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h a behavioral framework.  This property  is d e h e d  as a systems  concept 
Absrracr-The concept  of controllability of 2-D systems Is introduced 

and is charscterlzed in terms of system  representations.  Further, state- 
spna  realizations for controllable 2-D systems arc presented. These 
mlizotions do not  depend  on  any  assumptions  concerning  causality. 

I. INTRODUCTION 

I N this paper, we introduce  a  controllability  property for 2-D 
systems  and  give  a  characterization  of this property  in  terms 

of  system representations.  Moreover, we consider  the  question 
of state-space  realization for the  class of autoregressive (AR) 
2-D systems. We introduce  a  state-space  model  which  can be 
used to describe  controllable AR systems. 

Our  approach to 2-D systems  is  inspired  by  the  behavioral 
approach to (1-D) dynamical  systems  developed  in [ l l ] ,  [12] 
and it consists  in  viewing  a 2-D system  simply as a  family  of 
trajectories  defined over a 2-D index  set.  From this point of 
view,  it  is  natural to define  properties of systems in a  set 
theoretic sense, i.e., as properties of the  system  signals  instead 
of as properties of its representations. 

Intuitively,  a  system  will be called  controllable if  it  has a 
limited  memory range, Le., if  the  system  is  defined  in T E RZ, 
the  values  of its  signals on two arbitrary subsets TI and T2 of T 
will be independent  provided  that TI and T2 are at  sufficiently 
large distance. 

This  definition  illustrates  some  essential  points of our ap- 
proach. First, no  reference  is  made  to “inputs” and “outputs” 
but  only to “signals.” Indeed, in this paper, we  will  not  place 
ourselves  in  the  classical  input-output framework. Second,  con- 
trollability is introduced as an  adirectional property, since no 
restrictions are imposed  on  the sets TI and T,. This reflects our 
wish to avoid  the  choice of a preferred direction  in  the  plane, 
and to make  no assumptions  on  the  existence of causal  relation- 
ships  between the system  variables. 

Characterizing  system  properties  in  terms of the  parameters of 
system  representations is an  important  issue.  Here we  will  show 
that, for AR 2-D systems, our concept of  system controllability 
is equivalent  to  a 2-D primeness  condition or, alternatively, to 
the  existence of a  moving-average  (MA)  representation.  More- 
over, it tums out  that  controllable AR systems  correspond 
exactly to those  systems  which can be represented by transfer 
functions  in  an  input-output framework. Thus, when  consider- 
ing controllable AR 2-D systems we  will be  dealing  essentially 
with  the  same  class of systems as considered  in  the  classical 2-D 
approach [2], [3], [7], with  the  difference  that we  will  not be 
assuming an input-output structure. This fact  becomes  particu- 
larly  interesting  when we analyze  the  question of state-space 
realizations for  controllable AR systems. 
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The  main  purpose of constructing  state-space  models is to 
provide  first-order  descriptions of systems,  which  moreover 
correspond to a  convenient  first-order  updating  scheme. This 
turns out to be  a  difficult  problem  within  the input-output 
framework. The  models  introduced by Roesser [9] and Fornasini 
and  Marchesini [3] provide  a  first-order  recursive  representa- 
tion, but  only for the class of 2-D quarter-plane causal transfer 
functions.  Noncausal transfer functions are represented  in [8] 
and [5] by first-order relations  but  not  in  recursive form. This 
indicates  that  within  an  input-output  framework  the  assumption 
of causality  is  crucial for obtaining  first-order  recursions. As  we 
will  show,  once  the  input-output structure is no longer imposed, 
this causality  assumption  need not be made.  The  state  property 
that we introduce  here for 2-D systems  leads  to  a  first-order 
recursive  state/driving-variable  model  which  can  be used to 
represent any controllable AR system. 

The  organization of t h i s  paper  is as follows.  Section II deals 
with controllable systems, and  Section JII with state-space  sys- 
tems.  In  Section IV, we analyze  the structure of  state-space 
systems  and  introduce  and characterize the  notions of trimness, 
reachability,  and obsewability. Section V contains  concluding 
remarks. Proofs are collected in the  Appendix. 

II. CONTROLLABLE 2-D SYSTEMS 
Controllability  is  a  notion of central  importance in systems 

theory.  Usually, this notion  is  defined as a property of the 
state-space  realizations of a  system.  In this section, we give  an 
alternative  definition of controllability of a 2-D system as an 
intrinsic  property of the system  external  behavior  and  not of its 
representations.  Intuitively, we  will  say  that  a  system  defined 
over T C Rz is  controllable if its  memory has a  limited 
range-thus,  no  matter  what  system signal is  given  on T’ c T ,  
at  sufficiently large distance  from T’, every  other  system  signal 
can occur. This generalizes  the  definition of controllability  given 
in [12] for (1-D) dynamical  systems. We  will consider in 
particular  the  class of autoregressive 2-D systems  and  develop 
tests to check  controllability for systems  in this class. It turns 
out, that  our  notion of controllability is closely  related  to  the 
notion  of 2-D modal  controllability  introduced  in [7] and [8]. 

A .  The Notion of Controllability 
In order to  define  controllable  systems, we start  by stating  our 

definition  of  a 2-D system. 
Definition I: A 2 - 0  system is characterized by an  index  set 

T C [a2, a  signal  space W ,  and  a  subset 8 of W T  (the  set  of 
all functions T - W ) ,  called  the behavior of the  system.  The 
system Z defined  by T ,  W ,  and 8 will be denoted by Z := 
(T, w, 8). 

This definition  can be interpreted as follows. A 2-D system 
describes  a  phenomenon  defined  on T which  is  characterized by 
attributes  taking  values  in  the  set W .  Thus, every  manifestation 
of the  phenomenon  gives rise to a signal w :  T -  W. The 
behavior 8 species  the  laws  which  govern  the  phenomenon by 
indicating  which  signals are compatible  with  these  laws. 
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In this pa r, we  will  always  consider discrete 2-D systems 
with T =  B P . 

Definition 2: A 2-D system = (Z2, W, 93) is said to be 
controllable if the  following  condition  holds. There exists a 
positive real number p such  that { w l ,  ~ ~ € 9 3 ;  11, Z2 G 8'; 
d ( 4 ,  1,) 2 PI * Iyl Ill 11, €93 I 4  U 4 ) .  Here 4 Z 1 ,  1,) 
stands for the  Euchdean btance between Zl and I,; w1 A 
w2 I,, denotes the signal w E W'l"'2 such that w I, = wljrl and w L? = w2 11 , and is the concatenation od wl wlth 
wz relahve to (<, I,). 
Two aspects of this definition  should  be stressed. First, note 

.that the  system  signals w are not split into  inputs  and  outputs. 
Second, as no restrictions are imposed on the sets I, and Z,, 
controllability is not  related to the  choice of  any preferred 
direction Z2. Roughly  speaking,  we  may say that I ,  is sur- 
rounded by a band of width p beyond  which all the information 
about the phenomenon w1 occurring in I,  is lost. In this 
sense, p measures the memory  range of the  system. 

B. Autoregressive 2-0 Systems 

In the sequel, we will be concerned  with autoregressive 2-D 
systems.  These  systems  have as parameter set T = Z', as signal 
space W = Wq, for some  positive  integer q, and  their  behavior 
is  given as the kernel  of  a polynomial operator in the shifts. That 
is, it can be described by behavioral equations of the form R(o l ,  
a;,, u,, uT1)w = 0 ,  with R(s, ,  s i 1 ,  s,, sF1) a g X q polyno- 
mial matrix (for some  positive  integer g), and u1 and a,, 
respectively,  the left- and downshift.  These are defined as 
follows: u1 associates  with  a function w :  Z' -+ Rq a  function 
ulw: Z2 --t W q  such  that alw(t l ,  t 2 )  := w( t ,  + 1, t 2 )  for all ( t l ,  
tZ )EZ2;  a, acts  in  a  similar  way,  with u,w(tl, t2)  := w ( t l ,  tz 
+ 1). Thus, an autoregressive (AR) 2-D  system Z = 
(Z2, W ,  93) is characterized a linear operator R(o,,  
q l ,  a,, q l ) :  (Wq)zz  -+ such  that Q3 = ker R ( q ,  

Clearly, the behavior 93 of  such  a  system  is  a linear shift- 
invariant subspace of \Rq)" , i.e., q93 = 8, i = 1,2.  More- 
over, 93 = { w E (Wq)' I w b ~ 9 3  Ir, for all finite  subsets Z C 
Z2}, This property means that, in order to check  whether or not 
a  signal is compatible  with the laws of the system, it is sufficient 
to check if it  satisfies  these laws on finite  subsets  of 8'. This is 
koown as completeness. It was shown in [lo] that  the  converse 
of the aforementioned also holds true, i.e., every linear, shift-in- 
variant, and complete  system is an autoregressive one. 

Note that, due to shift invariance, 93 = ker R(a, ,  a;', u,, 
a; l) can always be represented as 93 = ker R'(ul, a*) for some 
polynomial  matrix R'(s,, ~2); just take R'(sI, S,) = R(s1, Si 1 , 
s,, S; *)s$s;~, where lI  and 1, are, respectively,  the  exponents 
of the  highest  power of si and s; appearing  in R .  For 
simplicity, and without  loss  of  generality, from now on we  will 
consider  only this type of AR representation. 
An important  distinction  between 2-D and  1-D AR systems is 

the  following. W e  1-D AR systems can always  be  described 
by means of 1-D polynomial  matrices  of  full-row rank [ll], t h i s  
does not hold true for the 2-D case. In particular, we  may need 
to take g > q. A  simple  example of t h i s  situation is, for 
instance,  a  single-variable  system X = (Z2, R, 93) which  only 
allows for constant  signals: the minimal number 

bs; 

ai1, a,, a;'). 

