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SINGULAR OPTIMAL CONTROL:
A GEOMETRIC APPROACH*

J. C. WILLEMSf, A. KTAPtI" AND L. M. SILVERMANt

Abstract. Linear quadratic singular optimal control problem is solved for nonminimum phase and
noninvertible systems. A state space decomposition is obtained and a reduced order nonsingular subproblem
is solved. The optimal stabilizing input ofthe singular problem has been found when there are no transmission
zeros on the imaginary axis.
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1. Introduction. This paper is concerned with linear quadratic problems in which
the cost functional is not positive definite in the control. These are called singular
problems. In [1], the finite horizon problem and the infinite horizon problem have
been solved when the system is minimum phase. It was also shown that the regular
part of the optimal input is feedback implementable.

The geometric theory of linear systems added a great deal of insight into the
structure of the solution of such singular problems. In fact, it could be claimed that
the theory of (almost) controlled invariant and controllable subspaces are the generic
tools for studying this class of problems as demonstrated in [1].

In the present paper, we will investigate the problem further,and obtain algorithms
for actually computing the optimal control. The nonminimum phase case is also
considered and results are found by solving reduced order algebraic Riccati equations.
As is well known, the optimal control may not exist in the class of regular control
functions and indeed, our optimal trajectory and the ensuing state trajectory lies in
the class of distributions. In addition, for positive times, the optimal trajectory is
smooth and lies on a predetermined linear subspace of the state space.

We will be using standard notation: R" for m-dimensional Euclidean space,
I+:=[0, oe), ’ for the distributions with support on +, A\B for A(qBcmplement,
(A[) for the largest A-invariant subspace containing the subspace , and ([A)
for the smallest A-invariant subspace contained in . Of course, for the familiar
:i=Ax+Bu, y= Cx, (Alim B) is the reachable subspace, while (ker C[A) is the
nonobservable subspace.

2. Problem statement. In this paper we will study the full linear quadratic problem
with nonnegative cost functional. The usual formulation is to consider, for the system

Ax + Bu, the cost functional q(x_, _u) dt with q a quadratic form (in x and u jointly).
However, since we will only be concerned with the situation in which q >-0, we can
always introduce the output y= Cx+ Du such that Ilyll=-q(x, u). As in [1] we are
thus led to consider the linear system

(1) E2=Ax+Bu, y=Cx+Du
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with state space ", input space 9/= ", and output space P, and with cost
yll 2 dt.
Consider the following spaces of inputs"
(i) Regular inputs"

_u’R+R _u is measurable and [[_ull.2 dt<o for all T6R+

(ii) Distributional inputs" Even though we could consider general distributions on
+, we will, as in [1], restrict our attention to Bohl type distributions (those whose
Laplace transform is rational). Thus

0-dist 1__ { 1 imp+ reg with imp an impulsive distribution, and reg reg}.

An impulsive distribution is one with suppo in 0, i.e., a distribution of the form
=oa with a the Dirac delta, and (i) the i-th derivative.

Let eg, dist, reg and dist be similarly defined. Obviously dist reg. NOW
for any given initial condition (0) Xo and any V dit, E generated in the standard
way unique solutions dist and y dit (for details, see 1, 3]). In order to display
the dependence on Xo and V we will denote these unique solutions by (Xo, V) and
y(xo, ). Of course, if V reg then also (Xo, V) eg and y(xo, ) reg. However,
t is impoant to observe that some V distkreg may lead tsolutions y(xo, ) eg.

Now consider the cost function o IlWII = dr. Formally, define

:X dist e
by

(2)  (Xo, _u):- II_y(xo, _u)ll = dr

where we will agree to set (Xo, _u)= when

c491oc\ c49y(XO, _l.l) 0"dist\0"reg or when y(xo, u_

We will be interested in minimizing with or without stability conditions on the
state. Let

odist o/dist[lim _X(Xo, U)(t) O}stabXo) :-- {_U

and let 0" regstabkX0) be similarly defined. Now define

*(Xo) := infimum fl(Xo, _u)
0/dist

and

ab(X0) := infimum (Xo, _u).
dist_u stab(Xo)

We will study a number of aspects of the cost minimization problem introduced
above. In particular we shall answer the following questions"

(i) How can * and ab be evaluated? When are *(Xo) and s*tab(Xo) finite?
When are they zero?

