full-row rank
g X q polynomial matrix R(s(, 5,) such that R is left prime
and B = ker R(g;, 03).

4) There exist a positive integer / and a g X !/ polynomial
matrix, M(s,, 2)2 such that B = im M(o;, 0;):= {we
(RDZ |3ae®RHZ s.t. w = M(ay, 0p)a}, i.e., T corresponds
to an MA system.

Proof: Appendix.

Example 1: Consider the AR 2-D system T = (Z%, R®, 9)
with B = ker R(gy, 0,) and R(sy, 55) = col([s, + 1|5, +
101, [s,| s, [1]). It is not difficult to check that R(s;, 5,) is left
prime. Indeed, suppose that D(s,, s,) is a left divisor of R(s,,
s,). Then det D(s,, s5) must divide all the 2 x 2 minors of
R(s,, 53). These minors are: my(sy, 55) = (8, — §)(s; + 8, +
1), my(s;, 8,) = 5, + 1 and ms(s,, 5,) = 5, + 1. This implies
that det D(s,, s,) = sF1s§2 for some &, k, € 2, meaning that
D is unimodular, and so R is left prime.

Let now M(sy, §3):=col(s; + 1, — (s, + 1), (53 — §)(5y
+ s, + 1)). Clearly, RM = 0 and any other polynomial matrix
R(s,, 5,) such that RM = 0 will be of the form R = LR for
some polynomial matrix L(s, 5,), i.e., R is a minimal left
annihilator of M. This implies that im M = ker R and B will
have the MA representation w = M(g,, 0,)a. Taking this fact
into account, it is easy to see that T satisfies the controllability
condition of Definition 2 with p = 5.

The classical approach to 2-D systems is within an input-
output framework and deals with systems described by transfer
functions. The connection between this class of systems and the
class of autoregressive 2-D systems considered in this paper is as
follows.

An autoregressive 2-D system in full-rank input-ouiput
form is defined as £7/° = (2%, R™ x R?, B'/°), with R™ the
input space, ® 2 the output space, and B//° < ®R™Z x R?)E
the input-output behavior of the system. This behavior can be
described by equations of the form P(g,, 5,)y = Q(oy, 03)u,
for some polynomial matrices P(s,, 5,), @(s;, §,) such that P
is square and det P(s,, 5,) % O. Note that the matrices P and
Q which describe B/ are not unique, as the equations Py =
Qu induce the same behavior as UPy = UQu if U(s, s;) is a
unimodular polynomial matrix. It can be shown that this premul-
tiplication by unimodular matrices is the only source of
nonuniqueness in the parameters P, Q of a full-row rank
input-output description.

$i/° is said to be an input-output realization of I =
(22, R9, B) if there is a permutation of the components of
w, Tw = (u, ¥) such that w € B if and only if Tw e B/°. Note
that not every AR 2-D system has a full-rank input-output
realization.

The transfer function of the system Z'/° described by
Py = Qu is defined as G(sy, s,) := P~\(5,, 5,)Q(5,, 5;). This
is clearly well defined, as (UP)"YUQ) =P U WUQ =
P~1Q for every unimodular matrix U(s,, 5;). The converse is,
however, not true: given a 2-D p X m rational matrix G(s1, 83)
there are infinitely many 2-D input-output systems £‘/° whose
transfer function is G. Indeed, if the system described by the
equations Py = Qu has transfer function P~!Q = G, every
system described by LPy = LQu, with L square and nonsingu-
lar (but not necessarily unimodular) will also have G as transfer
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function. We will define the input-output system associated
with G as the smallest input-output system whose transfer
function is G. This system is of the form //°(G):= (Z%,R™
x P, B//°(G)) with B'/°(G) described by behavioral equa-
tions Py0,, 0,)y = Q0y, 0,)u, where P;'Q.= G and
P,, Q. are left coprime, i.e., [P,| — Q.] is left prime. Thus
Z,/,(G) is a full-rank input-output system. A system Z'/° is
said to have a transfer function representation if it coincides
with the input-output system associated with its transfer func-
tion.

Now, it is not difficult to prove that condition 3) of Theorem 1
implies the following.
~ Proposition 2: Let T = (2% R7 B) be an autoregressive
2-D system with nontrivial behavior, i.e., 8 # {o}. Then X is
controllable if and only if 1) it has an input-output realization
and 2) every input-output realization of T has a transfer func-
tion representation.

Proof: Appendix.

Thus 2-D systems described by transfer functions correspond
to controllable AR systems endowed with an input-output struc-
ture.

To conclude this section, we would like to stress the differ-
ence between our definition of controllability and the classical
notions of controllability of state-space realizations [7], [8], [3].
In fact, while these latter are properties of system descriptions in
terms of auxiliary (state) variables, and hence internal proper-
ties, our definition is stated at the level of the external behavior
of a system.

Nevertheless, for instance, the notion of 2-D modal controlla-
bility introduced in [8] can be placed in the context of our
definition of controllable 2-D systems. Indeed, let T* =
(2%, R™ x RP?,R”, B*) be an auxiliary variable realization of
the input-output system X = (2%, R™ x R?, B), ie., B =
Il , B, and suppose that Z* can be described by the follow-
ing behavioral equations:

P(oy,05) x=Q(oy, 0)u
y=8(0y, 0,)x + T(oy, 0,)u

with P, Q, S, T polynomial matrices, P square and nonsingu-
lar. In other words, B* = ker R(o;, 0;) with R :=
col([-Q|0| P], [-T|I|-S]. £* is said to be modally
controllable if {— Q| P] is left prime. It is not difficult to see
that this is equivalent to the left primeness of R. Hence ¥ is
modally controllable if and only if the (u, y, x) signals (now
regarded as external signals) satisfy the condition of Definition
2. This provides an interpretation of modal controllability in
terms of signals instead of representation parameters,

III. STATE-SPACE SYSTEMS

We will next consider the question of state-space realizations
for autoregressive 2-D systems. Our main concern is twofold:
on the one hand, we aim for first-order representations which
correspond to a convenient first-order updating scheme, and on
the other hand, we do not want to make any assumptions on the
existence of causal relationships between the system variables.
At first sight, these two objectives may seem to be conflicting. A
recursive updating scheme is necessarily related to a choice of
direction in Z2?, while the absence of causality assumptions
translates, in a certain sense, the wish for adirectionality. In-
deed, this conflict is clear within the input-output framework,
where quarter-plane causal state-space models ([9], [3]) can only
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be used to represent quarter-plane causal transfer functions.
However, this is not the case for our approach. As we will see,
every controllable AR system allows for a quarter-plane causal
state-space representation,

