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Et les mots pour le dire arrivent aisément.
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INTRODUCTION

The purpose of this paper is to give a tutorial exposition of what we consider
to be the basic mathematical concepts in the theory of dynamical systems.

One of the main goals and key functions of mathematical thinking is to
provide an effective and unambiguous language for classifying phenomena, for
expressing concepts and ideas, for translating into mathematics vague notions
and expressions which we borrow from our daily vocabulary. Examples of
major mathematical achievements of this type are probability theory in formal-
izing what we mean by ‘chance’, information theory in quantifying ‘amount of
information’, and control theory in shaping the notion of ‘feedback’. The present
paper can be viewed as an attempt to provide a mathematical framework for
discussing ‘dynamics’ on a general level, that is, without reference to a specific
class of (physical, economic, or engineering) examples.
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Notwithstanding the fact that dynamical systems as mathematical objects
have implicitly been with us at least since the time of Newton and the beginnings
of calculus, it was only in the present century that we have seen the emergence
of a theory in which the notion of a dynamical system was explicitly put forward
as an independent mathematical concept. The founders of this subject (Poincaré,
Birkhoff, and others) appeared naturally very much inspired by physics and
mechanics, and viewed dynamical systems primarily in the context of the theory
of differential equations. For reasons unknown, external forces had at that time
faded away as an integral part of the mathematical description of mechanical
systems, even though they were (and still are!) very much present in mechanical
engineering applications. Consequently, we saw the emergence of flows on
manifolds (and their generalizations to infinite-dimensional state spaces and
discrete time systems) as the basic concept on which the mathematical
foundations of the subject of dynamics were laid out. This development and
line of thought has been maintained until the present days.

In this classical concept, a dynamical system is described in terms of the
evolution of its state. It is assumed that the state evolves in an autonomous
way. With this, we mean that its path depends only on its initial value and on
the laws of motion. In situations other than some very well defined mechanical
or electrical systems, the theory leaves us guessing as to how the state variables
should be chosen. Further, no external influences are formally incorporated in
this framework: the state evolves purely on the basis of internal driving forces.
By assuming that the state evolves in this deterministic fashion we postulate in
effect that the system is isolated from its environment. But there is no such
thing as an isolated system! What this assumption actually means is that we
postulate that we know, or that we think to know, how the environment will
act on the system, what the boundary conditions are, how external influences
are generated—and so, in modelling a specific, concrete, dynamical system in
the language of classical dynamics, we find ourselves in the absurd situation of
having to model also the environment!

A rather independent route to the concept of a dynamical system has been
followed in electrical engineering, in particular in areas as circuit theory, control,
signal processing, and, later on, computer science. In these fields, particularly
in control, there has always been the tendency to view a dynamical system as
a ‘black box’ which receives stimuli (inputs) from its environment and reacts to
these stimuli by producing outputs. The work of Kalman and the other
innovations of the 1960s in control theory showed how to incorporate state
variables in this input/output framework. This has led to the state space theory
of dynamical systems with inputs and outputs.

What really constitutes a dynamical system? How should one conceptualize it?
What are the essential common features in the mathematical models for dynamical
phenomena? What is a suitable paradigm on which we can base our definitions and,
from there, our problem formulations?
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Our formalization of a dynamical system stems from the mental picture shown
in Fig. 1. We view a dynamical system as an object which is imbedded in its
environment, is abstracted from it, but which may, will, interact with it. The
system has certain attributes whose evolution in time we wish to describe. In
order to do so we select the relevant set of time instances, T, and the set W in
which the attributes take on their values. The dynamical laws specifying this
time evolution tell us that certain trajectories can occur, that others cannot.
This yields what we call the behaviour of the dynamical system. This point of
view takes the model equations, any set of dynamical relations, as basic and
proceeds from there. That is what the modeller gives us, that is what a
mathematical theory of dynamics should start with. If preconditioning of the
model is necessary (for example, in order to display the evolution of the state
or the input/output structure), then a theory should make clear how and why
this should be done.

Note that it is only by viewing also the environment as a specific dynamical
system that we are able to obtain an autonomous classical dynamical system.
It is in this sense that classical dynamics forces us to model also the environment
(see Fig. 2).

However, most equations which we obtain from first principles will contain
other variables in addition to the attributes whose behaviour we are trying to
describe. We will call these additional variables latent variables. A special class
of such latent variables aims at extracting the memory of a system and leads
to the notion of the state of a dynamical system.

The theme of the first section of this paper is to formalize all this and to
illustrate the suitability of our starting point by means of a series of examples
taken from a variety of scientific disciplines.

In our philosophy the state of a system is a mathematical object which is of
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crucial importance for the analysis and synthesis of dynamical systems. However,
seldomly will the state be explicitly part of a mathematical specification of a
dynamical system described by equations obtained from first principles. The
state and the state equations will have to be deduced from the mathematial
model, from a given set of dynamical equations. Writing state equations for
dynamical systems is the problem of realization theory and is the subject of
section 2. The upshot of this development is the fact that the belief that the
state of a dynamical systems is uniquely defined up to relabelling and barring
hidden variables is, in general, not true. It is, however, correct for important
classes of systems, in particular for linear and for autonomous dynamical
systems.

In section 3 we will show how cause/effect—input/output structures emerge
in this setting. This class of systems, of great importance in control and signal
processing, allows to view the external variables as consisting of inputs, stimuli,
formalizing the influence of the environment on the system and outputs,
responses, formalizing the influence of the system on the environment.

In section 4 we will study linear systems in detail. We will show that such
systems admit a variety of convenient representations. We will put these
representations in the common perspective of what we will call (ARM A) models,
linear shift invariant relations involving the external attributes and latent
variables, and emphasize the role which controllability plays in the representa-
tion of such systems.

In his influential book The Structure of Scientific Revolutions, Thomas Kuhn argues
that a field of scientific inquiry is made up by paradigms and puzzles. He describes
paradigms as models for research, a general problem area sharing a common formulation,
a framework in which it becomes possible to ask ‘valid’ questions. Puzzles are concrete
applications, conjectures, open problems. Most scientists piece together puzzles and it is
this activity which Kuhn calls normal science. The term puzzle suggests spielerei—playing
games. This negative connotation is—so it is said—unintentional. By formulating
puzzles, a scientist can focus on specific questions, questions lead to answers, answers are
the products of scientific research.

This structure of scientific inquiry is very much present in (applied) mathematics in
general and in the theory of dynamical systems in particular. However, there has been
an unfortunate unexplainable total domination of puzzle solving. Paradigms have been
muted, suppressed, not spoken about, let alone scrutinized, rejected, updated. Examining
and formulating paradigms has achieved a reputation in mathematical circles as being
soft: it leads to too many definitions and not enough theorems. Good mathematics is
thought to have a high theorem-to-definition ratio. Solving puzzles, on the other hand,
is considered a serious activity, requiring intelligence, mathematical culture, virtuosity.
The ultimate of mathematical achievement is to solve a puzzle (a conjecture) formulated
by someone else preferably in another century. Thus we have attained a complete reversal
in which posing paradigms is considered spielerei, we find ourselves in a situation in
which proving theorems, not building theories, appears to be the aim of mathematical
research.
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It is, therefore, with a certain amount of hesitation that the present paper has been
written. Its purpose is to present the formalization of the picture of Fig. 1 as the paradigm
of a dynamical system in the hope of showing its usefulness in mathematics, engineering,
and physics alike.

1 MODELS FROM FIRST PRINCIPLES

In the first section of this paper, we will introduce a mathematical definition
of the concept of a dynamical system. We will take the point of view that a
dynamical system consists of (a family of) laws which constrain the signals
which the system can conceivably produce. The collection of all the signals
compatible with these laws define what we call the behaviour of the system.
However, laws and models which we write down from first principles will
invariably contain, in addition to the variables which are being modelled, also
other variables: we will call these latent variables. Some latent variables may
have important properties related to and capturing the memory structure of a
system. This leads in particular to the concept of the state of a dynamical system.
We will illustrate the abstract concepts introduced in this section by means of
a series of concrete examples. We will also show how systems described by
difference or differential equations fit in our abstract setting and finally how
our concepts are related to the notions of formal languages and automata.

1.1 The notion of a dynamical system—examples

1.1.1 The basic concept

Let us start at the very beginning: with our definition of a dynamical system.
We will use this definition as a leitmotiv throughout this paper. The definition
is hopelessly general but nevertheless it captures rather well the crucial features
of the notion of a dynamical system.

DEerINITION 1.1 A dynamical system T is defined as a triple
X=(T, W,B)

with T < R the time axis; W an abstract set, called the signal alphabet; and
B < W' the behaviour.

The set T specifies the set of time instances relevant to our problem. Usually
T =R or R, (in continuous time systems), Z or Z, (in discrete time systems),
or, more generally, an interval in R or Z. We view a dynamical system as an
entity which is abstracted from its environment but which interacts with it (see
Fig. 1). The set W specifies the way in which the attributes of the dynamical
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system are formalized as elements of a set. These attributes are the variables
whose evolution in time we are describing. These will be a combination of
observed variables and variables through which the system interacts with its
environment. (If we think of the observer and the modeller as being part of the
environment then we can consider the description of this interaction with the
environment as the essential feature of the attributes.)

The behaviour B is simply a family of time trajectories taking their values
in the signal alphabet. Thus elements of B constitute precisely the trajectories
compatible with the laws which govern the system: B consists of all time signals
which—according to the model— our system can conceivably generate. In most
applications, the behaviour B will be specified by equations, often differential
or difference equations, sometimes integral equations. In other words, there is
a map b: W' E with E={0,1}, or more generally a vector space such that
B = b~ 1(0). We will call such equations behavioural equations.

1.1.2 An electrical circuit

Let us look at a number of typical examples of how dynamical models are constructed
from first principles. Our first example considers the terminal behaviour of the electrical
circuit shown in Fig. 3.

The circuit interacts with its environment through the external port. The attributes
which describe this interaction are the current / into the circuit and the voltage ¥ across
its external terminals. Hence W = R2. As time axis in this example we take T=R. In
order to specify the terminal behaviour, we will introduce the currents through and the
voltages across the internal branches of the circuit, as shown in Fig. 4.

The following behavioural equations must be satisfied:

Constitutive equations:

Ve.=Relg; Vi =Rulp; CVc=Ig LI=V, (ECy)
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Kirchhoff’s current laws:.
I=Ii +1I; Iy =l Iy =1 (EC,)
Kirchhoff’s voltage laws:
V=Vc+ Vg =VL+ Vg, (EC,)

This yields the port behaviour, formally defined as:
B={( V)R> RZIS(IRC, Veo vy Vap Ior VeI, V,):R—R®

satisfying equations (EC)}
After elimination of the variables IRC, 4 Re? IRL, VRL, I, I, V,, we obtain as behavioural
equation the differential equation

RALCI+(L+ RR, O+ RI=LCV+(Rc+R)CV+V  (EC)
This yields the following explicit specification of the behaviour
B ={(I, V):R—>R?|(EC) is satisfied}

In both the above specifications of B we have been vague about the precise smoothness
conditions required of the signals. This issue is not especially important to us at the
moment.

1.1.3 A Leontieff economy

As a second example let us consider a Leontieff model for an economy in which several
economic goods are transformed by means of a number of production processes. We
are interested in describing the evolution in time of the total utility of the goods in the
economy. Assume that there are N production processes in which n economic goods
are transformed into goods of the same kind, and that in order to produce one unit of
good j by means of the kth production process, we need at least a; units of good i.
The real numbers aﬁ‘j, keN, i, jen,:={1,2,...,n} are called the technology coefficients. We
assume that in each time unit one production cycle will take place.
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Denote by

¢i(t) the quantity of product i available at time ¢;
uX(t) the quantity of product i assigned to the production process k at time t;
y¥(t) the quantity of product i acquired from the production process k at time ¢.

There holds:

S, ()< (0 Vien (LE,)
k=1
i akyh(t + 1) <uk(e) VkeN, ien (LE,)
j=1
git+ 1< iy“(t+1) Vien (LE;)
k=1

The underlying structure of this economy is shown in Fig. 5. The difference between the
right- and the left-hand sides of the above inequalities will be due to such things as
inefficient production, imbalance of the available products, consumption, and other
forms of waste.

Now assume that the total utility of the goods in the economy is a function of the
available amount of goods ¢,,4,,...,4,, i., J:Z— R, is given by J(t) = n(g,(t),. .., q,t)),
with :R% — R a given function, the utility. For example, if we identify utility with resale
value (in dollars, of course), then n(q,,4,, ..., q,) will be equal to 3°;_, p,q; with p; the per
unit selling price of good i. These relations define a dynamical system with T =2,
W=R,, and

B={J.Z-R,|3¢:Z-R,,u:Z->R,,y;:Z>R,, ien, keN,
such that the inequalities (LE) are satisfied for all teZ, and J=1(¢;,42,...,44)}-
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Fig. 6

such that the inequalities (Ec) are satisfied for all teZ, and J =1,(¢;,42,-.-,4n)}-

Note that, in contrast with Example 1.1.3 where it was easy to obtain behaviour equations
(EC") explicitly in terms of the external attributes V and I, it will be all but impossible
in the present example to eliminate the ¢’s, &’s and y’s and obtain an explicit behavioural
equation describing B entirely in terms of J, the attribute of interest in this example.

1.1.4 A pendulum

Consider the pendulum shown in Fig. 6. Assume that we want to model the relationship
between the position W, of the mass and the position %, of the tip of the pendulum (say
with the ultimate goal of designing a controller which stabilizes #, at a fixed value by using
W, as control, as we do when we balance an inverted broom on our hand). In order to
obtain such a model, introduce as auxiliary variables the force F in the bar and the real-
valued proportionality factor a of F and W, — %,.

We obtain the behavioural equations

d2
de mg1,+F (P1)
%, — W, =L - (P)
F=a(%, —%,) (P3)

Here m denotes the mass of the pendulum, L its length, g the gravitational
constant, and 7, the unit vector in the z-direction. The above equations completely specify
the behaviour, defined as

B = {(W,,W): R~ R x R3}3IF-R—R? and a:R—R

such that equations (P) are satisfied.}.

1.1.5 Latent variables

We have already mentioned that the behaviour of a dynamical system is often
specified by behavioural equations, that is, there is a map b:W'—{0,1} and
8:=b~1(0). On the other hand, one could specify how elements of B are
produced: there is a map p.P— WT and B:=im p. Most common, however, is
the situation in which a behaviour is specified as a projection. We will now
explain this.
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As can be observed from the previous examples, models which we write down
from first principles will invariably involve, in addition to the basic variables
which we are trying to describe, also auxiliary variables (for example—the
internal voltages and currents in the electrical circuit of Example 1.12; the ¢’s
w's and y’s in the economy of Example 1.1.3; the force F in the bar of the
pendulum and the proportionality factor a in Example 1.1.4). We will call such
variables latent variables. These latent variables could be introduced, if for no
other reason, because they make it more convenient to write down the equations
of motion, or because they are essential in order to express the constitutive
laws or the conservation laws defining the system’s behaviour. This was the
case in Examples 1.1.2 and 1.1.4. Latent variables will unavoidably occur
whenever we model a system by ‘tearing’ where we view a system as an
interconnection of subsystems—a common and very useful way of constructing
models. This was the case in Example 1.1.4. After interconnection, the external
variables of the subsystems will become latent variables for the interconnected
system.

Latent variables also play an important role in theoretical considerations.
We will see later that latent variables, as state variables or free driving variables,
are needed and make it possible to reduce equations of motion to expressions
which are purely local in time.

In thinking about the difference between signal variables and latent variables it is
helpful in first instance to think of the signal variables being directly observable: they
are explicit, while the latent variables are not: they are implicit. Examples: in pedagogy,
scores of tests can be viewed as the signal, and native intelligence can be viewed as a
latent variable aimed at explaining these scores. In thermodynamics, pressure, tempera-
ture and volume can be viewed as the signal while the internal energy and entropy can
be viewed as latent variables whose value, if needed, should be deduced from the signal.
In economics, sales can be viewed as signals, while consumer demand could be considered
as a latent variable. We emphasize, however, that which variables are observed and
measured, and which are not, is really something which is part of the instrumentation
and the technological set-up for a system. Particularly in control applications one should
not be cavalier about declaring certain variables measurable and observed.

The formalization of systems with latent variables leads to the following
definition.

DEFINITION 1.2 A dynamical system with latent variables is a quadruple
X,=(T,W,A,B,)

with T, W as in Definition 1.1; A the set of latent variables and B, = (W x A)' the
(extended) behaviour.

Define P,:W:x A—> W by P, (w,a):=w. We will call £, a model with latent
variables for the induced dynamical system T =(T, W, P,,8B,). Often we will refer



1. Models from first principles 181

to, and think of, B, as the internal behaviour and of P, B, as the external
behaviour of the system.

Note our slight abuse of notation. Whereas in principle P,:W x 4 - W, we also
consider it as a map P,:(W x A)T - W7, yielding (P,,w)(t) = P (w(1)).

Let us briefly summarize our modelling language in a set theoretic setting. Assume
that we have a phenomenon, described by attributes. We formalize the situation by
considering the attributes to belong to a universum . A mathematical model is a subset
M of U: it says that, according to the model, only attributes in 9 can occur and the
others cannot. The set M is called the behaviour of the model. In a model with latent
variables, we introduce auxiliary variables whose attributes belong to a set £. A latent
variable model is then a subset M/ of U x £. We call M/ the full behaviour. It induces
the (intrisic) behaviour M = {ueU|IeLe(u, e/},

Often behaviours are specified by behavioural equations: there is a map b:W - {0,1}
and M = b~ 1(0). However, behaviours can also be specified as images, in which case it
is logical to consider the domain as the space of latent variables: there is a map p:2 - 1,
N/ is the graph of p, and M = im p. Most general, however, the situation in which M
is the projection of M' and M’ itself is described by the full behavioural equations
b/ (u, 1) = 0. Inequalities, as in Example 1.3, also occur, however.

1.2 Basic structure

One of the advantages of making definitions at the level of generality of
Definition 1.1 is that standard mathematical structures become immediately
applicable to dynamical systems,

1.2.1 Linearity

We will call the dynamical system T =(T, W, B) linear if W is a vector space
and B is a linear subspace of W' (viewed as a vector space in the natural way
by means of pointwise addition and scalar multiplication). Example 1.2 is an
example of a linear system.

1.2.2 Time invariance

We will call the dynamical system X = (T, W, B) time-invariant if T is an additive
semigroup in R (ie, {t,,,€T}={t, +t,€T}) and ¢'B<B for all teT;
o'-denotes the backwards or left t-shift: (' fXt'):= f(t' + t). Examples 1.2, 1.3 and
1.4 are time invariant. Example 1.3 can be made time varying in a natural way
by assuming that the technology coefficients depend explicitly on time in order
to reflect such things as ageing of the machine park and technological progress.
Alternatively, we can let the prices p; be time dependent.

1.2.3  Symmetry

Let T be-a family of dynamical systems: each element of X is a dynamical system as in
Definition 1.1. Let % be a group and & =(S,,ge%) be a transformation group on X,
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that is, each S,:E - is a bijection with §, ,,. =S5, oS, We will call (,S) a symmetry
structure. An element Ze X is said to be (S-)symmetricif S, X = Z for all ge%. Informally, we
will say that £ has & as a symmetry.

Examples of such symmetries are:

(i) Take T =% to be an additive subgroup of R and S,(T, W, B) =(T + g, W, ¢*B). The
symmetric systems in this sense are, in fact, the time invariant ones.

(i) Let(Sy, ge%)be a transformation group on Wand S,(T, W, B) =(T, W, S,B), where,
as before and in the sequel, we use the notation S8 = {S,(w(-)):T - W|weB}. The
resulting symmetry suggests a behaviour which is invariant under certain sign changes or
permutations of the components of the external variables as, for example, a permutation of
particles in n-particle systems with identical particles.

(iii) Take ¥ = {0, 1}, and define S,(T, W, B) =(— T, W, RB) where R is the time reversal:
(Rf)(#):= f(—t). The resulting symmetric systems are called time reversible. Examples of
time reversible systems are systems described by differential equations containing only
even order derivatives.

(iv) Let J be an involution on W(ie. J =J~*'). Take 4 = {0, 1}, and define S,(T, W, B)=
(= T,W,JRB). The resulting symmetry is what is sometimes called dynamic time
reversibility. The involution J serves to express that in order to obtain time reversibility
in mechanical systems, it may be necessary to change the sign of the velocities.

1.3 More notation

1.3.1 Concatenation and non-anticipating maps

When studying dynamical systems an important role is set aside for the
interaction of the past and future of (families of) time functions, for concatenating
pasts with futures, and for the way the past and the future interact with maps.

Let T < R and W be a set. For a given map w: T — W we define the following
derived maps:

W= Wra—0.0) (the strict past of w)
W 0= W|rn(-w.0) (the past and present of w)
W= W1 n0.0) (the present and future of w)

W2t = W|rn10.0) (the strict future of w)

For B < W, this yields the self-evident notation B~, B7°, B°*, and B*.
Let w, w,:T— W and teT. We define the concatenation at t of w, and w,,
w;Aw, and w11}w2, both maps from T to W, as follows
t t

n fjwi(#) for <t

(w‘ zA wz)(t )= {wz(t’) for t'>t
, n_ jwi(t) for r=<t

<w1 ,/} w2>(t )= {wz(t’) for t'>t

For B,,8,< W’ this yields the self-evident notation B,AB, and B,AB,.
t t
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We will also concatenate maps which are themselves already restrictions. Thus
wi sz = wlsz and wy °Aw2 = wlsz, etc. Note that in discrete time

(T = Z) there holds A=A and as such there would have been no need to
t+1" +
introduce both A and A HZ)wever in continuous time we need both.

Let TSR, W1 and W2 be sets, and B, < W], B, < W}. Consider the map
F:3B, - B,. We will call F non-anticipating if {w},w]eB,,teT, and w)(t) = wi(t)
for ¢ <t}={(Fw))(t)=Fwi)t) for ¢ <t}. We will call F strictly non-
anticipating if instead {w', w{eB,,teT, and wi(t') = wi(t') for t' <t} = {(Fw))(t)
=(Fw})(t') for ¢ <t}. In order to appreciate why in the notion of non-
anticipation we use the inequality ¢ <t instead of t' < t, consider the following
example. Let T=R, W, = W, =R, B,:= {w,:R— R|w, is bounded and piece-
wise continuous with w,(¢) = lim,, w,(¢')}. Now consider the map F:8, - (RF
defined by (Fw,)(t):= lim, |, w,(t). Such a map should not be non-anticipating but
if we would have used ¢’ < ¢ in the definition, it would have been non-anticipating.

An important restriction
Mainly for reasons of exposition and ease of notation we will henceworth restrict
attention in this paper to time invariant systems with time axis T=R or Z.
Occasionally we will emphasize this assumption in the statement of theorems
and definitions.

1.4 The extent of the memory

The memory in a dynamical system, the way the past influences the future, the
fact that there is an after effect, is what makes dynamical systems interesting,
what gives them their idiosyncrasies, what distinguishes them from arbitrary
relations and maps. We will now give a series of definitions aimed at classifying
the memory structure.

There are four different related angles from which we will look at the memory
structure of a dynamical system:

(1) Completeness—connected to the possibility of writing the behavioural
equations as difference equations;

(2) The memory span—expressing the length of the time interval through which
the past and future are linked;

(3) The state—Ilatent variables which parametrize the content of the system’s
memory;

(4) Controllability and autonomy—notions formalizing in how far the past has
a lasting influence on the future.

1.4.1 Completeness

The first concept, completeness, requires that the behavioural equations should
not extend all the way back to — oo or all the way forward to + co. It is a
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concept which will play an important role in the remainder of our paper. The
dynamical system X = (T, W, B) is said to be complete if

{weB}<>{W|i..1€Blirony for all — o0 <t;<t; < 0}
It will be called L-complete if
{weB} <> (Wl +11€Blpr+ry for all teT}

If a system is L-complete for all L > 0, then we will call it locally specified. If a
system is O-complete, we will call it instantly specified.

The intuitive significance of these notions should be quite obvious. It is clear
that a discrete time a dynamical system will be governed by a set of difference
equations:

Swt+L), wit+L—1),...,mt))=0 teZ

iff it is L-complete. Indeed, take for f.:W.— R any map such that f~1(0)=
Blo,L;€W" (Formally, the above difference equation defines the behaviour
B = {w:Z — W| the difference equation is satisfied for all teZ}.) We will call the
integer LeZ, appearing in this behavioural equation the lag. Similarly
(disregarding smoothness issues for the time being), a continuous time system
governed by a set of differential equations:

dw _d"'w
f(W(‘)’W(’)’“"”(t))_O teR
will be locally specified. Note that a system is instantly specified iff it is governed
by non-dynamic laws, that is, if it is described by behavioural equations of the
form: f(w(t)) =0, teT.

14.2 The memory span

The dynamical system X =(T,W,®8) is said to have A-finitt memory (or
equivalently, we say that its memory span is A) if

{wi, w,€B, and w54 = W, lo.ar} = {Wlél w,eB };

it is said to have finite memory if it has A-finite memory for some A > 0; local

memory if it has A-finite memory for all A > 0. We will often refer to the memory

span when we implicitly mean A, the minimal AeZ, having the above pro-

perty. When the memory consists of the present value only, we will borrow a

notion from the theory of stochastic processes: X is said to be Markovian if

{wy, w,€B, w,(0) = w,(0)} = {w, Aw,€B}. The system is said to be memory-
0

less if B is closed under concatenation, i.e., if {w;, w,eB}={w, Aw,eB}.
o

Completeness and the memory span are closely related. This is expressed in
our first proposition.



1. Models from first principles 185

ProrosITION 1.1  Let £ = (Z, W, B) be a discrete time dynamical system. Then

{Z is t-complete}<>{X is complete and has t-finite memory}

Proof (=): is obvious.
(<=): Assume that X has ¢-finite memory and that w: T — W has the property
Wl s +€Bj ¢ 41 for all '€ Z. In particular, there exist wy, w,, w,, w, such that

w, A w A wyeB and wy Aw A w,eB. By the t-finite memory
(l'-l)'. @ +t- . ()~ (@ +t+1)"
assumption, we obtain w, A w A w,eB. Hence Wiy 1 H]eiBl[,:t: rea]
=17 (+e+1) ’ ’
for all t'eZ. We conclude that {w|, ,+q€Blp s} = {Whr+e+ 11€Bliien )

Continuing this process yields wly,,,€Bo.; V10, t1€Z. By completeness, this
yields the implication (=). W

We also have the following implications:

instantly specified = locally specified =t-complete =complete;

Y 4 Y

memoryless = Markovian = local memory = t-finite memory = finite memory.

If T = Z, and if T is complete then, by the above proposition, the vertical arrows
can also be reversed.

We conclude from all this that a discrete time system can be described by a
difference equation with lag L iff it is complete and its memory span is L.