2 

necewuy to describe 93 is two, namely 93 = ker 

thus g = 2 > 1 = q. However, we  will see that  controllable 
AR systems can always be described by a  full-row rank polyno- 
mial matrix. 

AR representations  provide  a  system  description  in  terms of 
relationships  involving the system  signals alone. There are how- 
ever situations  where it is convenient to introduce  auxiliary 
variables  in order to simplify  the  description  and  analysis of a 
system. 

A 2 - 0  system with auxiliaty variables is defined as X" := 
( T ,  W, A ,  93") with  the index set TE R', the  external  signal 
space W, the  auxiliary  variable  space A ,  and  the internal 
behavior of the system 93" E W T  X AT. The external behav- 
ior of X' is given by lT,aa:= { W ' E  WT13aEATs. t .  ( w ,  a) 
E 8 "}. Z' = (B', W ,  R', 8 ") is said to be  an ARMA (autore- 
gressive-moving  average) system if it can  be  described by 
behavioral  equations of the form R ( q ,  u,)w = M ( q ,  uz)a for 
some  polynomial  matrices R(s l ,  s,) and M ( s l ,  s,); the  left-hand 
side  of  the  foregoing equations is  called the autoregressive part, 
while the right-hand  side is called  the  moving-average part. In 
particular, if R ( s l ,  s,) = I ,  we  will  say  that X" is an MA 
system. 

Clearly, every AR system can be  viewed as an ARMA system 
of special type where  the  MA part is  absent, i.e., with 
M(sl, s,) = 0. On the other hand, the  external  behavior of an 
ARMA system can be described in AR form. This is stated in 
the  following  proposition. 

Proposition 1: Let X" = (z,, I R ~ ,  R', 8") be an ARMA 
system, and define 8 := n,8". Then Z := ( P ,  w', 93) is an 
AR system. 

Proofi Appendix. 
Thus AR and ARMA representations  constitute  alternative 

descriptions for the same class  of  systems,  namely for linear, 
shift-invariant,  and  complete ones. MA systems  form  a strict 
subclass  of  the  foregoing. In the sequel, we  will  show  that  a 
linear shift-invariant  complete  system is MA  if  and  only  if it is 
controllable. 

C.  Controllable AR 2-D Systems 
In order to characterize controllable AR systems,  we  next 

introduce  some  preliminary  definitions. Let W[s,, s;l, s,, S F ' ]  
denote the ring of  polynomials  in  the  indeterminates q, s; ', s,, 
SF' with real coefficients,  and WklxkZ[sl ,  S i ' ,  s,, sZ1] the set 
o f d k ,  ~k,matricqswithentriesinI[s~,s~',~~,s~']-note 
that if k, = kz, this set is a ring. A k x k polynomial matrix 
U(s l ,  Si s,, s; ' )  is said to be unimodular if  it is invertible 
within the ring R k x k [ s , ,  ST', s,, S T ' ] .  Given  a  polynomial 
matrix R ( s l ,  s;', s,, SF' ) ,  we  will  call D(s, ,  si', s,, s;l) a 
left divkor of R if D is square and there e e t s  a  polynomial 
matrix R(s, ,  s;', s,, s;') such  that R = DR. If all the left 
divisors of R are also left  divisors  of D ,  we will call D a 
maximal left divisor of R .  A g X q polynomial  matrix 
R(s,, si', s,, s;') of  full-row rank is said to be left  prime if 
all its maximal left divisors are unimodular. Similar definitions 
hold for right divisor and  right  primeness. In this paper, when 
using the aforementioned notions for polynomial  matrices 
R(s , ,  s,) in the  indeterminates sl, s2, we  will  be viewing  these 
m a t r i c e s a s e l e m e n t s o f ~ a k ~ x k ~ [ s l , ~ i 1 , ~ 2 , ~ ~ 1 ~ , f o r s o m e ( k l ,  
kz). 

A  subset Z of 8' of  the form I = {(k, 1 )  E Z2 I k, e k e 
kz, I ,  < 1 < I,} for some --03 5 k ,  5 k, s +a, - o, 5 1, 
S l ,  d + OQ, will  be called an interval of 8' and  denoted by 
I = ( k l ,  k,) X ( 1 1 ,  l , ) .  If k,, k2, I,, I, are finite, I will be 
called  a finite  interval. The  subspace of compact support  sig- 
nals in 93 will  be  denoted by Qjeompuct a- .- (we93 131, finite 
interval of Z', 8.t. w l p 2 , ,  = 0 ) .  For V C (WQ)'', cl(P) 
indicates the  closure  of I! in  the  topology  of  pointwise  conver- 
gence. 
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We are now able  to  state our result on the characterization of 

Theorem I: Let X = (Z2, 14, 23 ) be  an  autoregressive 2-D 

1) Z: is controllable. 

3) There exist  a  positive  integer g < q and  a  full-row  rank 
g x q polynomial  matrix R ( s , ,  s,) such  that R is left  prime 
and 8 = ker R(o , ,  u2). 

4) There exist  a  positive  integer I and  a q X 1 polynomial 
ma% M ( s , ,  s2) such  that 23 = im M ( q ,  u2) := { w  E 
(WQ)z ) 3 u  E (R')"' s.t. w = M(a, ,  u2)u},  Le., X corresponds 
to  an  MA system. 

controllable AR systems. 

system.  Then  the  following  statements are equivalent. 

2) 23 = c l ( 8  -). 

Proof: Appendix. 
Example I: Consider the AR 2-D system = ( X 2 ,  El3 ,  9) 

with 8 = ker R(u,, a,) and R ( s l ,  s,) := col([s, + 1 I s1 + 
1 101, [sl 1 s2 111). It  is  not  difficult to check  that R(sl, s,) is left 
prime. Indeed,  suppose  that D(s,,  s,) is a  left  divisor of R(sl, 
s,). Then det D(s, ,  s,) must  divide all the 2 X 2 minors of 
R(s, ,  s2). These minors are: m,(s,, s2) = (8 ,  - sl)(sl + s, + 
l), m2(sl, s,) = s, + 1 and m,(s,, s2) = s2 + 1. This implies 
that  det D(s , ,  s,) = sfIsl2 for some k,, k, E 8 ,  meaning  that 
D is  unimodular,  and so R is left prime. 

Let  now M(s l ,  sa) := col (s, + 1, - (s2 + l), (s, - sl)(sl 
+ s2 + 1)). Clearly,-RM = 0 and  any other polyno-mial matrix 
R(s,, s2) such  that Rh4 = 0 will  be  of the  form R = LR for 
some  polynomial  matrix L(s , ,  8,). Le., R is a minimal left 
annihilator of M .  This implies  that im M = ker  R  and 9 will 
have  the MA representation w = M( u l ,   u2 )a  Taking this fact 
into  account,  it is  easy to see that X satisfies the controllability 
condition of  Definition 2 with p = 5 .  

The  classical  approach to 2-D systems  is  within an input- 
output  framework and deals with systems  described by transfer 
functions. The connection  between this class of systems  and  the 
class of autoregressive 2-D systems  considered in  this paper is as 
follows. 
An autoregressive 2-D system  in full-rank input-output 

form is defined as X"' = (Z2, W" X WP, Bi / ' ) ,  with R m  the 
input space, Rip the  output  space,  and Q3 '1" C_ (@m)y2  X (WP)"' 
the  input-output  behavior of  the system. This behavior  can be 
described by equations of the form P ( o , ,  0,)y = Q(u, ,  u2)u, 
for  some  polynomial  matrices P ( s , ,  s,), Q(s,, s2) such  that P 
is square and det P(sl, s2) # 0. Note  that  the  matrices P and 
Q which  describe 23"" are not unique,  as  the  equations Py = 
Qu induce  the  same  behavior as UPy = UQu if U(s,, s2) is a 
unimdular polynomial  matrix.  It  can be  shown  that this premul- 
tiplication by unimodular  matrices  is  the  only  source of 
nonudqueness in  the  parameters P, Q of  a  full-row rank 
input  -output description, 

Xilo is said  to  be  an input-output realization of X = 
( Z 2 ,  W, 8) if there is a  permutation of  the  components of 
w , T w = ( u , y ) s u c h t h a t w ~ 5 l 3 i f a n d o n l y i f T w ~ ~ ~ ~ ~ . N o t e  
that  not  every AR 2-D system  has  a  full-rank  input-output 
realization. 

The transfer function of the  system X"" described by 
4, = Qu is defined as G(s,, s,) := P-' (s l ,  s,)Q(s,, s,). This 
is clearly  well  defined, as (UP)-'(UQ) = P-'U-'UQ = 
P-'Q for every  unimodular  matrix U(sl, s,). The  converse is, 
however, not true:  given  a 2-D p X m rational  matrix G(s,, s2) 
there are infinitely  many 2-D input-output  systems Xilo whose 
transfer  function  is G. Indeed, if the  system  described by the 
equations Py = Qu has  transfer  function P -  'Q = G, every 
system  described by LPy = LQu, with L square and  nonsingu- 
lar (but  not  necessarily  unimodular)  will  also  have G as transfer 

function. We will define  the input-output system  associated 
wifh G as the  smallest  input-output  system  whose transfer 
function  is G. This system  is of the form Z:""(G) := (HZ, R m  
x WP, 23'l0(G)) with B'l'(G) described by behavioral  equa- 
tions PC(o,, ~ , ) y  = Qc(ul,  a2)u, where P;'Q, = G and 
PC, Q ,  are left coprime, i.e., [PC 1 - Q,] is left prime. Thus 
Z:,/,(G) is a  full-rank  input-output  system. A system xi/" is 
said to have a transfer function representation if  it coincides 
with  the input-output  system  associated  with  its transfer func- 
tion. 

Now,  it is not  difficult to prove  that  condition 3) of Theorem 1 
implies the following. 