A. The State-Space Model

Let (i, j) € 2. The past of (i, j) will be denoted by #(i, J)
and defined as 2(i, j):= {(k, DeZ?|k < iand / < j}. Fora
set @ + Z < 22, the past of Z is defined as #(Z) = U{2(J,
N\, jyeZ}. Similarly, the future of (i, j) will be given by
FU, )={(k, NeZ?|k=ziand { = j} and the fature of Z
by $(2Z) = U{F(, ))|(i, /) € Z}. The point (¥, j') is said to
be a nearest neighbor of (i, j) if (¢, j)e{(i+ 1, ), (,j+
DG -1,0,,Jj— 1D} A path is a sequence (2,,"" -, 2,) in
22 such that z,, is a nearest neighbor of Z,,., and Z,.,€
F(zy), for all m=1,--+,r—1. Given T_, Ty, and T,
subsets of 22, we will say that T, separates 7, and T_ if
every path connecting 7_ and T, intersects Tj,. An ordered
partition (T_, Ty, T.,) of &2 is said to be an admissible parti-
tion if T, separates T_ and T, and moreover the following
condition is satisfied: {7,€8To} = { P ()N {1} & #(T ) or
F(to)\ {15} € F(T,)}. Here 3T, denotes the boundary of
Ty, i.e., the set of all points in 7, which have a nearest
neighbor outside T,

Definition 3: The system with auxiliary variables Z° =
(R, W, A, B°) is a state realization of £ = (2%, W, 8) if
B=1,8%={weW®|3xeA? st (w,x)eB°}, and
moreover if the following axiom is satisfied.

Axiom of state: {(T_, Ty, T..) admissible partition of Z2;
P#D, €T UTy; 0#D_cT_UTy D_ and D,
separated by Dy:= #(D,) N To; DyND_ = &; (wy, xy),
(wy, %) €85 xylpy = x2lpg} = {(wy, x)Ip_
AWy, x))|p, €87|p_up,}-

The sets D_, Dy, D, involved in this definition are indi-
cated in the Fig. 1.

The concatenability condition in the axiom of state expresses
the fact that the state variable x has the property of making past
and future behavior conditionally independent: once the states on
the separation set D, coincide, B°|p_ and B°|p, are indepen-
dent.

The following result characterizes state systems (i.e., systems
which satisfy the axiom of state) in terms of their representa-
tions.

Theorem 2: Let =¥ = (Z%,R% R", B°) be an ARMA 2-D
system. Then £ is a state realization of I = (22, RY, I, 8"
if and only2 if B° can be described as B = {(w, x)e
@7 x R™Z {3v s.t. (1)-(3) are satisfied}.

S(an =0 (1
oyx = A(o)x + B(o)v (2
w=Cx+ Dv A (3)
with o := 07 'a), s:=83's;, A(8):= A5+ A, B(s):= Bys

+ B,; A,, A,, By, B,, C, and D real matrices and S(s) a
polynomial matrix. The operators A(a), B(o), S(¢) must
moreover satisfy the following conditions:

1) ker S(o) is A(o)-invariant, i.e.,
ker S(o),

2) im B(o) € ker S(7).

Here ve (RHZ® (for some positive integer /) is an auxiliary
variable.

Proof: Appendix.

A(o) ker 5(0) S

[EEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 36, NO. 4, APRIL 1991

T Ts

T-

Fig. 1. D_ and D, are indicated, respectively, by dashed and bold lines.
In this example, D, € D, .

The interpretation of equations (1)-(3) and conditions 1) and
2) is as follows. At every point (i, j)€22, v(i, j) can be

. chosen freely provided that x I,(,-,j)\((,-_j)) and (w, ©) |5, ; are

not given. The state components x are constrained as follows.
On every diagonal line €, := {(i, e@?|i+j =k}, ke,
x must satisfy (1). Given the values of x and v on £,, x canbe
computed on .., by means of (2). Conditions 1)-2) are
compatibility conditions which ensure that, on f,.;, (1) is
automatically satisfied. Thus, to compute a signal (w*, (x*, v*))
which satisfies (1)-(3) on a half-plane #' := {(i, /)e22?|i + j
= k}, we can use the following procedure.

1) Initialization: choose on  ; a solution x§ of (1). ‘

2) For I=k,k+ 1, , choose arbitrary values v; of v
on ¥, and define

xf ., = A(o)x]+ B(o)v}
wi = Cx{+ Dv}.

3) Define (w™, (x*, v*)) as (w*, (x*, v*))|g, == (W], (2},
v, =k k+1,0.

This provides a 2-D first-order recursive updating scheme.
(See Fig. 2.)

Due to its role in the foregoing updating scheme, v will be
called the driving variable. The variable x is the state vari-
able. Equations (1)-(3) are referred to as a stafe/driving
variable model, and will be denoted by (S(s), A(s), B(s), C,
D). The associated system I* = (22, R?, R”, B*) is denoted
by Z%(8(s), A(s), B(s), C, D).

Remark: In order to describe 2-D input-output systems, the
following model is introduced in 3]:

ox=(A;0+A)x + (Bo+ By)u @
y=Cx+ Du

Here u is the input, y the output and x the so-called local state.

* This model can be considered as a special case of the more

general model (1)-(3) with S(s) = 0 and v = g. This fact will
be used in the next paragraph in order to obtain state representa-
tions for controllable systems.

B. Realizability

As shown in [11, Theorem 3], every autoregressive 1-D
system can be represented by means of a 1-D state/driving
variable model. A similar result does not hold for AR 2-D
systems.

Example 2: Let T = (Z%,R, B) be an autoregressive 2-D
system such that B = ker (g, - o), i.e., B consists of all
those signals in RZ" which have constant value along the
diagonal lines ®,, k€Z. Then I cannot be represented by a
state /driving variable model of the form (1)-(3).

Proof: Appendix.

’
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(hj+1) (1+1,J+1)

(i+1.§)

Fig. 2.
(x,v)on(i+1, Hand (i, j+ D).

However, we will show that every controllable AR 2-D
system allows a state realization. Roughly stated, this is ex-
plained by the fact that the signals w of a controllable system
can be regarded as the outputs of an ‘‘enlarged’ input-output
system with quarter-plane causal transfer function. The inputs of
this enlarged system will constitute the driving variable in the
state representation. To be precise, we introduce the following
terminology.

A 2-D rational function r(s,, 5;) = g(s, sz)/p(sl, 55)—
where q(sla 52) = Zx =0 QI(SI)SZ! p(sl’ sz) Zl 0 pJ(Sl)Sz’
and pj(sl) and g,(s,) are polynomials, for i = 0,-:+, m, j =

, n with g,,(s,) # 0 # p,(s,)—is said to be proper if 1)
m s n and 2) the degree of p,(s;) is not less than the degrees
of g(sy), i=0,---,m, and of p;(s)), j= ,n—1 A
2-D rational transfer matrix will be called quarter plane causal
if all its entries are 2-D proper rational functions.