1.4.3  Splitting variables

The interaction of the latent variables with the memory structure of a-system
is of much interest. We will explore this in the next sections. The first concept
formalizes situations where the present value of the latent variables all by
itself determines the future behaviour of the external signal variable. Let
T, =(T, W, A,B,) be a dynamical system with latent variables. We will say that
the latent variable splits the external behaviour if

{(wy,ay),(w,,a,)eB,, and a1(0)=a2(0)}=>{w1({§ wzePwiB,,}.

1.4.4 State space systems

If we combine the splitting and the Markov property we arrive at the following
very important class of systems.

DEFINITIONS 1.3 Let Z,=(T,W, X,B,) be a dynamical system with latent
variables. We will call this a dynamical system in state space form, with state space
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X, if the behaviour B, = (W x X)' satisfies what we will call the axiom of state.
This requires the implication {(w,x;), (W, x)eB,, and x,0)=
xl(o)} = {(wl’ xl)A(WZa x2)623s}'

o

We will call P, B, the external behaviour of X, and (T, W, P,B,) the system
induced by X,. Conversely, we will call Z, = (T, W, X, B,) a state space representa-
tion (or a state space realization) of £ =(T,W,P B, Finally, we will call
B, = P.B, the state behaviour, where P.:(W x X)—> X is the projection
P (w,x)=x. On a few occasions we will have the need to consider the states
all by themselves, yielding the state system £, =(T, X, B,).

It is easy to see that in a state space system x splits w, that (T, W, X,B,)
is Markovian, and that the state system X, =(T,W,B,) is also Markovian.
However in a state space system x all by itself splits w and x jointly. The splitting
and the state property will be pursued in detail in section 2. The state space
structure will in fact be one of the main issues analysed in the sequel of this
paper. Most models which one deals with in physics, economics, dynamic
simulation, dynamic control and estimation, etc., are in state space form. We
stress, however, that we do not view the state as something which is given from
first principles but as a variable which should be constructed on the basis of a
model given, say, directly in terms of its external behaviour, or in terms of a
model incorporating latent variables. It is in this form that mathematical models
are obtained from physical or economic principles, and it is from this starting
point that a mathematical theory of dynamics should depart. We will discuss
the construction of the state space in section 2.

We would like to emphasize that we have assumed that in the splitting or
state property the past is the strict past and the future contains the present. As
such our axiom of state is not quite invariant under time reversal.

1.4.5 Autonomous, controllable and trim systems

The notions of autonomous system and controllability aim at classifying in
how far the past has lasting implications on the future. In autonomous systems,
the past implies the future. In controllable systems, the past has no lasting
implications about the far future.

Let X =(T, W,B) be a time invariant system with T =R or Z. We will call
it autonomous if there exists a map f: B~ —»B°* such that for all we W', there
holds {w=w"A,-w’*eB}<{w eB and w°* =f(w")}. It is said to be
controllable if for all w,, w,€®B there exists a teT,t>0,and a w:Tn[0,t)> W
such that w A,-wA, -0 'w,€B (see Fig. 7). Note that in these definitions we
could equivalently have demanded the existence of f: B~ °—B°* for autono-
mous systems and any of the concatenations w, 4w1§a‘ 1w,

0 0

wi AwAo~'w,, or w, AwAc™'w, for controllability.
ot~ ot 2
The notion of controllability played an instrumental role in the advances in

control and filtering of the early 1960s. Note, however, that in our point of
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Fig. 7

view controllability is a property of the external behaviour of a dynamical system!
In a controllable system we can, whatever be the past trajectory realized by
‘nature’, steer the system so that it will generate any desired future trajectory.
This obviously is a natural formalization of the ability to steer the system in a
desirable way: controllability.

Consider the difference equation of section 1.4.1. If this difference equation
can be solved for the largest lag, i.e., if it is of the formi

w(t+L)=f'(wit +L—1),...,w(t))

then the resulting dynamical system will be autonomous. Similarly, the
continuous time system described by

d"w aw
— ) =f"| —=— cee t
=1 ( o (O ))
will be autonomous (assuming f” to be sufficiently smooth so that the differential
equation possesses a unique solution for all initial data

(w(O),%(O),...,d"_ ’1”(0)>.

dar"~

The notions of linearity, symmetry, autonomy, controllability, etc., can be
extended in an obvious way to state space systems, or to systems involving
latent variables. In this context we will prove the following simple propositions
which give insight in the concept of state and the notion of autonomous system,
and in the relation of the classical notion of controllability to ours.

PROPOSITION 1.2  The state space system X, = (T, W, X, B} is autonomous if and
only if there exists a mapf: X — B2 * such that {(w, x)eB,} = {(w, x)°* =1(x(0))}.

Proof The ‘if’ part is obvious. To show the ‘only’ if* part, consider B(a):=
{(w, x)eB,| x(0) = a}. By the state axiom, B, (a)A,- B?*(a) = B,a) = B,. On the
other hand, if B, is autonomous, there exists a map f:B, (a)—>B%*(a) such
that {(w, x)eB,(a)} <> {(w, x)°* =f((w,x)")}. This implies that B2+ (a) consists at
most of one element, which yields the result claimed. W
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Consider the (time invariant) dynamical system T = (T, W, B) with T = Z or R.
We will call X trim if for all we W there exists a weB such that w(0) = w. In a trim
system all the external attributes can somehow occur. In an instantly specified
system it is precisely the lack of trimness which expresses the laws of the system.
This notion is easily generalized to systems with latent variables. As such we
will speak about a system which is trim in the latent variables when the system
(T,W,P,B,) is trim. Since we view latent variables as auxiliary variables it is
reasonable to assume that an internal behaviour is trim in the latent variables:
if not, we can simply redefine the set A. When the latent variables are state
variables, then we will speak about systems which are state trim.

The relation between our concept of controllability and the classical state
controllability is as follows. Let £ = (T, X,®,) be the state behaviour of a
system. In other words, assume that it is Markovian. We will call X, point
controllable if, ¥ x,, x,€X, there exists an xe®, and a teT, t >0, such that
x(0) = x, and x(t) = x,. The concept of controllability as it is classically used in
the control theory literature corresponds roughly speaking to point controlla-
bility of a state behaviour. We have the following result.

ProrposiTiON 1.3 Let Z, be trim. Then it is controllable if and only if it is point
controllable. Further, if X is point controllable, then ¥ is controllable.

Proof Obvious. N

1.5 Evolution laws

1.5.1 Evolution laws

Most models which one encounters in practice are in the form of differential
or difference equations. It is well known that higher order differential or
difference equations may be reduced to first order equations simply by redefining
lagged variables or derivatives as new variables. We will consequently now treat
only first order differential or difference equations. As we shall see, such models
are automatically in state space form.

DEFINITION 1.4 A discrete time evolution law is defined as a quadruple
Z,=(T,W,X,0)

with T = Z the time axis; in the paper, T = Z; W = the signal alphabet; X the
state space; and 0 € X x W x X the next state relation.

The intuitive interpretation of d is as follows: (x,, w,x,)€d signifies that if
the system is in state x,, then it can proceed to state x, while producing the
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external signal value w. Define the behaviour induced by 0 as B;:= {(w,x):Z -
W x X|(x(2), w(t), x(t + 1))e€d for all teZ}. It is straightforward to verify that B,
satisfies the axiom of state and that it is time invariant. From 8B, we obtain
3, =(Z, W, X,B,), the state space system induced by Z, B = P, B, the external
behaviour and £ =(Z, W, P,B,), the dynamical system induced by Z, We will
denote this as:

0=>B,=>B and Z,=>I,=>X

The continuous time analogon of a next state relation is a first order differential
relation: rather than telling where the state is allowed to go, we specify in what
direction and with what velocity it can proceed.

DEFINITION 1.5 A continuous time evolution law is defined as a quadruple
X, =(T,W,X,0)

with T< R an interval, the time axis; in this paper, T = R; W the signal alphabet, X
the state space, a differentiable manifold; and d € TX x W the vector field relation
(TX denotes the tangent bundle of X).

For the purpose of the present paper it suffices to think of X as an open subset
of R" and identify TX with X x R".

Intuitively, ((x, v), w)ed means that when the system is in state x, it will be
able to evolve with velocity v while producing the external signal value w. Define
the behaviour induced by 0 as B,:= {(w, x):R - W x X|x is absolutely continuous
and ((x(t), %(t)), w(t))ed for all teR where %(t) exists}. Informally hence we can
think of the behaviour of a discrete time evolution law as being defined as the
solution set of a difference equation which is first order in x and zeroth order
in wif (x(t), w(t), x(t + 1) = 0(0:=f ~')) while a continuous time evolution law can
be thought of as being described by a differential equation which is first order in x
and zeroth order in w:f(x(t), £(t), w(t)) = 0(0:=f ~'(0)). An example of a class of
dynamical systems described by an evolution law are the systems governed by
what are called differential inclusions: X €f o(x); w = ho(x)(or wehox)), where f(and
h) is a point to set map.

It is easily verified that B, satisfies the axiom of state. As in discrete time
all this eventually leads to:

0=>8B,-8 and I,=>X,=X

The convenience of specifying a behaviour by means of an evolution law may
be explained as follows. If we define a system in terms of its behaviour then
we basically give only a rule, a specification, a law, through which we can verify
whether or not a particular time trajectory in W is or is not compatible with
the system. An evolution law ¢ on the other hand, gives us a grammar, a
procedure, an algorithm by means of which elements of B can be generated.
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Thus whether or not a pair (w, x) is compatible with the behaviour can be checked
completely by means of the values at adjacent points, that is in terms of the
local behaviour (with local to be understood as local in time—however, similar
ideas are being pursued when also spatial variables are involved).

1.5.5 The evolution law induced by a state space system

The question which we will now discuss is a simple one: how to construct the
evolution law which simulates a state space system. We will consider primarily
the discrete time case.

Let X, =(Z, W, X,B,) be a (time invariant) discrete time state space system.
Define the evolution law induced by X, as Z,:=(Z, W, X, 0) with

0:={(xg, W, x1)eX x W x X|3I(w, x)eB,
such that x(0) = x,, x(1) = x,, and w(0) = w}.

Of course, as we have seen in section 1.5.1 ¢ will induce a state space system.
Denote the behaviour of this state space system by B,. Clearly 8,<B,. An
example of a situation where strict inequality holds is /,(Z; RY) [more precisely,
the state space system (Z, R%, 0, /,(Z; R%)].In this case B, equals all of (R%)* which
includes [,(Z; R?) as a strict subset. The question thus arises: when is B, = B,?

Let £ =(T, W,B) be a dynamical system. The completion of its behaviour is
defined by

sgeompletion._ {W T- W'wh'o n]e%h‘o £ for all — o0 < <t < W}

It is easily seen that BeomPlietion jg the smallest subset of W' which is complete
and contains B. It is clear that Beomp'etion wil] be time invariant and/or linear
if B is. We can now state and prove the following result.

THEOREM 1.1 Let XZ,=(Z,W,X,B,) be a state space system and B,
the behaviour of the evolution law induced by it. Then B, = BmPletion Hopce
{B,=B,}<>{Z, is complete}. In other words, a state behaviour is faithfully
represented by an evolution law if and only if it is complete.

Proof Since B, is Markovian, B{™Pl¢ti*® has memory span 1. By the results
of section 1.4.1, Bempletion can be described by behavioural equations with first
order lag. Let f(x(z), w(t), x(t +1), w(t+1))=0, with f~1(0)= BP0y =
B,li0.1» be this equation. However, it follows from the axiom of state that
{(x(t),m(t), x(t+1))ed and (x(t+1), w(t+1), x(t+2))ed}={((m1),x(t)),
(w(z + 1), x(t + 1))eB,];0,1;}-
Hence 0 = {xo, wg, x;|3w; such that f(x,, wg, x,, w,) = 0}. The result follows.
[ ]

Let X, = (R, W, X, B,) be a (time invariant) continuous time dynamical system
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in state space form with X a differentiable manifold, having the property that
{(w, x)eB,} = {x is absolutely continuous}. Define the evolution law induced by
2, as d:={((x,v),w)eTX x W|3(w,x)eB, such that (x(0),%(0))=(x,v) and
w(0) = w}. With B, defined analogously as in the discrete time case, there still
holds B, c Beemp'etion = B However, in order to achieve equality of the later
two, other conditions in addition to completeness must be satisfied. These issues,
related to smoothness, will not be pursued here.

1.5.3 The evolution law of a deterministic system

One more definition: We will call the state space system X, = (T, W, X, B,)(state)
deterministic if {(w,,x;), (w5, x,)eB,, x,(0)=x50), teT, and w|p,=
W, lio.n} = {x1(t) = x,(t)}. In order words determinism means that state trajec-
tories can only bifurcate as a consequence of a bifurcation of the external
trajectory.

Observe that if a system described by a discrete time evolution law is
deterministic, then d equals the graph of a partial map y: X x W — X, signifying
that {(a,w,b)ed}<>{(a,w)eDo(y) and b=y(a,w)}. Now introduce two maps
f:X x W-X and c:X x W—R such that ¢(x,w) =0 defines the domain of y
and f corresponds to the action of y on its domain. This shows that a discrete
time evolution law of a deterministic state space system is described by a next
state map f:X x W— X and a constraint equation c:X x W — R such that its
behaviour will be specified by

ox=fo(x,w); co(x,w)=0.
In continuous time systems this will lead to the equations
X=fo(x,w); co(x,w)=0.
These expressions yield a convenient way of thinking about state space
systems. They represent deterministic complete state systems. The first equation
tells us how a realization of the external signal variables will cause the state to

evolve, while the second equation tells us which external signal variables w can
actually occur when the system is in state x.

1.54 Flows

Examples of dynamical systems described by an evolution law are the ‘classical’
dynamical systems in which the state evolves in an autonomous way. A discrete
time flow (X.f) is defined by a state space X and a next state map f: X - X. A
continuous time flow (X, f) is defined by a state space X, a differentiable manifold,
and a vector-field f:X —» TX on it. Flows define special cases of evolution laws
with W = X and

0= {(xg,w,X1)lw=x¢ and x, =f(x,)} (discrete time)
behavioural equation: x = f °(x)
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and
0 ={((x,v),w)|lw=x and (x,v) =f(x)}  (continuous time)
behavioural equation: £ =fo(x)

where we have identified, somewhat artificially, the external signal with the state.
We also need to assume that for any initial condition, the differential equation
% =f°(x); x(0) = x,, has a unique solution. Flows clearly define autonomous
systems (viewed as a property of the behaviour B;). In fact, they are Markovian
and hence state space systems.

It follows immediately from the first proposition in section 1.4.5 that an
autonomous state space system is always deterministic. Its evolution law is
expressed by

ox=fo(x);, w=ro(x) (discrete time)
x=fo(x); w=ro(x) {continuous time)

We can hence think of an evolution law for an autonomous state space system
as a flow together with a read-out map r: X — W (an ‘observed flow’, if you like).

Flows on manifolds have often been proposed as the basis for dynamical
models in physics. Indeed, Hamiltonian mechanics and the Schrodinger equation
of quantum mechanics define, as we shall see, flows on manifolds (often with,
implicitly, a non-trivial read-out map). This may make it seem appealing to try
to develop flows as a basis for dynamics, at least for mechanics. This is, in fact,
what has been done. However, in our opinion, this point of view suffers from
two serious drawbacks.

First, because they define autonomous systems, flows consider the system in
isolation from its environment. Not only is this very limiting as far as applications
are concerned since often it is precisely the action and reaction of systems with
their environment which is of central importance. In control theory and
computer science, this is evident. However, also in physics there are many
situations of this nature. Moreover, this assumption of isolating a system from
its environment implicitly forces us to make a model of the reaction of the
environment on the system, and so, whenever we model a system as a flow, we find
ourselves forced in the unwanted and undesirable situation of having to also
model the environment!

Second, models which start with flows on manifolds consider the state space
as given, whereas we consider the external behaviour as essential and the state
as a convenient mathematical object which is to be constructed on the basis of
the dynamical equations which describe the external behaviour. The state of a
system is not a phyical property of a real life system, it is a property of a
model. Modelling slightly more accurately can and will have dramatic effects
on the nature of the state space. If one models the planets in the solar system
as point masses then one obtains a 22-dimensional state space. If on the other
hand one considers one of the planets as a slightly elastic sphere, then the state
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space will already become infinite-dimensional. The logic of modelling by means
of flows on manifolds reads: first construct the state space X, then construct the
dynamical equations, the vector field f. However, since it is the dynamical
equations which should tell us what the state space X is, this logic is circular.
The logic of modelling by means of the behaviour as in Definition 1.1 reads:
first select what you want to model: choose W, then construct B, then, if required
or desired, construct X.

1.6 More examples

1.6.1 A word example

Let us illustrate the discussion about isolating a system from its environment by means
of a verbal Gedankenbeispiel illustrating what we mean by a ‘system’ by its ‘environment’.

We will consider the flight of a bird. If we consider the position of the bird as the
primary variable of interest then, in order to describe the evolution of this position, we
will have to introduce (at least) the motion of its wings and the conditions of the
atmosphere around the bird (for example the wind speed and direction) as additional
variables. The resulting compatibility relation among these variables will describe the
flight of the bird. As a model, this is an appropriate point to stop. It explains the position
of the bird within its environment consisting of the motion of its wings and the wind
characteristics. This model obviously involves unexplained variables: the motion of the
wings and the wind characteristics.

In a more ambitious modelling effort, however, we may want to include a model for
the atmospheric conditions (for example by assuming that the wind speed and direction
are constant or a given function of the height). This will lead to a compatibility relation
involving as variables the position of the bird and motion of its wings. As a model for
the flight of the bird this is, again, an appropriate point to stop. It explains the relation
between the position of the bird and its environment consisting of the movement of its
wings.

We can be even more ambitious modellers and try to explain also the motion of the
wings. At this point no physical theory will tell us how to proceed: invariably this step
will bring us outside the descriptive realm of physics into the prescriptive sciences
sometimes called ‘Cybernetics’ or the ‘Sciences of the Artificial’. Indeed, somehow we
will have to explain why the bird moves its wings the way it does. One could do this
by postulating a periodic motion for the wings. Undoubtedly, much will be learned by
studying the resulting system of equations under this assumption, however naive. A
more sophisticated approach would be to deduce the movement of the wings by making
the bird into a purposeful system: say, if the bird is a predator, reaching its prey, a rodent,
in minimum time. The resulting model will be a compatibility relation connecting the
position of the bird with that of the rodent. This is, once more, an appropriate point
to stop. It explains the position of the bird in its environment consisting of the position
of the rodent.

Let us play this game one more set. One may also want to model the position of the
rodent. This problem is similar to that of the bird. Its position will be a function of the
motion of its legs and of the terrain. We could model the terrain and we could also
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make the rodent into a purposeful system: say that the motion of its legs can be explained
by the maximization of the distance from its predator, the bird. This will yield a model
for the position of the rodent against its environment consisting of the position of the
bird. In total we would now have obtained two behavioural compatibility relations
involving the positions of the bird and of the rodent. Together they are likely to give
us a closed system of equations which determine the position of the bird as a function
of the initial conditions.

What is the point of this example? Primarily we wanted to demonstrate what it means
‘isolating’ a system from its environment but considering it ‘in interaction’ with it.
Invariably this will involve leaving some variables unexplained: these will come from
the outside and are, in principle, arbitrary. Such unexplained time functions are an almost
unavoidable part of mathematical models of dynamical systems. Our example also shows
that rather simple situations, as the one described, will already involve an interconnection
of a number of physical and cybernetic subsystems.

This example involves a living system, but that is not important. Cars, bicycles,
windmills, economies are other examples which can reasonably only be described by
allowing unexplained external influences.

1.6.2 Kepler's laws

According to Kepler, the motion of planets in the solar system obey the following three
laws:

K.1: They move in elliptical orbits with the sun in one of the foci;

K.2: The radius vector from the sun to the planet sweeps out equal areas in equal times;

K.3: The square of the period of revolution is proportional to the third power of the
major axis of the ellipse.

This defines a dynamical system with (disregarding biblical considerations) T =R,
W = R?, and B the family of all orbits satisfying K.1, K.2 and K.3. This system is time
invariant, nonlinear, autonomous, and locally specified (the trajectories are analytic),
hence with local memory; it is not Markovian (consequently finding a convenient state
representation in principle presents a problem). This system is, moreover, time-reversible
and has the subgroup of #I(3) consisting of {Le%I(3)||det L| = 1} as a symmetry in the
sense of 1.2.3(ii).

1.6.3 Hamiltonian mechanics

We will not describe here the elegant and natural setting of Hamiltonian mechanics in
terms of symplectic geometry, but limit our attention to situations in which the
configuration space Q is an open subset of R™. According to the postulates of Hamiltonian
mechanics, the motion of a mechanical system may be described by a single function
H:P x Q- R, with P = R™, the momenta space. This function H is the Hamiltonian and
it determines the laws of motion via the canonical equations

0H
§=-.9) (H1)
p

oH
p=-7- @9 (H2)
q
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Assume existence and uniqueness of a solution of this set of differential equations for
any initial condition p(0) = poeR" and ¢(0) = g,€Q. The equations (H) obviously define
a flow on the manifold P x Q. Formally T = R(or R.)

( 0H 6H)
X=PxQ and f=|—-—-,—|

0q 0p

If, however, we view these equations as a convenient way of describing the evolution
of the position g, with the momentum p considered as an auxiliary variable, then we
arrive at a system with latent variables, with T =R, W = Q, 4= P, and B, = {(¢g, p)|(H) is
satisfied}. This system with auxiliary variables has (p, g) as its state. The external behaviour
is B = {g|3p such that (H) is satisfied }. This system is time invariant. It is time reversible if
H(p,q) = H(— p,q). It is likely that this system is autonomous (although we know of no
formal proof of this, unless H is a quadratic form, in which case the system is linear).

The above definition of B implies that we are primarily interested in the position q. If we
are also interested in the velocity then we can simply add the equation

v=q (H3)

yielding the external behaviour B = {(¢,v):R—Q x R"|3p:R - R" such that (H1), (H2)
and (H3) hold}. If H(p, q) = H( — p, g) then this system is dynamically time reversible in the
sense of section 1.2.3(iv) with J(g,v) = (g, —v).

1.6.4 Quantum mechanics

Quantum mechanics warns us not to speak lightly about the position of a particle as a
physical reality but instead to ponder about the ‘probability’ of finding a particle in a
certain region of space R. Thus we will obtain a dynamical system with time axis T = R
and signal alphabet P:= {p:R* - R|p = 0 and jns p(z)dz = 1}: this is the collection of all
probability measures (which for simplicity we have taken to be absolutely continuous
w.r.t. Lebesgue measure) on R>. In order to specify the behaviour it has proven to be
convenient to introduce the wave function y:R* — C as an latent variable. Thus define the
space of latent variables ¥:= % ,(R?; C). The internal behaviour B, = (P x ‘l‘)R is defined
by two relations. The first one determines p as a function of Y and the second one, the
Schridinger equation, tells us how ¢ evolves in time. Let ¥:R?* x R—C be the time
trajectory of the wave function. Hence ¥(z,, z,, z3; t) denotes the value of the wave function
at the position (z,,2,,z;)€R? at time teR. Similarly, let p:R*> x R— R, denote the time
trajectory of the probability density function. The wave function generates the probability
density by

. 2
Pz 22 255 ):= f |Wle 22,25 1) (QMI)

s [W(xy,25,23; t)|2dz,dz,dzs-
R

The evolution of the wave function is governed by Schrodinger’s equation:

. h oy
—i——=H(Y) (QM2)

2r Ot
where the Hamiltonian H is a linear, in general unbounded, operator on £,(R?; C), and
h is Planck’s constant. The Hamiltonian is specified by the potential and the geometry
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and should be considered as fixed for a given system. This yield the extended behaviour
B,:={(p, ¥):R> P x ¥|(QM) is satisfied}
which we view as a convenient way of specifying the external behaviour
B:{p:R— P|IY:R -V such that (QM) is satisfied}

Clearly this system (R, W,B) is time invariant and, most likely, it is also autonomous
(although we know of no formal proof of this). The system (R, P, ¥, B,) is an autonomous
state space system. If we restrict our attention to the wave function alone, ie., if we
consider the dynamical system (R, ¥, P,8B,), then we obtain a linear flow.

The point of view taken here, in which i is a latent variable aimed at modelling p,
is a very logical one indeed. The truly surprising fact however is that the (very nonlinear)
behaviour B can be represented by means of a linear flow (QM2), the Schrédinger
equation, together with the memoryless map, the static behavioural equation (QM1).
Note, however, that the point of view that y is introduced in order to model p, however
logical, does not do justice to the historical development in which ¢ had been studied
long before the probability interpretation of |i|? was suggested.

Note finally that our approach discusses probability in a purely deterministic
tone—stochastic generalizations of the concepts developed in this paper are another
story altogether.

1.6.5 Discrete event systems

Discrete event systems describe situations in which the occurrence of previous events
enables or blocks the occurrence of subsequent events. Think for instance of natural
languages, computer codes, manufacturing systems, committee meetings (even though
in first instance we think of discrete event systems as describing an orderly sequence of
events), etc. In our thinking, following Definition 1.1, we will speak of a discrete event
system simply as a dynamical system (T, W,B) with T=Z and W a finite set, and, if
the system is in state space form (or is defined in terms of latent variables), with X (or
the set of latent variables) finite. We now want to show how one can view the concept
of a formal language in this setting,

Consider a non-empty finite set A, called the alphabet, whose elements are called
symbols. A finite (possibly empty) string of symbols is called a word. Let A* be the set
of all words consisting of symbols from the alphabet A. Erudite individuals refer to A*
as the free monoid generated by A. A formal language, %, is simply a subset of A*. We
think of elements of & as legal words: those words compatible with the rules, the
grammar, the laws, governing the language. The above nomenclature is clearly borrowed
from natural languages. We could also call A the event set, elements of A elementary
events, elements of A* event strings (or traces), and think of % as the collection of all
feasible (finite) sequences of events; (4, %) is sometimes called a trace structure. A formal
language basically defines a dynamical system in the sense of Definition 1.1, with &
corresponding to the behaviour 8. However, in order to make this correspondence hard
we need to apply some minor cosmetics in order to make sure that all words are equally
long and that no new words are introduced in the process. In order to do this, add a
new symbol, the blank, [, to A, define W:= Au{[]} and

B:={w:Z->W|3t_,,t,€Z,t_, <t,,such that Wl €L
and wit)= fort<t_, and t > 1¢,}.
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Clearly (Z, W,B) defines a time invariant dynamical system in the sense of Definition
1.1, with B deduced from & in a simple one-to-one way. All we have done is add an
infinite number of blanks to the front and back of every word. This illustrates that our
notion of a discrete event system is a simple and natural generalization of the notion
of a formal language (for discrete event systems our definition adds the possibility of
infinite words).

Common procedures for generating formal languages are by means of grammars
(which vaguely corresponds to describing systems by means of latent variables) and by
automata which basically corresponds to our evolution laws). We will explain automata in
the next section. Note, however, that in discrete event systems one usually should interpret
the time index ¢ as logic time (meaning that it merely parametrizes the sequencing of the
events) in contrast to the usual interpretation in physics and economics where ¢t denotes
clock time.