Proposition 2: k t  X = (n2, Wq, 8) be an autoregressive 
2-D system  with  nontrivial  behavior, i.e., 91 # { 0 ) .  Then C is 
controllable if and  only  if 1) it has an input-output realization 
and 2) every  input-output  realization  of X has a transfer func- 
tion  representation. 

ProoS: Appendix. 
Thus 2-D systems  described by transfer functions  correspond 

to controllable AR systems  endowed  with  an  input-output struc- 
ture. 

TO conclude this section, we  would like  to  stress  the  differ- 
ence between  our  definition of controllability  and  the  classical 
notions of controllability of state-space  realizations [7], [8], [3]. 
In fact, while  these latter are properties of  system  descriptions in 
terms of auxiliary  (state) variables, and  hence  internal proper- 
ties, our  definition  is  stated  at  the  level of the  external  behavior 
of a  system. 

Nevertheless, for instance,  the  notion of 2-D modal  controlla- 
biliw  introduced  in [SI can be placed  in  the  context of our 
definition of controllable 2-D systems. Indeed, let X" = 
(z2, W m  X R p ,  I", 91 ") be an  auxiliary  variable  realization of 
the  input-output  system X = (Z2, R m  X RP, 81, i.e., 8 = 
n(", ,$!3 x ,  and  suppose  that X x  can be described by the  follow- 
ing  behavioral  equations: 

with P, Q, S, T polynomial matrices, P square and  nonsingu- 
lar. In other words, 91 = ker R ( u , ,  a2) with  R := 
col([-QlOlP], [ - T I Z I - S ] ) .  X x  is said  to be modally 
controllable if [ - Q I PI is left prime.  It  is not  difficult  to see 
that this is  equivalent  to  the left primeness of R. Hence X" is 
modally  controllable if  and  only  if the (u ,  y ,  x) signals (now 
regarded as external  signals)  satisfy  the  condition  of  Definition 
2. This provides an interpretation of modal  controllability  in 
terms of signals  instead of representation  parameters. 

IU. STATE-SPACE SYSTEMS 

We  will  next consider  the  question  of  state-space  realizations 
for autoregressive 2-D systems. Our main  concern  is  twofold: 
on  the  one hand, we aim for first-order  representations  which 
correspond  to  a  convenient  first-order  updating  scheme,  and  on 
the  other hand, we do not  want to make  any  assumptions  on  the 
existence of causal  relationships  between  the  system  variables. 
At first sight, these two objectives may seem to be conflicting. A 
recursive  updating  scheme  is  necessarily  related to a  choice of 
direction in Z2, while  the  absence of causality  assumptions 
translates,  in  a  certain sense, the  wish for adirectionality.  In- 
deed, this conflict is clear within  the  input-output framework, 
where  quarter-plane  causal  state-space  models ([9], [3]) can  only 
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be 4 to represent  quarter-plane causal transfer functions. 
However, this is not the case for our approach. As we  will see, 
every  controllable AR system  allows for a  quarter-plane  causal 
state-space representation. 

A.  The  State-Space Model 
Let ( i ,  j )  E@. The past of ( i ,  j )  will  be  denoted by 9 ( i ,  j )  

anddefinedas 9( i , j ) :=  { ( k , l ) e Z 2 1 k ~ i a n d 1 ~ j } . F o r a  
s e t ~ + ~ ~ ~ ~ , t h e p t o f Z i s & f i n e d a s  g(Z)= U { g ( i ,  
j )  I ( i ,  j )  E Z}. Similarly, the future of ( i ,  j )  will  be  given  by 
9 ( i , j ) = { ( k , l ) e a 2 ( k r i a n d I Z F : j ) a n d t h e f u t u r e o f ~  
by F(Z) = U { F ( i ,  j )  I(i, j )  E Z}. The  point (i', j ' )  is  said to 
be a nearest neighbor of ( i ,  j )  if(?, j ' )  E { ( i  + 1 ,  J>, ( i ,  j + 
l ) , ( i -  l , j ) , ( i , j -  l)} .Apcrthisasequence(z,; . . ,z,) in 
1' such  that z ,  is a  nearest  neighbor of z,+, and z ,+ ,E  
F(z,), for all m = 1; * * ,  r - 1. Given T-, To, and T+, 
subsets of Z2, we  will say that To separates T+ and T- if 
every  path  connecting T- and T+ intersects To. An ordered 
partition ( T - ,  To, T+) of Z2 is said to be an admissible parti- 
tion if To separates T- and T+ and moreover the following 

F( to) \ { to}  E F( i"+)}. Here aTo denotes  the boundary of 
To, i.e., the set  of all points in To which  have  a  nearest 
neighbor  outside To. 

Definition 3: The system  with  auxiliary  variables X' = 
(z,, W, A ,  8 s, is a state realization of X = (Z2, W, 23) if 
23 = l l w 2 3 s : =  { W E  W B 2 1 3 x ~ A Z 2  s.t. (w, x)E@'}, and 
moreover if the. following  axiom is satisfied. 

Axiom of state: {(T-, To,   T+) admissible partition of Z2: 

codtion is satisfied: { toeaTo}  * { s q t o ) \ { t o }  c ~ ( T J  01 

0 # D + G T + U T o ;   O # D - G T - U T o ;   D -  and D+ 
separated by D,:= B(D+) n T,; D, n D- = 0;  (wl ,  x1), 

~(w,tX2)!D+E114'ID-"D+}.  
( w 2 ?  E 8'; XllDO = x Z I D o }  * { ( w l ,  X1)ID-  

The sets D-,  Do, D+ involved  in this definition are indi- 
cated in the  Fig. 1 .  

The  concatenability  condition  in the axiom  of state expresses 
the  fact  that  the state variable x has the  property of  making  past 
and future behavior conditionally independent: once the states on 
the separation set Do coincide, '13' b- and 114' do+ are. indepen- 
dent. 

The  following  result  characterizes state systems (Le., systems 
which satisfy the axiom  of state) in terms of their  representa- 
tiOnS. 

Theorem 2: Let Zs = ( P ,  W ,  w", 8 s )  be an ARMA 2 - ~  
system. Then C is a state realization of X = (a2, W, nW8') 
if and only  if 114' can be described as 8' = {(w,x)E 
(W X 1n)z2 I 3 u SA. (I)+) are satisfied). 

i S(u)x = 0 (1) 
ulX = A ( u ) x  + B ( u ) v  (2) 
w = C x + D u  (3) 

with u := u;'u1, s := s;'~,, A(s) := A,s  + A, ,  B(s )  := B ~ s  
+ B,; A , ,  A , ,  B1, B,, C, and D real matrices and S(s) a 
polynomial matrix. The operators A(u),  B( u),  S( u )  must 
m m v e r  satisfy the  following conditions: 

1) ker S(u)  is A(u)-invariant, i.e., A(u)  ker S(u) G 
kerS(4,  

2) im B(u)  c_ ,k"'S(u). 
Here u E (R')z (for some  positive  integer I )  is an auxiliary 

variable. 
Proof: Appendix. 

Fig. 1. D -  and D ,  en indicated, respectively, by dashed and bold liacs. 
lo this example, Do E D,. 

The interpretation of equations (1)-(3) and  conditions 1) and 
2) is as follows. At every  point ( i ,  j )  ea2, u( i ,  j )  can be 
chosen freely provided  that X lF(i, j)\{(i, j)) and (w, u) Is ( i , j )  are. 
not given.  The state components X are constrained as follows. 
Oneverydiagonalline Pk:= { ( i , j ) e Z Z I i + j = k } ,  k e l ,  
x must satisfy (1). Given the values of X and u on I k ,  X can be 
computed on F r + l  by means of (2). Conditions 11-2) are 
compatibility  conditions  which ensure that, on P k + l ,  (1) is 
automatically  satisfied. Thus, to compute  a signal (w+, (x+, u+))  
which  satisfies (1)-(3) on a  half-plane & := { ( i ,  j )  E Z2 I i + j 
2 k}, we can use the following  procedure. 

1) Initialization:  choose  on f !&  a  solution xk+ of ( 1 ) .  
2) For 1 = k, k + 1, * * , choose arbitrary values UT of v 

on .PI and define 

X: +1 := A ( u ) x F +  B ( u ) u :  

W: := CX:+ DvT. 
3) Define (w+, (x+, u + ) )  as (w+,  (X+, u + ) )  I p I  := (w:, (x:, 

This provides  a 2-D first-order  recursive  updating  scheme. 
(See Fig. 2.) 

Due to its role in the foregoing updating scheme, u will  be 
called  the driving  Variable. The variable x is  the state vari- 
able. Equations (1)-(3) are referred to as a stateldriving 
variable model,  and  will  be  denoted  by (S(s), A(s), B(s), C, 
D).  The associated system X' = (Z2, Wq, W", 114') is denoted 

Remark: In order to describe 2-D input-output  systems,  the 

v?) ) ,  1 = k, k + 1, ' * . 

1 by WS(s), A(@, B(s), C, Dl. 

following  model is introduced in [3]: 

ulx = (Ala  + A 2 ) x  + (Blu + B,)u 
y = c x + D u  (4) 

Here u is the input, y the  output and x the so-called local state. 
This model can be considered as a  special case of the more 
general  model (1)-(3) with S(s) = 0 and v = u. This fact  will 
be used in the next  paragraph in order to obtain  state qresenta- 
tions for controllable  systems. 

B. Realizability 
As  shown  in [ l l ,  Theorem 31, every  autoregressive 1-D 

system can be represented by means of  a 1-D state/driviug 
variable  model. A similar result does not  hold for AR 2-D 
systems. 