Proposition 3 [3): Let £/° be an input-output AR 2-D
system and suppose that £/ has a transfer function representa-
tion 7(s;, §,). Then T//° can be represented by the model (4) if
and only if T(s,, s,) is quarter-plane causal.

Now let S = (Z2, R, B) be a controllable AR 2-D system.
Then, by Theorem 1, £ has an MA representation, i.e., there
exists a polynomial matrix M(s,, s,) of size g x [ (for some
positive integer /) such that B = {we (R9)Z lia(tﬁil)2 s.t.
w = M(q,, 0,)a}. Note that the equatlon w = Ma is equivalent
to oflaf2w = M(a,, 0,)v, with v:= ¢flof2a and d, and d,,
respectively, defined as the highest degrees in s, and s, of the
entries of M(s|, s;) (regarded as polynomials in R[s;, sz])
Consider now the (enlarged) mput output system I/¢ =
(@%LR' xR, B8/°) with B'/° described by oftof2w =
Mo, ox)v. Clearly Ti/° has a transfer function representation
T(sy, 53) = sy 9155 92M(s,, 5,). Now T is quarter-plane causal
and hence, by Proposition 3, £*/° can be represented as

0,x= (A0 + Ay)x + (B0 + By)v
w=Cx + Dv

for suitable real matrices A4,, A4,, B,, B,, C, and D. This
constitutes a state representation of the form (1)-(3) with S(s)
= 0. This proves the following result.

Theorem 3: Let ¥ be a controllable autoregresswe 2-D
system, then it has a state representation of the form (1)-(3).

Remark: 1t is an immediate consequence of Proposition 3 that
AR systems which have input-output realizations described by a
quarter-plane causal transfer function have a state representation
of the form (1)-(3). However, not every AR system allows a
quarter-plane causal input-output realization (cf. Example 3).
This shows the essential role of the controllability assumption in
Theorem 3. All controllable systems, and not only those which
can be described in input-output form by quarter-plane causal
transfer functions, have a state realization.

Example 3: The controllable AR system I = (22, R?, B)

The value of x in (i + 1, j + 1) is computed from the values of -
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with B = {(w,, wz)e(lR!z)22 | oyw, = o3w,} can be described
by the following state/driving variable model.

ax; = X,y

o X =0

01X, =ov

W, = X, Wy = X5,

Note however that none of the two input-output realizations of
% (which can be obtained by considering either w, or w, as
input) is described by a quarter-plane causal transfer function.

Example 4 (Controllability is not a necessary condition in
Theorem 3): The noncontrollable AR system $ = (2%L.R, B)
with 8 = {weR® |(0, — I)w = O} can be trivially repre-
sented in state form as:

{a,x=x
w=x,

IV. TRIMNESS, REACHABILITY, AND OBSERVABILITY OF
STATE-SPACE SYSTEMS

In this section, we define the notions of trimness, reachability,
and observability for state-space systems, and characterize these
properties in terms of the system representations. Qur definitions
are given at a global level: they regard the restriction of the
behavior to diagonal lines £ ., k € Z, instead of being concerned
with the restriction to single points in 22, These diagonal lines
play an important role as they constitute the ‘‘propagation
fronts™’ in our updating scheme of Section III-A

We will present state-space algorithms for obtaining trim
state-space representations and for checking observability. These
algorithms closely resemble techniques developed in the geomet-
tic theory for 1-D systems.

A. Trimness

The state-space system I° = (22, R%,R”, B°) will be called
locally trim if locally (i.e., on a point) any state value can be
obtained, in other words for every o € R”, there exist (¢, f)) €
R? and xeIl, B such that x(¢,, £;) = . Clearly, if Z° is
linear and not locally trim, there exists a change of coordinates
Tx = col(x;, x,) such that x€Il,B° implies that x, = 0. In
this case, x; is a state variable for IT,®B°, and hence the 2-D
system X = (22, R, I1,,98°) has another state-space realization

" with lower dimension. In the sequel, we will only consider

locally-trim state-space systems.

As mentioned in Section HI-A, the compatibility conditions
A(o)ker S(6) S ker S(o) and im B(o) < ker S(o) of our state
model guarantee that any initial condition x, € ker (o) given
on a diagonal line , can be propagated towards the future
# = U{R, | J = k). However, it may happen that X, cannot
be extended “\owards the past o = U{®;]J/< k} In this
case Xo¢I1,B*[p, =: B;. Note that due to shift invariance,
B; =B, for all keZZ We define the trim subspace  as
J = B,.

Dqﬁmtton 4: The representation (S(s), A(s), B(s),C, D) is
said to be a trim representation if 7 = ker S(0o).

The relevance of trim representations is that they indicate
explicitly which is the set of admissible initial conditions on the
lines € ,. Given a state-space representation (S(s), A(s), B(s),
C, D), the trim subspace can be determined by the following
algorithm.

Trimming algorithm:
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Step 0: J; := ker (o)

Fork=1,2,°-

Step k: I, = A(0)F_y + im B(o).

Proposition 4: 1) The trimming algorithm is finite, i.e., there
is L €N such that 7, = #; for all integers k = L. 2) There is
a polynomial matrix 7°(s) such that J; = ker T(¢). 3) 7= 7.
4) Z(T(s), A(s), B(s), C, D) = Z(8(s), A(s), B(s), C,
D).

Proof: Appendix.

Note that, in order to obtain a trim representation from a
nontrim one, it suffices to determine the matrix 7T'(s), as the
other parameters of the representation can remain unchanged. A
procedure to find T(s) is given in the proof of the foregoing
proposition.

B. Reachability

Let =° = (2% R%R" B*) = I%(S(s), A(s), B(s), C, D)’

be a state-space system with state variable x € (R™)% and driv-
ing-variable ‘v e (R")®. Further let 8% := I1,8°. The subspace
A of (AMZ defined by # := {x*eR™%|3xeB* s.t. x|go
=0 and x|¢x = x* for some positive integer k} will be called
the reachable subspace of T°. Clearly, # is contained in the
trim subspace J of Z°.

Definition 5: The state-space system =° = (22, R, R", B%)
is said to be reachable if # = 7.

Note that here we do not require # = (R™)Z, in contrast with
the definition of the related notion of global reachability given in
[2]. The motivation for our definition is as follows. In consider-
ing the question of state-space realization we do not want to
require that the behavior of the external variable w should be
free on the diagonal lines € ,, k£ € Z. Note that, for instance, for
the system considered in Example 3, this behavior is not free.
For systems with nonfree external behavior on £, the behavior
of the corresponding state variable x will in general also not be
free on 8, (i.e., 7+ (R™Z), and hence a natural reachability
requirement is # = J. Clearly, if = (R")% our reachability
condition amounts to the aforementioned notion of global reach-
ability.