1.6.6 Automata

We will now describe automata, discrete event systems in state space form. An automaton
is a quintuple (5,4, E,I,F) and § a finite set called the state space; A a finite set called
the alphabet, its elements are called symbols (or elementary external events); E the state
transition rule: E is a subset of S x A x S and its elements are called edges (or elementary
internal events); I =S is the set of initial states; F =S is the set of terminal states. A
SEQUENCE (S Bgs S15A1s- -« Sn— 15 O 1> Sn)s With (5, @y, 511 1)EE fori + lenis called a path;itis
called a successful path if in addition syel and s,eF.

Automata are usually represented by means of directed graphs with the states as
nodes, the edges as branches labelled with the corresponding symbol, initial states as
nodes with an arrow pointing towards it, and terminal states as nodes with an arrow
pointing away from it. This is illustrated by means of a binary adder in Fig. 8. This
automaton achieves the addition of two binary numbers: these are coded in the first two
symbols next to the arrows. The sum is coded in the last symbol. The state is the memory
acquired in the sequential addition.

However, in order to make this correspondence hard, add again the blank, [, to 4,
yielding W:= Au{[d}, add two states, a source state, O, and a sink state, =O, to S,
yielding X := SU{ O~, =0}, and define the evolution lawds X x W x X as §:= Eu{O~,
O, Iu{o~)}u{(Fu{-0}, O,~0}. Of course, our modification of the original
automaton is an automaton in its own right. For the binary adder, this modification is
shown in Fig. 9.

Now define the behaviour of the (modified) automaton as B, = {(w, x):Z » W x X|(x(t),
w(t), x(t + 1))€d for all teZ and 3t_,,t,, t_y <ty, such that x(t)= O~ for t<t_, and
x(t) = —O for t > t,}. It is easily seen that B, basically consists of the successful paths with

((1,0),1) ((1,0),0)

A {0,000 ()
w00 o~ {1 D w,nn
((0,00,1)

{to,1, 1) ((0,1),0)
Fig. 8
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((,0),1) ((1,0),0)

Fig. 9

an infinite string of (O—, []) pairs added to the front and an infinite string of (O3, -O) pairs
added to the back of every successful path. This shows that there is a one-to-one
correspondence between B, and the collection of successful paths. A word a,a, ---a, with
a;e A, ien, is said to be recognized by the automation if there exists a sequence s, s4,..., s,
with 5;€8,i=0, 1,...,n, such that (sq, g, 51, ay,..., 5,1, Gn— 1, S,) is a successful path. The
collection of all words recognized by an automaton is a formal language. Thus the
question arises of how to construct an automaton which recognizes a given language. This
problem is a version of the state space representation problem which will be discussed in
section 2. The difficulty in the context of formal languages is to clarify the conditions on
% < A* which guarantee that it has the internal structure allowing it to be represented by
means of a finite automaton (an automaton having only a finite number of states).

Formal languages and automata in their traditional setting are examples of non-
complete systems: the finiteness of the words in a formal language (equivalently, the
blanks at the beginning and at the end of every word of the modified language) and the
initial and terminal state constraints in automata (equivalently, the presence of the source
state and the sink state in the modified automaton) are typical conditions preventing
completeness. We will now make this precise.

Let (S, 4,E, I, F) be an automaton. We will say that all its states are artainable if for
all seS there exists a path, (5o, @g,S1,---3Sy—1> Gu—1, S,) With sgel and s, =s. We will
say that it contains no dead-end states if instead we can take so=s and s,eF. An
automaton in which all states are attainable and which contains no dead-end states is
state trim. We will call a path (s, 39, S1s---58,- 1, n-1,5,) @ cycle if s, =s,. It is easy
to see that if an automaton is trim then it is complete (i.e. B, = B:°™) if and only if it
contains no cycles. Another way of saying this is that a trim automaton is complete if
and only if the modified automaton contains no livelocks (a livelock is a cycle which
does not pass through a terminal state). This condition can be translated in terms of
the formal language recognized by the automaton. Indeed, a trim automaton will be
complete if and only if the language which it recognizes is finite (i.c., if and only if &
contains only a finite number of words). This shows that completeness of automata is
very exceptional and that the initial and terminal states are, as well as the evolution
law, essential for the description of the functioning of an automaton.

The set of complete discrete event systems becomes much larger if we do not insist
on having only words of finite length in . This classical restriction of finiteness of all
words is reasonable in many applications in computer science, but there are also many
situations of discrete event systems (as counters, traffic lights, and other discrete event



1. Models from first principles 199

systems in continuous operation) where incorporation of the finiteness of all words in
the model is all but natural.

1.6.7 Recapitulation

In this section we have introduced the model classes of the dynamical systems
which will be considered in this paper. The basic object of the study is the
behaviour of a dynamical system. This is a succinct way of formalizing a model,
of formulating the laws which govern a system, of specifying which trajectories
can and cannot occur. However, models which we write down from first
principles will invariably involve latent variables. Such variables are also
important in theoretical considerations. A prime example are state space systems
in which the latent variable, the state, splits the past and future behaviour of
the signal and the state jointly. This property is called the axiom of state. State
models are often specified in terms of an evolution law, in which the dynamical
laws governing a system are purely local in time. In discrete time, evolution
laws take the form of difference equations which are first order in the state and
zeroth order in the signal variable, and in continuous time, evolution laws take
the form of differential equations which similarly are first order in the state and
zeroth order in the signal variable. The relation between these different
specifications of dynamical systems is schematically shown below:

Evolution law = State models = Splitting variables = Latent variables
= External behaviour

In section 2 we will study the reversion of some of these arrows.

1.6.8 Sources

Definitions 1.1, 1.2, 1.3 and 1.4 form a plateau in a struggle to make suitable, general
definitions for dynamical systems. The attempts coming from physics/mechanics/dif-
ferential equations [1], [2] usually arrive at a version of flows on manifold discussed
in section 1.5.4. The fact that such models ignore the interaction of a system with its
environment severely limits their scope and applicability—even in mechanics. The
attempts coming from control theory [3], [4], [5] invariably arrive at input/output
maps or input/output relations. The input/output structure implies more structure than
is, or needs to be, present in many dynamical systems. There also have been attempts
coming from General Systems Theory [6], [7] and very sophisticated dynamical
structures (formal languages, automata, etc.) have been studied in computer science [8].
The notion of state is basic in physics and is (almost trivially) incorporated in the
definition of a flow. The study of the state together with the interactions with the
environment is, in an input/output setting, one of the main contributions of modern
control theory as express\ed for example in the work of Kalman [9], Bellman [10],
and Pontryagin [11]. The basic framework presented in this section (in particular
Definitions 1.1 and 1.3) were first proposed in [12] and further developed in [13], [14].
The explicit introduction of latent variables in Definition 1.2 is an important refinement
of our earlier work. Latent variables also appear, in a disguised form, in the work of
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Rosenbrock [15] and are also used in computer science and mathematical linguistics
in the context of production rules and grammars.

2 MODELS FROM OTHER MODELS—EXTRACTING THE
MEMORY STRUCTURE OF A DYNAMICAL SYSTEM

In this section we will discuss methods for writing models for dynamical systems,
which are given in terms of their behaviour, in state space form. This problem,
called the realization problem, is conceptually one of the richest and one of the
most researched problems in the mathematical system theory literature. The
theory developed in this section is purely set theoretic in nature. In the fourth
section we will discuss systems with more structure.

2.1 Observability

2.1.1 Observability

We will first introduce another important concept: that of observability. In the
classical theory, observability is a property of a state space system. For us, it
will be a property of the external behaviour. We will consider systems
Z = (T, W,®B) defined on a product set W = W, x W,. Asusual P,,: W, x W, >
Wy, and P, :W, x W, — W, will denote the projections P, (w,,w,):=w; and
P,,(wy,w,):=w,. As before, we will assume that P, and P,, are also defined
on (W, x W,)". For simplicity we will use the notation 8, := P,, B and B, :P,,.B.
Of eourse, B < B, x B, and the fact that B is a strict subset of B, x B, specifies
the connection which the laws of the dynamical system impose on the signals
w, and w,. Also, note that when we consider a system with auxiliary variables
Z,=(T,W,A,B)(or a state system) we can view it as the system (T, W x 4,
B,) defined on the product set W x A. We will frequently use this implicitly,
for example when discussing observability of a state system. Let =
(T, Wy x W,,B) be a (time invariant) dynamical system. Hence each element of
B consists of a pair of time functions (w,, w,), with w :T—> W, and w,:T> W,.
We will call w, observable from w, if there exists a map F:B, —» B, such that
{(wy, w,)eB}<>{w, = Fw,}.If, moreover, this map F is non-anticipating then we
will call w, observable from the past of w,. If F is strictly non-anticipating then we
will call w, observable from the strict past of w,. If, finally, F is purely anticipating
(that is, if {w}, w]€B,, w(t') = wi(t') for ' > t} = {(Fw})(t) = (Fw})(¢') for t' > t})
then will call w, observable from the future of w,.

We prefer to use a slightly different nomenclature when applying these
observability concepts to state space systems I, = (T, W, X, B,)(viewed as the
system (T, W x X,B,), with w playing the role of the observed variable: w, in
the above definitions, and with x playing the role of the deduced variable: w,
in the above definitions). Thus, if there exists a map F from 8:=P,B, to X
such that {(w, x)eB,} = {x(0) = Fw}, then we will call the state externally induced.
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Further, if there exists a map F~ from B :=(P,B,)” to X such that
{(w, x)eB,} = {x(0) = F~w}, then we will call the state past induced. If, instead,
there exists a map F* from 8°*:= (P, B,)°* to X such that {(w, x)eB,} = {x(0)
= F*w®*}, then we will call the state future induced. Note that if the state is past
induced, then the state system is deterministic. The concept of observability asit is
classically used in the control theory literature corresponds roughly speaking to
what we call a state space system with an externally induced state.

2.2 Construction of state representations

2.2.1. The trivial realization

We will now start studying the problem of constructing a state representation
for a given system. We begin by formally defining the problem once more.
Assume that T = (T, W,B) is a dynamical system (time invariant, of course,
with T = R or Z). The problem is to find a state space system X, =(T, W, X,B,)
such that its external behaviour, defined as {w|3x such that (w, x)e B}, equals B.
If this is the case, then we will call Z, a state representation or a state realization—
we will use both terms as synonymous—of X or 8.

The basic question, as we shall see, is the invention, the discovery, the
construction, on the basis of B, of the state space X. However, as it now stands,
the realization problem is trivial to solve. Simply take X =% and define
B,:{(w,x):T > W x X|weB and x(t) = ¢'w}. Clearly this defines a time invariant
state representation of B. We will call it the trivial realization. This realization is
very inefficient. For example, the state space X will be finite or finite-dimensional
only in very exceptional circumstances and the trivial realization does not unfold
the fine structure in the dynamics of 8. Indeed, in trying to split the past from
the future in the state behaviour, we have decided in the trivial realization to
store the whole trajectory w in the state. That is certainly enough, but it could
hardly be less efficient. It is really only for autonomous systems that the trivial
realization is an efficient one. Note that there is also a trivial past-induced (take
X =B") and a trivial future-induced realization (take X = B*9).

2.2.2 The past-induced canonical realization

We will now introduce three equivalence relations on B and show how these
yield more efficient state representations. The first of these equivalence relations
declares two elements of B equivalent if, at time 0, they admit the same future
continuations in B. It should be intuitively obvious that this captures very
effectively the idea that two such trajectories bring the system in the same state
at time 0: two copies of the same system are declared to be in the same state
if we cannot think up any experiment which will give a different behaviour, a
different future observation, in the first system versus the second. Thus we will
call w,, w,€B past equivalent, denoted by =, if {w, AweB}<{w,AweB}. It
0 0

is clear that this defines an equivalence relation on 8. Let X~ := B(mod ~) and
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define B = (W x X )" by {(w, x)eB] }:<>{weB and x() = (¢'w)(mod =) for all
teT}.

PROPOSITION 2.1 27 :=(T, W, X~,B) defines a state representation of X =
(T, W,B). It is called the past-induced canonical state representation.

Proof The external behaviour of X (with X* viewed as a set of auxiliary
variables) is clearly 8. It remains to prove that X satisfies the axiom of state.
Assume therefore that (w,, x,), (w,, x,)€B;" have x,(0) = x,(0), or, equivalently,
that w, ~w,. In order to prove the axiom of state we need to show that
(Wi, x)Ag-(wy, x2)€B, in other words, that

o'w, fort<0

f(w, Aw,) ~ .
a(wlo‘WZ) {a‘wzfort>0

Clearly {w, ~w,}={w A,-w,eB}, and the claim about the equivalence is
trivial for t <0. We also have that {w, ~w,}={c'(w, Ay- w) > o'(w, A,- w) for
all w and ¢>0}. Indeed, if w,~w, then {w Ay;-wA,-weB}«
{w,Aq_wA,_weB}. Applying this with w=w, yields the equlvalence for
t>0. N

2.2.3 The future-induced canonical realization

It may at first sight come as somewhat of a surprise that the backward version
of the above construction yields a second equivalence relation which is in general
different from the first one, but which will provide us with another state
representation (forward in time).

We will call w,,w,eB future equivalent, denoted by <+, if
{whAy-w, B} {wA,- wze%} It is clear that this again defines an equlvalcnce
relation on B. Let X*:=B(modt) and define Bic (W x X)T by
{(w,x)eB}}<>{weB and x(t)=(c'w)(mod ) for all teT}. We have the

following result:

PROPOSITION 2.2 I}:=(T, W, X?, B2) defines a state representation of T =
(T, W,B). 1t is called the future induced canonical state representation.

Proof The proof of this proposition is fully analogous to that of Proposition 2.1
with the exception that the demonstration of the relevant equivalence is now
trivial for ¢>0 and requires proof for t<0. Observe that {w,
Twyl={d'(wA,-w,) L o'(wAy-w,) for all w and ¢ < 0}. Indeed, if w, T w,, then
{WA-wA;-w eB}es{WA,-wAy-w,€B}. Now apply this with w=w,. B

The intuitive interpretation of the future induced canonical state representa-
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tion is as follows. Two identical copies of a system which each produce a future
trajectory are declared to be in the same state if they admit identical past
histories compatible with these future observations.

224 The two-sided canonical realization

We will have occasion to use the following two-sided equivalence on B, which
is the refinement of the partition of B induced by the past and the future induced
equivalences. We will call w,, w, two-sided equivalent, denoted by X, if w, ~w,
and w,tw, in other words, if {w,A,-weB}<{w,A,-weB} and
{wAo-w eB<>{wA,-w,eB}. It is clear that this once again defines an equival-
ence relation on B. Let X*:=B(modt) and define B =(W x X*)' by
{(w, x)e%%}:a{we% and x(t)=(c'w)(mod L) for all teT}. We have the
following result:

PROPOSITION 2.3 2;5 =(T,W, X §,£B§) defines a state representation of £ =
(T, W,®). It is called the two-sided canonical state representation.

Proof The proof of the proposition is a straightforward combination of the
proof of Propositions 2.1 and 2.2. In order to show the axiom of state we need to
show that w, L w, implies (i) w, A,-w,€%B; and

o'w, for t<0

.e t +
(i) g (wléw” = {o"w2 for t>0

(i) is obvious. In order to prove (ii) and (iii), observe that {w; L w,}={w; > w,}
which implies, by Proposition 2.1, a'(w, Ay-w,) ~ o'w, for t <0and 6'(w, Ay-w,)
~ ¢'w, for t > 0. Repeating this for t using Proposition 2.2, and combining both
conclusions, yields the result. W

The above propositions yield three state constructions. The first one is based
on the specification by which the past trajectory determines the future behaviour,
the second is based on the specification by which a future trajectory allows to
deduce the past behaviour, while the third is the combination of both.

As we shall see in the sequel important implications can be drawn from the fact
the equivalence relations ~ and * are equal. This is the case for autonomous
systems and, more surprisingly, for linear systems.

PropPosSITION 2.4 Let = =(T, W, B) be a dynamical system. Then, if Z either is
autonomous or linear, there holds: {w, ~w,}<>{w; Tw,}<{w; tw,}.

Proof (i) If £ is autonomous, then {w, ~ w,}<>{w* =wi* }<{w, T w,} and
the result is obvious.
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(i) If X is linear, observe first that {w, ~w,}<>{(w; —w,)A,-0eB} and
{w, Twy}<>{0A,-(w, —w;)eB}. Hence {w, >w,}<{(w, —w;)A;-0eB}<
{0Ap-(wy —wy)eB}<={w, tw,}. B

2.2.5 An example

We will now illustrate the above by means of a very simple example: a pure delay. Consider
the system Z = (Z, R?, B) with B = {(w,, w,):Z - R?|w,(t) = w,(t — A), teZ}. Here AeZ ,
is a fixed number, the length of the delay.

Let us compute the equivalence relation ~ for this example. The equivalence of w' and
w" requires that the last A values of w) and wf are equal. Hence {w' ~ w"} <> {w'(f) = wi(t)
for —A<t<0}. Define x ()=col[w(t—1),w,(t —2),...,w(t — A)] =:col [x](t),
x5(2),...,x5(t)]. The past induced canonical realization becomes X, = (Z, R?, R4 B7)
with B ={(w,x*):Z—> R? x R%|w, = ox|,w, =x;, and Ecx™ = Fx~}, where

01 0 -0 10 -«- 00
001 .- 0

E= . . . . |and F:= 0 1 O 0
o000 ... 1 00 - 10

Now compute . By considering the defining equation backwards in time, w,(f) =
w,(t + A), we arrive at the equivalence {w't w”}<{wy(t)=wj(t) for 0<t<A-1}.
Take hence x*(t) = col [w,(t), w,(t + 1),..., w,(t + A — 1)] =:col ;ﬁ(z), 3@),..., x}(t)].
The future canonical realization becomes Z’.,t =(Z,R? R4, BS) with 58}' ={w,x~):
Z-R2xRYw, =ox¥,w,=x7,and Ex* =F oxt }- The bilateral equivalence will lead
to
xz(t) =col[w,(t —1),...,w, (t — A), w,(t),...,w(t + A™ )]
+
=col[xF(#), x5 (1), xF4(0)]

- . £ t , . +
By constraining this vector by x5_,,, = x5, fori=1,2,...,A, we can consider x= as an
element of R2. Now, the defining relation w,(t) = w,(t — A) shows that x™ = x¥=x*and
the three equivalence relations, and hence the canonical realizations, will basically all be
identical for this example (more precisely, the realizations are equivalent in the sense this
will be defined in section 2.3.1). In fact, the state trajectories of these various realizations
are related by x% = Px* and x* = col [xi, Pxi]= col[th, xt], with

00 -~ 01
00 - 10
P={ . ..
1t 0 ... 00

2.3 More on the structure of state systems

2.3.1 A partial order on and equivalence of realizations

The above constructions have given us three trivial realizations and three
canonical realizations. All these realizations are externally induced. From the
second proposition in section 2.2.4 it follows also that the restrictions imposed on
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B by the requirement that the equivalence relations ~ and 1 are equal is not as
restrictive as could have been suspected at first sight. We shall see that it is
precisely under this condition that efficient state representations are essentially
unique. The key words here are efficient and essentially. We now set out to
formalize this and introduce the required concepts.

We will address the question: When should one system be considered equivalent
to or more complex than another? Our basic idea is to measure the complexity
of a system by the ‘number’ of trajectories in its behaviour. We will see that
this will allow us to formalize the fact that the canonical realizations cannot be
simplified and, in particular, that they are simpler than the trivial realizations.

Let us consider two dynamical systems X, =(T,W,A4;,8B,) and Z,=
(T, W, A,,B,) with the same time set and external signal space but with possibly
a different set of latent variables. We will call X, and X, externally equi-
valent if P,B,=P,B,, ie, if they model the same external behaviour.
However, if we want these systems to be essentially the same as models, it is
reasonable to demand also that the latent variables should be related. This
suggests calling £, and X, equivalent if there exists a bijection f:4, — 4, such
that {(w,a)eB,}<={(w.f-a) eSBZ}

Now let £ = (T, W,B) be a given dynamical system and denote by X, all its
state space representations. Thus, in the sense in which we have defined it above,
all elements of I, are externally equivalent. Specializing the notion of equivalence
to I, shows that two elements X; = (T, W, X, B)), i = 1,2, of I, are equivalent if
there exists a bijection f: X, — X2 such that {(w,xl)eﬁl}a{(w, foz,)eB,}. This
obviously induces an equivalence relation on E,. We will denote this equivalence
by =~. We will also introduce a pre-order on I, Let £, =(T,W, X", B and
X = (T W,X",B!) be elements of X, Then {Zy<Z}:«>{3 surjection
f:X X' such that {(w,x")eB;}={3(w,x)eB, such that x"=fox}} (in
other words if foB. 2B, where f:W x X > W x X" is defined byf(w x')=
(w.f (x'

These definitions may be interpreted as follows. If Z; > { then B} contains at
least as many trajectories as B,. It may contain more, for one thing, because P, B
may be a proper subset of f P, B, or, when f is not injective, because certain
trajectories in B, may be represented in B; more than once. Iffis a bijection then
it is logical to consider X as equivalent to Xy, since in that case their trajectories
are in one-to-one correspondence: their state spaces are merely labelled
differently.

This pre-order acquires more structure when we restrict attention to state trim
externally induced representations. Firstly, it becomes a partial order modulo
equivalence, and secondly, we can be a bit more specific about what the ordering
means in this case.

PROPOSITION 2.5 Let E:= {¥ eX,|Z, is state trim and x is externally induced
(see section 1.1.1. in Z,)}. Then
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(@) {Z, Z;eXd™, T/<I}e{3 a surjective map f:X'—X" such that
{(w,x)eB}={w, fox'eB;}}, ie., [ B, =B;
(i) {Zo ZjeX™, Z <E{<I}={Z, =X}
(iii) the trivial realization belongs to ™ and is > than every other element of
) M
(iv) if Z,eX3* and Z(eZ; satisfy X, < I, then T, must belong to X

Proof First observe that if £, =(T, W, X,B,)eX™, then there will exist a
surjective map ¢:B—X such that {(w,x)eB,}={x(0)=g(w)}, yielding
{(w,x)eB,} < {x(t) = g(c*w) for all te T}.

(i) Assume that Z{ = (T, W, X', B)), Z; = (T, W, X", B}) are elements of £* with
Xy <Z, Let f:X’'— X" be the map which expresses this ordering and g': 8 — X’
and g”":B — X" the maps defined in the preamble. Then the following diagram

X/

/
B s

XII
commutes. Let (w, x')eB;. Now consider (w, fox’). Then (w, f °x')eB, which
yields (i).
(ii) By (i) there exist maps /", f” such that the diagram
X/

b i
X

commutes. Hence fof =id_.. It follows that =X
(i) Take, in the commutative diagram in (i), g’ = idg and f = g".
(iv) Let Z,eX5™, XX, and X, =(T, W, X', B) < I, = (T, W, X, B,). Then there
exists a surjective map f:X — X’ such that (w, x')eB, implies that there exists
(w, x)eB, such that x’ = fox. Let g:B — X be the surjective map which expresses
the fact that X, is externally induced. Now verify that f og is the sujective map
which demonstrates that also Z; is trim and externally induced. W

The above proposition can be generalized in a straightforward manner to past
and future induced realizations.

24 Are all minimal realizations equivalent?

24.1 Minimal realizations and hidden variables

Of special interest will be the minimal state realizations, defined as those elements
L¥eX, for which {Z.eX, X <X}} implies {X, = X*}.
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Whether a given realization X, = (T, W, X,B) is or is not minimal may be
difficult to check. As we shall see in the proposition which follows, a realization
may not be minimal either because it is not trim or because it may contain
states which can be lumped. Lumping is defined as follows. Let £, = (T, W, X, B,)
be a state space system. Let X’ be a subset of X, consider X™*¢:= (X "yeomplement
{a}, and define the map I: X - X red specified by | x/)comptement = id and }(X') = .
We will say that the states in X’ can be lumped if (T, W, X™¢, Bred) still satisfies
the axiom of state, where B¢ =(8B,), and T(w, x):(w, Io(x)).

Examples of states which can be lumped are:

(i) Future-equivalent states in a past-induced realization; x,,x,€X are said to
be future equivalent if (B(x,))* = (B(x,))* where B(xo):= {w|Ix such that
(w, x)€B, and x(0) = x,}. Future equivalence defines an equivalence relation
on X. Actually if Z, is a past induced state trim realization, then states can be
lumped if and only if they are future equivalent.

(ii) Past-equivalent states (which are defined completely analogously) in a future
induced realization.

Let X, = (T, W, X, B,) be a state space system. Define the effective state space
as X*:= {xeX|3(w,x)eB, such that x(0) = x} and the trimmed realization as
TUim.— (T, W, X*, B,). Obviously Z, is state trim iff X = X** or, equivalently, iff
T, = ZVim We have the following characterization of externally induced minimal
realizations.

PROPOSITION 2.6 Assume that £, = (T, W, X, B,) is an externally induced state
space representation of £ = (T, W, B). Then it is a minimal representation if and
only if Z, is state trim and the only non-empty sets of states which can be lumped
are singletons.

Proof Consider ZV™ = (T, W, X, 8B,). Clearly Z{"™ < X,. Observe, using Pro-
position 2.5 that T, < Z"™ implies X = X*’. Next, assume that X’ < X is a set of
states which can be lumped. Consider 2 = (T, W, X™*¢, 8"*¢) with X**¢ and B"*
defined as in the definition of lumping. Clearly Zi*® < X Observe that X, < Xf*
implies, using Proposition 2.5, that X" is a singleton.

To prove the converse, assume that X, is not minimal and that X =
(T, W, X', B,) <X, By Proposition 2.5, Z; must be trim and externally induced
and there will exist a surjective map f: X — X' such thatf o8, = B’. Now observe
that, since in X only singletons can be lumped, f must be injective. This allows the
conclusion X;~X. W

The state dynamics inside a set of states which can be lumped adds superfluous
detail which is obviously not required in order to express and represent the
external behaviour. Also, the existence of states outside X°f can never be
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demonstrated by examining the external behaviour. Motivated by these con-
siderations we will informally identify the non-minimality of a representation
with the existence of what we will call hidden (state) variables.

242 Two minimal state representations

We have already met two minimal externally induced realizations:

THEOREM 2.1 The canonical past-induced and the canonical future-induced
realization are both minimal.

Proof Since Z; is externally induced, it follows from Proposition 8 that it
suffices to prove that T is state trim (which is obvious) and that the only
non-empty sets which can be lumped are singletons. This however is a
construction, X;° is past induced and contains no future equivalent states. The
future-induced canonical realization is treated analogously. W

2.4.3 Equivalence of all minimal state representations

We will now examine the question of when all minimal state representations
are equivalent. As we shall see this is mot always the case but it holds
under the necessary and sufficient condition that the past-induced and the
Suture-induced canonical realizations are identical. This very clean and general
result implies for example that for autonomous systems and for linear systems ali
minimal state representations are indeed equivalent.