(ii) Find, if it exists, _u* dist such that ,,(Xo, _u*) *(xo). Is _u* unique? When
is u* 0-reg?

0"/! dist(iii) Same questions for _u* stabX0) and ab(X0).
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Example. Before jumping into the details ofthe analysis, let us consider the special
case in which we consider the controllable system E: Ax + Bu and are asked to
minimize o II_xll = at, i.e., y= x. Now set= 1032 with 1 :=im B and 2 := (im B) +/-

In this basis, E becomes"

and

1 AllX1 -I- A12x2 q- u,

2 A21x1 d- A22x2,

(ll_xll-+ II_x2112) at,

where we have chosen also the basis in o// suitably and wc have assumed that B is

injective.
Note that (A, B) controllable implies (A22 A21 controllable. Let Xo (xl,o, X2,o) be

given. Now solve the classical linear quadratic problem which asks to minimize

fo ([[_v[12+ II_x2112) dt

with _v as control, for

_
A22x2-1- A21 v, _x2(0 x2,0. This yields v* Fx2 as the optimal

control law and x,,oKx2,o as the minimal cost. There K is the unique positive definite

symmetric solution of the appropriate algebraic Riccati equation and F -A2rK. Now
cstab(X1,0,it is easy to see that (xl,o, X,o)>= xoKx2,o, and that P*(X,o, X2,o)= * X,o)

Xf,oKx2,o provided xl,o Fx2,o. If, however, X,o Fx2,o then we can use the impulsive
control u_=(Fx,o-Xl,o)6_ in order to obtain _x(0+)=F_x2(0+) Fx2,o. This impulse
derives the state to the desired subspace.

The optimal control law then looks like_
(Fx2,o X,o)_ for 0,

u_ F(A21Xl+ A22x2) AllX1 A12x2 for > 0.

Our purpose is to generalize this picture: the optimal control consists of an impulse
part at 0. This brings us to a subspace where the rest of the motion takes place and
where a classical LQ problem needs to be solved. This surface (a linear subspace) in

is the regular subspace. The computation of this subspace and the control law to be
used on it can be carried out by solving a classical algebraic Riccati equation. The
computation of the impulses which bring us on this surface involves linear equations
only.

3. Some notions from geometric control. The analysis of the singular LQ-problem
defined by E via (1) and (2) needs the full power of the geometric theory of linear

systems as exposed in [2], generalized to "almost" versions and distributional inputs
in [3], and further generalized and made relevant to linear quadratic problems in [1].
In this section we will introduce these notions in a self-contained way and recall some
relevant facts regarding them.

Consider for the system

E: Ax + Bu, y Cx + Du.

The following line-up of subspaces"

(i) Y’*, the output nulling subspace, defined as

o//,, ;__ {X0 E lT]_b/E 0reg such that y(xo, _u) 9};
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(ii) *, the controllable output nulling subspace, defined as

* := {Xo 13_u* such that y(xo, _u) _0 and such
that _U(Xo, _u) has compact support};

(iii) o//., the distributional output nulling subspace, defined as

o//- :._. {XoE 12_U E 0dist such that y(xo, ) =_0 distribution};

(iv) *, the controllable distributional output nulling subspace, defined as

:"- {X0 13_/./ 0/dist such that y(xo, _u)=_0 and
_X(Xo, _u) has compact support};

(v) o//.., the Loo-almost output nulling subspace, defined as

%*:= {Xo >o, 3_u 0reg such that II_y(xo, I1, 

(vi) *, the controllable Lo-almost output nulling subspace, defined as

*:= {Xo I::IT> 0 such that /e > 0, 3_u E //reg, such that
Ily(xo, u)ll--< and support _X(Xo, _u) c [0, T]};

(vii) 7/’b*, the L2-almost output nulling subspace, defined as

cb :-" {XOE c[[ll’E >0, l e Oreg, such that Ily(xo, _u)llr<= e};

(viii) b*, the controllable L2-almost output nulling subspace, defined as

b*:= {X0 al::lT> 0 such that e >0, :l_u 0reg, such that
II_y(xo, _u)ll, <-- and support _X(Xo, _u) c [0, T]}.