Remark: We recall that while our notion of controllability is
defined at the level of external behavior, reachability is defined
for state-space systems, thus in terms of the internal behavior.

It is easy to show the following result.

Lemma 1: The reachable subspace of a state-space system
% = (8(s), A(s), B(s), C, D) is given by # = im
[B(c)| A(0)B(a)| --- | A*"(a)B(0)], where n is the size
of the state variable. In particular, if (S(s), A(s), B(s), C, D)
is a trim representation, then X° is reachable if and only if ker
S(o) = im [B(a)| A(a)] ++* | A" Y(o)B(0)].

The condition ker S(¢) = im [B(o)| A(6)B(0)| - |
A" Y(a) B(0)) is equivalent to saying that S(s) is a minimal left
annihilator of [B(s)| A(s)B(s)| «++ | A"~ 1(s)B(s)] (cf. Ex-
ample 1). This property can be checked using the following
lemma.

Lemma 2: Let M(s) and S(s) be two polynomial matrices.
Let further U(s) be a unimodular matrix and F(s) a full-row
rank matrix such that N(s) = U(s) col (F(s), 0). Then S(s)is a
minimal left annihilator of N(s) if and only if there exists a
unimodular matrix V(s) such that V(s)S(s)U~(s) = [0] ]],
where 0 is a zero matrix with as many columns as the rows of
F(s).

Proof: Appendix.
Recalling the notion of controllability of Section II, it is
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interesting to note the following. Let T° = (22, R%, R", B°) =
Z5(8(s), A(s), B(s), C, D) be a state-space system. Consider
the corresponding state/driving variable and state behaviors,
respectively, 8" := ker R(o) (with R(s):= col ([S(s)]0],
[s; — A(8)| B(s)})) and B~ :=I1,B°, and define the 2-D sys-
tems %= (2%, R™Y/, 8% M), 2¥:= (Z%, R", B”), (here
(x, v) and x are regarded as external variables). Now, it is not
difficult to show that {Z**) controllable} = {Z* controllable}
= {Z° reachable}. This means that Z* is reachable if R(s) is
left prime. A still weaker sufficient condition for the reachability
of ¢ is provided by the next proposition.

Proposition 5: 1) The state-space system X° = Z*(S(s),
A(s), B(s), C, D) is reachable if (s, — A(s)| B(s)] is left
prime. 2) Every controllable AR 2-D system has a reachable
state-space realization.

Proof: Appendix.

C. Observability

As before for k€2 let €,:= {(/, HeZ?|i+j=k} and
define the half planes ;" = U{g,[/ = k}, #; = U{g,|!
< k}. A state-space system I° = (22, RY, R”", B°) with state
variable x will be called future observable if {w|,+ = 0} =
{-}xlgk = o0}, and past observable if {wly =0} =4‘{.:];,,‘ =
o}.
Definition 6: T° is said to be observable if {w =0} =
{x = o0}.

Note that both past and future observability imply observabil-
ity, but that the converse does not hold true.

To investigate observability, we introduce the following sub-
spaces. Suppose that ° = (2%, R%, R”", B°) has state variable
x€(R")2” and driving variable v e (R)Z. Define subspaces ¥ *
and ¥~ of (R™Z as follows:

v = {xoe(l}l")zli(w, x)eB st xlg,
" =xpand W leg =o}
yt o= {xoe(")zﬂ(w, x)eB’s.t. xlgy,

= xg and wl,; = o}.

Then, clearly, Z° is future observable if and only if ¥~ = {0},
past observable iff ¥* = {0} and observable iff ¥~ N ¥+=
{0}.
Let (S(s), A(s), B(s), C, D) be a trim representation of ¥,
and define C(s) := col (C, S(s)) and D := col (D, 0). Then I°
is described by the following behavioral equations

o,x = A(o)x + B(a)v
[z’] =C(a)x+Dv )

The subspaces ¥ +_and ¥~ can be calculated in terms of A(o),
B(¢), C(0), and D by means of the following algorithms.

v* Algorithm:

Step 0: %" = R™M%

For k=1,2,°*"

Step k: %" = {xe@"%|Ive R"Z s.t. A(s)x + B(o)v
€ %', and C(0)x + Dv = o0}.

Remark: Note that, for the system described by (5) the
subspace ¥t is the 2-D version of what is called the largest
output nulling subspace in geometric theory of 1-D systems.
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v~ Algorithm:

Step 0: %~ = R™Z

Fork=12,"--

Step k: % = {xe®MZ%|Ive @N%3x e %, s.t. A(0)X
+B(o)v = x and C(0)% + Dv = o}.

Explicit procedures to compute ¥;," and ¥;
proof of the following proposition.

Proposition 6: 1) Both the ¥ * and the ¥~ algorithms are
finite, i.e., there exist L + and L ~ € such that ¥ = %%
forall k= LY and ¥," = ¥;= forall k = L™.2) %% = ker
V*(o) and ¥,- = ker V(o) for some polynomial matrices
V*(s)and V(). 3) ¥* = %% and v "= ¥,

Proof: Appendix.

This proposition provides a method of checking observability
in terms of polynomial matrices instead of in terms of infinite-
dimensional linear spaces.

We next show that observability can also be checked without
invoking the subspaces ¥ * and ¥ ~. This method is based on
the elimination of the driving variable v on the state-space
representation, in order to obtain a description only in terms of
the variables x and w, which are the relevant variables for the
notion of observability. The procedure of elimination of v is
given as follows.

Driving-Variable Elimination: Let I° = Z°(S(s), A(s),
B(s), C, D), and define E(s, 5,) := col (5(5), 5, — A(s), C),
F:=col (0, 0, -I) and G(s):= col (0, B(s), —D). Then the
behavioral equations for £° become the following:

[E(0,0) | F][ 5] = G(o)v. (6)

Further, let U(s) be a unimodular matrix such that U(s)G(s) =
col (Gg(s), 0), with Gg(s) full-row rank, and partition U(s) =
col (Uj(s), U(s)), with U\(s)G(s) = G(s) and U(s)G(s) = 0.
Now, premultiplying (6) by U(o) yields the following equiva-
lent equations:

are given in the

(o) E(o. o) [ FI[ 5] = Gelo)y ()
U(a)[E(a,a1)|F][x] =o0. (8)

Finally, Gp(0) is surjective, as Gg(s) is full-row rank, which
implies that (8) describes the behavior only in terms of x and w.