THEOREM 2.2 Let Z =(T, W, B) be a (time invariant) dynamical system and let ~
and % denote the past, respectively future, induced equivalence on B, as introduced
in sections 2.2.2 and 2.2.3. Then the following conditions are equivalent:

(i) {wyx=wy}<s{w; T w,}
(i) {Z, Z;eX,, X, and X both minimal} = {Z; ~ X}

In other words, all minimal realizations are equivalent if and only if
B(mod ~) = B(mod ).

Proof (ii)=>(i): By Theorem 2.1, £ and I are both minimal. If they are
equivalent then there exists a bijection f:X~—X?* such that wimod t)=
fe(wimod ~)). This implies that {w;, ~w,}<>{w, T w,}.

(i)=>(ii): Let X, = (T, W, X, B,) be a state representation of T = (T, W, B). We
will prove that {Z, minimal} = {Z, x £ = ZIN. Define B(x):= {weB|3x such
that (w,x)eB, and x(0)=x}. Then, by the state axiom, B(x)=
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(B(x))” Ap-(B(x))°* and, of course, we also have B =), xB(x). Now
consider the analogous decomposition of B as it is induced by the representation
> =X Denoting its state space by A yields B = {JaeaBla) with B(a)=
(B(a))~ Ay-(B(a))®*. The fact that we are actually considering a representation
which is at the same time the canonical past-induced and the canonical future-
induced realization allows us to conclude that {a, #a,}={(B(a,)) N
(B(a,))” = & and (B(a,))°* " (B(a,))°* = &}. Furthermore, B = J ., B(a) =
{U xex B(x). It is easy to see that this implies that for each xe X*f there exists a
(unique) ae A such that B(x) = B~ (x)~ A,-(B(x))° " = B~ (a) = B(a). This shows
that there exists a decomposition of X°ff, the effective state space of X, into
disjoint subsets X, ac 4, such that { .y, B(x) = B(a). Now define f: X — 4 such
that f(X,)=a and verify that {(w,x)eB,}={(w, f°x)eB; }. This shows that
X <X, and implies, using the definition of minimality, that all minimal state
representations are equivalent to L7 =XX. B

There are a large number of alternative equivalent ways of stating our
necessary and sufficient condition for all minimal state representations of a given
external behaviour to be equivalent. We now state some of them without further
comments.

The following conditions are equivalent:

(1) All minimal state representations are equivalent;
(2) Any one of the following three equalities is satisfied:

~ ~ >~

(3) The past-induced canonical realization is equivalent to the future-induced
canonical realization,

(4) There exists a state representation which is at the same time past and future
induced;

(5) If two pasts have one future in common, then they have all their futures in
common. More precisely, {w,A,-weB,w, A,-weB}={w, ~w,};

(6) Iftwo futures have one past in common, then they have all their pasts in common.
More precisely, {wA,-w,eB, wA,-w,eB}={w, t w,}.

~

Further, if any of the above conditions is satisfied then the unique minimal
state representation ™" = (T, W, X™" BMn)(xL>>3T}) is both past and
future induced and any other state representation X, =(T, W, X, B) satisfies
Imin< 3

In fact, there will exist a surjective map f: X — X™" with X*f the effective
state space of X,, such that foB, = B™(f:W x X' - W x X™") is as usual
define by f o (w, x) = (w, f © x). The map fcan be constructed as follows. Define, for
(w, x)eB,, f(x(0)): w(mod ~ ) = w(mod t ). Hence in this case the hidden variables
in the non-minimal state representation X, are precisely those in the complement
of X*f and in the equivalence classes X (mod ker f). The equivalence relation ker f
is defined by {x, kerfx,}:<{f(x,)=f(x,)}.
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As already mentioned, it is in general next to impossible to give conditions
for a given state system to be a minimal state representation of its own external
behaviour. However if this external behaviour satisfies any of the above
conditions, then a state representation is minimal if and only if it is (i) trim;
(i1) past induced and (iii) future induced. For linear systems, for instance, there
are effective tests to verify these conditions.

All this implies that the belief, often implicitly assumed, that the state of
dynamical system is a uniquely specified quantity, is not quite correct. For one
thing, we should be considering minimal state representations and consider the
state up to equivalence (up to relabelling of the state variables). More funda-
mentally, however, minimal state representations may be intrinsically incompar-
able (when ~ s 1). However, if ~ = % or, equivalently (see section 2.2.3), if
every past and every future experiment allows us to determine uniquely the present
state, then the state is indeed essentially uniquely defined (modulo hidden variables
and up to relabelling). From the results in section 1.1.5 we can conclude that all
minimal state representations are equivalent for autonomous (with X =~ B) and Jor
linear systems.

2.4.4 A4 smooth system with a non-unique minimal state

In order to dispel the thought that this lack of non-uniqueness of minimal state
representations is merely a matter of lack of smoothness, consider the system described
by the following behavioural equations:
X=fo(x,u); y=ro(x,u), w=(uyp)

Here W=UxY,U=R", Y=R?’, X=R", f:R"xR"-R" and r:R" x R™ - RP.
These equations define a continuous time evolution law yielding the state space
system Z,=(R,R™ x R?,R",B,) with B={((w,y),x)|x is absolutely continuous ()=
S(x(), a(t)) for almost all teR, and p(t) = A(x(2), u(t)) for all te R}. Assume further that B,
is a minimal state representation of its own external behaviour. Does it allow other non-
equivalent minimal state representations? Or will this be essentially the unique minimal
state representation if f and r are sufficiently smooth? In order to see that this is not
necessarily the unique minimal state representation, assume that r takes the form
Hx,u) = EfL  u;rix,u) with r;:R" x R™ — R. Then all pasts have the future: #(t) =0, W) =0
for t >0, in common. This shows that not all minimal state representations can be
equivalent for this simple and yet quite general smooth nonlinear differential system.

2.4.5 Past-induced minimal realizations

We can of course also ask the question whether all past-induced minimal state
representations are equivalent. Let X = (T, W, B) be a dynamical system and let
L2*! be its past-induced realizations, i.e., ZF*":= {Z eZ,|Z, is past induced}. We
state, without proof, the following result.
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THEOREM 2.3

i} The canonical past-induced realization £ €X2*' and is minimal,
p S s
ii) All minimal realizations in P*' are equivalent,
S
(iii) Z,eXP*" is minimal iff it is state trim and it contains no future equivalent states,
(iv) {Z,eTP} = {E7 < T, < TPt where Tuivial/past denotes the trivial past-
induced realization.

Of course, a similar result is valid for future-induced realizations. The above
theorem seems to make it appealing to concentrate on past-induced realizations.
This assumption, moreover, sounds logical in that it may appear natural to
consider the state as something which summarizes the past behaviour. However,
it may be difficult, next to impossible, to verify that the state is indeed past
induced even for very nice models (as for example the differential equation
model of section 2.4.4). Also, the property of being past induced may be lost
after interconnection of systems. As such, the assumption that the state is past
induced is not really a natural one to impose as an axiom on state space systems.
Note, however, that if the minimal state representation is essentially unique (see
Theorem 2.2) then minimal implies past induced.

2.4.6 Controllability

The condition B(mod ~ ) = B(mod 1) turns out to be a convenient assumption
enabling us to prove a number of important theoretical results. We will pursue
a few such items in the next three sections. We will first state a refinement of
the second proposition in section 1.4.5, pertaining to the equivalence of
controllability and point controllability of the induced state behaviour. We will
delete the proof. '

PROPOSITION 2.7 Let T = (T, W,B) satisfy B(mod =~ ) =B(mod t). Let Z,=
(T, W, X, B,) be a minimal state representation of £ and X, = (T, X, B,) be its
state behaviour. Then I is controllable if and only if Z, is point controllable.

2.4.7 Splitting variables

Now consider the following question. Let T == (T, W, B) be the external behaviour of the
system X, =(T,W,A,B,) with latent variables. Assume that a splits w that is, that
{(wy,a,)€B,, (w,,a,)€B,, 4,(0) = a,(0)} = {(w,, a)Ay-(w,,a;)eB,}. Now view B < w'
as a subset of the product space W'~ %"Tx W7 Define B(a):= {weB|3a such that
(w,a)eB, and a(0) = a}. The splitting property implies that B(a) = (B(a))” Ay-(B@)°,
hence B = | 14 B(@) = (Jaea(B(a))” Ay-(B(a))°*. We will call such a partition of B a
minimal splitting if the only non-empty sets A'< 4 such that . (B(a)~ Ap-(B(a))°* =
B~ A,- B+ for some B— =B~ and B* =B are singletons. Now assume that the
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splitting 8 = { ). ,B(a) is minimal in this sense. Will £, also satisfy the axiom of state? A
partial answer is given in the following proposition, which we will not prove.

PROPOSITION 2.8 (i) Let £, =(T, W, A, B) be a dynamical system with latent variables.
Assume that the latent variables a are induced by either the strict past or the future of w.
Then if the latent variables are minimal splitting, X, is a state space system.

(i) If Z = (T, W, B), the external dynamical system induced by X, has the property that
~ = 1, and hence if all its minimal state representations are equivalent, then all its
minimal splittings with latent variables define state space systems. Hence in this case
minimal splitting and minimal state are equivalent.

2.4.8 Evolution laws of minimal systems

In Theorem 1.1 we have seen that a complete state space system B, can be faithfully
represented by an evolution law. We have also seen that any system can be represented in
state space form. The question thus arises. Can a complete dynamical system be minimally
realized by means of an evolution law? The answer is in the affirmative.

THEOREM 2.4 Let . =(T,W,B) be a time invariant complete dynamical system. Then

(i) if Z,=(T,W,X,B,) is a state space representation of X, so is Xcomplete
- (T, W, X, B:omplete);
(i) if, in addition, ~ = L, then all minimal state space representations of T are complete.

Proof (i) First observe that if f: W, - W, is any map and if B, = WI is complete, then
(f =B, ycompletion o o @eompletion Next observe that if B, satisfies the axiom of state, so does
@omeletion, Putting these two things together shows that Z°™P'etion g a state space system
with external behaviour equal to B, = Beompietion,

(it) It suffices to prove that X = ZE, the canonical past-induced realization of Z, is
complete. Consider (B;7)ccmpietion, By (i), (B,)mPletion defines also a state space
representation of X. If B D(B,)o"Plion then there exist we®B, (w,x,)eB,
and (w,x,)e(B)omeletion  with  x,(0) #x,(0). Now observe that (B(w™))°*:=
{wO¥ |WAy-w°*eB) is equal to (B(x,(0))°*:={w’*|3(x,w)eB, such that
x0)=x,0)}. Also, (B(x;(0)))°* = {w°*|3(w,x)eBLmPeton such that x(0)=x,(0)},
is included in (B(w™1))°*. Consequently (B(x,(0)))°*:={w°*|3(x,w)eB, such that
x(0) = x,(0)} = (B(x(0))°* =(B(w™))°* = (B(x,(0))°". Hence (B(x,(0))°* =
(B(x,(0)))°*. Since the minimal state representation is both past and future induced, this
yields x,(0) = x,(0). B

It follows from Theorems 1.1 and 2.4(i) that a discrete time complete dynamical system
can be faithfully represented by means of an evolution law. Using Theorem 2.4, the fact that
the past-induced canonical realization is deterministic, and section 1.5.3, we conclude that
a discrete time complete dynamical system admits a minimal state representation of the
form

ox=fo(x,w); co(x,w)=0
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If, moreover, ~ = T, then all minimal state representations take this form, the only
freedom remaining being a bijection on the state space X with the resulting modification of
the maps fand c.

This shows that completeness, which from a systems point of view is a very reasonable
hypothesis, is the crucial assumption which allows a dynamical system to be described by a
set of first order difference equations.

2.4.9 Discrete event systems

Recall that we have called a time-invariant dynamical system (Z, W, B) a discrete event
system if W is a finite set, that is, if | W| < oo(|-| denotes the cardinality, that is | W] equals
the number of elements of W).

Let us consider a dynamical system £ =(Z, W, B) and assume that it has A-memory.
Then a (past-induced) realization can be constructed as follows. Take X = W2 and
B_:{(w, x)|weB, x{t) = W|;,_ .} This limits the cardinality of X~ (and similarly that of
X3)to the cardinality of WA, Hence if a discrete even system is governed by a behavioural
difference equation of lag L then it can be described by an evolution law with a finite state
space, with | X| <|W?4|. We will now examine the converse. We will meet the crucial
condition of essential uniqueness of the state space also here!

THEOREM 2.5 Let X =(Z, W, B) be a discrete event system. Assume that B is L-complete,
equivalently that B can be described by a difference equation of lag L. Then I can be realized
by a discrete time evolution law Z,= (T, W, X, B with| X| <| WZL|. Conversely, if £ can be
realized by a discrete time evolution law with | X| < oo and if T has an essentially unique
minimal state space realization (that is, if B(mod =~ ) = B(mod 1)), then B can be described
by a behavioural difference equation of lag L <|X|(|X]—1)/2.

Proof The first part of the theorem is clear from the preamble. To show the converse,
observe first that the minimal state space representation of X' will have a state space
containing at most | X | elements. Let us therefore assume that X, is minimal. Since ~ = +,
9 will also be state deterministic. We will show that there exists a AeZ, and a map
h:W3 5 X such that x(t)=h(w(t — 1),...,w(t — A)). Assume that (w',x’), (w",x")eB,
satisfy w(t)=w"(t) for 0<t<A. Consider the pairs (x'(), x"(t)eX? for 0<t<A
Assume that x'(A)#x"(A). Observe that, by determinism, {x'(A)# x"(A)}=
{x'(t) #x"(t) for 0<t<A}. It follows that if A>|X|(]X]—1)/2, there must exist
0<t,<t,<A such that (x'(t)),x"(t;))=(x'(t2), x"(t2)). This implies that the
periodic trajectory w(t,)w(t, + 1),...,w(t, — 1) with period (t, —1,) is compatible with
both the initial states x, and x’. However, since ~ = %, no two distinct initial states can
have a common future w-trajectory emanating from it. Hence if A > | X |(| X| — 1)/2, there
exists a map h: W3 - X such that {(w, x)eB,}<>{we®B and ¢*x = ho(c*~ Yw,...,ow,w)}.
Now, let f be a map with domain W* such that f~'(0) = Bljos S W*. Let B/ be the
behaviour induced by the difference equation f(w(t), w(t + 1),...,w(t + A))=0. Clearly
B = B’. To show the converse, assume that we B’ and define x:Z - X by x(t) = h(w(t
—1),...,w(t — A)). Now verify that (x(z), w(t), x(t + 1))eéforallteZ. Hence B = B/ which
proves the theorem. B
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Note the possibilities which the difference equation constructed in the above theorem
offers for error detection and correction. The discrete event system with three states shown
in Fig. 10 demonstrates that the condition ~ = t is not superfluous for the possibility
of describing a complete discrete event system by means of a difference equation.

The discrete event system of Fig. 10 does not have a unique minimal state represent-
ation. Note, however, that uniqueness of the minimal state representation is a sufficient but
not a necessary condition enabling one to describe a behaviour by means of a difference
equation. The nonequivalent discrete event system shown in Fig. 11 are both minimal state
representations of the same external behaviour but can, however, be described by a simple
difference equation.

2.4.10 Recapitulation

In section 1 we have seen that an evolution law induces a state space system
and that a state space system induces an external behaviour. In this section we
have studied the converse question. The results which we obtained may, in
principle, allow us to write a given external behaviour as an evolution law, i.e.,
as a first order difference or differential equation. This involves first, finding a
state space representation of a given behaviour and second, writing the state
behaviour as an evolution law.

The problem of finding a state space representation of a given external
behaviour is a very rich topic. There are two canonical representations which
can always be constructed: the past-induced canonical realization and the future-
induced canonical realization. Both, particularly the first, are based on an elegant
and natural conceptualization of what really constitutes the state of a dynamical
system. These realizations are minimal in the sense that they introduce no
hidden variables, states whose dynamics are not reflected in the external
behaviour. The question whether or not all minimal state representations are
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equivalent has, in general, a negative answer—even for very smooth systems.
As such the paradigm that barring irrelevancies (non-minimality—hidden variables)
and up to relabelling (equivalence), the state is uniquely defined is, in general,
not a valid one. It is, however, valid if the past- and the future-induced canonical
realizations coincide which is, in particular, true for autonomous and, more
surprisingly, for linear systems.

In this section we have studied these questions in a set theoretic context. As
such the development has acquired an unavoidable somewhat sterile flavour.
Through the specialization to linear systems in section 4 we will make these
representations more concrete and give this theory a more general appeal.

2.4.11 Sources

The state representation question as we defined it here was studied in [12] where the
necessary and sufficient condition for uniqueness of the minimal state representation
(Theorem 2.2) was first proven. Alternative versions and additional elements of this result
were obtained in [13]. The problem of state representation and its importance to
modelling were pioneered by Kalman [9],[16], particularly in the context of linear
systems.

3 MODELS FROM OTHER MODELS—EXTRACTING THE
CAUSE/EFFECT STRUCTURE OF A DYNAMICAL SYSTEM

In the approach which we have developed so far, all the components of the
external attributes have played completely symmetric roles. This point of view
is a logical one to start with: it allows us to accept any set of dynamical equations
at face value and view them as the behavioural equations defining a dynamical
system. However, in many situations some variables may cause other variables,
some variables may be free, unconstrained, and should therefore be considered
as unexplained by the model but imposed by the environment. We are, of course,
thinking of the cause/effect, input/output (i/o0) structure which may be present
in a dynamical system. In view of the crucial role which i/o structures play in
control and signal processing, such a refined classification of the external
attributes is long overdue in our exposition. We will correct this situation in
the present section. We will see in the next section that the input and output
nature of certain attributes need not be imposed but can be deduced from the
dynamical equations.

3.1 Inputs and outputs

In order to formalize input/output structures, we should give answers in our
framework to the following questions:
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(1) When is one set of variables implied by another?

(2) When is one set of variables not anticipated by another?
(3) When is a set of variables free?

(4) What do we mean by inputs and outputs?

In order to appreciate the definitions which follow, one should keep in mind
that trajectories in the behaviour of a dynamical system will in general be
generated on the one hand by an ‘input’ signal—free signals unexplained by
the model but imposed by the environment—and on the other hand by ‘initial
conditions—internal variables which have always been present, have been set
up when the model was created at ‘t = — c0’, and which are hence also not
explained by the model. Once the free input and the initial conditions are
specified (and assuming, of course, that we know the dynamical laws of the
system), we should be able to calculate the complete response of the dynamical
system.

3.1.1 Processing

Let T =(T, W, x W,, B) be a dynamical system. Recall that 8,:= P,, B and
B,:= P, B. When B is the graph of a map from B, to B,, then we called w,
observable from w,. In that case w, completely specifies w,. We are also interested
in the case when w, specifies w, up to the initial conditions only. We will say
that w, processes w, if {(w;, w5), (wy, w3)eB; (wh)™ =(w3) " }={wi,=w3}. In
other words, once w, is specified, the possible behaviour of w, is just like that of an
autonomous system in which the past (or equivalently the internal initial
conditions) completely specifies the future.

As an example, take the dynamical system described by a set-of difference
equations of the form

fiw e+ A),w t+A—1),...,w()=0
wy(t) = fo(wa(t — 1),...,wa(t — A), wy(t + A),...,wy(2),...,wy(t —A))

3.1.2 Non-anticipation

Consider X = (T, W, x W,, B). We will say that w, does not anticipate w (or that
w, is not anticipated by w,) if {(w}, w3)eB, wieB,, and w)(t)=wi(t) for
t <0} ={3w} such that (w}, wz)eSB and wi(t) = w)(t) for t <0}). In other words,
if giving the strict future of w, in addition to its present and past does not pro-
vide additional information about the possible pasts and presents of w,: it is the
past, not the future of w, which influences the past of w,. If {(w}, w5)eB, wieB,,
and w)()=wi(t) for t < 0}=>{£|w such that (w], w3)eB and wi(t) = wi(t) for
t <0}, then we will say that w, is strictly not anticipated by w,.

As an example, take the dynamical system described by a set of difference
equations (or an analogous set of differential equations) of the form:
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fiw t+A),wit+A—1),...,w ()=0
Wy (1) = fo(wy (t—1),...,wy (= A),
Was(t+ A, ..., wy(0),. .., was(t — A),
wi(t),...,w (t — Q)

LY
3.1.3 Free variables

Let £ =(T, W, x W,,B) be a dynamical system. We will say that the variables
w, are free if £, = (T, W,, P,,B) is trim, memoryless, and complete. If T =Z
then this means that P, B = (W,)’, illustrating very well what the notion of
‘being free’ expresses. We will call w, locally free if Z, is trim and memoryless.
Note that a locally free signal can be constrained at ‘¢ = — o0’ or ‘t= + 0.
We will take locally free as an essential restriction on inputs.

3.1.4 Input/output systems

Our series of definitions culminates in the notion of input and output:

DEFINITION 3.1  An input/output (i/0) dynamical system is defined as a quadruple
Z,,=(T,UY,98)

with T < R the time axis (in this paper T = R or Z); U the input signal alphabet;
Y the output signal alphabet; and B < (U x Y)' the behaviour.

We postulate that B (better: the induced dynamical system (T, U x Y, B))
satisfies the following axioms:

(A.1):u is locally free
(A.2):y processes u.

We will call Z;,, a non-anticipating i/o dynamical system if, in addition:
(A.3):y does not anticipate u.

We will, as always in this paper assume also time invariance: T =R or Z and
'8 = B for all teT. We will call B,:= P, B (with P,:U x Y - U the projection
(u, )~ u and P, considered as actingon U T as well) the input space, elements of B,
inputs, and those of B,:= P,B outputs.

The following theorem gives a reasonably concrete representation of non-
anticipating i/o systems.

THEOREM 3.1 Let X =(T,U x Y, B) be a dynamical system. Then (T, U, Y, B)
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defines a non-anticipating i/o system if and only if:

1. X, =(T, U, B,) is trim, and memoryless;
2. V(% y %eB there exists a non-anticipating map F:B; — B such that
{@ %y OAy+(u*,y*)eB}={u*eB, and y* =Fu*}.

Proof (if): follows immediately from the definitions;

(only if):we will first show that for any given (#~ %y~ °eB° and
u*eB}, there exists y* such that (u= %y %) A,+(*,y*)eB. On the one hand,
thereexists (@ *, 5 *)such that (u~% y~ %) A,+(@*, 5 *)eB. On the other there exists
$ such that (g™ °A,+ u*, $)eB. By non-anticipation this indeed implies that there
exists y * such that (=% y %) Ay+(u*, y*)eB. Now consider, for agivenu* B,
those y* such that (=% y~%)A,+(*,y* )eB. By the argument just given, there
exists at least one such y *. Since y processes u there is at most one such y *. Hence
thereisamap F:u* —y*. Now establish by a simple contradiction that this map
must be non-anticipating. W

Note that the above theorem gives us an alternative definition of a non-
anticipating i/o system. However, we prefer to see locally free, processing, and
non-anticipating as the defining properties and to view the above theorem as
providing a convenient representation.

Input/output structures are usually displayed by means of black-box signal
flow graphs as shown in Fig. 12.

Signal flow graphs constitute extremely useful, practical, transparent represen-
tations of dynamical systems. In particular they offer a compact notation for
representing interconnections of subsystems (see Fig. 12). These black-box re-

Input Dynamical Output
v system y
e ——__—
Zi/0

S —
L

Fig. 12
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presentations are far superior to what the standard mathematical operator
notation has to offer, particularly when feedback (and hence implicit equations)
is present in an interconnection. Black boxes visualize clearly the information
processing features of systems and often preserve to some extent the physical
lay-out as well.

3.1.5 Causation

When does one variable cause another? What do we mean by causation? From our defini-
tions it follows that inputs are locally free, unconstrained, and such that they explain,
together with the initial conditions and the dynamical laws, the signals produced by the
system’s behaviour. As such we define the input as a signal which can be viewed as imposed
by the environment, as a signal which cannot be explained any further. If we have a non-
anticipating input/output system then in addition the past of the output does not depend
on the future of the input. In this sense we can think of a non-anticipating input/output
system as formalizing a cause/effect relation. Thus, as we see it, in order to call something
the cause we require that: (i) it cannot be explained or predicted by the phenomenon itself
and (ii) it precedes, in time, the effect. Note that we consider the direction of time as an
important element in our intuitive interpretation of cause/effect.

It is important not to read more into the notation of input than is claimed by its defining
properties. An input can in principle be chosen freely by the modeller, and is compatible
with the dynamical laws of the system. However, it does not mean that an input can always
be viewed as a ‘control variable. For example, the port voltages of an operational amplifier
will be related as w, = Aw,, with 4 the amplification factor. Now, if the voltage w, is
applied at the input port, the voltage w, = Aw, will be realized at the output port.
However, applying the voltage w, at the output port will not result in a voltage w;/A4
appearing at the input port. Similarly, accepting a static relation between economic
growth and inflation should not lead to the interpretation that imposing a certain inflation
will cause a desired economic growth. '

Of course, in conceptualizing vague notions as causation, there is an unavoidable degree
of arbitrariness in the mathematical formalization. Some may want to view the fact that
the output processes the input as the essential element, some may want to add the non-
anticipation condition as being crucial, some may want to require that B, is not only trim
and memoryless, but also complete. Note that trimness can always be achieved by
redefining W, if need be.

Let us expand a little on the completeness condition in B,. By suitably adapting
Definition 3.1 to requiring ‘free’ instead of ‘locally free’ in (A.1), it is possible to prove a
complete analogue of Theorem 3.1 with I, trim, memoryless and complete. Requiring
only locally free is useful when interpreting for example systems defined by convolution
operators

+ o

w,(t) = J- Gt —t)w(t)dt
-

as (non-anticipating) i/o systems, where in order to interpret the right-hand side it may be

necessary to require that w, has compact support or that it be square integrable (or square

summable in the discrete time analogue).



220 Models for Dynamics—J. C. Willems

3.1.6 An example: Newton’s second law

In section 4 we will illustrate this series of definitions by means of systems described by
high order linear difference or differential equations. In the present section we will see that
even in the most common mechanical systems the choice of what is the input and what
should be the output already presents a ‘problem’.

(i) Consider Newton’s second law

mg=F (Nw1)

relating the position g of a point mass with mass m to the force F exerted on it. Formally,
T = (R, R? x R3,B) with B ={(F,g):R- R x R}|Fe Z"(R; R?), ¢e¥'(R; R%),q abso-
lutely continuous, and mé(t) = Ft) for almost all teR}. Let B, and B, be defined in the
obvious way. Clearly (R,R* B;) is trim, memoryless, and complete. Further
(B((F,q)~%)* is given by the (F*,g*)s satisfying ¢*(1)=¢ °0)+ ¢ °0) +
(1/m)f% §5 F * (v) dvdr. It follows from Theorem 3.1 that X defines a non-anticipating i/o
system with F as input and q as output variable. It is easy to see on the other hand that
(R, R3,B,) is not memoryless and consequently that we could not have considered g as
input instead.

ov
F=— a—(q) (Nw2)
a

Formally X = (R, R? x R3, B) with
ov
B= {(F, g):R—R3 x R3|F(t) =a—(q(t)) for all te[R}.
o

Obviously £ defines a (static) dynamical system and it is easily seen that it is a non-
anticipating input/output system with g the input variable and F the output variable. Since
v
—R*-R?
do
need not be a bijection it is in general not possible in this case to consider F to be the input
variable instead.
(iii) A point mass which moves under the influence of the potential field V will be
governed by the combination of (Nwl1) and (Nw2), yielding

4
Wl+5—(q)=0
o

% (Nw3)
F= —6—(1)
o

This defines the dynamical system X =(R,R*xR3®8) with 8={(F,¢:R-R?
x R*|(Nw3)is satisfied}. Assume that V is sufficiently smooth so as to assure existence and
uniqueness of solutions of the differential equation in (Nw3) for all initial conditions
(4(0), §(0)). The above system is an autonomous one: there are no inputs and both F and g
should both be considered as outputs.
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This example, however well known and on the beaten path, teaches us that what is the
input and which is the output in a mechanical system will depend on the specific properties
of the system and not just on the physical nature of the variables involved (even though we
may intuitively—but unfortunately, incorrectly—tend to think of the force as being the
input).