Example 2: Let C = (Z2, W, 23) be an autoregressive 2-D 
system  such  that 23 = ker(ul - a*), i.e., 94 consists of all 
those  signals in Rz2 which  have  constant  value  along  the 
diagonal  lines Ik9 k e Z  Then C cannot be represented by a 
state/driving variable  model  of the form (1)-(3). 

Proof: Appendix. 
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Fig. 2 .  The value of x io ( i  + 1, j + 1) is computed from the values o f '  
(x, u) on ( i  + 1, j )  and ( i ,  j + 1). 

However, we  will  show  that  every controllable AR 2-D 
system  allows  a  state  realization.  Roughly  stated, this is  ex- 
plained  by the  fact  that  the  signals w of a  controllable  system 
can  be  regarded as the  outputs of  an "enlarged"  input-output 
system  with  quarter-plane  causal  transfer  function.  The  inputs of 
this enlarged  system  will  constitute the driving  variable in the 
state  representation. To be precise, we introduce  the  following 
terminology. 

A 2-D rational  function r(,s,, s2) = q ( s , ,  s$b(s,, s2)- 
where q(sl, ~ 2 )  = qi (S&,  P ( ~ I ,  s2) = C,=O  Pj(s,)si, 
and pj (s , )  and 4[(s,) are polynomials, for i = 0; * * , m, j = 
7 ,  . * n with qm(s l )  # 0 # pn(s,)-is said  to be proper if 1) 
m 5 n and 2) the  degree  of p , ( s l )  is  not  less  than  the  degrees 
of qi(sl) ,  i = O;.., m, and  of p j ( s , ) ,  j = O;.., n - 1. A 
2-D rational transfer matrix will be called quarter-plane  causal 
if all its entries are 2-D proper  rational  functions. 

Proposition 3 [3j: Let X"' be an input-output AR 2-D 
system  and  suppose  that Xi/'  has  a transfer function  representa- 
tion T(s, ,  s2). Then X i / '  can be represented by the  model (4) if 
and  only  if T(s , ,  s2) is quarter-plane  causal. 

Now let X = (E2, R4, 8) be a  controllable AR 2-D system. 
Then, by Theorem 1, C has  an M A  representation, Le., there 
exists  a  polynomial  matrix M(s , ,  s2) of size 7 x I (for some 
positive  integer I) such  that 23 = { w E (Rq)' I ~ u ( W ' ) " ~  s.t. 
w = M(ol, u2)a}.  Note  that  the  equation w = Ma is equivalent 
to up'uf2w = M(a,, u2)u, with u := up'uf211 and d,  and d,, 
respectively,  defined as the  highest  degrees  in s, and s2 of the 
entries of M(s, ,  s,) (regarded as polynomials  in R[sl,, s,]). 
Consider now the  (enlarged)  input-output  system E'/' = 
(2*,R' X W ,  Bi") with Bi/' described by uf1u:2w = 
M ( a , ,  uz)v.  Clearly, X i l o  has  a transfer function  representation 
T(s,, s2) = s;dls;d2M(sl, sz). Now T is quarter-plane causal 
and hence, by Proposition 3, E'/' can be represented as 

u1x = ( A l a  + A,)x + ( B ~ o  + B~)u 
w = C X + D V  

for  suitable real matrices A , ,  A , ,  B , ,   B , ,  C, and D. This 
constitutes a state  representation of the  form (1)-(3) with S(s) 
= 0. This proves  the  following  result. 

Theorem 3: Let B be a  controllable  autoregressive 2-D 
system,  then  it  has  a  state  representation of the  form (1)-(3). 

Remark: It is an immediate  consequence of Proposition 3 that 
AR systems which have  input-output  realizations  described by a 
quarter-plane  causal  transfer  function  have  a  state  representation 
of  the form (1)-(3). However, not every AR system  allows  a 
quarter-plane  causal input-output realization (cf. Example 3). 
This shows  the  essential role of the  controllability  assumption in 
Theorem  3. All controllable systems, and  not  only  those  which 
can be described in input-output  form by quarter-plane  causal 
transfer  functions,  have  a  state  realization. 

Example 3: The  controllable AR  system X = (I2, W2, 8 )  

with 8 = { ( w , ,  w,) E (R2)"' I uIwl = u2w2} can  be  described 
by the  following state/driving variable model. 

1 ux1 = x, 
u,x1 = u 
u,x2 = u u  
w ,  = x,, w, = x2. 

Note however  that  none of the two input-output  realizations  of 
8 (which can be obtained by considering  either w1 or w, as 
input)  is  described by a  quarter-plane  causal  transfer  function. 

Example 4 (Controllability b not a  necessary  condition in 
Theorem 3): The  noncontrollable AR system X = ( E 2 ,  I, 9) 
with B = { w e @  I(ol - 1)w = 0} can  be  trivially  repre- 
sented  in state form as: 

U l X  = x 

1 

I w = x.  

w. TRIMNESS, REACHABILITY, AND OBSERVAslLITY OF 
STATE-SPACE SYSTEMS 

In this section, we  define the notions  of trimness, reachability, 
and  observability for state-space systems, and  characterize  these 
properties  in  terms of the  system  representations. Our definitions 
are given  at  a  global  level:  they  regard  the  restriction of the 
behavior  to  diagonal  lines P k, k E E, instead  of  being  concerned 
with  the  restriction to single  points  in z2. These  diagonal  lines 
play an important  role  as they constitute  the  "propagation 
fronts"  in  our  updating  scheme of Section  III-A. 

We will present  state-space  algorithms ,for obtaining  trim 
state-space  representations  and for checking  observability.  These 
algorithms  closely  resemble  techniques  developed in the  geomet- 
ric theory for 1-D sjrstems. 

A .  Trimness 
The  state-space  system Cs = (z2, W4, I", 8 s, will be called 

locally  trim if  locally (Le., on  a  point) any state  value  can  be 
obtained, in other  words for every (Y E R", there exist ( t , ,  t2) E 
R' and X E I ' I , ~ ~ ~  such  that x ( t l ,  t 2 )  = a. Clearly, if X' is 
linear  and  not  locally trim, there exists  a  change  of  coordinates 
Tx = col(xl, x,) such that X E ~ I , ~ "  implies  that x2  = 0. In 
this case, x, is a  state  variable for ll ', and  hence  the 2-D 
system C = ( E 2 ,  Rg, I'I,8") has  another  state-space  realization 
with  lower  dimension.  In  the sequel, we  will  only  consider 
locally-trim  state-space  systems. 

As  mentioned  in  Section III-A, the  compatibility  conditions 
A(u) ker S(u) G ker S(a) and im B(u) c ker S(o) of our state 
model  guarantee  that  any  initial  condition x. E ker S(a) given 
on a diagonal line Ik can be propagated  towards  the  future 
2; := U { I 1 j 2 k )  . However, it may happen that x. cannot 
be extended  towards  the  past := U { Q j l j <  k}. In this 
case x. $ n,23 Io = : 23 k .  Note that, due to shift invariance, 
23 = Bo for all ke 8. We define the trim  subspace I as 

Ddnltion 4: The  representation (S(s), A(s) ,  B(s),  C, D )  is 
said  to  be  a trim  representation if f= ker S(o). 

The  relevance  of trim representations  is  that  they  indicate 
explicitly  which is the  set of admissible  initial  conditions on the 
lines k .  Given a state-space  representation (S(s), A(s),  B(s),  
C, D) ,  the  trim  subspace  can be determined by the  following 

f:= Bq. 

algorithm. 
Trimming  algorithm: 
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Step 0: Yo := ker S(o)  
For k = 1,2,  

Proposition 4: 1) The trimming  algorithm is finite, i.e., there 
is L E M  such  that .Tk = YL for all  integers k 2 L .  2) There is 
a  polynomial matrix T(s) such  that YL = ker T( a) .  3) I= YL. 
4) X'(T(s), 4 8 1 ,  B(s), C, D )  = Xs(S(s), A(s),  B(s), C, 
0 .  

Step k: f k  := A(u)Y~-~ + im B(u).  

Proof: Appendix. 
Note  that, in order to obtain a trim representation  from  a 

nontrim one, it su5ces to determine  the  matrix T(s),  as the 
other parameters of the  representation can remain unchged.  A 
procedure to find T(s) is given in the  proof of the  foregoing 
proposition. 

B. Reachability 
Let X' = (Z', Wq, W", 93') = Xs(S(s), A(s),  B(s),  C, D) 

be  a  state-space  system  with state variable x E and driv- 
ing-variable u E (13')~. Further let 43 x := lII,@". The  subspace 
1 of (R")" defined  by 41:= { X * E ( I " ) " I ~ X E ~ ~ ~ ~ . ~ .  X I P O  
= 0 and x I P ~  = x* for some positive  integer k} will be called 
the reachable subspace of Xs. Clearly, W is contained in the 

Dtlfinition 5: The  state-space  system = (z', W ,  R", 8') 
is said to be reachable if W = Y. 

Note that here we do not require W = (W")", in contrast  with 
the dewtion of the related  notion  of  global  reachability  given  in 
[2]. The motivation for our definition is as follows. In consider- 
ing  the question of state-space  realization  we do not want to 
require that the behavior of the external  variable w should be 
free on the  diagonal lines F k, k E %. Note that, for instance, for 
the  system  considered in Example 3, this behavior is not free. 
For  systems  with  nonfree  external  behavior  on I! k ,  the  behavior 
of the corresponding  state  variable x will in  general  also  not be 
free on It (i.e., Y# (W")"), and  hence  a  natural  reachability 
requirement is 91 = f. Clearly, if Y= (R")" our reachability 
condition amounts to the aforementioned  notion of  global reach- 
ability. 

Remark: We recall that  while our notion  of  Controllability  is 
d e w  at the level  of  external behavior, reachability  is  defined 
for state-space  systems,  thus in terms of the internal  behavior. 

trim subspace Y of cs. 