Using the description of given by (8), observability can be
characterized as follows. '

Proposition 7: Let T° = (2%, RY, R", B = T5(S(s),
A(s), B(s), C, D) be a state-space system. Define the matrices
E(s, s1), F, G(s), U(s), and U(s) as previously stated. Then
£+ is observable if and only if U(s) E(s, s,) isa zero-right-prime
matrix, i.e., for all (A, ) €(@ N {0}) X (& \ {0}) U(NE(X,
A;) has full-column rank.

Proof: Appendix.

V. CONCLUSION

In this paper, we have considered autoregressive 2-D systems
and, in particular, the class of controllable AR systems. We
defined controllability as an external property of systems and
characterized it in terms of system representations. Moreover,
we showed that controllable systems constitute exactly the class
of AR systems which can be described in input—output form by
means of a 2-D transfer function.

Further, we defined a concept of state for 2-D systems and
derived the corresponding state-space model. This model is a
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first-order state/driving variable representation which leads to a
first-order recursive updating scheme. Although not every AR
system has such a representation, we proved that every control-
lable AR system can be represented in state-space form. This
shows that, in contrast with the case of input-output systems,
the realizability of controllable AR systems does not depend on
the existence of 2-D causal relationships between the system
variables. Finally, we introduced the notions of trimness, reach-
ability, and observability for state-space systems and gave condi-
tions for these properties in terms of the system describing
parameters.

APPENDIX

ProoFs

Proof of Proposition 1: Clearly, if 3¢ = (22, RY, R/,
B9 is an ARMA system,zﬂw%” =:® is a lineay and shift-in-
variang subspace of (R?)®". Moreover II,,: RDHZ x (RHE ~
(RDZ is a linear and continuous map with respect to the
topology of 2pointwise convergence, Hence, since with this topol-
ogy (RDHZ x (R)® and (RY)Z are both linearly compact
spaces (cf. [6]), it follows that IT,, maps closed linear subspaces
into closeéi lincar spbspaces. Thus, as B is a closed subspace
of (RN%" x (RHZ with the pointwise convergence, topology,
we conclude that B is a closed subspace of (R?)% . By (10,
Theorem 2.1}, together with linearity and shift invariant this
means that B can be described as B = ker R(oy, 0,) for some
2-D polynomial matrix R(s,, 5,). Hence £ = (Z*,R?, B) is an
AR system, |

Proof of Theorem 1: We will show that the following
implications hold: 3) = 4) = 1) = 2) = 3),

3) = 4): Suppose that B = ker R(g,, ;) with R(sy, §,) a
full-row rank left-prime polynomial matrix. Without loss of
generality we can assume that R = [P| Q] with P(s;, s,) a
g X g polynomial matrix with nonzero determinant. The left
primeness of R implies that P(s,, s,) and Q(s,, 5,) have only
unimodular common left divisors. Hence (P, Q) is a left-coprime
factorization of the rational matrix G(s;, $;) = P7I(s,
8,)0(Sy, 53). Let (Q, P) be a right-coprime factorization of G,
i.e., P is square and nonsingular, Q and P have only unimodu-
lar common right divisors and G = QP~". Then, PQ — QP =
0. Moreover, if (P*, Q*) also satisfy P*Q — Q*P = 0, there

“exists a polynomial matrix L(s,, §,) such that P* = LP and

Q* = LQ. Define now M(s,, s;) := col (Q(s, $,), —P(s;,
s5;)) and let .4 := im M(¢,, o,). It follows from Proposition 1
that there exists a polynomial matrix R*(s,, §,) such that
A = ker R*o,, 0,). Thus R¥(s, s;) M(s;, 5,) = 0. Parti-
tioning R* = [P*|Q*] such that R*M = P*Q — Q*P, the
foregoing is equivalent to P*Q — Q*P =0, and hence there
exists L such that R* = [P*| Q%] = L[ P| Q] = LR. Conse-
quently ker R(oy, 0;) C ker R*(0,, 0,), i.e., B S .#4. On the
other hand, it is clear that # € B. So B = .# showing that 4)
holds true.

4) = 1): Let B = im M(o,, g,) for some g X I polynomial
matrix M(s;, s,). Define the radius r(M) of M(s,, s,) as the
maximum of the degrees in s, and s, of the entries of M. We
will see that the condition of Definition 2 holds with p > 2r(M).
Indeed, let w;, w, B and I, I, € 22 be such that d(/;, I,)
= 2r(M) + 1. Let further a,, 3, € (R)*" be such that w, =
Ma, and w, = Ma,, and construct a*e ®RHT as follows:
a*(t,, 1) = a(ty, ty) if d(ty, 1), 1) < (M) and a*(t;, 1)
= ay(ty, t;) if d((2,8,), L) s r(M). It is not difficult to
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check that the element w* € B defined by w* := Ma* satisfies
w*|;, = w; and w*|,, = w,. This shows that Z is controllable.

1) > 2): Suppose that T is controllable and let we 8. Con-
sider a_sequence (Ji)ien of finite intervals of 22 satisfying
I, = Z? and such that for every finite subset C S 22 there is
NelN s.t. CC Iy. By the controllability assumption, for each
ke, there exist w, €D and a finite interval I, of 27, with
Iy C I, such that wy|, = w|;, and wy| g, = 0. Clearly, the
sequence (Wy),en converges to w in the topology of pointwise

convergence. So B € cl (B P&, To see that cl (BOTP) ¢

B we invoke the fact that autoregressive behaviors are closed
subspaces in the topology of pointwise convergence [10]. Thus,
a8 PO B, 1 (PP Sl B = B.

2) = 3): As B is an autoregressive behavior, there exists a
2-D polynomial matrix R(s,, s,) such that B = ker R(0y, 0;).
If R is not full-row rank, there is a square full-rank polynomial
U(s,, s,) such that UR = col (R*,0) with R* full-row rank.
Let D(s;, 5;) be a maximal left divisor of R*(s,, s;) and
R(s,,5,) be such that R* = DR. Thus, UR = col (DR, 0).
Note that R is left prime and hence, as 3) implies 2), B’:=
ker R(0,, 0,) satisfies the condition B’ = cl ((B’)*"P),
Moreover, since the matrices U and D are square and full rank,
we conclude that 9 *°™< = (§’)*™*, This implies that B =
B’, showing that ¥ allows the full-row rank left-prime descrip-
tion B = ker R(oy, 0,). |

Proof of Proposition 2:

The **if" part is obvious.