3.2 Input/state/output systems

3.2.1 The structure of i/s/o systems

It is possible to generalize all of the above concepts to state space systems
z,=(T, U, X,B,), in which we will view both x and y as being caused by u.

DEFINITION 3.2 An input/state/output (i/s/o) dynamical system is defined as a
quintuple

Zi/,/o = (T, U, Y, X, %s)

with T < R the time axis (in this paper T = R or Z); U the input signal alphabet; Y
the output signal alphabet; X the state space; B, = (U x Y x X )T the behaviour (we
assume, of course, time-invariance: ‘B, = B, for all teT).

We postulate that B, (better: the induced dynamical system with latent
variables T, = (T, U x Y, X, B,)) satisfies the following axioms:

(A.1):B, satisfies the axiom of state;

(A.2):u is locally free;

(A.3):in B,, (x, y) processes u;

(A.4):in B,, u is strictly not anticipated by x and not anticipated by ¥.

From (A.1) it is clear that (T, U x Y, X, B,) will be a state space system.

3.2.2 Evolutive i/s/o structures.

We will now introduce the classical dynamical systems in state form, governed by
a state transition law and a read-out map.

DEFINITION 3.3 An evolutive i/s/o dynamical structure is defined as septuple
2o =(T,U,%,Y,X,0,r)

with T < R the time axis (in this paper T = R or Z); U the input alphabet; % < U’
the input space; X the state space; Y the output alphabet; @ the state transition law;
o consists of a family of maps ¢,, from X into itself; one for each te T, ¢t >0, and
for each ue |, and r:X x U— Y the read-out map.



222 Models for Dynamics—J. C. Willems

We postulate that
(A.1): Z,:=(T,U,%) is locally free (and, of course, time invariant).
(A.2): ¢ satisfies the semi-group property:

(ptz,llzo(ptl,ul = (ptl +t2u1t.2
with * the concatenation-like product, defined by

u(t) for0<t<t,
u,(t) fore<t <t, +t,

(o *"2)('3)3:{

The above, rather formidable, definition shows, through ¢, how the state
evolves under the influence of the input and, through r, how the output is
generated from the state and the input. Thus ¢, ,(x) is the state reached under
influence of the input u at time t starting from the initial state x; while r(x, u) denotes
the output value which will be generated when the system is in state x and an input
with value u is applied to it. Interpreting this leads to the state space system induced
by Z,, defined as X, =(T, U x Y, X, B), with

B, = {((w, ), x):T>(U x Y) x X|uel; x(t,) = @y, =10,0"uI 704, —1g)

for all (¢, to)e(T?),; and y(t) = r(x(), u(t)) for te T}.
Here (T?),:= {(t, to)eT?|t, = to}. It is easy to see that B, indeed satisfies the
axiom of state. The external behaviour B is then derived from B, in the usual
way. Note that time-invariance has been built into the definition of ¢ and

r. The behaviour B, can be viewed as being described by the behavioural
equations

(x(t0)),

XE+0) =0, (x()
»(0) = r(x(), y(0)

This is an infinite number of equations. However, each of the equations in the
first category only involves x and u on the finite time interval [t,¢ + t’), while the
equations in the second category are static equations. From this observation it
follows immediately that B, is complete. We will see that the complete i/s/o
systems are precisely those which can be described by means of systems X,
defined in terms of a state transition law and a read-out map. The surprising fact,
perhaps, is the simple dependence of y on x and u which follows from the state and
the other properties postulated of i/s/o systems.

THEOREM 3.2 (i) Let Z;,,, =(T, U, Y, X, B,) be a complete i/s/o dynamical system,
andlet(T,U x Y, X, B,) be the state space system induced by it. Then there exists ¢
and r such that the evolutive i/s/o structure Z,,=(T,U, P, B, Y, X, ¢,r) induces
(T,U,Y,X,B,).

(ii) Conversely, let Z,, = (T, U, U, Y, X, @, r) be an evolutive i/s/o structure, and
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let (T, U x Y, X,B,) be the state space system induced by it. Then (T, U, Y, X,B)
defines a complete i/s/o dynamical system.

Proof We will only give a broad outline of the proof.

(i) This part requires the construction of ¢ and r. Since x processes and strictly
does not anticipate u, there exists, for all (u, y, x)eB,, a strictly non-anticipating
map F:(P,8,)*" - X7~ which generates the future input/state trajectories.
We will assume for simplicity that B, is state trim (the general case requires a
separate construction of ¢ on the complement of X*f). Now take any x,€X,
teT,t >0, and @ie P, B| 10, and define ¢, xo):= x(t), with x(t) = (Fu)(t), F the
above constructed map corresponding to any (u, y, x)e B, such that x(0) = x, and
ue(P,B,)* any input such that #|;.o , = & Now verify that ¢ is well-defined and
that it satisfies the semi-group property. In order to define r(x, u) we need to prove
that {("l’yhxl)’ ({(u2’y29 xz)egs’ xl(o) =X= xZ(O)’ ul(o) =u= “2(0)} = {yl(o)
= y,(0) =:r(x,u)}. To see this, observe that (uy, y;, x,)As- (43, y2, x,)€B, and use
the fact that y processes and does not anticipate u. Next, verify that (¢, r) generates
B,

(ii) The converse follows immediately from the definitions. M

3.2.3 Input/state/output evolution laws

The most useful (and most common) dynamical models are those which actually
combine all the advantages of the dynamical structures which we have considered
up to now: they display their memory (the state), show their cause/effect
(input/output) structure, and express their laws in a form which is purely ‘local’
in time (that is, as an evolution law). It is this class of models which is used
most frequently in control applications. '

DEFINITION 3.4 A discrete time i/s/o evolution law is defined as a sextuple
Tisle =(T,U, X, Y,f,r)

with T < R the time axis (in this paper T =2Z); U, X, Y, and r as in Definition
3.3; and f:X x U— X the next state map.
Its continuous time analogue reads

DEFINITION 3.5 A continuous time i/s/o evolution law is defined as a sextuple
Tl =(T,U,X,Y,f,r)

with T < R the time axis (in this paper T = R); X a differentiable manifold, called
the state space; U, Y and r as in Definition 3.3; and f'the vector-ficld map; fis a map
from U into the vector fields on X.
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A discrete time i/s/o evolution law is thus described by the difference equation
ox =fo(x,u);, y=ro(x,u),
while it continuous time counterpart is described by the differential equation
x=fo(x,u); y=ro(x,u)

The above definition is, clearly, a version of Definition 1.4 adapted to the i/o
framework with {(x,, (1, y), x,)€0}<>{x, =f(xo,4) and y =r(xo,u)} in the dis-
crete time case; and {((x,v), (4,y))ed}<={v=f(x,u) and y=r(x,u)} in the
continuous time case. The state and external behaviour follow. The resulting
input space % is defined as % = {#:Z —» U|3x:Z — X such that 6x = >(x,#)} in
the discrete time case and % = {#:R— U|3x:R — X such that ¥ = f >(x,u)} in the
continuous time case. Clearly (T, U, %) is memoryless and shift invariant. We will
assume that it is also trim (otherwise, simply redefine U) and complete. It is easy
to see that this leads to an evolutive i/s/o system in the sense of Definition 3.3. The
correspondence f — ¢ will undoubtedly be immediately clear from the nomencla-
ture used. We will call the next state or vector field map f the generator of the
corresponding state transition law ¢.

3.24 Maxwell’s equations

In section 1 we have already given a number of examples of i/s/o evolution laws. We will
now illuminate Maxwell’s equations, another cause célébre of the physical sciences, from
this point of view.

Maxwell’s equations relate the electric field, E{(z, 1), the magnetic field, B(z, t), the electric
current density, Jiz, 1), and the electric charge density, p(z,t); zeR* denotes the space
coordinate and teR denotes time.

Maxwell’s equations in free space read:

v-E=£ (EM1)
&o
. 0B
VxE=—— (EM2)
ot
V-B=0 (EM3)
. J OE
eV ><B=£—+5t— (EM4)
0

Here V- denotes the divergence, V x the curl, &, the dielectric constant of free space,
and ¢ the speed of light.

Maxwell’s equations consist of two static (EM1 and EM3) and two dynamic (EM2
and EM4) behavioural equations. These laws (in particular EM1, EM3, and EM4) imply

the law of conservation of charge:

v-i=_% (EM5
T ot )
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How should we, as system theorists, look towards this system of equations? Obviously,
they define a dynamical system with T = R, W = ¢'(R3; R%) x ¢'(R% R®) x €%(R* R) x

%'(R% R?), and # described by the behavioural equations EM1 — EM4. In other words,
we view Maxwell’s equations as describing the behaviour of (E, B p, D).

These equations define an evolution law in the sense of Definition 1.4 with T =R,

W = ¢Y(R; R?) x €1(R3 R3) x €°R3; R) x €\(R3;RY), X =%Y(R% R x €(R%,R)
and
e = = oy = e — - W
o= {((xl, X3V, V5,), Wy, Wy, Wy, CAVEED =8—,
0
W,
V% =07=2Vx¥,——7¥,=—-VxF,

Note that we have taken the state space to be all of €!(R? R?) x ¢'(R> R?) while (EM3)
actually restricts the elements of the state space. This restriction has been incorporated in 6
and leads to a system which, obviously, will not be state trim. Note that the choice of the
state space is to a large extent free. In the above we have taken (E, B) as the state. We could
have taken (E B, p.J J) or ( E, B, p) (this last choice for example being suggested by
considering EM1 — EMS5).

If, however, we want to consider Maxwell’s equations as an i/s/o evolution law in the
sense of Definition 3.4, then we should incorporate (EM3) in the definition of the state
space, yielding T=R, U=%¢'R%R?, y=%"(R%R>x % (R*R?)xE(R}R)x
¢°(R* R3),

X = {(x,,%,)e€"(R% RY)x €' (R RY)V-T, =0},
and

f((i,,?z,),m»—»(&v x % ==~V x 'il>, and  r(x, @)= (¥, %, V'¥,, ).

0
Of course, by choosing (E, B, p) constrained by EM1 and EM3, another trim i/s/o system
will be obtained.

Thus the logical way of viewing (EM1— EM4) is the following: J is the input, (E, B)
subject to V- B = 0is the state, and p is an output determined by EM 1. The state is trim and
evolves according to EM2 and EM4. EMS5 is an equation for the evolution of an output
which can be deduced from the other equations. This state system is state trim and the state
is (trivially) past and also future induced. Hence viewed this way we have recognized a
minimal state realization of Maxwell’s equations.

It is worthwhile to make a slightly philosophical comment. Maxwell’s equations
(EM1 — EM4)define an i/s/o system with J asinput variable. It is reasonable and logical to
consider each of these equations individually as a physical reality, regardless whether or
not the others are (assumed to be) satisfied. In particular, one could assume EM1, EM2
and EM4 (with 7 and p as inputs) as a reality, without assuming EM3. In this case EM5
could not be derived. Feynman [17, pp. 18-3] basically argues that it makes no physical
sense not to assume (EM5). From a system theoretic vantage point, we feel little sympathy
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for this point of view. Is it really necessary to consider every time all the laws of physics all at
once? Is it impossible to declare part of them as being true while disregarding the others? This
position is obviously untenable. The system theoretic, reductionist point of view, in which
it is allowed to leave the environment (p, E) totally unexplained (even though more
scrutiny will undoubtedly lead to the discovery of additional relations: for example EM3),
is much more reasonable. Any set of dynamical relations defines a dynamical system, a
reality in its own right. It will usually contain unexplained inputs. Further analysis may
lead to the discovery of more relations, leaving fewer unexplained inputs. This further
analysis can, but need not be done. Otherwise we will always end up having to model the
whole universe.

3.2.5 State realization of i/o systems

The construction of a state space representation for an i/o system can be approached using
the methods developed in section 2 for general behaviours. In analogy with Theorem 3.1 it
can be shown that X,,, = (T, U, Y, B) defines an i/o system iff for each (u~,y")eB ", there
existsamap F,- - B0+ - B2 which determmes the future i/o pairs, i.., this map is such
that {u~ Ag-u*,y~ Ay-y°* e%}o{ y°* =F,-,-(°")}. Now consider the construc-
tion of the past mduced canonical realization. This immediately shows that {(u,y,)
=~ (uy,y,)}={F Wi = =Fury; 7} Consequently the state in the canonical past induced
realization stands in one-to-one relation to the future input/ouput map Fi,-

An important special case of i/o dynamical systems are those in which the behav1our B
is given as the graph of a non-anticipating map F:B,— Y (called the i/o map). Consider
the past-induced realization of this system. The past-induced equivalence realization ~ on
B now corresponds to what is called the Nerode equivalencey on B, , defined as
{uy guy}i{Fuy Ag-u°")=(F(uy Ay-u°*))°" for all «®*eB°**). The state x is thus
seen to be generated by amap B, - X T which is strictly non-anticipating in the sense that
x(0) is generated by a map F,:B, — X such that {((w,y), x)eB, } = {x(0) = F («~)}. Note
that state trim now means what is classically (at least when we assume that all trajectories
start from a common ground state) referred to as state reachability (meaning that F, is
surjective).

Specializing Theorem 2.3 to i/o systems show that the realization which takes F, w.y")as
its state (or the Nerode equivalence class in the case of i/o maps) will be minimal and that
all minimal past-induced realizations will be equivalent to it. Finally, all minimal
realizations will be equivalent for an i/o system iff this past-induced realization is also
future induced. This property requires that x be observable from the future of (u, y),
meaning that any future i/o pair (#°*, p° *)eB°* will determine the present state uniquely.

3.2.6 The construction of the input space

In section 2 we have solved the problem of associating with any dynamical system a
state space realization. The key element in the solution of this problem was the
construction of a suitable state space. We have seen, at least in principle, how this
construction can be carried out. The analogous problem in the context of the concepts
developed in the present section would be the construction of an i/o representation of
a given behaviour. We will give a very rough idea of how this question can be approached.
This problem will be pursued in more concrete terms in the next section for linear
systems. The key element now will be the construction of the input alphabet. For
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simplicity of presentation we will discuss this problem only for complete discrete time
systems. We have seen in section 1.5.3 that such systems can always be represented by
means of a deterministic evolution law

ox=fo(x,w); co(x,w)=0.

The problem is to write this evolution law as in i/s/o evolution law.

If we are lucky (as will be the case for the linear systems of section 4) there may exist
a decomposition W = U x Y and a map r:X x U —Y such that {c(x, (4, y)) = O}e{y=
r(x,u)}. This yields the i/s/o representation

ax=fo(x,u); y=re(x,u).

with f(x, )= f(x,(r(x,w)), u the input variable, y the output variable, and w=(u,y). A
more natural approach, however, is to look for a set U, a map j:W - U, and a map
r:X x U - W such that {w|c(x,w) =0} = {imr(x,.)} for all xe X. Further, set Y = W, and
consider the representation

ox=fco(x,u), w=ro(x,u)

with f(x, u):f (x, n(x,u)) as an i/s/o evolution law. Hence u = j(w) can then be considered
the input variable and y=w as the output variable. Here u should be regarded as a
latent variable introduced in order to explain the w-trajectories in the behaviour as being
generated by a free input signal. It is easy to verify that, on the set theoretic level discussed
here, such an input alphabet U always exists. This approach recognizes j(w) as the free
input part of w. In general, however, we prefer to view the construction of a universal
input alphabet U as a problem which is a little artificial. Alternatively, we may want to
let the map j be also dependent on x, yielding

ox=fo(x,u), w=ho(x,u), and u=jo(x,w).

It is, indeed, much more reasonable to look upon the free input variable as a state
dependent object, defined as the elements of the set {w|c(x, w) = 0). Thus at each instant
of time we consider the ‘input’ as the part of the w-variable which can be chosen freely:
as such it will be determined by the present state. The joint input/state space has then
the structure of a bundle with base space X and with the fibre above x playing the role
of the free input alphabet when the system is in state x.

This elementary discussion is obviously also valid for continuous time evolution laws

described by x =fo(x,w); co(x,w)=0.

3.2.7 Addition

Many of the concepts and model classes introduced in the first three sections of this paper
can be illustrated by means of an example from elementary arithmetic: the addition of two
real numbers. Consider the ordinary decimal expansion of a3, ., a(t)10' and identify
the real numbers @ with the time series a:Z - D:= {0, 1,...,9}. The real numbers b and ¢
will be treated similarly. Then the relation induced by addition defines a dynamical system:
T =(Z, D% B) with B = {(a,b,¢):Z —» D3|3¢, such that a(t) = b(t) = c(t) =0 for t > ¢, and
¢ =a+ b}. It is easy to see that this dynamical system is time invariant.

Consider the state space realization problem. The partition of 8 generated by the past-
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induced canonical realization is easy to identify. There are two equivalence classes,
denoted by {0, 1}. There holds:

{(a,b,c)eO}¢>{ _Zl a()10* + _Zl b(t)10'<1}

and

-1 -1
{(a, b, c)el}a{ Y a1+ Y Hn10'=1 }
t=—ow t=-w
This leads to a state space realization where we identify the state trajectory with the binary
sequence x:Z — {0, 1} =: B, yielding the realization X, = (Z, D% B, B,) with B, = {((a, ,¢),
x):Z-D? x B|(a,b,c)eB and

-1 -1
0if ¥ a@10'+ Y bn10t<1

x(1) =

-1 -1
1if Y )10+ ¥ H10'=1
t=-o 1=~w
Now compute the evolution law induced by this system. This yields é={(x,,
(a,b,c),x,)|x; =(xg+a+b)DIV(10) and c=(xy+a+ b)MOD(lO)}.’ Hence the traj-
ectories in B, can be recursively computed as:

x(t + 1)=(x(2) + a(t) + 5(t)) DIV (10)
ot) = (x(t) + a(t) + 4t)) MOD(10).

These equations should be familiar ones: we have rederived the handy algorithm for
addition which was taught to us in the first grade of elementary school. This algorithm
was put into its present form in the sixteenth century by Simon Stevin who was also born in
Bruges in Flanders and spent most of his professional life in the service of the Dutch
government. It is enlightening to observe that Stevin’s algorithm is basically nothing
more than a direct implementation of realization theory and finding the associated evolution
law. It follows from Theorem 1.1 that this evolution law will actually realize the
completion of B: because of the condition a(t) = b(t) = ¢(t) = 0 for ¢ sufficiently large, B
itself is not complete.

Let us now examine the i/o structure of B. It is easily seen that ®:(a,))—»c=a+ b
defines a non-anticipating i/o map from % = {(a,4):Z*— D?|3t, such that
a(t)=b(t)=0 for t=t,} into D% This yields the non-anticipating i/o system
Z,,=(Z,D?* D,B,,) with B, = {((a,b),c)|a, be¥; c = a + b}. Similarly, it is possible to
the behaviour B, defined above as an (evolution) i/s/o system.

Now, turn to the question of the uniqueness of the minimal realization. It is easy to
see that for the case at hand, ~ = %, and hence the state constructed above corresponds
to the unique minimal state realization. Hence it is also the canonical future-induced
realization. As such it should be possible to run Stevin’s algorithm backwards. This yields

x(t—1)=10x(t) —a(t — 1) — bt — 1)+ c(t - 1)
subject to the constraint
x(t) = (10 x(¢) + 2a(t) + 2b(t) — c(t)) DIV (10)

tLetn,m,d,reZ,,m>0,besuch thatn=dm+r,0<r<m. Thend =:(n) DIV (m) and r =:(n) MOD
(m).
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However, this backwards recursion can only be brought in i/s/o form by regarding the
driving input variable as a latent variable: no combination of the variables (a, b, c) will
serve as input variables for this backward recursion. It is for good reasons that Stevin’s
algorithm runs so successfully the way it does.

3.7.8 Recapitulation

In this section we have shown how the input/output—cause/effect structure can
be incorporated into the framework set forward in Definition 1.1. We have
taken as essential features of input, first, that it is locally free: that is, that it
has no local structure of its own, and second, that the output processes the
input, that is, that the input, together with the initial conditions, completely
determines the response of the system. In many applications, it is important
to incorporate non-anticipation. Combining non-anticipating input/output
structures with the notion of state yields the input/state/output systems of
Definition 3.2. In an i/s/o system the state satisfies the state axiom and processes
the locally free input while it does not strictly anticipate the input. We have
seen that i/s/o systems can always be described by a state transition law and
a read-out map. This leads to the notion of i/s/o evolution law in which the
state evolution is governed by a next state map. This structure, which displays
both the cause/effect and the memory structure, and which expresses the
behavioural equations in a one-step recursive form, is a particularly useful one
in applications.

3.79 Sources

Many of the definitions in the beginning of this section are given here for the first time.
Initial versions appear in [14]. Definition 3.3 and realization theory for input/output
systems is extensively discussed in [9].

4 LINEAR TIME INVARIANT SYSTEMS—MODELS OF ALL
SHAPES AND IN ALL SIZES

In this section we will treat a very important class of dynamical systems: the
linear time invariant complete systems. This family of systems has been studied
a great deal both in control and in electrical circuit theory, and it forms the
theoretical basis for bread and butter applications in control engineering, signal
processing, and econometrics. As we shall see, these systems admit a surprisingly
simple mathematical characterization: in discrete time, their behaviour cor-
responds precisely to the closed linear shift invariant subspaces of (R%?, equipped
with the topology of pointwise convergence. We will prove that this class of
systems are also those which can be described by a set of behavioural equations
consisting of a finite number of recursive linear equations (we shall call these
(AR)-equations) or equivalently the time invariant systems which admit a linear
evolution law with an underlying state space which is finite-dimensional. We
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will also see that the external attributes of such systems can always be partitioned
into two sets: one set consists of input variables—they act as arbitrary causes
imposed by the environment on the system; the other set consists of output
variables—they act as effects, produced, through the system dynamics, by the
inputs and the internal initial conditions.

4.1 Polynomial operators in the shift

4.1.1 Polynomials and polynomial matrices

As usual R[s] denotes the polynomials with real coefficients in the indeterminate s. We
will also consider ‘polynomials’ with both positive and negative powers in s. These are
sometimes called dipolynomials—we will simply call them polynomials. We will denote
those as R(s,s™']; R[s~!] consists of the elements containing non-positive powers
only. The vector and matrix analogues are written as R"[s], R"*"[s], R"[s,s™!],
R™ *"2[5,57 ], etc. Of course, an element of R™ *"2[s,s~!] can be considered either as
a matrix of polynomials or as a polynomial with matrix coefficients. We will not make
any such distinction: sometimes the first interpretation is the more natural one, sometimes
the second is.

Both R[s] and R[s,s™!] are rings, with the obvious definition of addition and
multiplication. The unimodular (i.e. invertible) elements of R[s] are the non-zero constants,
while in R[s,s™'] they are the non-zero monomials, i.e., the elements of the form as,
o 5 0. Thus elements of R"*"[s] are unimodular (i.e. invertible as polynomial matrices)
iff their determinant equals a non-zero constant, while elements of R"*"[s,s" '] are
invertible iff their determinant equals as? for some deZ and o #0. R(s) denotes the real
rational functions in the indeterminate s; R(s) is the fraction field of R[s], of R[s,s 1],
and of R[s ™ ']. If f(s)e R(s), f (s) = g(s)/p(s) with p(s), g(s)e R[s] and degree p > degree g, then
we will call f proper. The collection of all proper rational functions will be denoted by R, (s).
If degree p> degree g then we call the rational function strictly proper. Further,
R_(s):={f(5)eR(s)| f(s~)eR ,(s)}. The spaces R’(s), R" (s), R"(s), etc. are analogously
defined. When referring to ranks, determinants, or minors of elements of R™ ™"x(s),
R"*™[s], or R"*™[s,57'], we will consider them as matrices over the field R(s).
However, when considering elements of R(s), R[s] or R[s,s 1], it is sometimes useful to
identify the indeterminate s with a complex number AeC. As such speaking about the
rank of an element of M(s)eR™ *"%(s), R™ *"2[s], or R™ *"2[s,5™ '] may become a little
ambiguous. In order to avoid this, we have sometimes used the notation rankg, M(s) when
we consider the rank of M viewed as a matrix of rational functions, and rank: M(2) when
we consider 4 as an element of C and evaluate the rank of the complex matrix M(2). A
similar notation applies to polynomials and polynomial matrices M(s,s ™), and for im or
ker.

An important result which we will frequently use is the Smith form of a polynomial
matrix. Consider a matrix polynomial R(s)eR™*"%(s). Then by pre- and post-
multiplication by unimodular matrices U, (s)eR" *"[s] and U,(s)eR" *"2[s], R(s) can be
brought in Smith form:

UL (IR(S)U(5) = [.‘.1??‘5 L4:(s), .‘?(?).(.s.).’.:::.’.fi.'.(.s.)..]...g g]
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with di(s)eR[s],d; #0,i=1,2,...,r,and d;,, afactorof d,fori=1,2,...,r — 1. A similar
statement holds, mutatis mutandis, for R[s,s ™ 'JeR™ *"2[s,s™'].

4.1.2 Sequence spaces

Let L7 denote the space of time series w:Z — R, equipped with the topology of pointwise
convergence: {w, —— w}:<>{w,(t) ——w(t) for all teZ} (this last convergence
n—+ao n—>a

should be understood in the norm topology). L? is a separable, metrizable topological
space. We will denote by £ the collection of all linear, closed, shift invariant subspaces
of L% This space (as behaviours of systems) will play an extremely important role in this
section. The backwards shift o:19 — L7is, as usual, defined by (af)(t):= f{t + 1). Obviously ¢
defines an invertible continuous linear operator on L%, with ¢~ ! the forward shift, (c ' f)
()= f(t — 1). Now consider the polynomial matrix R(s,s~')eR" *"[s,57!], R(s,s !} =
Ris“*+R,_ys*" '+ -+ Ry, s'*' + R;s" Then the operator R(o,6!) from (R™) to
(®R")" given by (R(0,0™))t)=R f(t+ L)+ Ry flt + L= )+ + R fE+1+ 1)+
R,f(t +1) defines a continuous linear operator from L" to L™. We will call such an
operator a polynomial operator in the shift.