These subspaces have been studied in [3] for the case D 0, and much of it has
been generalized to the case D # 0 in 1]. Actually the case D 0 is easily reduced to
the case D 0. Indeed, by choosing the bases in 0-// and properly, we may always
write E as

: Ax + B lg -" B2U2, Yl Cx+ u, y_ Cx

with q/10) a//2, 0-2 ker D, lq) 2, 1 =im D. Now define

’: . A’x + B2u2, Y2 C2x

with A’:= A-BC. It is easy to see that the subspaces (i)-(viii) are identical for
(with input u and output y) and for :’ (with input u and output Y2). The properties
desired below are easily obtained from this observation and the results of [3]. However,
it is convenient to express the relations in terms of directly.

PROPOSITION 1. There holds
1. F*b l/’*, *b g *
2. U*= U*+*, o//,,
3. * T’* N * * N b*;

tB]((a*0) 0//) n ker C,D]).4. * b* N C-1 im D, b* [A,
We particularly draw attention to property 4 which yields a simple way of deriving

* from * and vice versa.
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In [1], [3] simple algorithms have been derived for the computation of the
subspaces (i)-(viii). For the situation at hand, these are

:"- , ci_l_l--" (//i0){0})+im

’B]((,0) 0//)fq ker [C’D]),o := {0}, ,+1 =(C-1 im D)[A,

fro := {0}, i+=[AB](()ker[CD]).

These recursive algorithms compute the desired subspaces. In fact,

or, Sot. r.,

(,n,)t(.n.)=*.

These algorithms immediately yield the following.
PROPOSITION 2. There hold

’B]((*0) 0//)fq ker [C,D]);1. *=(C-1 im D)fq[A,
2. * [aB]((*b O) ) fq ker [CD]).
The subspaces introduced allow to decide invertibility of E. We quote some results

to this effect from 1 ]. We will say that E is right invertible if for every y e -d/dist there
exists an _u e -dist such that y(0, _u)= y. (In [1] it is actually assumed in he definition
that y /reg, but the above definition defines an equivalent and perhaps a more natural
property.)

PROPOSITION 3. The following statements are equivalent:
(i) is right invertible.

’D] ql.(ii) b* and im C,
(iii) The transferfunction T(s)= D+ C(Is-A)-IB is right invertible over the field

of rational functions.
Also, left invertibility is readily desired from the notions introduced above. The

system is called left invertible if {0 u e //dist}=:{y(0, _t/) _0}. (In [1] it is actually
assumed in the definition that y(0, _u) ’/Jreg but the above definition defines an
equivalent and perhaps a more natural property.)

PROPOSITION 4. The following statements are equivalent"
(i) 2 is left invertible.
(ii) *= {0} and ker [g] {0}.
(iii) The transfer function T(s)= D+ C(Is-A)-B is left invertible over the field

of rational functions.
Note that left invertibility immediately implies that {y(0, _u) y(0, _u2)} {_ul _u2}.
Actually, using the results of [4] we can also classify the transfer functions with

a polynomial inverse.
PROPOSITION 5. The following statements are equivalent:
(i) * .
(ii) T(s) D+ C(Is-A)-B has a right inverse which is a polynomial matrix.

Finally, the equivalence of the open loop definitions of the spaces (i)-(viii) and
their feedback counterparts lies at the basis of many control theoretic applications of
these notions. We will only need the following here.
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PROPOSITION 6. There exist afeedback matrix F: g- all and a chain Bi c B such that
(i) (A + BF) V* V* and (C + OF) V* {0};
(ii) (A + BF)gt* *;
(iii) b*--
Proof. The proof follows from [6, Thm. 1] where the subspaces b* and V* are

called strongly reachable and weakly unobservable subspaces and denoted as
and

4. A suitable basis choice and preliminary feedback. By means of an appropriate
choice of the basis in the input, state, and output space, and by applying a preliminary
feedback, it is possible to simplify the analysis considerably.

Decompose 1( )J2 with 0 =im D and J2 -1-1 Now choose a//2= ker D
and a//1 such that lq)/2. By suitably choosing the basis we obtain D [ o].
This yields for E:

: Ax + Bu+ B2u2, y Cx+ ua, y Cx,

with Ilyll= [lylll2+ Ilyll . It is easy to see that the spaces (i)-(viii) introduced in 3
are identical for the system E as for

A’x + B2u:, Y2 C2x with A’ := A B1 C1

where we consider u2 as input and Y2 as output.
Now decompose the state space as follows"

with

and

such that (A’ + B2F)* V*, C_* {0},
*b B:o@(A’+ B2F)B2@(A’+ B2F)2B22@ "

Now choose feedback F
(A’+ BzF)* * and
(A’+ B2F)n-B2n where B2o--B and B2i is a chain in B2 (see Proposition 5). This
yields *f’lim B2 c *. Also from Proposition 1.4 we know that * b*fqker C2
and b* (A’+ B2F)* +im B2.