It is easy to show the  following result. 
Lemma 1: The  reachable  subspace of a  state-space  system 

X' = (S(s), A ( s ) ,  B ( s ) ,  C, D )  is given by W = im 
[B(u) I A(o)B(o)  I . * .  1 A"-'(a)B(o)] ,  where n is the size 
of the  state  variable. In particular, if (S(s), A(s),  B(s), C, D )  
is  a trim representation, then X' is reachable if  zind  only  if ker 
S(u)  = im [ B ( u ) J  A(a)J  1 A"-'(a)B(a)] .  

The condition ker S(u) = im [B(u)I A(o)B(o)l I 
A"-'(u)B(u)1 is equivalent to saying  that S(S) is a  left 
annihilator of [B(s) l  A(s)B(s)l I A"-'(s)B(s)] (cf.  Ex- 
ample 1). This property can be checked  using  the  following 
lemma. 

Lemma 2: Let M ( s )  and S(s) be two polynomial  matrices. 
Let further U(s) be a unitnodular matrix and F(s) a  full-row 
rank matrix  such  that N( s) = U( s) col (F( s), 0). Then S( s) is a 
minimal left annihilator of N(s) if and only if there exists a 
unimodul~ matrix V(S) such  that V(S)S(S)U-'(S)  = [ O l  I ] ,  
where 0 is a zero matrix with m many columns as the  rows of 
m ) .  

Proof: Appendix. 
Rtcalling the notion  of controllability of Section II, it  is 

interesting to note  the  following.  Let X' = (a', wQ, w", 93") = 
BS(S(s), A(s) ,  B(s),  C, D )  be a  state-space  system.  Consider 
the  corresponding state/driving variable and state  behaviors, 
respectively, 8('*") := ker R(o)  (with R(s)  := col ([S(s) IO], 
[sl - A(s)  I B(s)]))  and @*:I l IxBs ,  and  define  the 2-D sys- 

(x, u)  and x are regarded as external  variables). Now, it is not 
difficult to show that {X('* ") controllable} = { X x  controllable} 
* {Xs reachable}. This means that X' is reachable if R(s) is 
left prime. A still weaker  sufficient  condition for the  reachability 
of Xs is provided by the next  proposition. 

Proposition 5: 1) The state-space  system BS = X'(S(s), 
A(s), B(s),  C, D) is  reachable  if [sl - A(s ) (  B(s)] is left 
prime. 2) Every  controllable AR 2-D system has a  reachable 
state-space  realization. 

Proof: Appendix. 

tems P o " )  := (Z2, w+', 93CX. ")), X X  := (I2, W", @ X ) ,  (here 

C. Observability 

As before for k c 8  let e,:= { ( i ,  j ) E Z 2 1 i + j =  k} and 
definethehalfplanesX2 := U { F l l / z k } , X ;  := U{F,II 
< k}. A state-space  system X' = (Z2, RQ, I", Bs) with  state 
variable x will  be  called future observable if { w I n k +  = o} = 
{x l ek=~} ,andpas tobservab le i f {w l ,k  = o } = { x l e k =  

Definition 6: X' is  said  to  be observable if { w  = o} * 

Note that  both  past and future observability  imply  observabil- 
ity,  but  that  the  converse  does  not  hold  true. 
To investigate  observability, we introduce  the  following  sub- 

spaces. suppose that X' = (z2, wQ, w", @') has state variable 
x E (R")"' and  driving variable u E (W')s2. Define  subspaces Y +  
and Y -  of (Fin)' as follows: 

0 ) .  

{x = 0 ) .  

Y +  := {xOE(~" )"13 (w,X)E93 's . t .  Xleo 

Y + : =  { X D E ( W " ) " ( 3 ( W , X ) E 9 3 ' S . t . X l e o  

= x0 and w Ixo+ = o } 

= x. and w Ira- = 0} . 
Then, clearly, X' is future observable if and only if Y -  = {0}, 
past  observable iff 9 = (0) and  observable iff Y -  n Y+= 

Let (S(s),A(s),  B(s),  C, D )  be  a t&n representation of Xs, 
and define C(s) := col (C, S(s)) and D := col ( D ,  0). Then 2' 
is  described by the  following  behavioral equations 

(01. 

ulx = A ( u ) x  + B ( u ) u  

= Z ( a ) x  + Du ' 

The sub_spaces Y+-and Y -  can be calculated  in  terms of A(o) ,  
B(u) ,  C(o) ,  and D by  means  of the following  algorithms. 

Y +  Algorithm: 

For k = 1,2, 
step 0: *v,+ := (W38 

Step k: %+ := {XE_(I" )"~~VE(R' )"  8.t. A(u)x + B(u)u 
E %Tl and E(U)X + Du = 0 ) .  

Remark: Note  that, for the system  described by (5) the 
subspace W +  is the 2-D version of  what is called the largest 
output nulling subspace in geometric  theory  of 1-D system. 

f 
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Y -  Algorithm: 
Step 0: %- := (Etn)" 

For k = 1,2, . - .  
Step k: <- := { ~ E ( W " ) ~ J _ ! ~ U E ( W ' ) ~ ~ X E  %Il s.t. A(u)P 

+B(u)u = x and C<u)P + DU = o . 
Explicit  procedures to compute 1;' and 6- are given  in  the 

proof of the  following  proposition. 
Proposition 6: 1) Both the 7vf and  the Y -  algorithms are 

finite, i.e., there exist L + and L - E N such  that = 
for  all k L L+ and Yk- = fi-- for all k 2 L-. 2) 5% = ker 
Vf(u)  and = ker V-(u) for some  polynomial  matrices 
V+(s) and V - ( S ) .  3) Y +  = %$ and Y - =  YL-. 

Proof: Appendix. 
This proposition  provides  a  method of checking  observability 

in terms of  polynomial matrices  instead of  in  terms of infinite- 
dimensional linear spaces. 

We  next  show that  observability can also be  checked  without 
invoking  the  subspaces Y +  and W - .  This method  is  based  on 
the  elimination of the driving  variable u on  the  state-space 
representation, in order to  obtain  a  description  only  in  terms of 
the  variables x and w ,  which are the  relevant  variables for the 
notion  of observability.  The  procedure of elimination of u is 
given as follows. 

Driving-Variable Elimination: Let X' = X"(S(s), A(s) ,  
B ( s ) ,  C, D), and  define E(s, s,) := col (S(s), s, - A(s) ,  C), 
F := col (0, 0, - I )  and G(s) := col (0, B ( s ) ,  -D). Then  the 
behavioral  equations  for Zs become the following: 

[% u1) I FI [ ;] = G ( o ) u .  (6) 

Further, let a(s) be a  unimodular  matrix  such  that O(s)G(s) = 
col (GAS), O), with GF(s) full-row rank, and  partition &s) = 
col (UI (~ ) ,  U(s)), with Ul(s)G_(s) = GAS) and U(s)G(s)  = 0. 
Now,  premultiplying (6) by U(u) yields  the  following  equiva- 
lent  equations: 

i c r , ( ~ , [ E ( o ~ ~ l ) I F l [ : ]  = GF(U)U ( 7 )  

W [ E ( %  4 I F ]  [ ;] = 0 .  (8) 

Finally, GF(u) is sujective, as GAS) is  full-row rank, which 
implies  that (8) describes  the  behavior  only in terms of X and W. 

Using the  description of given by (8), observability  can be 
characterized as follows. 

Proposition 7: kt Xs = (zP, Rq, wn, 3 5 )  = XS(S(S), 
A(s ) ,  B( s ) ,  C, D) be_ a  state-space  system.  Define the matrices 
E(s, SI), F ,  G(s) ,  Us), and U(s) as  previously stated. Then 
X' is observable if  and  only  if cl(s)E(s, s,) is a zero-right-prime 
matrix,  Le., for all (X, X,) \ {O}) x (Q \ (0 ) )  U ( X ) E ( X ,  
Al) has f u l l - c o l u m n  rank. 

Proof: Appendix. 

V. CONCLUSION 
In this paper, we  have  considered  autoregressive 2-D systems 

and, in particular, the  class  of  controllable AR systems. We 
defined  controllability as an external  property of systems  and 
characterized  it  in  terms of system  representations. Moreover, 
we  showed  that controllable  systems  constitute  exactly  the  class 
of AR systems which can be described  in  input-output  form by 
means  of a  2-D transfer function. 

Further, we  defined a  concept  of  state  for 2-D systems  and 
derived  the  corresponding  state-space  model. This model  is  a 

first-order state/driving variable  representation which leads to a 
first-order  recursive  updating  scheme.  Although  not  every AR 
system has such  a representation, we proved  that  every  control- 
lable AR system can be represented in state-space  form. This 
shows that, in  contrast  with  the  case of input-output  systems, 
the realizability  of  controllable AR systems  does  not  depend  on 
the  existence of 2-D causal  relationships  between  the  system 
variables.  Finally,  we  introduced  the  notions of trimness, reach- 
ability, and  observability for state-space system and  gave  condi- 
tions for these  properties  in terms of  the  system  describing 
parameters. 

APPENDIX 

PROOPS 

proof of Proposition I :  Clearly, if 2" = (z', W ,  w', 
@ ") is an ARMA system, l l w @  ' = : 8 is  a l i n ~  and shi$--in- 
varianb  subspace of (Rq)82. Moreover n,: (Rq)" X (R')' --* 

(Bq)z I S  a linear and  continuous  map  with  respect  to  the 
topology ofpintwise convergence Hence, since  with this topol- 
ogy (Bq)= x (FJ')a2 and (Rq)a2 are both  linearly  compact 
spaces (cf. [6]), it follows that IT, maps closed  linear  subspaces 
into close,$ linear  sybspaces. Thus, as b" is a  closed  subspace 
of ( W > Z  x (R')Z with the pointwise  convergence  topology, 
we conclude  that @ is  a  closed  subspace of (Wq)",. By [lo, 
Theorem 2.11, together  with  linearity  and shift invariant this 
means that B can be described as B = ker R(ul, u2) for some 
2-D  polynomial  matrix R(s,, 8,). Hence Z = (Z2, Rq, 8) is an 
AR system. 