4.1.3 The action of polynomial operators in the shift on L"

In this section we will answer the following questions. What subsets can be
written as kernels of polynomial operators in the shift? As images? When is a
polynomial operator in the shift injective? Surjective? Bijective? How do polynomial
operators in the shift transform closed linear shift invariant subspaces? We will
state our results in a sequence of propositions. First, however, we will prove a
lemma which is of some interest in its own right.

LeMMa Let R(o,6!):">— 1™ be a polynomial operator in the shift. Then
R(o,67Y) is:

(i) {injective}<>{rank R(4,A~')=n, for all 0 # AeC};
(ii) {surjective}<>{rankg,R(s,s™')=n,};
(iii) {bijective}<>{n, =n, and R(s, s~ ') is unimodular}.

Proof If U(s,s~')eR"*"[s,s~!] is unimodular with N(s,s™!)=(U(s,s™ "))},
then U(o, 6~ Y)N(6, 6~ ') = N(0, 6~ *)U(c, 6 ') = id,», showing that U(s,07') is
indeed a bijection. Now consider any R(s,s~')eR"*"2[s,s"']. Let URV =A
be the Smith form of R. Bijectivity of U(s, ') and V(0,6 ') implies that it
suffices to prove (i) and (ii) for R’s which are of the form

diag [y ) da()... 491 | O

.................... S o)
Observe that it hence suffices to prove that d(o, s~ !):L* —» L is (i) injective iff
d is unimodular, and (i) surjective iff d # 0. If d(s, s !) = as?, « # 0, then d(6, 6) !
is bijective, hence injective. If d(s, s ™) =ry st + - + r,s' with L> L r;r; #0, then
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there obviously exists a non-zero solution of the difference equation
rew(it+ L)+ +rwit+)=0 teZ

(simply choose w(L — 1),...,w(l) arbitrary and extend these initial conditions
forward and backwards by solving the difference equation). Hence if d(s,s ')
is not unimodular, d(o, ¢ ') is not injective.

Now consider the surjectivity of d(o, 0 ~*). Clearly d # 0 is a necessary condi-
tion. To show that it is also sufficient, let d(s, s ') = r;s* + --- + r,s' have r,r, #0.
We will show that for any f:Z — R, there exists a solution to the difference
equation

rew(t+ LY+ +rw(t+ D =f1) teZ

In order to see this, choose w(L —1),...,w(l) arbitrary and define recursively

ri(f(t—L)—rL_lw(t—1)—---—r,w(t—(L—l))) fort>L
L

w(t)= )

r—(f(t—l)—er(t+(L—l)))— =Wt =14 1)) fort <l
1

The following proposition is the first of many representation results which will
be obtained in this section. It shows that .#? consists precisely of the kernels of the
polynomial operators in the shift.

PROPOSITION 4.1A  {Be ¥} <>{IgeZ, and R(s,s })eR**?[s, s~ '}such that B
=ker R(s, 6~ ')}. Moreover, we can always take 0 < g <gq, and take R to be a
polynomial matrix R(s)eR?*‘[s] or, for that matter, R(s ™ !)eR?*I[s~!].If g =0,
define ker R(s, 0~ 1) = 1%

Proof (<=):kerR(o,5!) is obviously linear. It is also shift invariant. Indeed,
{R(o,6™")w=0}<>{R(0,06 " ')ow=0}. To show that kerR(s,6"!) is closed,
observe that {w, ——w, (R(a, 6~ Y)yw,)(t) = 0} = {R(s, 0~ )w(t) = 0}. (=):L¢

and R'*s,s"!] are duals with, for aeR'*[s,s"'] and bel,
{a,b):=(a(s, s~ ')b)(0). Duality should be interpreted in the sense that R'*¢
[s, s~ 1] specifies the continuous linear functionals on L% Now R'*‘[s,s™!]isa
finitely generated free module over the principal ideal domain R[s,s~!]. This
implies that every submodule is finitely generated. Now consider, for Be %9, its
dual, B":= {aeR'*[s,5~']|<{a, b) = 0}. By shift invariance of B, sB* = B*. Hence
B' is a submodule or R'*‘[s,s”!], implying that there exist
ry(s,s7Y),...,r,(s, s )R ™ [s,s7'] such that B'=R[s,s 'Jr,(s,5" 1)+ -
+ R[s, s™']r (s, s~!). Define (B*)*:= {w:Z - R?|{r,w) = 0 for all reB*}. Since
L7 is a topologial vector space (B*)" is the smallest closed linear subspace
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containing B. Hence, since B is closed, {weB}<>{w L B*}. Consequently, using
shift-invariance, B8 = {w:Z > RI|r,(6,6 " )W =0,ry(0,6 " Yyw=0,...,r,(0,6 " ")w
= 0}. Now define R(s, s !) = col [ry(s, s~ 1), 75(s,57!),...,7(5, s~ !)] and conclude
that B = ker R(o, 6 *). This proof also demonstrates that we can take 0 < g <gq
(since B* is a submodule of R' *“[s, s~ '], which is a g-dimensional module over
R[s, s~ 1]). That R can be taken to be a polynomial follows from that fact that, for
all deZ, ker R(o,6~ ') =o’ker R(s,6 ") =kero’R(a,0”"). B

A more elementary proof of the implication (=) of the above proposition
can be found in [14a].

Our second result identifies the subsets of L? which are images of polynomial
operators in the shift. Let B < (R)%. We will denote by Beompact gelosure ap4
Peompact/closure regpectively the set of elements of B with compact support, the
closure of B, and the closure of Beompact: j e, Beompacticlosure.— {y.7 _, RY|Iw,eB
such that w, has compact support and w, - w}.

ProPOSITION 4.1B  {Be¥? and B=BeomrdowrlalImeZ, and
M(s,s"eR*™[s,s~ '] such that B = im M(0, 6~ !)}. Moreover, we can always
take 0 <m < g, and take M to be a polynomial matrix M(s)eR?*"[s] or, for that
matter, M(s~)eR**"[s~!]. If m = 0, define im M(s,0~!)=0.

Proof (=): Since Be.#4, B =ker R(s, p~!) for a suitable R(s,s ™ !)eR**[s,s'].
Let us now examine what the condition B = Beempaet/closure giopifies about R. We
claim that it is equivalent to rank, R(4, 4™ !) = rankg,R(s, s ') for all 0 % AeC, in
other words, that the Smith form of R is equal to

In order to see this, observe that with T unimodular T(c, g~ !)Bcompact/closure
= (T(0, 6~ 1)B)compacticlosure. Now let R= UAV with

Az [diag [dy,....dr] : 0:|

be the Smith form of R. Then B =kerR(s,07 ') is given by 8=V "Y(0,67})
ker A(o, o !). Hence, in the obvious notation, with ¢;:=col[0,...,0,1,0,...0]
and the 1 in the ith position, kerA(c,6™')=e kerd (0,0 )@ --De,
kerd(o,6 " )@e,, ,L'@® - De,L'. Now (examine the proof of the injective part
of the above lemma) if d # 0, ker d(s, 6 ~!) = 0 iff d is unimodular and otherwise
kerd(s,07 1) is finite dimensional with no non-zero elements having compact
support. Hence if all the d;s are unimodular, (ker A(o, g~ !))compactclosure —
6.1 L'@ - De,L'. We conclude that {(ker R(g, g~ !))compecticlosre = ¢ '@ ---
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®e,L'}<>{rank Rc(4, A~ ) = rankg R(s, s~ ') for all 0 AeC}<>
0
{R(s,s‘l) = U(s, s)‘l[--f---;---(-)~:| V(s,s™ ") with U,V unimodular}.

Hence

{% = %compact/closure}é{% = ker [OEIq—r] V(O’, ¢~ 1)}

<>{%=im V'l(a,a'l)[g’]}.

(«<=): Consider the Smith form of M, M =UAV. Hence imM(o,07 )=
U(e, 6™ Y)im A(o, 6~ !). Applying the lemma yields

1
imM(a,a‘1)=imU(a,a")[o'jl=ker[0§Iq_,]U‘1(a,a‘1).
This implies im M(c,s~")e%#? and (see the proof of (i)) imM(s, 6™ ')=
(im M(o, g~ ))compacticlosure . That we can take 0<m<gqg and M(s,s ')=
M, (5)eR*™[s] or M(s,s™ )= M,(s™")eR"*™[s~ '] is obvious. B

The proposition which follows recognizes in particular a general family
of linear operators on an infinite-dimensional topological space which map
certain closed subspaces into closed subspaces.

PROPOSITION 4.1C  Let R(s, s~ 1)eR? *%2[s, s~ !]. Then the polynomial operator
in the shift R(o, o~ ') maps elements of £ into elements of £7'. Conversely, the
inverse image under R(g, ¢~ ') of an element of #% is an element of £%.

Proof We will prove the converse part first. Let B, €.#%. By Proposition 4.1A
there exists an R, (g, 6~ !) such that B, =ker R,(6,6™"). Now (R(o,07 1)) '8,
=ker R,(6, 6~ ")R(0, 6~ !), which, by Proposition 4.1A, belongs to £

The other direction is more interesting, both from the mathematical and from
the applications point of view. Let B,e.£%. By Proposition A there exists a
R,(s, s 1)eR%*%[s,5s71] such that B, =ker R,(6,6'). Now consider B, =
R(s,6™)B,. Then B, = {w,:Z—>R*"|Iw,:Z - R® such that R,(s,6 " ")w, =0
and w, = R(c, 6~ )w,}. We will show, more generally, that if B is defined in terms
of R and R’ by B:={w:Z-RY3Ia:Z—-R% such that R'(s,0” )w=
R’(0,0 ™ Ya}, then Be L. In order to see that this implies B, €L, take

’ I "o R
R_I:O:I and R —[Rz].

Observe that if U(s, s ') and V(s, s~ ') are unimodular, then B = {w|3a such that
U(s,0 " YR'(0,06 " Yyw=U(o,6 " Y)R"(s,0 " ")V (6,0 ")a}. Now use the Smith
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form: choose U and V such that

with A(s, s~ 1):= diag [d,(s, s~ 1), d,(s, s~ %,...,d,(s, s~ ")]. This yields, with R’ and
R’, defined in the obvious way such that

| RY
vr={ |
8B = {w|3a such that R(0, 6™ )w = A(o, 6™ ")a and R(g,0~ ")w = 0}. It follows

from the lemma that imA(c,o ') =(R%)% Hence B =ker R5(0,0™") which
shows, using Proposition 4.1A, that Be % O

Proposition 4.1C shows that linear shift invariant closed subspaces of L and
polynomial operators in the shift behave in many ways as finite-dimensional
vector spaces and matrices.

42 (AR), (ARMA), and (MA) systems

4.2.1 Completeness and its relation to £*

Recall that we have called a dynamical system X =(Z, R%, B) linear if B is a
linear subspace of (R%)’, time invariant if ¢B =B, and complete if {weB} <>
{Wlito11€Bliiouy for all 2o, t,€Z (finite, to be sure)}. Our first result provides a
neat mathematical characterization of the linear time invariant complete
systems.

PROPOSITION 4.2 X =(Z, R%, B) is a linear time invariant complete dynamical
system if and only if Be L.

Proof We only need to worry about the implication {Z complete} <> {B closed}.
To prove (=), assume that X is complete. Take a sequence w,eB, neZ,, such
that w, ——w. We need to show that we®. Since B|,, ,,; is a finite-dimensional

linear subspace of R#1~'*1 it is closed. Hence, {Wuli01€Bliorn) =
{lim,~ o, Walgrorr) = Wlitot1€Bliror1}- By  completeness this yields we'B.
Hence B is closed. To prove (<=), assume that B is closed and let wy, ;,;€B (1o.1,)
for all t, <t,. We need to show that we®B. Now, there exists #'°*:Z — R such
that w't= R A -w AW eB. Clearly wiot sl Hence weB, as
claimed. 1=+ oo
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422 (AR) systems

Proposition 4.1A implies that {8e.#?}<>{B =ker R(s,0 ')} for some poly-
nomial operator in the shift R(o,o™ '), while Proposition 4.2 implies that
{Be#} < {X =(Z, R B) is linear, shift invariant, and complete}. Hence for
the class of systems under consideration we can conclude that completeness is
equivalent to finite memory. These results allow us to conclude that the linear
time invariant complete systems are precisely those which are governed by a
set of behavioural equations of the form

Ryw(t+L)+ R, _sw(it+L—1)+--+R, wit+I+1)+Rw(t+)=0 teZ

with R, R;_,,...,R;;,, ReR**% These behavioural equations consist of g
scalar linear equations involving as parameters the entries of the matrices R ...,
R, and as variables the signal components w,, w,, ..., w, and their lags. Essential-
ly all models used in econometrics, in signal processing, and in discrete time
linear control are indeed of this type.

We will write these equations compactly in the convenient polynomial form

R(o,0"Yw=0 (AR)

with R(s,s ") =R s*+ R, _;s* '+ ... + R, ;s'"** + Rs'eR[s,s~ 1], and refer
to them as (AR) (AutoRegressive) systems.

The polynomial matrix R determines B uniquely, but the converse is not
true. In fact, if U(s,s™')eR?*?[s,s '] is unimodular then ker R(s, s~ !) will
be equal to ker U(c, 6 " !)R(a, 0~ ). This implies (cfr. the Smith form) that Be #?
can always be represented as ker R(o, 0~ !) with R(s, s~ ')eR?*“[s,s!] having
rankg R(s,s™') =g, i.e. with R of full row rank.

Consider Z=(Z,R%,B) with Be¥L?. A vector polynomial p(s,s™!)
€R'*[s,57'] is called an annihilator of B if p(s,6~)B =0 iec., if {weB}=
{p(o, 6~ ")w = 0}. Denote the set of all annihilators of B by B*. The basic fact
leading to Lemma 4.1(i) is that B* is a submodule of R'*[s,s™']. If B =
ker R(g, ¢~ ') with R(s,s~')eR?*[s, s~ '] then, in the obvious notation, B+ =
R'*‘[s,s ']R(s,s"'). By identifying elements of R'*‘[s,s~!] with elements
of (R9? it is possible to view B* as defining a linear time invariant system
%' =(Z, R, B"), called the dual of X. Since all elements of B have compact
support, X’ is, of course, not complete. We will not pursue its properties any
further in this paper.

423 (ARMA) systems

As we have argued in section 1, the natural starting point for what we have called
models from first principles are models which involve latent variables. Within the
context of linear time invariant complete systems (with signal spaces and latent
variable spaces which are finite-dimensional), this means that we should expect to
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start with model equations of the form
R,(6,6 Y Yyw=R,(6,6" V)a (ARMA)

where w:Z —R? and a:Z —R? denote the signal and latent variables and the
entries of the coefficient matrices of R,(s,s )eR *[s,s7 '], R,(s,s™ e
R’ *“[s, s~ 1] denote the parameters of the model; d equals the number of latent
variables involved in our model, and f denotes the number of laws relating the
variables. We will call the above model an (ARM A) (AutoRegressive Moving
Average) system.

The external behaviour of this (ARMA) system is given by B = (R;(0, 6" 1)) ™"
(im R,(a, 6~ 1)). Proposition 4.1C implies that the latent variables can always
be completely eliminated, i.., there will exist a g, 0<g<gq, and a polynomial
matrix R(s,s™1)eR**[s,s~'] such that the (AR) model R(c,c™")w =0 defines
exactly the same behaviour as the external w-behaviour of the original (ARM A)
model.

A completely analogous result about elimination of latent variables holds for linear
time invariant differential equations (we have seen an example of this in section 1.1.2).
These results are fully analogous to the representation result obtained in Theorem 2.5
for discrete event systems. It is matter of conjecture that the behaviour or certain (smooth)
classes of differential equations x = f o(x, &), y = ro(x, u); w = (4, ) can be written as the
behaviour of a high order differential equation Fo(w,w'",...,w®)=0. More precisely,
we conjecture that if f:R" x R™— R" and r:R" x R™ - R are C*-functions and if (in the
notation of section 2) ~ = T, then there will exist an integer leZ, and a map F:(R"
x RPY*!1 - {0,1} such that the set

{(u,y)eC>(R; R™ x R?)|Ixe€*(R; R") such that %= fo(x,u)y=ro(x,u)}
will be equal to
{(4, y)e€>(R; R™ x RP)| F(o(u, ), @, yV),..., ", y™))=0}.

This conjecture is valid, as we have just seen, if f and r are linear.

An area of application where these results are relevant is failure detection. Assume that
the attributes of a system in failure free operation obey a number of linear time invariant
laws, an (AR) system of equations. Assume that we want to investigate, by monitoring a
subset of the attributes, whether or not the system is failure free. By considering the
measured attributes as the signals and the remaining attributes as latent variables, we can
consider the model as an (ARMA) system. We have seen that the measured attributes must
however satisfy an (AR) system of equations on their own. Monitoring these behavioural
relations and signalling when the left-hand side exceeds a threshold offers a reasonable
method for detecting failures in the original system.

424 Model complexity

The result about the elimination of latent variables has important implications in model
building. Proposition 4.1C implies that a linear time invariant complete system can
always be described by at most g recursive (AR)-type equations. Model building often



238 Models for Dynamics—J. C. Willems

proceeds by the reductionist method of tearing, in which a system is viewed as an
interconnection of subsystems and the modelling proceeds by zooming in on the individual
subsystems. The attributes describing the subsystems will now be of two kinds: one class
will consist of the variables which we actually want to model and a second class will
consist of the variables through which the subsystem is interconnected into the overall
system. The complete model will consist of a model for each of the subsystems together
with a set of relations expressing the interconnection constraints. In this ultimate model,
the interconnection variables should logically be regarded as latent variables. Our result
of section 4.2.3 tells us that, as far as the number of equations is concerned, the ultimate
model will consist of at most g equations, regardless of the number of auxiliary latent
variables and subsystems which had to be introduced in the tearing process.

425 (MA) systems
A special class of (ARMA) systems is given by
w=M(o,6" V)a (MA)

where weR? and aeR? denote the signal and latent variables and M(s,s™ !)e
R?*“[s,s~1] the parameters of the model. Clearly (MA) does not constrain the
latent variables a and hence its external w-behaviour is simply given by B =
im M(a, 0~ 1). We will call such a model an (M A) (Moving Average) system.

It turns out that (MA) systems have a very neat system theoretic characteriza-
tion: they are the controllable linear time invariant complete systems.

4.3 Controllability and observability

4.3.1 (MA) systems are controllable

Recall from section 1.4.5 that we have called the dynamical system X = (Z, R?, B)
controllable if for all wi €B|_ o, and wl*eB|, ., there exists a ¢t >0 and
w:[0,2)—>R? such that wiAj-wA,-o'w3*eB. The following proposition
identifies controllability with (MA) systems and connects it with a special class
of (AR) representations

PROPOSITION 4.3  Let X =(Z, R?, B) be a dynamical system with Be #% Then
the following conditions are equivalent:

(i) X is controllable;

(ii) B = Beompact/closure Here Beompet denotes the elements of B with compact
support, ie., B = {weB|It_,,t, such that w(t)=0 for t¢[t_,,¢,]},
and the closure is, of course, with respect to the topology of pointwise
convergence;

(iii) ImeZ, and M(s,s”')eR?*"[s,s '] such that B =im M(s, 0 !);
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(iv) if R(s, s~ *)eR?*[s, s~ '] is such that B = ker R(s, 0 '), then rank R(4, 1™ ")
will be constant for 0 # AeC.

Proof (Outline): The equivalence (ii)<>(iii) follows from Proposition 4.1C. To
prove the equivalence of (i), (i), and (iv), first verify that if any of the conditions
hold for B and if V(s, s })eR?*[s, s~ '] is unimodular then the corresponding
condition also holds for V(o,0~)B. Now let B = ker R(s,a~*) with R of full
row rank. Then there exist unimodular matrices U(s,s 1)eR?*‘[s,s"!] and
V(s,s )eR?*‘s,s~!] such that URV =[A:0] with A=diag[d,,d,,...,d,]
and 0#d,. Obviously B=V(s,6 ')ker[A(s,s7!):0]. Finally prove that
ker [A(g, ¢~ 1):0] satisfies any of the conditions (i) to (iv) of Proposition 4.3 if
and only if all the d;’s are unimodular. W

Consider X =(Z, R% B) with Be#% Define the controllable part of Z as
zcontrollnble:= (Z, Rq, %controllable) with %controllable:= gcompact/closure (SCC section
4.1.3). Obviously Zeonrollable defines a subsystem of Z (X' = (Z, R, B') is called a
subsystem of T if B’ < B); Teonrellable js in fact the largest controllable subsystem
of Z. It is easy to compute Beorollable gtarting from an (AR) representation of
B =ker R(s, 0~ %). Indeed (cfr. the Smith form) R(s,s~!)eR**‘[s,s~'] may be
written as R(s,s~')=F(s,s Y)R'(s,s™ ) with F(s,s 1)eR?*[s,s!] having
det F#0 and R'(s,s™')eR?*[s,s ] having rank.R'(4,4™') constant for all
0 # A€C. Then Beontrolladle — ker R'(g, 0~ ).

4.3.2 Observable (ARM A) representations
Consider the (ARMA) system
R(o,6"YYyw=M(s,6" V)a

Let T, ={Z R, R%, B,} with B,=ker[R(o,67"): —M(o,067'] the extended
behaviour. Following section 2.1.1, we will call this (ARMA) system observable
if {(w,a),(w,a")eB,}=>{a’ =a"}. It is easy to see that this is equivalent to
requiring {(0, @)eB,}<{a =0}.

PROPOSITION 44 An (ARMA) system is observable iff ranke M(4, A~ ') =d for
all 0 # AeC.

Proof Follows immediately from Lemma 4.1 @

The above proposition implies that in an (MA) representation a will be observ-
able from w iff rank M(4, A" !)=d for all 0# AeC. Such observable (MA)
representations of reachable systems with Be #? always exist. It follows that
the latent variable @ will then be related to w by a= N(s,0 ™ *)w for some
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N(s, s~ )eR**[s,s~']. Clearly NM = I. Schematically we have
N(o,071)

B -
Ji aZ
(controllable) < (®) - a e (RY

M(o,07Y)

It can be shown that we can in fact take M and N to be polynomial matrices
in s (or s™1). The relation between (AR) and (MA) representations of reachable
systems can be schematically expressed by the diagram below.

(R (RY* R/)
° »>® +0
M(o,07Y) B R(o,07")
(controllable)

This diagram is a short exact sequence with im M(s, 0~ !) =ker R(6, 0~ ') =B.

4.3.3 Relation with the Hautus test

Consider the classical state space system ox = Ax + Bu;y = Cx + Du. Here
AeR"*", BeR"™*", CeR**", and DeR?™"™.

First, examine the controllability of 6x = Ax + Bu, viewed as defining the
system X, p =(Z, R" x R™, 8B) with B =ker[Ioc — A: — B]. X 5 defines an (AR)
system in the signal variable

X
H

According to Proposition 4.3, this system is controllable iff rank . [IA — A:B] =n
for all 0# AeC. By Proposition 2.7, this is also equivalent to state point
controllability.

Next, examine the observability of 6x = Ax + Bu; y = Cx + Du viewed as an

(ARMA) system with
g
y

the signal variable and x the latent variable. According to Proposition 4.4, this
system is observable iff

rankc[-l--}f:-é-] =n  for all 0# AeC.
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The conditions: rank [I1 — A: B] = n for controllability and

for observability are known as the Hautus test [21] (actually, Hautus requires
these rank conditions to hold for all AeC—and not just for A # 0—this minor
difference is due to the fact that we are working with time axis T = Z instead of
T =Z.,). In any case, our condition for controllability: rank. R(4, A~ !) constant
for 0 # AeC, and for observability: rank. M(4, 1~ 1) constant for 0 # 1eC can be
viewed as considerable generalizations of these results.

4.4 Autonomous systems

4.4.1 Representations of autonomous systems

Recall that a dynamical system X = (Z, R?, B) is called autonomous if there exists
a map f:B~ > B%" such that {w™ A,;-w’*eB}<={w®* = f(w™)}, in other
words if the past implies the future. These are numerous equivalent characteriza-
tions of autonomous linear time invariant complete systems. We collect a few
in the following proposition.

PrOPOSITION 4.5 Let £ =(Z, RY, B) be a dynamical system with Be.#9. Then
the following conditions are equivalent:

(i) Z is autonomous;
(ii) B is finite dimensional;
(iii) IR(s, s~ )eR?*[s,s~ 1] with det R # 0 such that B =ker R(s, s~ 1);
(iv) 3teZ, and alinear map f:B |, — (R%)* such that {weB} <> {w = f(wl;o.,)}-

Proof Our plan is to run the circle (ii) = (iv) = (i) = (iii) = (ii). (ii)=>(iv): Define
B,:= B|p,. Clearly lim,_ , dim B, = dim B. Hence, if (ii) holds, 3t'eZ, such
that dim B, = dim B. Now the projection ,.:B —»B,. defined by n,.w=w|y
is a surjection—hence, since its domain and codomain have the same finite
dimension, a bijection. This yields (iv). (iv)=>(i) is obvious. (i)=>(iii}: Let B =
ker R(g, ¢~ '), and assume that R is of full now rank over R(s). Let U(s,s™})
and V(s,s”!) be unimodular matrices such that R=U[A:0]V with A=
diag[d,,d,,...,d,] and d;#0. Let B":= V(5,067 ')B. Observe that {B auto-
nomous}<>{{0~A,-w°*eB}<>{w’* =0°*}}. Now deduce from this and the
fact that V(c,67) and V (¢, 6~?) are polynomial operators in the shift, that
{B autonomous}<>{B’ autonomous}. Clearly B’ =ker [A(s, s '):0] is auto-
nomous iff g = g, i.e., A, and hence R = UAV, must have rank g over R(s). Hence
(i) = (iii). To see the implication (iii) = (ii), observe that if A = diag [d,, d,,...,d, ],
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then kerA(s,0 ) =e kerd,(c,06"")@e,kerd, (0,0 )@ - De kerd,(o,07")

with ¢; as in the proof of Lemma 4.1.3 and with kerd,(s, ') viewed as a
subspace of (R)”.. Now examine dimkerd(c,c™?) for d(s,s ) =r st + --- + 1,8
and r e, # 0. Then (see the proof of Lemma 4.1) dimkerd(s, 6" ')=L—1 N

It follows immediately from this proof that if R(s,s™*)eR?*‘[s,s~!] has
0#detR(s,s Y =a,s" + --- + o5, with o;0,#0, then B=kerR(s,67") has
dimB=L-1.

4.5 Inputs and outputs

4.5.1 Structured (AR) systems

For a dynamical system in the class studied in this section, ie., X =(Z, W, x
W,,B) with W, =R, W,=R%, and Be L "% it is possible to express the
structural properties introduced in section 3 and relating the signal variables
w, and w, as being induced by special types of (AR) relations. From
Proposition 4.1 we know that there will always exist polynomial matrices R,, R,
such that the behavioural equations are given in (AR) form by

Rl(”) o 1)wl = RZ(U’ o 1)WZ
Observability: w, will be observable from w, iff 8 admits an (AR) representation
of the following form
Ri(o,0 " Yw,; =0; w,=Rj(o,0” Yw,.