The choice of basis indicated and the feedback

(3a) u u’ Cx,

(3b) u2 u+ Fx,

reduces our system to E
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(4) Yl u,

The problem is to

Y2 C21 0 0 0 C25

minimize (llull z + Ily[[ 2) dt.

We have the following.
PROPOSITION 7.
1. ker C25--- {0}.
2. The transfer function associated with

10 A44 A45
0 A54 A55

-X1
X2
X

X4

X5

824 [0 0 I]
B25

has a right inverse which is a polynomial matrix.
3. The system

{[A44 A45] [B24] }LA54 A55 LB25J’
[0 I]

is left invertible.
4. (A33 B23 is a controllable pair.
Proof
1. It follows from b* ker C2 *.
2. It follows from Proposition 4 that this transfer function with the output matrix

replaced by [0 0 C25] has a polynomial right inverse. The result then follows using 1.
3. By Proposition 4 we need to show that the controllability output nulling

subspace associated with this system is zero. Assume that this is not the case and add
this subspace to 3. Clearly the subspace obtained in this way will be in the controllabil-
ity output nulling subspace for the original system E, proving the claim.

4. Follows from (A’ + BzF[im B2 V) *) *. D
We will use the feedback F and the chain B2i to simplify the system representation

given in (4). We obtain
E* wherePROPOSITION 8. There exists a coordinate transformation such that E-

Y2 C2"1 0 0 0 C25]_x,

where C*, A*I) is an observable pair.

[6].
Proof Follows from Lemma 1 and the Column Elimination Algorithm given in
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5. Regular LQ problems. Our approach in studying singular LQ-problems will
be to reduce them to regular LQ-problems. Regular LQ-problems are those for which
distributional inputs are not candidates for optimal controls since they always lead to
infinite cost:

DEFINITION. The LQ problem E (as defined by (1), (2)) will be called regular if
{Xoe o, _1,/ e odist\o’reg}::{c(Xo, _U)-- 00}.

It is easy to decide regularity as follows.
Tnzogz 1. The following conditions are equivalent"
(i) 51 defines a regular LQ-problem.
(ii) {Xoe , _u e -dist\0"reg}=:={y(Xo, )e 0"/o/dist\0d/reg}.
(iii) ker D {0}.
Proof. (i)=>(ii)" Since y(xo, u_) y(xo, 0) + y(0, _u), (ii) is equivalent to

{_/,/ 0dist\0"reg}:::::{y(0, ) 0-/jdist\0.0reg}.

Now, if this were not the case, ::l_u dist\ reg such that y(0, _u) 0rg. The correspond-
ing _x(0, _u) will satisfy _x(0, u_ )( t) (A[im B) for all t>0. In particular, _x(0, _u)(1)
(A[im B). Hence since _x(0, u)(1) belongs to the controllable subspace of E, we can
modify, if needed, _u(t) to _Unw(t) for => 1 such that y(0, _u"w) (0, oe). This _u is
still in 0"dist\0new, but ,(Xo, _Unw)< O0. Hence {not (ii)}=>{not (i)}. The implication
(ii)=>(i) is obvious.

To show the equivalence of (ii) and (iii), observe that by a suitable choice of the
basis in a// and , E may be represented as

: Ax + B1 Ill -t- B2u2, Yl C1x q- Ul, Y2 C2x,

u (xl, u2), y (yl, y2)

with Ul e R"1, ml codim ker D dim im D and u2 e Rm2, mE m ml. Now (ii):>
{m2-0}:>(iii) is obvious.

Regular LQ problems may thus be reduced by a simple basis change and a
feedback transformation to the standard LQ problems.

Recall the LQ problem standard if it is regular and if the associated *= {0},
i.e., if ker D= {0} and if (C-1 im OlA-(OrO)-’OrC)= {0}.