Proof of  Theorem I: We will show  that  the following 
implications  hold: 3) - 4) = 1) =) 2) * 3). 

3) * 4): Suppose  that b = ker R(u , ,  u2) with R(s, ,  s,) a 
full-row  rank  left-prime  polynomial matrix. Without  loss of 
generality we can  assume  that R = [P 1 Q ]  with P ( s , ,  sz) a 
g x g polynomial  matrix  with  nonzero  determinant.  The  left 
primeness of R implies  that P ( s , ,  s2) and Q ( s , ,  sz) have only 
unimodular  common  left divisors. Hence ( P ,  Q) is  a  left-coprime 
factorization of the rational matrix G(s,, s2) = P-I(s , ,  
s,)Q(?,, s,). Let (Q, P) be a righkcopriEe factorization of G, 
i.e., P is  square  and  nonsingular, Qand P have  onl,yunim@u- 
lar  common  right  divisors  and G = QP-'._Then, EQ - QP = 
0. Moreover, if (P*, Q*) also  satisfy P*Q - Q*P = 0,  there 
exists  a  polynomial  matrix L(s, ,  s2) such e t  P* = LP and 
Q* = LQ. Define  now M(s, ,  s,) := col ( Q ( s , ,  s,), -P(s,, 
s,)) and  let X := im M ( a l ,  u,). It  follows  from  Proposition  1 
that  there  exists  a  polynomial  matrix R*(s, ,  3,) such  that 
X =  ker R*(u,,  u2). Thus R*(s,, s2) M ( s , ,  3)  = O._Parti- 
tioning R* = [P* 1 Q*] such &t R*&f = P*Q - Q*P, the 
foregoing  is  equivalent to P*Q - Q*P = 0,  and  hence  there 
exists L such  that R* = [ P C  I Q*] = L [ P  I Q ]  = LR. Conse- 
quently  ker R(u,, u2) C ker R*(ul, u2), i.e., 23 E 1. On the 
other  hand,  it  is clear that 1 & 8. So @ = X showing  that 4) 
holds true. 

4) = I): Let B = im M(u,, u2) for some q X I polynomial 
matrix M ( s l ,  s,). Define  the radius r ( M )  of M(s, ,  s2) as the 
maximum  of the  degrees in s1 and s2 of the entries of M .  We 
will s e e  that  the  condition of Definition  2  holds  with p > 2 r ( M ) .  
Indeed, let w l ,  w2 E 8 and Z,, Z2 E 9' 9 such  that d(Zl, I,) 
2 2r(M)  + 1. Let further (I,, U , E ( W ' ) ~  be su h  that W ,  = 
Mu, and w2 = Mu,, and  construct a* E (R')'' as follows: 

= a2( t l ,  t,) if d ( ( t , ,  t 2 ) ,  I,) I r ( M ) .  It is  not difficult to 
u*(tl,  t 2 )  = n,(t, ,  I,) if d((t , ,  tz), Z,) 5 r ( M )  and a*(t,, t d  



420 

check that the element w* E 8 defined by w* := Ma* satisfies 
w*Ll = w1 and w*lI = w2. This shows  that X is controllable. 

1) * 2): Suppose &at X is controllable and let w E 93. Con- 
sider a sequence (Ik)keWI of bite intervals of z2 satisfying 
Ik E Z2 and such  that for every  finite  subset C s Z2 there is 
N E  I s.t. C C IN. By the controllability assumption, for each 
k e N ,  there exist W , E ~  and a finite interval Zk of g2, with 

sequence (w,),,, converges to w in the topology  of pointwisc 
convergence. So 93 G c l ( 8  compd). To see that cl (8 m) E 
93 we  invoke  the fact that  autoregressive  behaviors are closed 
subspaces in the  topology of pointwise  convergence [lo]. Thus, 
as8-G8,C1(93-)GclfE=IB. 

2) * 3): As 93 is an iutoregressive behavior, there_ exists  a 
2-D_polynomial  matrix R(sl, s2) such  that 93 = ker R(ul, u2). 
If  R is not  full-row mJ, there is a square full-rank  polynomial 
U(s,, sz) such  that UR = col (R*, 0) with R* full-row rank. 
Let D(s l ,  s2) be a maximal left  divisor of-R*(s,,s2) and 
R(sl,s2) be such  that R* = D R .  T h u s ,  UR = ml(DR,O). 
Note that R is left prime and hence, as 3) implies 2), %':= 
ker R(ul, u2) satisfies the condition 93' = c l ( ( 8 ' ) m ) .  
Moreover, since the matrices U and D are square and full rank, 
we  conc1ude that 93- = (84')w. This implies  that 8 = 
a', showing  that 93 allows the full-row rank left-prime desrrip- 
tion 93 = ker R(ul, u2). 

c jk, Such that WkLk = W I I ~  and Wk( g $ q k  =; 0. clearly, the 

Proof of Proposition 2: 
The "if" part is obvious. 
"only if": suppose that Z = (Z2, RQ, 93 ) is a  nontrivial 

controllable AR 2-D  system. Then, by condition 3) in  Theorem 
1, there is a  full-row rank left-prime g X q polynomial matrix 
R(s,, s2) (with g c q )  such  that 93 = kerR(ul, uz). Let T be. 
a permutation  matrix  such that hT-' = [ P  1 - Q] with 
P ( s l ,  s2) square ( g  X g) and nonsingular, and  define Tw = : col 
( y ,  u), where y has size g and u size q - g. Then, the 
input-output  system = (z2, ~8 X W-8, Bile), with 
8 ' / O  described by Py = Qu, is an input-output realization of 
X. Moreover, as R is left prime, so will be RT- I. This means 
that P and Q are leftcoprime polynomial matrices, and so X i / O  

can be represented by the transfer function G := P -  'Q, Thus, Z 
has an input-output realization which is re resentable by means 
of a transfer function.  et now = (Z , ~ g  x W - g ,  8:Io) 
be  an arbitrary input-output  realization of X. Then it is not 
difiicult to see that 8LIo can  be  described by equations of the 
form P*y* = Q*u*, with P* and Q* such that there exists a 

o m  more  implies  that P* and Q* are left coprime and hence 
Hilo can be  represented by the transfer function G* = P*-'Q*. 
So every  input-output realization of X is representable by a 
transfer W o n .  

Proof of Theorem 2: The "if" part of  the statement is 
easily  verified.  The  reciprocal  implication  follows from the 
lemma  below. 

Lemma: Let 8 k denote the diagonal line P k := { ( i ,  j )  E 
Z 2 1 i + j = k } , k e Z .  ~eh 8;:=8'Is :=B'(P,) and 
8 i := 8 k )  with 8 * := ~IJB s. Further, &fme the operator 

x by ~ ( w ,  x):= (qx ,  x, ux, w ,  u w )  for all ( w ,  
x) E ( W Q ) ~ ~  X (R~)z'. Then 

4 

permutation matrix T* satisfying R = [ P* I - Q*]T*. This 

*: (RQf x (R")Z2 -b ( W y 2  x (R")Z2 x (R")Z2 x ( W ) Z Z  

V k E Z  aad *(w, x)(7) =: (qx(7). x(7), UX(7), -w(7), 
U W ( 7 ) ) € * 9 3 ' ( 7 )  V 7 € 8 2 } .  

The proof  of this result  will be- given at the  end. Its interpreta- 
tion is as follows. The behavior 8' is characterized by its 
restriction 8 ; to diagonal lines P as well as by "three-point 
laws" corresponding to the relationship satisfied by 
ulx(7), x(7), U X ( T ) ,  w(7), and uw(7) for every 7eZ2. More- 
over, 93 ; is characterized by the restriction 93; of the  x-behav- 
ior to the line P together  with  static laws c o m q o ~  to the 
~ l a t i ~ ~ h i p ~  satisfied by x(7) and w(7) for every 7 E Z . 

Note that for all 7 ~ 1 '  831(7) = 8",0,0) and r93'(~) = 
rB'(0, 0). Clearly, aSi(0,O) and z93'(0,0) are linear sub- 
spaces of, respectively, W q  x R" and W" x R" x W" x W Q  x 
Rq. Moreover, for k e g ,  8; = P),X is a  1-D AR behavior and 
hence can be. represented as 93 ,X = ker S(o) for a  suitable 
polynomial matrix SO). Thus it is easily seen that there ex& 
linear s u b s p  "v, of W q  and 6 of R", and real matrices Ao. xl, $, B,, and C such that ( w ,  X ) E ~ '  if and only if the 
following is satisfied: 

I S(u)x = 0 

u,x = ‘Tax + X1ux + Bow + Blow + % 
w =  c x +  Yo. 

Defhhg-Ao := & + $C, A1 := rl + &C, Bo := [BolI] V, 
B, := [ Bl I O]V, and D := [ I  101 V, with V such  that 

im V = [ 21, the  previous  equations  become. 

S(u)x = 0 

UIX = ( A ,  + A 1 U ) X  + (Bo + B 1 U ) U  

w = C x + D u  
where u is an auxiliary free variable. 
In order to check that-condition 1) of the  theorem  is verified 

define A(s) := A, + A,s  and  suppose  that u I F k  = 0 for some 
~ E Z .  Then XlFk+l  = A ( u ) x  Isk. As ~ l e ~ + ~ ~ 8 ~  = 
8; = kerS(u), this implies  that S(u)A(cr)x I p k  = 0. Thus, 
since also 93 = 932 = ker S(u), there must hold ker 
S(u)A(o)  E ker S(u) ,  or equivalently, A(u)  ker S(u)  C ker 
S(o). To prove 2) assume  that x l e k  = 0 for some &e 1. Then 
x l s k  = B(a)u (with B(s) :== B,s + Bo). Consequently, 
S(u)h(u)u = o. As u is a free variable, this means that 
S(s)B(s)  = 0, i.e., im B(u) E ker S(u). 