For past observability we will be able to choose R such that it contains only
negative powers of s and for future observability such that it contains only
non-negative powers.

Processing requires a slightly less restrictive (AR) relation: w, processes w, iff
B admits an (AR) relation of the following form:
Ri(0,07)w, =0; R3(0,07")w,=Ri(s,07")w,
with Rl(s,s” ')eR%2*%[s,571], det R} #0. By premultiplication with an uni-
modular matrix, if necessary, this second relation can actually be written as
L L
w,(t) = Zl R wy(t—1t)+ Zl R.w,(t—1t)

= =
Free: w, will be a set of free variables (<> {locally free}<>{B,:= P, B equals
(R*)?}) iff B admits an (AR) representation with R,, R, satisfying

imp,R,(s,s7") S imgyRy(s,57 1)

or equivalently, since we can always take [R;: — R,] to have full row rank,
with an R, of full row rank.
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We will not prove these claims explicitly, but concentrate on the following
proposition which treats the i/o case. Recall that in an i/o system the output
variable processes the input variable, which itself must be locally free.

PROPOSITION 4.6 Let £ =(Z, W, x W,,B) be a dynamical system with W, =
R4, W, = R%, and Be ¥ "% Then X defines an i/o system with w, as input and
w, as output iff B admits a representation as

Ry(o,0” 1)”’2 =R,(0,06~ 1)”’1

with Ry(s,s™")eR% % [s,s7'], Ry(s,s }eR%*%[s,57!], and detR,#0. It
defines a non-anticipating i/o system if, in addition, R; !(s,s !)R,(s,s V)€
R%*41(s)

Proof B admits an (AR) representation with [R,: — R,] of full row rank. We
will first prove that w, will be free iff R, is of full row rank. That this is sufficient
follows from Lemma 4.1. That it is also necessary may be seen as follows. If
R, is not of full row rank then there exists f(s,s !)eR'*“[s,s™!] such that
fR; =0 and fR; #0. This yields {(w,,w,)eB}={f(0,6" )R (0,6~ )w, =0},
contradicting that w, is free. Next, we will prove that w, processes w, iff
ker "9R,(s,5 1) = 0. Now {(0, w,)eB}<>{w,eker R,(a,6~ ')} and processing is
easily seen to be equivalent to requiring {(0, w,)eB and w, =0}<>{w, =0}.In
other words, ker R,(0, 0 ™) must define the behaviour of an autonomous system.
Now apply Proposition 4.5. This yields the first part of the proposition. To see the
non-anticipation condition, observe that if R, is square and det R, # 0, we can
express w,(t) in terms of w, and w,(t — 1),...,w,(t — L), as given in the processing
section. Now use this expression to verify that {I > 0} <> {{w,eB,,w,(t) =0for ¢
<0}}={3w,eB, with w,(t) =0 for t <0 such that {(w;,w,)eB}}. B

4.5.2 Inputs and outputs always exist!

THEOREM 4.1 Consider X =(Z,R%,B) with BeL!. Then there exists a
component-wise partition of R? into R? = R™ x RP such that ¥ =(Z,R™*?,B)isa
non-anticipating input/output structure, in other words, such that B is represented
by

P(o,6™ )y =0Q(0,0" )u W=[;] (i/0)
with P(s, s )eR*?[s,s71],0(s,s " HeR?*™[s,s " '],det P # 0, and
P~ Y(s,571)Q(s, s~ 1eR"(s).

With a componentwise partition of R? we mean the following. Let w=
col[w!,w?,...,w7] be a vector in R? with w'eR. Partition ¢:= {1,2,...,4} into
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two disjoint sets,q, = {a,,4,,...,4a,} and g, = {by,b,,...,b,},suchthat g, ng, =
@ and q,Uq, =q. Now consider the vectors w,:=col [w*,w™,...,w*"] and
w,:=col [w®, wb2, ... wP?]. The partition w ~ col [w,, w,] is what we mean by a
componentwise partition of w. Thus Theorem 4.1 states that separation of w into
non-anticipating input and output variables is possible by considering the signal
not only in the way a mathematician looks upon R? as an abstract g-dimensional
real vector space, but also in the manner an engineer or an econometrician looks
upon a vector: as a finite sequence of real numbers, all having a concrete
interpretation.

Proof Let® = ker R(a, 0~ ') with R of full row rank. It is well-known that there
exists an unimodular matrix U(s,s™!) such that UR is row proper, thatis R’ =
UR is of the form R'(s,s ') = R s* + --- with R, eR?*? of full row rank. Now let
neR?*? be a permutation matrix such that R,n=[R;R,] has detR, #0.
Define

to be a partition of w with w, e R?™9 and w, e R? and verify that R'(s, s~ !)n satisfies
the conditions required by Proposition 4.6 for it to define a non-anticipating i/0
system. H

4.6 The frequency response and the transfer function

4.6.1 The frequency response

In this section it will be convenient to consider complex systems X = (Z, C%, B)
obtained, if necessary, from £ = (Z, R, B) by complexification: {weB}:<>{both
the real and complex part of w belong to B}.

Let T = (Z,CY% B) be a linear time invariant system. Observe that every linear
time invariant systems X' = (Z, C% B’) with B’ one-dimensional must necessarily
be of the form B’ = {aaf,|aeC} for some 0 # aeC? and f, the exponential time
series, parametrized by peC defined by f,:Z - C, f,(t):= e*'. Now examine all
subsystems X' =(Z,C% %) of £=(Z,C%B) with B’ one-dimensional. This
associates with © a map from peC to the set A,cC? defined by
{aeA,}:<{af,eB}. It is casily seen that A, is a linear subspace of C% Let
%( ~,C9 denote the set of all linear subspaces of C?. We will call the mapping

F:C - %(—,CYdefined by p oA » the frequency response of Z.If A, # 0, then we

will call p a characteristic frequency of X and A, the associated characteristic
amplitudes.
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Now consider Z = (Z, C%, B) with Be.Z? (with £ defined over C, of course).
Let B = ker R(c, 6~ ') with R(s, s~ )eR?*“[s,s ™ 1]. Then the frequency response is
given by F:peC— A, = ker R(e?, e ?)e%(—,C?. This implies that there exist a
constant, m, 0 < m < g, called the normal dimension of A, such that dim A, =m
for all except possibly a finite number of p’s, where dim A, > m. We will call these
the singular points of the frequency response.

Two special cases are worth noting:

1. The normal dimension m=0. This corresponds to the case that the system is
autonomous.

2. The frequency response contains no singular points. Using Proposition 4.3(iv), we
immediately see that this case corresponds to controllable systems. Let £ = (Z, C%, B), with
Be 4, be controllable. Let B =im M(s,6~ 1) with M(s,s~!)eR?*™[s,s']. Then the
frequency response is given by F:peC+— A, =im M(e?,e™*). Note that if M(s,s ") is full
column rank, then the number of latent variables in (MA) equals the normal dimension of
the frequency response.

The frequency response is, of course, uniquely defined from the behaviour,
but the converse is, unfortunately, not always the case, not even when Be ¥4
In order to see this, observe that the systems B, = ker p,(¢) with p,(s), p,(s)eR[s]
have already the same frequency response if and only if p, and p, have the
same non-zero roots, disregarding their multiplicity. For controllable systems,
however, the frequency response uniquely determines the system. More precisely:

ProPOSITION 4.7 Consider Z,(Z,C% B,) and X, =(Z,C%, B,) with B,, B, ..
Assume that Z, is controllable. Then X, = X, if and only if they have the same
frequency response.

Proof Use the Smith form for B,. B

Consider the linear time invariant system Z = (Z, C¢, B) with frequency response A,
This defines a (set theoretic) sub-bundle of the trivial bundle n:C x C?—C, with
n{p, a):= p, defined by {(p,a)eC x C?|acA,}. Hence each fibre is a vector space. If Be ¥*
then this sub-bundle defines a vector bundle (implying that the fibres A, all have the
same dimension) if and only if B is controllable. The study of controllable systems
consequently reduces to the study of (algebraic) vector bundles over C (or over the
Riemann sphere for that matter). For general systems Be.#? one ought to introduce
sheaves.

4.6.2 The transfer function
Consider the i/o system Z = (Z, R™ x R?, B), Be.#™*?, with representation (i/0)
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as in Theorem 4.1. The matrix of rational functions G(s)e R *"(s) defined by
G(s) = (P(s,s™1)) ' Q(s,57 1) (TF)

is called the transfer function of (i/0). If G(s)eR%*™(s), we will call the transfer
function proper and if G(s)e R "(s), we will call it anti-proper. Theorem 4.1 allows
us to conclude that any Be %7 always admits a (componentwise) i/o represent-
ation with a proper transfer function. Note that we have not incorporated non-
anticipation in the notion of input and output, nor is it essential for our definition
of transfer function. We will illustrate the convenience of our point of view by
means of an example in section 4.6.3.
Consider again the system (i/o). Now look for responses

wi=[.f‘.i}_;93, i=1,2,...,m,

i

for which the inputs are the following impulses:

u(t) = e, fort=0
710 fort#0

with ;e R™ the standard basis vectors: e; = col [0,...,0,1,0,...,0] with the 1 in
the ith position. Since u is free, we know that such responses w; indeed exist. In
fact, there are many such w,s. However, since y processes u, there is precisely one
for which w(t) vanishes for ¢ sufficiently small. We will call this w; the right-sided
ith channel impulse response and the mapping H:Z—R’*"™ defined by
Ht):=[y,(6)y,(t)--- yu(t)] the right-sided impulse response matrix of the system.
The matrices ..., H(—t),..., H(0), H(1),...,H(t),... are sometimes called the
Markov parameters of the system. It follows that to any ue(R™?, with u(t) = Ofor ¢t
sufficiently small, there corresponds exactly one ye(R?)* such that

oe

and such that y(t) =0 for ¢t sufficiently small. This y is, in fact, given by the
convolution

0= 3 He—twle)

=—-w

The transfer function and the right-sided impulse response are related by the
z-transform. Indeed, for 0 # zeC and |z| sufficiently small there holds

Gl2) = +z°° H(t)z™

t=-—o
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4.6.3 A smoother

Consider the following simple smoothing algorithm:

T

Tl ,:Z_, wi(t+1t) (Sm)

wy(t) =

where TeZ,. (2T =the smoothing window), is a fixed integer. This system is formally
defined as T = (Z, R2,B) with B = {w,, w,):Z — R?|(Sm) is satisfied for all teZ}. An (AR)
polynomial representing this system is

R(s,s Y=[sT+ - s+14s 1+ +s T =2T-1)]

and an (MA) polynomial for it is

This system is controllable. It is in input/output form with w, the input variable and w, the
output variable. Its transfer function, which is neither proper nor anti-proper, is

T+ +s+1l+s 44577

2T +1

which equals
1 s2T+ 1_ 1
2T +1 sT(s—1)

However, for the system under consideration, it is possible to reverse the roles of
the input and the output. Viewing w, as input variable and w, as output variable yields
the right-sided impulse response.

t=0
1
w,— ...0 0 0 1 0 0 0.
1 1 1 1 1
Wy — ...0 0-.-
2T +1 2T +1 2T+1 2T+1 2T +1

while viewing it with w, as input variable and w, as output variable yields the proper
transfer function

2T +1
STH s+l 4+s 45T
and the right-sided impulse response
tl——O
w,= |0 0 0.0QT+1)=Q2T+1) 0--0 2T+1)~Q2T+1) 0--0 2T+ —Q2T+1) 0
wy— 01 0.0 0 0 00 0 0 00 0 0 0.
R N e R e

(T — 1)zeros (2T — l)zeros (2T — 1)zeros
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This example illustrates that proper transfer function representations are not always as
fundamental as they are made out to be. Indeed, the above system allows an interpretation
with both a proper and a non-proper transfer function. It is the latter one which has a
natural interpretation.

4.64 The transfer function determines the controllable part of a system

We have seen in section 4.6.1 that the frequency response does not in general
determine the behaviour of an uncontrollable system uniquely: some of the fine
structure of the behaviour cannot quite be represented by the one-dimensional
subsystems defining the frequency response. A similar situation occurs with the
transfer function.

Consider £ =(Z,R%B) with Be L% It is easy to see that Teomreliable =
(Z, R4, Beontrollable) g 3 controllable linear time invariant complete system. Its
frequency response Feomtrol=ble s related to the frequency response F of I as
follows. Let F:p— A, and m be the normal dimension of A,,. Denote by ¥(m,C9)
the set of all m- d1mens1ona1 subspaces of C% %(m,CY) is a compact manifold,
called a Grassmann manifold. Define F™%, the regularization of F, as the map
from C to %(m, C9), as F**%(p):= lim,,,;. ,F(p"). This limit always exists. Of course,

p'#p

F$(p) = F(p) for the p’s where F is not singular, but at singular points
p of F, F*8(p) will be strictly contained in F(p). We state without proof:

PRroOPOSITION 4.8 Let T =(Z,C%B) with Be.¥? have frequency response F.
Then Teontrolisble.— (7, C9, Beortroladle) hag frequency response F'5.

It immediately follows that X is controllable iff F = F'°s. '

Now consider two (i/o) systems X, =(Z,R™ x R?,'B)), i=1,2, described
respectively, by

Py(o,06" Yy =0Q,(0,0 " Ju

and
Pz(O',O'- l)y = Qz(a,a'l)u

Let G, = P{!Q, and G, = P; 'Q, denote the transfer functions of these systems.
Then {Z, =Z,}={G, = G,}, but the converse is not always true. In fact:

PROPOSITION 49 { GI(S) GZ(S)} - {gcomrollnble %controllable}

Proof Let B be the behaviour of the i/o system described by P(o, 6~ ')y =
Q(0,0~ Yu. Then (see section 4.3.1) there exists a F(s,s !)eRP*?[s,s~!] such
that detF#0, [P:—Q]=F[P:—Q’], and ®Beontrelable — ker[P(o.07":
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—Q'(s,67']. Clearly (P)"'!Q'=G=P~'Q. Apply this to (P,,Q,) and to
(P,,Q,). The resuit follows. W

There is an obvious relationship between the transfer function and the
frequency response of a controllable system (i/o). Let F:C— %(m,C% be its
frequency response, and G(s)e R "(s) be its transfer function. Now substitute the
indeterminate s by the complex number 0 # AeC. Iflim;. , ; G(A') = oo then we will
call 1a pole of G. Now F(p) is an m-dimensional subspace of C% If e? is not a pole of
G then F(p) is the graph in C? =~ C™ x CP of the linear map from C™ to C” given by
ar G(ef)a.

4.6.5 On cancelling common factors

Ever since transfer functions were introduced in control, people have felt uneasy about the
question: is it allowed to cancel common factors in a transfer function? Our response is a very
diplomatic yes and no. Indeed, if we look at our definition of the transfer then the answer is
yes—by definition: in rational functions and matrices of rational functions, common
factors can always be cancelled. However, if we look at the behaviour or the frequency
response of a system, the answer must be no. This ambiguity is not an issue in controllable
systems since in controllable systems there are no common factors. Let us explain this double
talk.

Consider  P,(s,s )eR**1[5,s'] and P,(s,s HeR"™*7[5,5s71]. L(s,s™ e
R**9[s,s '] will be called a common left factor of P, and P, if there exist
Pi(s,s™ HeR?*"'[s,s7 '] and Py(s,s~')eR?*%2[s,s~ '] such that P, = LP, and P, = LP;
we will call the common left factor L trivial if it is unimodular; P, and P, are called left
coprime if every common left factor is trivial. Common right factors and right coprimeness
are defined analogously.

Now consider the system (i/0): P(g,6 ™ )y = Q(6,0 ™~ ")u with det P # 0. Assume that P
and Q have L as acommon left factor, P = LP’,Q = LQ'. If this common left factor is trivial,
then the input/output systems (i/o):P(o,p ')y =Q(s,6 )Ju and (i/oy:P(o,6 ')y =
Q'(0,6 ™~ )u have the same behaviour, hence the same frequency response and the same
transfer function. If this commeon left factor is not trivial then (i/0) and (i/o) have the same
transfer function, may or may not have the same frequency response, but they definitely do
not have the same behaviour. However, the controllable part of their behaviour is the
same. If P and Q are left coprime, then (i/o) and (i/o) always have the same behaviour as
well as the same transfer function and frequency response.

4.6.6 Factoring the transfer function

Let G(s)eR**™s). Then G(s) admits a left factorization as G(s)=
P~ s, s H0(s,s7Y)  with  P(s,s )eR”’[s,s" '], Q(s,s 1eR"*"[s,s7!],
det P = 0. Among these left factorizations there exists one such that P and Q are
left coprime. Similarly G(s) admits a right factorization as G(s)=
M(s,s " Y)N~Y(s,s" 1) with M(s,s DeR**"[s,s '], N(s,s )eR™"[s,s" 1],
det N # 0. Among these right factorizations there exists one such that M and N
are right coprime.
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These factorizations admit natural system theoretic interpretations. A left
factorization yields an (AR) representation

P(o,0™)y=Q(c,0” ")

of an (i/o) system having transfer function G. All systems resulting from such a
factorization have the same controllable part. If the factorization is left coprime
then this resulting system is controllable. Consequently the left coprime
factorization results in the smallest behaviour yielding the desired transfer
function: it introduces no responses which are not coded already in the transfer
function. Left factorizations which are not coprime introduce superfluous modes
in the behaviour.
A right factorization yields an (MA) representation

u=N(s, 67 ')a
y=M(o,0"")a

of an (i/o) system having transfer function G. Since it is an (MA) system, this model
is always controllable. If the factorization is right coprime, then this system has
the property that the latent variable a is observable from

]

Hence right factorizations which are not coprime introduce hidden modes in the
behaviour of the latent variables.

4.7 State models

4.7.1 Three evolution laws

In section 1 we have seen that state models will be described by first order
difference equations. We will now study finite-dimensional linear time invariant
complete state systems. This leads to three model classes. Viewed as equations
in the state and the signal, the first is of the (AR) type, the second is of the (MA)
type, while the third is of the input/output type.

Let us consider a linear evolution law X, = (Z, R4, R", ¢). Hence 4 is a linear
subspace of R" x R? x R". Expressing 0 as the kernel of a matrix [F:G:E]:R"
x R? x R"— R/ shows that we are actually looking at an (ARMA) system of the

type
Eox+ Fx+Gw=0 (S)
in the variable xeR", the state, and the external variable we R?. (S) relates the state

trajectory x:Z — R" and the signal trajectory w:Z — R% The model parameters
consist of the matrices EeR’/*", FeR’*", and GeR’*% The characteristic feature
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of (S) is that, as a lag relation, it is first order in x and zeroth order in w. We will
first show that (S) defines exactly the class of linear time invariant complete state
models. We will call (S) a state model (in the category of systems under
consideration).

PRrOPOSITION 4.10 Consider X, =(Z,R%, R", B,). Then {B,e " satisfies the
axiom of state}<>{3f€Z, and matrices E, FeR’*", GeR/* such that B, =
ker[G:Eo + F]}; [G:Eo + F] is here viewed as a map from (R? x R"? into
(R7)%. In fact, we can always take 0 <f < q +n.

Proof (<) linearity, shift invariance, and closeness follow from Proposi-
tion 4.2. Now the restriction col [w, x]eker [G: Ec + F] is identical to imposing
the evolution law 0 =ker[F:G:E]. The state property follows. (=) Define
0= {(a, w, b)eR" x R? x R"|3(w, x)eB, such that x(0) = a, w(0) =w and x(1)=
b}. Since 0 is linear there exist matrices E, F, G such that d =ker[F:G:E:.].
Now the behaviour induced by this evolution law equals ker [G:6E + F]. By
Theorem 1.1 and the fact that B, #?*" implies that it is complete, we conclude
that B, =ker[G:Ec + F].

We will now indicate why we can always take f < g+ n. Let X*':= {xeR"|3
(w,x)eB, such that x(0)=x}. Let 0 be as defined in (=) and let
&= {(a, w,b)|a,be X" and (a,w,b)ed}. Denote n'=dim X*". Then clearly
dim & >n’ and hence we need to introduce at most g + n’ linear equations on
R x R? x R in order to express ¢ as a kernel. Adding another n — n’ equations in
order to express that xe X! yields the bound f <q+n'+n—n'=q+n. R

Let & be a linear subspace of R* x R" having P, & = R™ where P;:(x,,x;)—
x,. Then & can always be written as & = {(x,, x,)|x,€Lx; + &,} for some
matrix LeR" "™ and a subspace &, of R"2. Now apply this to d =ker [F:G:E].
And assume first that (S) is state trim. It follows that (S) may be written as

ox A
(2
with AeR"*", CeR?*", and £ a subspace of R"*% Of course, ¥ can be
written as the image of a matrix, say

Note that this representation also holds for systems which are not state trim,
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simply by making sure that 4 and B map into X*". This shows that B, can
always be expressed as

0x=;1'x+§v

~ - D
w=Cx+ Dy (DY)

We will call this a model with driving variables. In (DV) the variables are weR?,
xeR" and veR™, w:Z — R? is the external signal, x:Z — R" is the (internal) state
trajectory, and »:Z —R™ is the (internal) driving input. The matrices AeR"*",
BeR™™ CeR?™™ and DeR‘*™ are the parameter matrices of the model.
In (DV) the driving input should be regarded as a set of free but latent variables
which generate, together with the initial conditions, the state trajectory and the
external signal.

Specializing (S) to the case in which the driving variable is a component of
the signal leads, finally, to the long-awaited ubiquitous system

6x=Ax+ Bu I:u]
w=|--

y=Cx+Du y (i/s/o)

This model relates the variables xeR", ueR™, and yeRP; x:Z —» R" is the (internat)
state trajectory, #:Z — R™ is the input trajectory, and y:Z — RP? is the output
trajectory. Together these latter two make up the external signal trajectory

W= [g]:l—»R" =Rr+m,
y

The matrices AeR"™", BeR"™™, CeRF*", and DeR’*™ are the
parameter matrices of this model, which we call an input/state/output system.

4.7.2 The external behaviour of (S)

The next proposition shows that (S) gives us one more way of representing
elements of #*.

PROPOSITION 4.11 Let B be the external behaviour inducted by (S), ie,
B =P, ,ker[G:Es + F] with P,:R?x R"—R? the natural projection. Then
Be s Conversely, if Be#9 then there exists feZ, and matrices
E, F, GeR'*¢ such that B is the external behaviour induced by (S).

Proof The first part is an immediate consequence of section 4.2.3. To show
the converse, assume Be % Then by Proposition 4.2 there exists a R(s)e
R?*9[s] such that B = ker R(c). Let R(s)= Ry s+ Ry _;s""' + .-+ R,. Now
consider the following system of equations (suggested by defining as inefficient-
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state x:= col [w, ow,...,c"w]):

('0 0 - 0 0] -1 0 O 07 ]
I 0 .. 00 o I 0 - 0 0
oI5 - 00 o o I . 0 0
. .o |ox—| . : ! - |xH w=0
00 .- 10 o 0 o0 - 1I 0
0 0 -~ 0 0l L R, R, R, - R, | 0_]

and verify that the external behaviour is indeed ker R(c). B

It follows immediately that every Be ¥ also admits a representation (DV).
We will treat the relation with (i/s/o) later on. In the next two sections we will
derive some results which will allow us to check when the state systems (8S),
(DV), or (i/s/o) are minimal state space realizations of their external behaviour.

4.7.3 Trimness

We will first discuss the computation of the effective state space X*f of the model
(S). Recall that X*f:= {xeR"|3(w, x) satisfying (S) such that x(0) = x}. Consider
the following recursive algorithms involving subspaces of the state space & = R".

R =EYFR +imG) R =4
Riy1=F YER; +imG) Ry =4

(E™' and F~! are inverse images:{E”!¥:={a|Eac¥}). Clearly these
linear  subspaces satisfy X=R; 2R/ 2---2&' 2~ and X =
Ry 2R, 2--- 2R, =-- The significance of these spaces will be explained in
the proof of the next proposition. From the above inclusion it follows that the
limits £ :=lim, , , #; and #:=1im, , #, exist and are reached in at most n
steps.

PROPOSITION 4.12  X*f = #_ A&} . Consequently, the system (S) is state trim iff
imEcimF+imGandimF<E+imG

Proof

Clearly Riy ={aeR"| 3IbeR;,weR? such that Ea + Fb+ Gw
=0}.

Hence R ={x,eR" 3, fczr t=0,1,...,k,w,eR? and x,,,eR"
such that Ex, ., + Fx, + Gw,=0}.

This implies R} ={xoeR"| 3, for >0, w,eR, x,,,eR™, such that
Ex, .y + Fx,+ Gw,=0}.

Similarly Riry ={beR"| 3IbeA,, weR? such that Ea + Fb+ Gw

=0},
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Hence R ={xoeR" 3 for t=0,1,...,k,w_,_,eR? and
Xx_,-1€R" such that Ex_,_,+Fx_,
+Gw_,=0}.

This implies & = {x,eR" 3,fort <0, w,eR?, x,eR"such that Ex,, ,

+ Fx, + Gw, =0}.
Consequently R NR; ={x,eR"| 3I(w,x) such that Eow+ Fx+Gw=0
and x(0)=x,} = X" m

It is easy to see when (DV) or (i/s/0) are trim. We state the result formally but
without proof.

PROPOSITION 4.13  The system (DV) s state trim iff AR” + im B = R". The system
(i/s/o) is state trim iff AR" +im B=R".

4.74 Past- and future-induced

In order to discuss the question when the state in (S), (DV), or (i/s/o) is past
or future induced, it will be convenient to introduce the notion of an observable
pair of matrices. A pair of matrices (M, N), MeR"*", NeRP*" is said to be
an observable pair if {x(t + 1) = Mx(t); Nx(f) =0 for teZ ,}={x(0)= 0}. This
is equivalent to requiring that the largest M-invariant subspace contained in
ker N is zero. Equivalently, as a matrix test, that rank col [N, NM, ..., NM"~ N=
0. Stated in yet another way:

rankc[!é:-y ] =n for all ieC.

Specializing the notion of past and future induced (see section 2) to linear
systems shows that the state in a linear state space system will be past induced
iff {(w, x)eB,, w(t) =0 for t <0} =>{x(0) =0} and future induced iff {(w,x)eB,,
w(t) = 0 for t > 0} = {x(0) = 0}. In order to verify if these conditions are satisfied,
consider the following recursions:

Vi =E'FYT  vi=a

Y1 =F Ev, Vo=
Clearly these linear subspaces satisfy # =¥'§ 2 ¥} > .29} >...and ' =
Yo 2¥1 2+ 2% = The significance of these spaces will be explained in
the proof of the next proposition. From the above inclusions it follows that the
limits ¥ :=lim,,, ¥ and ¥ ;:=lim,__ ¥, exist and are reached in
at most n steps.