“only if’” Suppose that T = (2%, RY ®B) is a nontrivial
controllable AR 2-D system. Then, by condition 3) in Theorem
1, there is a full-row rank left-prime g X g polynomial matrix
R(s,, 5,) (with g < g) such that B = ker R(0;, 0;). Let T be
a permutation matrix such that RT~!=[P|— Q] with
P(s,, 5,) square (g x g) and nonsingular, and define 7w =: col
(y, u), where y has size g and u size g — g. Then, the
input-output system X'/° = (2%, R® x R?"%, 8/9), with
B°/° described by Py = Qu, is an input-output realization of
Z. Moreover, as R is left prime, so will be RT~!. This means
that P and Q are left-coprime polynomial matrices, and so £//°
can be represented by the transfer function G := P~!Q. Thus, T
has an input-output realization which is representable by means
of a transfer function. Let now T/° = (2%, R¢ x R9°5,B1/°)
be an arbitrary input-output realization of Z. Then it is not
difficult to see that BL/° can be described by equations of the
form P*y* = Q*u*, with P* and Q* such that there exists a
permutation matrix T* satisfying R = [P*| — Q*]T*. This
once more implies that P* and Q* are left coprime and hence
£1/° can be represented by the transfer function G* = P*~!Q*.
So every input-output realization of X is representable by a
transfer function. ]

Proof of Theorem 2: The *‘if”’ part of the statement is
easily verified. The reciprocal implication follows from the
lemma below.

Lemma: Let 2, denote the diagonal line 2, := {(i,/)e
22 i+j=4k),ke2. Define Bj:=B"|g, =B, and

¥:=B%@®,) with B8*:= I1,98°. Further, define the operator
r @I x @) > ®HF x RIF x @)F x )T
x RNH% by x(w, X)i= (0%, x, ox, w, ow) for all (w,
x) e RNZ" x (R™Z". Then

1) Bi=B={(w, )e@®)I**x R"*|xeBfand v7
€8, (w(r), x(1))€BN)} 2 2

2) B°=8*:= {(w, x) e RDZ x RI)*" |(w, x)[p, €B}
vkeZ and =x(w, x)(1) =: (o1 x(7), X(1), ox(r), w(7),
ow(r)) e B%(7) YT€ 2%},
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The proof of this result will be given at the end. Its interpreta-
tion is as follows. The behavior B¢ is characterized by its
restriction B} to diagonal lines €, as well as by ‘‘three-point
laws’’ corresponding to the relationship satisfied by
0,%(7), x(7), 0x(1), w(7), and ow(r) for every 7€ 22. More-
over, Bj is characterized by the restriction B3 of the x-behav-
ior to the line £, together with static laws corresponding to the
relationships satisfied by x(7) and w(7r) for every 7 e 2*.

Note that for all 7€22? Bi(r) = B3(0,0) and xB°(r) =
*8°(0,0). Clearly, 84(0,0) and »B°(0,0) are linear sub-
spaces of, respectively, R? x R" and R” X R” x R" x R? X
R9. Moreover, for k€ Z, Bf = B is a 1-D AR behavior and
hence can be represented as BY = ker S(o) for a suitable
polynomial matrix S(s). Thus it is easily seen that there exist
linear subspaces 7, of R? and ¥; of R", and real matrices A4,,
A, By, B,, and C such that (w, x)€B° if and only if the
following is satisfied:

S(o)x=0
0,x = Agx + Ajox + Byw + Biow + %,
w=Cx+ %,

Deﬁning_Ao = 14_0 + Eoc, Al = Zl + EIC. BO = [EOII]V’

B, := [B, |01V, and D := [I|0]V, with V such that
% .

’Vl ,

imV= [ the previous equations become.

S(a)x=0
0OX = (AO +A,a)x + (Bo + Bla)v
w = Cx + Dv

where v is an auxiliary free variable.

In order to check that:condition 1) of the theorem is verified
define A(s):= Ay + A,s and suppose that v|g, = O for some
keZ. Then x|ex+1 = A(0)x ng. As xlsk“e%" |8k+1 =
B = ker S(0), this implies that S(a)A(a)x|2k=0. Thus,

'since also Bf = BF = ker S(o), there must hold ker
S8(6) A(g) € ker S(o), or equivalently, A(c) ker S(o) € ker
S8(0). To prove 2) assume that x |, = O for some k€ Z. Then

Xlg,. . = B(o)v (with B(s):= B;s + B;). Consequently,

S(a)ﬁ'(a)v =¢0. As v is a free variable, this means that

S8(s)B(s) = 0, i.e., im B(c) € ker S(o).

Xlg, ., = Blo)v (with B(s):= Bys + By). Consequently,
S(a)%(a)v =o0. As v is a free variable, this means that
S(s)B(s) = 0, i.e., im B(o) € ker 5(9).

Proof of the Lemma: To prove (1), we consider k =0

(the arguments for other k € Z are similar). Clearly, 83 € B§.
Consider now an clement (w, x) € 3. Then xe B and there-
fore there exists an element # e (R7F° such that (W, x) e B3.
Moreover, for every je Z, (w(J, —J), x(J, =/ eB(j, -/
and hence there exists (w/, x/)eB§ such that (w/ (j, —)),
xCis =) = (w(J, =), x (J, ~J)). We next use the axiom of
state in order to prove that in every point (j, —j) € 2 the value
of (W, x) can be replaced by (w’ (J, =), x/(Jj, —J)) yielding
still an element in B§. This implies that (w, x) € B as desired.
Starting with j = 0, let (w’, x’) and (w", x") be elements of
B° such that (W', X')]g, = (W, x) and (w", x")|g; = (W°,

x%). Define the partition (T_, T,, T,) of Z% by T_:=
U{R,|k <0}, Ty:=2oand T, = U{2,| k> 0}. Let D,
={(0, 0} and D_:= T_U To\D,. Then Dy:= P(D,) N
Ty = D, obviously separates D_ and D_. Thus, since x’
= x(0,0) = x°(0,0) = x”| p,, it follows from the axiom of
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state that (W', x)|p_A (W', x")| p,€B°|p_yp,. Conse-
quently, (w, x)|80\{(0,0)} A(W° x )|{(0'0)} =
(W, x) '90\((0.0)} A(w, x) I {0, 0} E%S.

Repeating the aforementioned reasoning with (#, x) replaced
b)’ (‘_vr x) IEQ\(_(O,O)}A(W’ x)l{(0,0)}! j =1 and D+= {(ll—
1)} yields that (w, x) 20n0,0) (1 1) A(w, x) l{(o,O).,(l,—l)} e.%f,.
So, (W, x) l“o’o),(l’_l)}e o lfo,0,a, -1} In this way 1t is
not difficult to show that for every i€ 2, (w, x)|,€ B3|, with
I := {(—i, §),"-+,(0, 0), -+ - (i, —i)}. Taking into account that
B35 is a complete 1-D behavior (cf. [11, Definition 3]), this
implies that (w, x) € B§ proving claim (1) of the Lemma.