S(u)k(u)u = 0 .  As u is a free variable, this means  that 
S(s)B(s) = 0, i.e., im B(u) C kerS(u). 

Proof of the Lemma: To prove (l), we consider k = 0 
(the  arguments for other k E 3 are similar). Clearly, 93: 5 IB 8 .  
Consider now an element ( w ,  x)E@& Then xe8;  and there- 
fore there exists an element W E  ( W F O  such that (%, x) E 8;. 
Moreover, for every j E 8, ( w  ( , j ,  - j ) ,  x ( j ,  - j ) )  j ,  - j )  
and  hence there exists ( w j ,  x') E 8; such  that (w' ( j ,  - j ) ,  
x j ( j ,   - j ) )  = ( w ( j ,  - j ) ,  x ( j ,  - j ) ) .  We  next use the  axiom of 
state in order to prove that  in every point ( j ,  - j )  E P o  the  value 
of (W, x) can be replaced by (wj ( j ,  - j ) ,  d ( j ,  - j ) )  yielding 
still an element in 93;. This implies  that ( w ,  x) €93: as desired. 
Starting with j = 0, let (w', x') and (w", x") be elements of 
E ' such that ( w', x') Jpo = (W, X) and (w", X") Jpo = (w0, 
xo). Define the pattition (T-, To, T+)  of Z2 by T- := 

= ( (0,  0)}  and D -  := T-U To \ D+.  Then Do := P ( D + )  n 7'' = D+ obviously separates D- a d  D+. Thus, since x' 

X l P k  1 - - B(u)u (with B(s) := Bls + Bo). Consequently, 

U { P k l  k < 0}, To:= $ 0  and T+ = U{P,l k > 0). Let D+ 

= x(O,O) = xo(O,O) = x" I &, it follows from the axiom 
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state  that (w',  x')ID- A (w",  X") 1 D+E@'I DaUD+. Conse- 
quently, (w, x )  I e o \ { ( o , o , )  A ( w 0 ,  x ) I {co.o)}  = 
(a, x) lpo\{(o,o)} N w *  x) I {(O,O)) E%. 

Repeating  the  aforementioned  reasoning  with (W, x) replaced 
by (W, X) Ipo\((~,o)l A (w, X) I {(o,o)}? i = 1 and D+= {(It - 
1)}yieldsthat(w, ~ ~ l B ~ { ( O , o ~ , ( l , ~ I ) } * ~ ~ ~  X ) I { ~ O , O ~ , ( l , - I ) ) ~ @ E .  

% ~ ~ ~ ~ ~ l [ ~ o , o ) , ( l , - l ) } ~ ~ o l { ( o , o ~ , ( l , - l ) ) ~  In t h i s  way it is 
not  difficult  to  show  that for every i E Z + ( w ,  X) 111 E 8 E I r l  with 
I i : =  { ( - i ,   i ) ; - . , ( O , O ) ; * . ( i ,   - i ) } .  Takingintoaccountthat 
8; is a  complete 1-D behavior (cf. [ l l ,  Definition 3]), this 
implies  that ( w ,  x) E 8 proving  claim ( 1 )  of the Lemma. 

In order to show that (2) is satisfied,  note  that 8' E @*. We 
next  prove  that  the  reciprocal  inclusion also holds  true.  Let ( w ,  
X ) € @ * .  Then  there  exist  elements (w', x'), (w" ,  x ' ) E ~ '  

x)(O,O). Clearly, (x'(O,O), x'(1, - 1) )  = (x(O,O), x(1, - 1 ) )  
Suchthat (w ' ,  x') leo ( w ,  ~ ) l p ~  and * (w" ,  x")(O,O) = * ( w ,  

= (x'(0, 0), x'(1, - 1 ) ) .  Therefore, the  axiom of state implies 

8 s l ~ o u { ( l , o ) ~ .  Now,  since (0 ,  W , O )  and ( w ,  W , O )  are 
both  elements  of Bs(1,O), and i ( 1 , O )  = x"(1,O) = x(l,O), it 
follows  from  the  state  axiom  that  the  value of 0 at (1,O) can be 
replaced by  w(1,O) yielding still a  trajectory  in 8 IP U 

that ( 0 7  3) leou{(l,o)) := (w'9 x? leo A ( w " ,  x") I{ ( l ,O))  E 

{(l ,O)} (cf. proof of ( 1 ) ) .  Thus, (w', x3 I p O ~  ( w ,  x") 
0))' - - ( w ,  X)lQo A ( w *  x ) ~ { C l , O ~  = ( w *  x)~Q~oU{Cl,p))  E 
23 l e o u ( ( , , o )  By successively  consi ering trajectoms ( w ' ,  x/) 
E@' such h a t   ~ ( w j ,  x J ) ( j ,  - j )  = ~ ( w ,  x ) ( j ,  - j ) ,  j = 
i 1 ,  p 2, - * , it can be  shown  (using  the  foregoing  argument) 
that for every i E Z +  ( w ,  x)IeouJi  ~ 2 3 ~ ( ~ ~ ~ ~ ~ ,  where J i : =  
{(I, 0)+ ( 4 ,  i ) ; . . , ( 1 , 0 ) ; . . , ( 1 ,  0) + ( i ,  -i)}. Conse- 
quently, ( w ,  x) l p o u p l  ~ 8 ~ l ~ ~ ~  e, .  Using the  same  kind of 
arguments as previously  mentioned, it is not  difficult to see that 
( w ,  X ) ~ ~ , E P ~ ~  1 4 ,  with gk:= Uf=-,Pi. Hence, as Bs is 
complete, we conclude  that ( w ,  x) E 8 proving  claim (2). W 

Proof of  Example 2: Let X := (Z2, R, 8), with 8 := ker 
(0, - ul) = ker ((I - 1).  Suppose  that X has  a  state  realization 
Xs = ( E 2 ,  W, W", B3") described by the  following  behavioral 
equations: 

S(u)x = 0 (AI)  
UIX = A ( u ) x  + B ( 0 ) u  ( m  
w = Cx+ D v .  ( '43)  

Let further B(s)  be a  maximal left dizsor of S(s), and R(s )  a 
polynomial matrix such  that- S( s) = D(s)R(s).  Define  the  fol- 
lowing 1-D behaviors. 8 := ( 2  E, (W")'l S(u)f = 0 )  = 
kerS(u) and 8 := @ E ( R ' ) ' \ ~ Z E ~  s . t . 2  = R ( u ) X } .  It is 
easily  checked  that 23 = ker o( u )  and as D(s)  is square and 
full rank, 8 is a finitedimensional subspace of (El')'. We  will 
call a finitedimensional behavior  an autonomous behavior, 
and  refer to variables  whose  behavior is autonomous as au- 
tonomous variables. 

To prove  the d e 5 M  result, we  will  use the  following fact. 
Fact: Let X E 8 and suppose that, for  some  polynomial 

matrix N(s), the  variable 4 := N( u)X is an autonomous  vari- 
able. Then, there exists  a  polynomial matrix K(s )  such  that 
4 = K ( u ) f ,  with X := R ( a ) f  (as above). 

Proof of the Fact: Recall that S(s) = B ( s ) R ( s )  with 
B(s) square, full rank, and maximal left divisor of S(s), and 
R ( s )  full-row rank. Note  that R(s) is left prime,  and so there  is 
a unimodular polynpial matrix U(s) such that R(s)U-'(s) = 
[ Z IO]. For X E 8, let f := U(u).t and  partition f := 

col(f l ,  2,) such  that R(u)v-I(u)f  = 2,. DefineA@ := {me 
(w")' 1 b(a)fl = 0 ) ;  then 8 = {xE(R")' 1 3 2 ~ ~  s.t. f = 
U-'(u)f}. Consider now 4 := N(o)S = N ( u ) U - ' ( u ) f .  If 
is  autonomous,  none of its  components  can  depend  on 2,. Thus 
N(s)U-'(s) = [K(s)(O], for some  polynomial matrix K(s) ,  
with N(u)U-'(u)E = K ( u ) f , .  So 4 = K(a)f ,  = K ( u )  
R(u)U-'(u)f  = K(u)R(u)X ,  Le., 4 = K ( U ) X  with X := 
R(u)X. 

Now let ~ E ( R " ) ~ *  be  such  that X = R ( a ) x  and X E I I ~ ~ ' ,  
and  define w, := w l e k ,  X,:= fl,, (Ken). Clearly, for all 
k e  Z, P,, and w k  are autonomous  variables. T h i s  implies that, 
in (A3), D = 0. Moreover, it  follows from (A2) that R(o)u ,x  
= R(u)A(u)r + R(u)B(u)v, and  thus also R(s)B(s)  = 0. 
This yields: u,X = R ( u ) A ( u ) x ,  w = Cx. Now,  invoking  the 
previous  fact  it is not  difficult to see that  there  exists  polynomial 
matrices E( s) and F(s) such  that: u1 Z = E(u)  X and w = 
F ( u ) f .  Hence,  the  variables w and X satisfy  the  following 
qUati0nS: 

1 D ( u ) X  = 0 

0 , X  = E ( U ) f  (A4) 
w = F(u)X. 