PROPOSITION 4.14  Assume that (S) is state trim. Then the state in (S) is past
induced iff ¥°;, = 0 and future induced iff " = 0.
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Proof
Clearly ¥}, ={aeR"  3Ibe¥7} such that Ea+ Fb=0}
Hence Vi ={xeR" 3, fort=0,1,...,k x, €R" such that Ex,,,

+ Fx, =0}
This implies ¥'; = {x,eR"| 3, fort2>0, x,,, such that Ex,,, + Fx,= 0}
The result for ¥" follows, and for ¥" it is proven analogously. W

Recall that a state behaviour B, is called deterministic if the value of the state
and the signal at time ¢ uniquely determine the state at time ¢ + 1. For linear
systems this requires {(w, x)eB,, w(0) =0, x(0) =0} ={x(1)= 0}. Clearly if (S)
is state trim, then it will be deterministic iff ker E=0. The system (DV) is
deterministic iff ker D < ker B. The system (i/s/0) is always deterministic.

It is easy to see that for (S) there holds: {the state is past and future induced}<>
{the state is future induced and deterministic}.

4.7.5 Minimality and reduction

We will now discuss the problem of deducing a minimal state space models (S)
representing an external behaviour Be £ However, before turning to this
problem, it is instructive to examine first how much can be deduced in the
linear case from the abstract constructions in section 2.

Let £ =(T, W; B) be the external behaviour of the linear state system X, =
(T, W, X,B,). Then, as we have seen, X, will be a minimal state representation
if and only if X, is state trim and if the state is both past and future induced.

If =, is not minimal then a minimal state representation can be constructed
as follows. Compute X:={xeX|3(w,x)eB, such that x(0)=x}, ¥'*:=
{xeX|3(w, x)eB, such that x(0) = x and w(t)=0 for t > 0}, and ¥ "= {xeX|3
(w, x)eB, such that x(0) = x and w(t) =0 for t <0}. Clearly ¥~ = X off ¥+
Xt Now define X™4:= X (mod (¥~ + ¥ *)), Bi*d:= {(w, £): T > W x X"|3x
such that (w, x)eB, and &(t) = x(t)(mod (¥"~ + ¥"*))forall te T}. It can be shown
that the reduced system Z™¢:= (T, W, X", B;°%)is a linear state space represent-
ation of X, indeed a minimal one.

All minimal linear state representations can be constructed from one as
follows. Let £, =(T, W, X,B,) be a minimal state space representation of its
own external behaviour . Now take any other linear space X', isomorphic to

X in the sense that there exist a linear bijection X ,—i:l X' ThenX,=(T, W, X', B)),
s

with B, = {(w, x'):T>W x X’| (w, S~ 'ox')e®B,}, is also a minimal lincar state
representation of ¥ and all minimal linear state representations are obtained this
way. This fact, together with the above reduction procedure, shows that every
linear state representation X, = (T, W, X, B,) is related to a minimal linear state
representation I = (T, W, X™", B™") of the same external behaviour as
follows. There exist a surjective linear map S from a linear subspace X" of X to
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X™ such that {(w, x')eB,} +>{3x such that (w, x)eB,, x(t1)e X’ for all te T, and
x' = Sox}. If there exists a subspace X, such that X = X @ X, then S may be
taken to be defined on all of X. If Z, is also minimal then S must be a bijection
from X into X",

This allows the following important conclusion. If a linear system X =
(T, W, ®B) has a linear state representation X, = (T, W, X, B,) with dim X < oo,
then it is a minimal state representation iff dim X is as small as possible. Hence in
this case we can interpret minimality (which in Section 2 was defined in a purely set
theoretic sense) simply as ‘having a state space of minimal possible dimension’.

When a state space system is a minimal state representation of its own external
behaviour, we will simply call it minimal. Let us now examine when (S), (DV), or
(i/s/0) are minimal. The results obtained in sections 4.7.3 and 4.7.4 allow us to be
very concrete about this.

THEOREM 4.2
(1) (S) is minimal <

(i) mEcimF+imG (trim)
(i) mF<imE+imG
(iii) kerE=0 (determinism)
(iv) ¥ £=0 (future induced)

(2) (DV) is minimal<

(i) AR"+imB=R" (¢rim)
(ii) kerD j= l~(c1; B (determinism)
(iii) (A — B*C,C*) is an observable pair (future induced)

Here B* is any matrix such that B*D = B and C* = PC, where P denotes the
natural projection P:R?— R%mod im D).
(3) (i/s/0) is minimal<>

(i) AR"+imB=R" (trim)
(ii) (4, C) is an observable pair (future induced)

Proof From section 2 we know that {minimal}<{trim, past and future
induced}. We know from section 4.7.5 that this is equivalent to {trim determin-
istic, and future induced}. The results of sections 4.7.4 and 4.7.5 show that we need
only prove that {(4 — B*C, C*)is an observable pair} <> {thestate in (DV)is future
induced}. Note that, since ker D < ker B, there indeed exists a B* such that the
diagram =

B
Rm

NP

R?

Rn
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commutes. Now assume that (w, x, v) satisfies (DV) this implies B*w=B*Cx + By,
hence ox =(A — B*C)x + B*w; w=Cx+ Dv. Hence (w,x) belongs to the
behaviour of (DV) and w(t) 0 for ¢ = 0 iff, for some ve(R™)?+, there holds for all
t20:x(t+1)=(A— B”C)x(t) 0= Cx(t) + Dw(t) Equivalently iff for t>0
there holds x(t + 1) = (4 — B*C)x(t), C*x(t) = 0. This, however, implies x(0) =
0iff (4* — B*C, C*)is observable. We conclude that this observability condition is
indeed equivalent to future induced. W

4.8 Input/state/output systems

4.8.1 Just as the state is always there, so is the input!

THEOREM 4.3  Consider T = (Z, R?, B) with Be L?. Then there exists a compo-
nentwise partition of R? into R?=R™ x R?, an integer neZ,, and matrices
AeR™" BeR"*"™ CeRP*", and DeR?*™ such that the input/state/output system

ox=Ax+ Bu u .
w=Cx+ Du w=|:y:| (i/s/0)

has B as its external behaviour.

Proof Be#%implies that it is an (AR) system, which implies, by Proposition 4.9,
that it has a representation (S) or, equivalently, (DV). Consequently, it has a
minimal representation (DV) and hence a deterministic one, that is, one
with ker D = ker B. On the other hand, we can always assume, as far as the
behaviour B, of (DV) is concerned, that

In conclusion, there exists a representation (DV) with ker D = 0. Now reorder the
components of w, if need be, and partition the vector w such that the equations for
(DV) look like
ox = Ax + By, W= élx + 51v, Wy = 62x + 52v
with D, invertible. This yields
ox = (Z - Eﬁl_ 161)x + 551_ lwl, W2 = (62 - 5261_ lél)x + 5251_1W1

Now observe that the equation w, = C,x + D, v implies that w, is free. Next, call
wy=u,w, =y, and conclude that the 1nput/state/output system (1/s/o) with 4 =
A-BD;'C,; B=BD;!, c=C,—D,D;'C,, and D=D,D7*, has the same
behaviour B, as (DV). A



258 Models for Dynamics—J. C. Willems

The system i/s/o is the starting point of many studies in linear system theory.
What we have shown here is that every linear time invariant complete behaviour
may be written in this form. Just as the state is always there, perhaps and usually
implicitly, so is the input and so is the output perhaps and sometimes implicitly:
all we need to do is choose appropriately the components of the signal vector w!

We view the above theorem as important for dynamic simulations. In constructing a
model (for example of an electrical or a mechanical system) by tearing and zooming in
on subsystems, one will obtain a difference or a differential equation with latent variables
consisting of difference or differential equations perhaps of high order, coupled with
static constraints (these are usually called algebraic constraints). When attempting to
perform a dynamic simulation we need to know which signals need to be selected on the
basis of considerations outside of the model, and which initial conditions should be
provided. If we assume that the system is linear time invariant and complete and if, for
simplicity, we consider the difference equation case, then we have given a procedure of
how to approach this. The model with latent variables will be an (ARMA) model.
Eliminating the latent variables will yield an (AR) model, which by Theorem 4.3 we can
describe in (i/s/o) form. This model is eminently suited for simulation: u =w, is to be
chosen, x(0) should be provided, y = w, will be computed. Note that it is important to
use minimal systems. Otherwise, the initial states outside X* will introduce ghost
solutions: elements not present in B®*. Further, if ¥~ # 0, there are initial states yielding
state trajectories such that w(f) =0 for ¢t > 0. We call these phantom trajectories. The
nature and the numerical behaviour of these trajectories are not inherent in B°*.
Further, the initial state may be deduced uniquely from w(t), t <0, iff ¥~ =0. This will
yield a procedure for choosing x(0). Finally, if ¥ * + %"~ #0, then the unnecessary high
dimension of the state space may increase the computational complexity of the simulation.

4.8.2 Controllability

A pair of matrices (M, N), MeR"*", NeR"*" is said to be a controllable pair
if for all x’, x"eR" there exists a teZ, and ug,u,,...,u,_,€R" such that
Xg+1 = Mx, + Nu, and x, = x', yield x, = x". This is equivalent to requiring that
the smallest M-invariant subspace containing im N is R". Equivalently, as a
matrix test, that rank [N, MN,...,M""!N]=n. Stated in yet another way:
rank [IA — M:N] =n for all ieC.

The following result is an immediate consequence of Propositions 1.3 and 2.7.

PROPOSITION 4.15  The external behaviour of (DV) is controllable if (4, B) is a
controllable pair. The external behaviour of (i/s/0) is controllable if (4, B) is a
controllable pair. If (DV) or (i/s/0) is controllable if (4, B) is a controllable pair. If
(DV) or (i/s/o) are minimal, then these ifs become iffs.

Note, as stated in Theorem 4.2 that minimality of (i/s/0) does not require
controliability of (4, B). It is worth emphasizing this because it is contrary to the
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dogma: {minimality}<>{controllability and observability} which has been ob-
tained for the classical input/output map type systems [9]. Since our framework
incorporates autonomous systems very comfortably, the lack of controllability
should come as no surprise: autonomous systems are unaffected by the external
world and can hence not have free inputs. However, for controllable systems we
can indeed prove:

PROPOSITION 4.16  If the external behaviour of (i/s/0) is controllable, then (i/s/o)
is minimal iff (4, B) is controllable and (4, C) is observable.

Proof (only if): follows from Theorem 4.2 and the above proposition. (if):
Observe that {(4,B) controllable}={im[IA—A:B]=R" for all
4eC}={lim[A:B] = R"}<>{trim}. Now apply Theorem4.2 W

4.8.3 Integer invariants

We have seen that we can look upon behaviours Be 27 as being parametrized in many
different ways: as (AR) systems by polynomial matrices R(s, s~ '); as (i/o) systems by pairs
of polynomial matrices (P(s,s™!), Q(s,s~!)); as state systems (S) by triples of matrices
(E, F, G); as systems with driving variables (DV) or as (i/s/0) systems by quadruples of
matrices (Z, §, C, 5) or (A, B, C, D), respectively. Such systems will hence be characterized
on the one hand by some integers: the degrees of the polynomial matrices and the
size of the matrices, and on the other hand by real numbers: the coefficients of the matrix
polynomials or the entries of the matrices. We will refer to these integers, somewhat
informally, as integer invariants. They determine the structure of the system whereas the
coefficients or the entries determine the parameters. The study of these integer invariants
is a rich and appealing subject. We will limit our attention to a few highlights which
we will state without proof.

Consider (Z,R%,B) with Be 9 Recall that there will exist a geZ, and an
R(s,s )eR?™[s,s~!] such that B =ker R(s,07"). Let g,;, be the minimal such g.
Further, there exists a reZ, and a matrix MeR ™7 such that M+®B = (R")* (i.e. M filters
free variables out of w). Let r™** be the maximal such r. Finally, letf,;, be the minimal fsuch
that a model (S) exists having external behaviour B, and let m,,;, be the minimal m such
that a model (DV) exists having external behaviour B. There holds:

max

Imin = 4T
= 4 — Myin
= g — the number of input variables in any representation of B in the form (i/o0) or
(i/s/0)
= the number of output variables in any representation of B in the form (i/0) or

(i/s/0)

Define the degree, M), of M(s,s™*)eR™ *"2[s,s7 '], M(s,s )= M s* + M _;s*" 1 + ...
+ M, s+ Ms', M #0, M, #0,to be L — I. The McMillan degree of the full row rank
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polynomial matrix M(s,s™*)eR™ *"[s,5s7'] is defined to be the degree of the vector
formed by all its minors. Let R(s, s~ !)eR**9[s, s~ 1] be such that B = ker R(s, ¢~ !). Now
write out the g lag equations in R(s, ¢~ ')w =0 individually row by row, yielding

rio,e " HYw=0

ryo,e"Yw=0

rg(a,a"‘)w=0

Define d(R) =:the lag of R(o,6™)w=0and Y{_, d(r,) =: the total lag of R(s,0 ™ )w =0.
Define L,,;,:=min é(R) and L', := min Y"¢_, 8(r,) where these minima are taken over all
R’s such that B =ker R(o, 6~ !). Also define n,;, to the minimal neZ, for which there
exists a state space representation (S), (DV) or (i/s/o) of B. There holds:

The McMillan degree of any R(s,s ™ !)eR%=in*9(s s~ 1] such that B = ker R(s,0})

= Lot

‘min

= Nmin

Furthermore,
fmin =q — Muyin + Npin

Recall that in section 1.4.2 we have defined the memory span A, of B to be the
minimal AeZ, such that {w, w,eB,w, |5 = W;li0.4)} = {W; Ag- w,€B}. Finally define
the observability index v of an observable pair (M, N), MeR"*", NeR?*" to be the smallest
integer k such that rank col[M,NM,...,NM*" '] =n. Then
Amin = Lmin .
 =the observability index of (4 — B*C,C*) or (4, C) is any minimal state space
representation (DV) or (i/s/o) of B.

4.84 The feedback group

We will call models (DV) with m=m,, and n=n,, minimal state/minimal
driving input models. (DV) defines such a model iff (see Theorem 4.2):

(i) AR" +imB=R"
(ii) kgr D= 9 N
(iii) (4 — B*C,C* ) is an observable pair.

Note that if (DV) is a minimal state/minimal driving input representation then (x, u) in
(DV) is observable from w implying that there exist F.(s,s™')eR"*‘[s,s~ ] and
Fys,s™)eR™ [s,s™'] such that {(w,x,v) satisfies (DV)}<>{we®B,x=F,(o)w, and
v = F (a)w}. By the same token we can take F . and F, to be polynomialsin sorins ™!, with,
moreover, F,(s™!) such that it has no constant term.

It is possible to obtain all minimal state/minimal driving input models for a given
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external behaviour, starting from one. Consider the transformation group G = %i(n) x
R"*™ x @l(m) acting on R™*9*"*™ a5 follows:

S.F,R
(4,B,C, D)y—>22,
Se%in)
FER" xm
Re®lm)

(S(A + BF)S"',SBR,(C + DF)S™',DR)

It is easy to see that this transformation group leaves the external behaviour of the system
(DV) invariant; it leaves also the minimal state/minimal driving input elements invariant.
The orbit under G of one minimal state/minimal driving input element generates in fact
exactly all the minimal state/minimal driving elements with the same external behaviour.
The transformation group G has been the object of much study in the mathematical system
theory literature under the name of the feedback group. The above shows that this
transformation group plays an extremely natural role in the classification of state
representations (DV): it corresponds to leaving the external behaviour invariant.

49 Wrap-up

We will now summarize without further proofs or comments the main results
obtained in this section in a series of three theorems. The first one treats the
general situation, the second the reachable case, while the third and final theorem
treats autonomous systems.

49.1 Linear time invariant systems

THEOREM 4.4 Let £ =(Z,R%,B) be a dynamical system. Then the following
conditions are equivalent:

(1) Z is linear, time invariant, and complete;

(2) Be LY, ie., B is linear shift invariant closed subspace of (R

(3) 3geZ, and a polynomial matrix R(s,s”')eR**‘[s,s™'] such that B =
ker R(c 1), i.e., B admits an (AR) representation;

(4) 3f,deZ, and polynomial matrices R'(s,s~\)eR’*?[s,s '], R"(s,s 1eR ¢
[s,57 1] such that B = (R'(6,6 ™ !)) " im R"(6, 0~ ), i.e., B admits an (ARM A)
representation;

(5) 3p,meZ ., p+ m=q, a permutation matrix neR**%, and polynomial matrices
P(s,s Y)eRP*?[s,571], Q(s,s )eR*™[s,s"'] with P~ (s,s~1)Q(s,s e
R?™s) such that B=rnker[P(c,07 ') — Q0,67 ")), ie, B admits a
componentwise (i/o) representation which is non-anticipating;

(6) IneZ, such that B is the external behaviour of a state space system
X, =(Z, R, R", B, with B.eL" " ie, B admits a finite-dimensional linear
time-invariant state realization;

(7)) 3f,neZ, and matrices E,FeR’*", GeR’*‘ such that B=P, ker
[G:6E + F], i.e., B admits a representation (S);

(8) 3n,meZ, and matrices AeR™" BeR™" CeR™", DeR™™ such
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that B ={w|3x,y such that ox = Ax+ By, w=Cx + 5v} ie., B admits a
representation (DV),

) Im,neZ,, m+ p=q, a permutation matrix neR**?, and matrices AecR"*",
BeR™", CeR?*", DeR"*™ such that n~ '8 = {(u,y)|3x such that ox = Ax
+ Bu, y = Cx + Du}, i.e., B admits a componentwise (i/s/o) representation.

49.2 Controlable systems

THEOREM 4.5 Let X =(Z,R%B) be a dynamical system. Then the
Jollowing conditions are equivalent:

(1) Z is linear, time invariant, complete, and controllable;

(2) Be ¥ and B = %compact/closure;

(3) B admits an (AR) representation with kero R(4,4™') of constant dimension
Jor 0 # AeC;

(4) 3deZ, and a polynomial matrix M(s,s”)eR"*‘[s,s™ '] such that B =
im M(a,07"), i.e., B admits an (M A) rrepresentation;

(5) 3p,meZ,, p+m=gq, a permutation matrix neR**’, and left coprime poly-
nomial  matrices  P(s,s )eR"*?[s,s 1], Q(s,s HeR"*"[s,s" ']  with
P Y(s,s71)Qs, s~ )eR%*"(s), such that B = n[P(o, 0~ ) — Q0,0 '];

(6) 3p,meZ,, p+m=gq, a permutation matrix neR*™9, and right coprime
polynomial matrices M(s,s™)eRP*"[s,s™ '], N(s,s H)eR™"[s,s™'] with
M(s,s"YY)N = (s, s~ 1)eRP*"(s), such that

(7) B admits a representation (i/s/o) with (A, B) a controllable pair.

49.3 Autonomous systems

THEOREM 4.6. Let X =(Z,R%B) be a dynamical system. Then the following
conditions are equivalent:

(1) Z is a linear, time invariant, complete, and autonomous;
(2) B is a finite-dimensional shift invariant subspace of (R
(3) B admits an (AR) representation with

R(s,s ")eR™[s,s"'] and dety,R(s,s™*)#0.

(4) B admits a representation (DV) with m=0 i.e., a representation ow = Ax,
w=Cx.
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49.4 Symbolic calculus

The results obtained in this section can easily be generalized, mutatis mutandis, to the
case that the time axis is Z,. Mutatis mutandis here means: interpret time invariance
and shift invariance as ¢8 < B and work throughout with R[s] instead of with R[s,s~'].

We have concentrated in our exposition on the case T = Z. In [14] we have attempted
to treat the cases T = Z and T = Z , in parallel. The present exposition has pedagogical
advantages, but it has the important disadvantage that we do not quite cover the
continuous time case, since that case is basically identical to the case T =Z . In order
to translate the results from T=2Z, to T =R or R, simply interpret the shift ¢ as the
differential operator d/dt. We can view this interpretation as symbolic calculus. In
particular, Proposition 4.1c will imply that if a system is governed by a set of linear
differential equations involving latent variables:

w3 )

then there will exist a polynomial matrix R(s) such that w is governed by a set of linear

differential equations
d
Rl — |Jw=0.
<m>”

As far as the smoothness is concerned in this result, we can either assume that both wand a
are C*, alternatively that w and a are both distributions, or finally that we £'°*(R; R?), that
a is a distribution, and that the differential equations are satisfied in the sense of
distributions. The C*® case is easy to work with mathematically but has the conceptual
disadvantage that differential equations which are first order in the auxiliary variable x
and zeroth order in w will then not satisfy the axiom of state. Considering all equations in
the sense of distributions and assuming the behaviour B to be a family of distributions is
by and large the most convenient approach, however.

As we have already said, all the results remain essentially valid, after suitable
modifications, in the case T=2Z,, R or R,. One difference occurs in the condition for
trimness: in particular, (DV) and (i/s/o) are always state trim.

49.5 Electrical circuits

An example of a class of continuous time systems for which these results are relevant are
lumped linear electrical circuits (see Fig. 13).

I
+
—_——
vio |
T RLCTG-
. circuit
+ lP
——
/)

Fig. 10
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Assume that the circuit contains a finite number of resistors, capacitors, inductors,
transformers, gyrators, and external ports. We would like to describe the relationship
imposed by the circuit on the external currents and voltages. Denote these by &, V=
withiep and p the number of external ports. In order to express this relationship, introduce
as latent variables the current and voltages in the internal branches of the circuit. Denote
these by I'™, V™ with ieb and b the number of internal branches. Then the following

equations will have to be satisfied:

(1) The constitutive equations in the circuit:

V,=R,; (for a branch containing a resistor)
dv; -
I= CiI (for a branch containing a capacitor)
dl, .. .
V.= Lid—t (for a branch containing an inductor)
Vi= Ny Vi
I 1 I (for a pair of branches containing a gyrator)
| n,",,'" i
Ve=np Ve
I 1 I (for a pair of branches containing a gyrator)
= &
n i

(2) Kirchhoff's current laws: for each node (including those containing an external branch)
there must hold
Y. I,=0 (one equation for each node)
connlected
to the pode

(3) Kirchhoff’s voltage laws: For each loop (including those containing an external branch)
there must hold
Y V,=0 (one equation for each loop)

in the' loop
Let I™=col[I{",..., 3], Voi=col[VM,...,Vet], Iei=[IM, . 1], Vine
col [V{™,..., Vin]. Organizing these equations in the obvious fashion will lead to a
system of equations of the form

- Ien . - d Iim
ROV“‘ +(Rl+R2‘E V““ =

Note that this implies that the auxiliary variables col [1™™ Vin] will define a (in general
non-minimal) state variable. In fact, it is easy to see that the capacitor voltages and
inductor currents form state variables. Section 4.2.3 implies that the behavioural relation
between I°* and V** imposed by the circuit will be described by a high order differential

equation of the form
d d
R{—I**"+R'|—|V*=0
@)r=(3)
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for suitable polynomial matrices R’ and R”. These equations are fully equivalent to the
original system but do not involve anymore the internal currents and voltages.

49.6 Recapitulation

In this section we have studied discrete time linear invariant systems. We have
assumed that the behaviour B is complete. The combination of these assump-
tions: T = Z, W = R, and B linear, shift invariant, and complete, does wonders
for us: it implies, among other things, the finite dimensionality of the state space.
Such systems can always be represented as the time series satisfying a finite set
of autoregressive equations: linear relations among the signal variables involving
linear combinations of their shifts,. We have also seen that such systems always
allow a (non-anticipating) input/output representation: some components of the
signal variables are completely free and cause, together with the initial condi-
tions, the remaining variables. This leads to the conclusions that these systems
may be represented by means of a finite-dimensional input/state/output system
having as input variables and as output variables appropriate components of
the signal variables. All together this yields a clean axiomatic mathematical
framework characterizing this familiar and much studied class of dynamical
systems.

Important special cases of this class of systems are the controllable and the
autonomous systems. These properties can be translated into properties of each
of the polynomial, transfer function, or matrix representations obtained. The
controllable systems are, in fact, precisely those which admit an (MA) representa-
tion: they are images of polynomial operators in the shift.

A completely analogous theory is valid for continuous time systems described
by a finite set of high order linear differential equations.

497 Sources

The theory set forward in the section appears here for the first time in its present form.
Some initial representation results have already been given in [12], [13], [14], [18],
[19]. In [16] we have concentrated on continuous time system, while in [13] a number
of additional results have been obtained, in particular concerning the algebraic and
geometric aspects. The description of systems in terms of polynomial matrices owes
much to the pioneering contributions by Rosenbrock [15] and Fuhrmann [20]. The
Hautus test for controllability and observability originated in [21].
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NOTATION

Logic symbols

implies

is implied by

is equivalent to

is by definition equivalent to
is by definition equal to

L 2



Set theory

{a,,a5...}
{xeX|x has the property P}

1%}

X
2s

Maps

fiM>N;MLN

Notation 267

there exists
such that
for all

the set consisting of the elements a,, a,,...
the set of all elements of X having property P
the empty set

Cartesian product

the set of all subsets of S

f maps M (domain) into N (co-domain)

A partial map is a map whose domain of definition may be a subset of the space on
which it is defined. We will use the same notation as for maps:f:M — N;
f:M — N is a partial map, then Do(f) denotes its domain, that is the set of points
on which the action of f is defined.

fixey; xr—f+y
f—l

Sl

J(M)

im f

ker f

feog

AB

A(mod R)
a(mod R)

idy

f maps the element x into the element y

the inverse (may be a point to set map)

the restriction of f to M’

the image of M’ under f

the image of f

the kernel of f

the composition of the maps f and g

the set of all maps from B into 4

the set of all equivalence classes of A modulo R
the equivalence class associated with the ele-
ment a

the identity map on X

the map (projection) from A xBx .- to 4
defind by P,(a,b,...)=a

the t-shift:(c* (' )=ft + )

the strict past of a time functon

the past of a time function

the future of a time function

the strict future of a time function
concatenation ‘
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Special sets

N
z
Zy
R
R
»
Rn

R"l x "2

Cn’ Cnl Xny
R[s]
R[s,57']
R(s)

R.(s)
n

Matrices
T

col[M,M,,....,M,]

dlag [ala Qz... 9an]

det
%l(n)
rank

Function spaces

Le
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()

the natural numbers = {1,2,...}
the integers
the nonnegative integers
the real numbers
the non-negative real numbers
the complex numbers
RxRx--xR
_,—/
n-times
the real matrices with n, rows and n, columns
analogously defined
the real polynomials in the indeterminate s
the real polynomials in the indeterminates
5,571
the real rational functions in the indeterminate
S
the proper real rational functions in the inde-
terminate s

the set {1,2,...,n}

transposition
M,
M
the vector or matrix| .2
M,

the (block) diagonal matrix

aa 0 - 0 O
0 a - 0 O
0 0 « a_, 0
o 0 -~ 0 a,

determinant

{MeR" "|det M # 0}

the rank

the space of all sequences from Z to R? equipped
with the topology of pointwise convergence



K4

Z,(4; B)
gloc(A; B)
11(4; B)

1,(4; B)
%*(A; B)

€°(4; B)=¥(4; B)
€*(4; B)
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the linear shift invariant closed subspaces of L
the square integrable maps from A4 to B

the locally integrable maps from A4 to B

the absolutely summable B-valued sequences
with index in A

the square summable B-valued sequences with
index in A

the k-times continuously differentiable maps
from 4 to B

the continuous maps from A to B

the infinitely differentiable maps from A to B