In order to show that (2) is satisfied, note that B° < B*, We
next prove that the reciprocal inclusion also holds true. Let (w,
x)eB* Then there exist elements (w', x'), (w”, x")e B’
such that (W', ') |g, = (W, X) g, and x(w", x")(0,0) = 7 (w,
x)(0,0). Clearly, (x'(0,0), x'(l, -1)) = (x(0,0), x(1, —1))
= (x'(0,0), x’(1, —1)). Therefore, the axiom of state implies
that (B, Hlgguqa,op = W, Xlgg A (W, X7 |1 0y €
B° lgou i, 0 Now, since (W, £)(1,0) and (w, x)(1,0) are
both elements of B°(1,0), and ¥(1,0) = x"(1,0) = x(1,0), it
follows from the state axiom that the value of W at (1, 0) can be
replaced by w(l,0) yielding still a trajectory in B°|€, U
{(1,00} (cf. proof of (1)). Thus, (W', x| A (W, x") |,
)= (W, Xlag A (W, B,0p = W, N legua.on €
B |gquq, 0} BY successively considering trajectories (w’, x/)
€B7 such that x(w’/, x)(Jj, —j)==x(w, x)(J, =), J=

. ¥1, #2, -+, it can be shown (using the foregoing argument)
that for every i€Z, (w, X)gqus; €B° gy s, Where J;:=
{a, o+ =i, d,---,1,0,"--,1, 0)+ (i, —i)}. Conse-
quently, (w, x)lgqug, €B°lgou g,- Using the same kind of
arguments as previously mentioned, it is not difficult to see that
(W, X)|5,€B° |5, with 2 := Uj_ 2, Hence, as B° is
complete, we conclude that (w, x) € 8° proving claim (2). W

Proof of Example 2: Let £ := (2%,R, B), with B := ker
(o, — 0y) = ker (¢ — 1). Suppose that Z has a state realization
%= (2%, R, R", B°) described by the following behavioral
equations:

S(e)x =0 (A1)
o,x = A(o)x + B(o)v (A2)
w = Cx + Dv. (A3)

Let further D(s) be a maximal left divisor of S(s), and R(s) a
polynomial matrix such that S(s) = D(s) R(s). Define the fol-
lowing 1-D behaviors. B := {% e ®R™%|5(c)% = 0} =
ker S(¢) and B := {¥e R™MZ|3%€B s.t. X = R(0)&}. It is
casily checked that 8 = ker D(o) and as D(s) is square and
full rank, B is a finite-dimensional subspace of (R™Z. We will
call a finite-dimensional behavior an auronomous behavior,
and refer to variables whose behavior is autonomous as au-
tonomous variables.

To prove the desired result, we will use the following fact.

Fact: Let ¥€®B and suppose that, for some polynomial
matrix N(s), the variable & := N(0o)¥ is an autonomous vari-
able. Then, there exists a polynomial matrix K(s) such that
£ = K(o)X, with X:= R(0)X (as above). _
__ Proof of the Fact: Recall that S(s) = D(s)R(s) with
D(s) square, full rank, and maximal left divisor of S(s), and
R(s) full-row rank. Note that R(s) is left prime, and so there is
a unimodular polynomial matrix U(s) such that R(s)U~'(s) =
[7]|0]. For £€%®B, let £:= U(o)¥ and partition £ :=
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col (£, £,) such that R(a)U~ Yo)g = 2,. Deﬁne,ﬁ = {Re
(R™MZ| D(0)®; = 0}; then B = {Fe®"%|3eB s.t. £=
U~ Y(0)#). Consider now §:= N(0)& = N(o)U~(0)%. If §
is autonomous, none of its components can depend on £,. Thus
N(SHU™Y(s) = [K(s)|0], for some polynomial matrix K(s),
with N(o)U~!(0)% = K(0)%,. So ¢ = K(0)&, = K(0)
RO 0)® = K(0)R(0)%, ie., £ =K(0)F with ¥:=
R(o)X. ;

Now let ¥e (R™%" be such that ¥ = R(o)x and xeI1,%B°,
and define w;:= wlgk, X, = E|9k (Ke2). Clearly, for all
keZ, %,, and w, are autonomous variables. This implies that,
in (A3), D = 0. Moreover, it follows from (A2) that R(o)a;x
= R(0) A(0)x + R(c)B(c)v, and thus also R(s)B(s) = 0.
This yields: 0;X = R(s) A(e)x, w = Cx. Now, invoking the
previous fact it is not difficult to see that there exists polynomial
matrices E(s) and F(s) such that: 0,X = E(6)X and w =
F(o)X. Hence, the variables w and X satisfy the following
equations:

D(o)E=0
0¥ =E(o)X
w=F(0)¥%.

(A4)

Let B* be the w-behavior induced by (A4). Then 88 € B*, and
as B* is (obviously) finite-dimensional, so will be B. This
contradicts the fact that B = ker (¢ — 1). We conclude in this

way that £ cannot have a state realization. |
Proof of Proposition 4: It is easily seen that, for & =
0,1,2,---: 1) 7 is A(o)-invariant and im B(0)7;, and 2)

Ti+1 & T We will show that: 3) there exists a polynomial
matrix T(s) such that 7, = ker T, (o) and 4) there is LeN
such that 7, = 7, forall k = L.

It follows from here that J; = A(¢)J, + im B(g) =
ker T;(c), and consequently I = 7;, T(s) = T,(s) and
IT(s), A(s), B(s), C, D) = T%(S8(s), A(s), B(s), C, D).
This yields the desired result.

To prove 3), note that this holds for k = 0, with To(s) = S(s).
Suppose that for ke there exists T,(s) such that J; =
ker T(o). Then 4, can be described as 7, = {x,|3xq, v
s.t. (I) is satisfied}, with (I) given by

Ty(e) 0 (’;0) = [(;]xr @)

A(o)  B(o)

Let U(s) := col (U (), U,()), be a unimodular mafrix such that
U(S)R(s) = F(s), Uy($)R(S) =0, with R(s):= col ([T,(s)
0], [A(s) B(s)]) and F(s) a full-row rank matrix. Denoting

Ty 1(8) == Up(s) (} , (@) is equivalent to

F(a)(?)
Tep(o)x,

and as F(0) is surjective it is clear that 7, = ker T, (o).
To see that (4) holds true, note that if 7 * and J ** are two
autoregressive behaviors in (R”)%, for some peM, such that
F%* c % then the number m** of free variables in J**
cannot exceed the number m* of free variables in 7 *. Thus, for
the sequence Jy 2 512 *+ 2 F 2 Fpqq =2 - there ex-
ists M eN such that for k = M the number of free variables
my of I, is m; = m,,. Moreover, for every autoregressive
behavior J there holds that for 7€M sufficiently large dim
J |©.m = Fi + M7, where 7 is the number of free variables in