Let b * be the  w-behavior  induced  by (A4). Then 8 C 8*, and 
as 8* is  (obviously)  finite-dimensional, so will be 8. This 
contradicts  the  fact  that @ = ker (a - 1). We  conclude in this 
way that C cannot  have  a  state  realization. W 

Proof of Proposition 4: It  is easily seen that, for k = 
0,1,2, - - - : 1) F,, is A(a)-invariant and im B(u)Yk, and 2) 
Yk+! E Y,. We  will  show that: 3) there exists  a  polynomial 
matnx Tk(s) such  that Y, = ker Tk(u) and 4) there is L E M 
such  that Yk = YL for all k a L. 

It  follows  from here that YL = A(u)YL + im B ( a )  = 
ker T'(u), and  consequently Y= YL, T(s) = TL(s) and 
CS(T(s) ,  A(s ) ,  B(s ) ,  C, D) = XS(S(s), A(s) ,  B(s ) ,  C, D ) .  
This yields  the  desired  result. 

To prove 3), note  that this holds for k = 0, with To(s) = S(S). 
Suppose  that for k E M there exists Tk(s) such  that T k  = 
ker Tk(u). Then fk+l can be described as Yk+' = {Xl  13x0, v 
set. (I) is satisfied} , with (I) given by 

Let U(s) := col (Ul(s), Uz(s)), be a unimodular matrix such  that 
U,(s)R(s)  = F ( s ) ,  U,(s)R(s) = 0, with R ( s ) : =  col([T,(s) 
01, [ A(s)  B(s) ] )  and F(s) a  full-row  rank matrix. Denoting 
~ , + ~ ( s )  := ~ , ( s ) [  ] , m  is  equivalent  to 

and as F(u) is sujective it  is clear that Yk+l = ker Tk+ l(u). 
To see that (4) holds true, note  that if Y* and Y** are two 

autoregressive  behaviors in (R p ) z ,  for some p E $9, such  that 
Y** E Y* then  the  number m** of free variables  in Y** 
cannot  exceed  the  number m* of free variables in Y*. Thus, for 
the  sequence Yo2 Yl 2 2 Y,2 F,k+l 2 ... there  ex- 
ists ME I such  that for k z M the  number of free variables 
m,  of Yk is mk = mM. Moreover, for every  autoregressive 
behavior Y there holds  that for 7 E I sufficiently large dim 
f ~ ( o , T )  = Z + F h ,  where iii is the  number of free variables  in 
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9 and A is the  state-space  dimension in a minimal state-space 
realization of F (cf. [ll]). S o ,  if .T** c .T* and m** = m*, 
there must be dim F** I(o.,) = n** + m**r s n* + m**r = 
dim Y* l(o, TI, for r E M sufliciently large, implying  that n** 5 
n* (here n* and n** have  the  obvious  meaning). Thus, for the 
sequence.TM2.TM+1Z f k k Y , + 1 2  *- . ,wewil lhave 
nM t nM+l 2 * - h nk h nk+l  B implying  that  there 
existsLEMsuchthatn,=n,forallktL.Thismeansthat 
YL and Y, (k t L )  have the same  number  of free variables 
and the same minimal state-space  dimension, and as .T, c .TL it 
follows  that S, = SL for all k 2 L (cf. [ll]). This concludes 
the proof of Proposition 4. W 

Proof of Lemma 2: Assume  that M(s)  and F(s) are, 
respectively, k X I and j X 1 matrices ( j  5 k). Let I denote 
the (k - j )  x (k - j )  identity mapix and denote by 0 the 
(k -1) x j zer0 matrix. Clearly, [O ZIU-' is  a minimal left 
annihilator  of M. Thus S is also a minimal left annihilator of M 
iff it is unirnodularly  equivalent to [O IIU-', Le., if and ody if 
there  exists V(s) unimodular  such  that S(s) = V(s)[O I1U-I 
(SI. W 

1) Suppose that for  the state-space system Cs = 
Zs(S(s), A(s),  B(s ) ,  C, D), the  polynomial matrix [SI - 
A(s) I B(s)] is left prime. It is not difficult to see that this 
implies  that Es = C"(0, A(s),  B(s), C, D) is reachable. This 
means that starting with x. =_ o on I it is possible to reach 
any x* in the trim subspace .T of Xs on I ,, for k sufficiently 
large. Clearly, the trim subspace F of Xs is contained on 5, 
and thus also Xs will be reachable. 

2) AS mentioned  in Section III, if E = (z2, RQ, 8) is a 
controllable AR 2-D  system, 8 is the  output  behavior of an 
input-output  system  described by a  quarter-plane causal rational 
transfer function. Moreover,  according to [l] every  such trans- 
fer function can be realized by means of a  state-space  model 
(0, A(s) ,  B(s), C, D) ,  with [sl - A(s )  I B(s)] left  prime  (over 
W[sl, s; ', s2, s;']).  By 1) this  means that Xs = 
Xs(O, A(s), B(s) ,  C, D )  is a  reachable  state-space  realization of 
E. W 

Proof of Proposition 6: We will  first  prove  the  statements 
about 9''. In order to do so, we  will  show  that for all k = 
0, 1,2, * - * there is a  polynomial matrix c(s) such  that W,+ = 
ker c(u), and  moreover  that %:, E W,+. By similar argu- 
ments as the  ones used in the proof  of  Proposition 4, this iinplies 
that 1) and 2) hold true for Y+. Clearly %+ c %+. Suppose 
now that %+ E %+). Then := {?E (FJ")~ I 3 u  s.t. 
A(u)x + B ( u ) u  E yk and C(O)X + Du-= 0 )  SAX E 
(W")'l3~ set. A(u)x + B ( U ) U E  Y,t1  and C(U)X + DU = 
0 )  = : Y + .  So GI, E Y,+, for k = 0, 1, 2, . Now, $ 
= (W") and so there exists  a  polynomial matrix (s) such 
that $ = ker V , ( s ) ,  namely, V$(s) = 0. Suppose that for 
k E W there is a  polynomial matrix G ( s )  such  that W,+ = 
ker V z ( u ) .  Then & = {xE@')'~~u s.t. A(o)x  ++B(u)u 
E ker G(u) and C(u)x + Du = o}, i.e., X E  yk+l iff 

Proof of Proposition 5: 

z 

ible u from thia description  (cf. Roof-of Proposition 4) shows 
that = ker c + l ( u ) ,  with c + l ( s )  a  suitable  polynomial 
matrix. So, for k = 0,1,2, - * * , there exists  a  polynomial 
matrix Vk+(s) such  that %+ = ker c (a). As mentioned  previ- 
ously, this implies  that 1) and  2)  hold true. Consider now %$ 
with L+ as in 1). Then @= { X E  (R")' ( P  u s.t. A(a)x + 

B(U)YE .V$ and c(u)x + Du = 0 ) .  Let 5:. Then x. 
E I I , ~ ~ ' ( ~ ~  and more-over there exists X , E I I , P ~ ~ ( ~ ,  and uk, 

Du, = 0.  It can be shown that this implies that there is 
(w ,  x, u ) E ~ '  such  that ( w ,  x, u)Jey = (0 ,  x*, uk),  for k = 
0,1,2 * * * . SO clearly wt, G Y+. P ~ Y ,  it is not difficult to 
seethat Y+E %+ for all k = 0,1,2, and so %$ = Y+. 
To prove the statements  about Y - ,  we will first see that for 

all k = 0,1,2, . * ' ,  "v,;, C YP. Clearly, q- E %-. sup- 
posethatfor k e M  %- E %I1. Then yG1:= { X ~ ( W ) ~ ( P U  
3 % ~  Y< s.t. A(u)f + B(U)U = X and C(cr).f + DU = 0 )  E 
L . E ( W " ) ~ ~ U  3 f ~  Ykl l  s.t. A(a)f + B(a)u = x and 
C ( a ) f + D u  = o} =: Y,-. So G;, E 6- for all k = 
0,1,2,  - * .  . Next,  we  will  show  that for all k = 0,1,2, ..- 
there  exists  a  polynomial matrix vi(~) such  that Y,- = 
ker V;(a). This holds for k = 0 with V&(s) = 0. Suppose  that 
it also holds for some  EM. Then =_(x~(W")_813u 
3x'Eker V i ( u )  s.t. A(o)f + B(u)u = x and C(u).f + Du = 
o}, and so X E  %TI iff there exists f and u s.t. 

k = 0 , 1 , 2 , * . . , s u c h t h a t  X ~ + L  = A ( u ) x ~ + B ( u ) u , ; C X ~ +  

By similar  arguments as previously  mentioned, we conclude  that 
there is a  polynomial matrix V;+l(s) such  that 6; I = ker 
V,.l(~). This shows the desired result. Consequently 1) and 2) 
hold true for Y-.  

~ o t e ,  finally, that Y -  E W,- for all k = 0, 1,2, . More- 
over, if xOe %:, x ~ E I I , ~ ~ ~ ( ~ ~  and there exist v - k  and x-,, 
k = 1,2 ,  ' * .  Such that x - ~ E I T , ~ " I ~ - ~ ,  A ( u ) x - ~  + 
B(u)u-, = X-&+,, and CX-, + Du-, = 0 .  This k p l i e ~  that 
there is ( w ,  x ) E ~ '  such  that ( w ,  x)l,,-, = ( 0 ,  x-,)l,,- 
k = 1, 2 ,  - 1  * and x I p o  = xo. So x. E Y -  and  we  conclu& 

W 
Proof of Proposition 7: For the  given  state-space  system 

8", the (w, x)-behavior 8" is described by - U(o)Fw = 
U(o)E(u,  q ) x .  Thus, { w  = 0 )  * {x  = 0 )  iff ker U(a)E(u,  
a,) = (0). Now,  it is a well-known  result  that  given  a  2-D 
polynomial matrix R(s,  sl), ker R(u,  all = {0} iff &A, A,) 
has full-column rank for all (A, All E (0 \ {O}) x (G \ {O}). 
This yields the desired  result. W 

that Y-=  3:. 
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