Ul(”)[(}]xl

(/]
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g and 7 is the state-space dimension in a minimal state-space
realization of & (cf. [11]). So, if F** & J* and m** = m*,
there must be dim 7 **|o,n) = n** + m**r < n* + m**r =
dim 5 *|o.n, for 7€M sufficiently large, implying that n** <
n* (here n* and n** have the obvious meaning). Thus, for the
sequence Fp 2 Tpgi1 2 0 T 2 1 2 ', we will have
Mgz App 1 2 0 BH 2Ny 2 implying that there
exists L €M such that n, = n; for all k¥ = L. This means that
7. and J;, (k = L) have the same number of free variables
and the same minimal state-space dimension, and as 7, © 7 it
follows that 7, = J; for all k = L (cf. [11]). This concludes
the proof of Proposition 4. |

Proof of Lemma 2: Assume that M(s) and F(s) are,
respectively, & x / and j x / matrices (j = k). Let I denote
the (k —j) X (kK — ) identity matrix and denote by O the
(k - j) X j zero matrix. Clearly, {0 IJU~! is a minimal left
annihilator of M. Thus S is also a minimal left annihilator of M
iff it is unimodularly equivalent to [0 JJU~}, i.e., if and only if
there exists V(s) unimodular such that S(s) = V(s)[0 I]U‘.l
().

Proof of Proposition 5:

1) Suppose that for the state-space system £° =
=5(S8(s), A(s), B(s), C, D), the polynomial matrix [s, —
A(8)| B(s)] is left prime. It is not difficult to see that this
implies that T° = %0, A(s), B(5), C, D) is reachable. This
means that starting with x, = 0 on 2, it is possible to reach
any x* in the trim subspace 7 of X° on £, for k sufficiently
large. Clearly, the trim subspace J of Z° is contained on J,
and thus also T° will be reachable.

2) As mentioned in Section IH, if = = (23, R%®B) is a
controllable AR 2-D system, B is the output behavior of an
input-output system described by a quarter-plane causal rational
transfer function. Moreover, according to [1] every such trans-
fer function can be realized by means of a state-space model
0, A(s), B(s), C, D), with [s, — A(s)| B(s)] left prime (over
R[5, 57 % 52, 57'1). By 1) this means that I°

20, A(5), B(s), C, D) is a reachable state-space realization of
=, a
Proof of Proposition 6: We will first prove the statements
about ¥ *. In order to do so, we will show that for all &k =
0,1,2, - there is a polynomial matrix V+(s) such that %" =
ker V*(a), and moreover that ¥, S % . By similar argu-
ments as the ones used in the proof of Proposmon 4, this implies
that 1) and 2) hold true for ¥+ Clearly %* € ¥;". Suppose
now that %% < %I, Then %%, = {xe([.-a")im 5.t

A(o)x + B(o)ue Y and C(o)x + Dv =0} € {x€
(Eki")*|au st. A(e)x + B(o)ve v, and C(a)x +Dv =
So %45, € %t, for k = 012 .. Now, %*

o} = 'g(

(R™¥% and so there exists a polynomlal matrix Vg (s) such
that ¥ = ker V§(s), namely, V| (s) 0. Suppose that for
keM there is a polynormal matnx Vi (s) such that ¥+
ker ¥ (o). Then %%, = {xe@i")zlav s.t. A(a)x + B(a)v
€ ker V+(o) and C(u)x + Dv = o}, ie., x€ 17,11 iff
[V*(o)A(a) [- 3 (ulB(o)]u' Eliminating the vari-

C(o) -D
able v from this description (cf. Proof of Proposition 4) shows
that %%, = ker V5, (o), with V,:H(s) a suitable polynomial
matrix. So, for k=0, 1,2, v, there exists a polynomlal
matrix ¥; (s) such that %" = ker V7 (9). As mentioned prev1-
ously, this unphes that l) and 2) hold true. Consider now ﬁ+
with L* as in 1). Then % %= {xe ®M%|3v s.t. A(o)x +
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B(o)ve ¥ % and C(0)x + Dv = 0}. Let Xy € ¥%. Then x,
€I, B, and moreover there exists x,€Il, 8]y, and vy,
k= 0, 2, ,such that x, ., = A(o)x, + B(a)vk, Cx, +
Dy, = 0. It can be shown that this implies that there is
(w, x, v)e%’ such that (w, x, ”)ls (0, xy, vy), for k =
0,1,2:+-. So clearly whert Fmally, it is not dlﬁ'\cult to
seemat1/+C17, forall k = 0,1,2, -+ and so %% = ¥*.
To prove the statements about ¥ ~, we will first see that for
all k=0,1,2,-+*, %1 S % . Clearly, "~ € % . Sup-
pose that for ke %~ € %_,. Then %, = {xe(l?&")z|av
3¥e ¥y s.t. A(0)X + B(o)v = x and C(0)X¥ + Dv =0} €
{_xe([R")z_]iu I¥e ¥, st A(0)¥+ B(o)v =x and
C(a)x+Dv—o} 1Y . S0 ¥ € % for all k—
0,1,2, -'+ . Next, we will show that for all ¥k =0,1,2, -
there exlsts a polynomial matrix ¥V (s) such that ¥, =
ker Vi (o). This holds for k = 0 with ¥ (s) = 0. Suppose that
it also holds for some keM. Then %, = {xe(R™Z*|3v
a¥eker Vi (o) s.t. A(0)X + B(o)v=x and C(o}X + Dv =

0}, and 50 x € ¥, iff there exists X and v s.t.
Vi(a) 0 0
A(0)  B(o) |(%) = Hx.
&) D 0

By similar arguments as previously mentioned, we conclude that
there is a polynomial matrix V. (s) such that ¥, = ker
V,+1(0). This shows the desired result. Consequently 1) and 2)
hold true for ¥ .

Note, finally, that ¥~ € % forall k =0,1,2, -+ . More-
over, if xoe ¥1—» Xo€I1,B7 g, and there exist v_, and x_
k=12, such that x_,ell,B°ly_, A(a)x_k+
B(o)v_i = X_441, and Cx_, + Dv_, = o. This implies that

there is (w x)€e®B° such that (w, x) lo_x =€0, x_)a_
k=1,2,- and x|y, = x,. So xOE"V andweconclue
that ¥~ 1/ a2

Proof of Proposition 7: For the given state-space system
%%, the (w, x)-behavior B° is described by — U(o)Fw =
U(0)E(0, 0))x. Thus, {w = 0} = {x = 0} iff ker U(a)E(o,
0,) = {0}, Now, it is a well-known result that given a 2-D
polynomial matrix R(s, s)), ker R(o, 0,) = {0} iff R(\, \)
has full-column rank for all (A, A\)e (@ \ {0}) X (& \ {0})
This yields the desired result.
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