Let define a regular LQ-problem. By Theorem 1 this is equivalent to ker D {0}.
By choosing the basis in a// appropriately and making an orthogonal basis change in
we can then bring D into the form [o/]. E becomes

:i Ax + Bu, Yl ClX2 -t- u, Y2 CEX, Y (Yl, Y2).

Now use the preliminary feedback u v- Cx2. Tfiis yields the system

2 A’x + By, y Cx

with A’ := A B1 C1 and Io (ll_ 2 / Ily211 ) dt.
We obtain the familiar standard LQ problem

iominimize (llall =/ 119;112) dt

for := +/ff; 37 with the simple basis change such that C/L where
L= (*)+/-

6. The singular LQ-problem without stability constraints. At this point it is con-
venient to study the LQ-problem introduced in 2 with and without stability separately.
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We will reduce the general singular problem to regular ones, and regular problems to
standard ones. In addition, we will assume throughout that (A, B) is asymptotically
stabilizable. We have the well-known proposition as follows.

PROPOSITION 9. Let (A, B) be asymptotically stabilizable and assume that , defines
a standard LQ-problem. Then the control law u* Fox generates(Xo, _u*) *(Xo). Here

(6) Fo---(DTD)-I(BTpo+ DTC)

and Po is the unique positive semi-definite solution of the algebraic Riccati equation

(7) ATp / PA-(PB + CrD)T(DTD)-I(pB + CTD) + CTC =0.

In fact, Po> 0 and *(Xo) xPoxo. Moreover, the closed loop system (A + BFo)x is
asymptotically stable.

It is easy to extend Proposition 9 to the regular case.
PROPOSITION 10. Let (A, B) be asymptotically stabilizable and assume that , defines

a regular LQ-problem. Then the control law (6) with Po the infimal positive semidefinite
solution .of the algebraic Riccati equation (7) generates (Xo, u*) *(Xo), and *(Xo)=
xPoxo. Further {*(Xo) =0}:>{xoker Po}C:>{Xo6 //’*--(C-1 im DI(DTD)-DTC)}.
Finally, the closed loop system (A + BFo)x will be asymptotically stable if and only if
T’* -(A- B(DTD)-’DTC) (i.e., detectability).

Proof See [1] with the sign change on (6.2) at page 23, [7].
Note that in order to solve for Po and Fo in Proposition 10 it suffices to solve a

standard algebraic Riccati equation of dimension=the codimension of V’*, since
Po-- PoT >- 0 and ker Po- T’*.

We now have all the preliminary results which go into the solution of the general
singular LQ problem without stability. We will assume that the problem is already in
the form (4)-(5).

THEOREM 2. Assume that (A, B) is asymptotically stabilizable and consider the
singular LQ-problem (4)-(6). Then

(i) #*(Xo) <. In fact,

#:#((Xl,o, X2,0, X3,0, X4,0, X5,0))-- xTI,oPoXI,o
with Po the unique positive semidefinite solution of the algebraic Riccati equation

(8) AT11P + PApa PA,5 + C,C) CC)-(PA,+ C,C)

PBaBP+ CfC2 O.

Moreover, Po> O.
(ii) Ixo g, there exists an u* odist such that (Xo, u*) =*(Xo). This optimal

control is generated as follows
(9) u* -BPox,
and u_’2* such that x_*5 is regular and satisfies

(10) x* -(CC2)-’(AsPo+ CC21)Xl.
There always exists a distribution _u’* such that (1 O) will be satisfied as a distribution.
(iii) The optimal trajectory lies on the linear subspace

x5 -( CsC)-I(APo+ C5C2,)Xl

for t>O.
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(iv) The optimal trajectory

is such that

X_ and x_ ’ are regular

and X_ x_ *4 and x_ may be distributions. Moreover, x_ X_ X_ *4 and x_ are uniquely
defined, while x_*3 is not.

The proof of this theorem is given in Appendix A.
Theorem 1 allows us to recognize several interesting special cases of the singular

LQ-problem. Recall the following lattice diagram (BE and Ca are as defined in 4):

ker C

irn B

The problem is standard"
:{the optimal control is a regular function and *(xo)> 0 for xo O}
{ {0}}.

The problem is regular:{the optimal control is a regular function)
{={0}}
{Ker D {0}}.

The problem is cheap:{*(Xo) 0 for all
{ }.

The problem is totally singular:{the optimal control has zero regular pag}
{ and *= {0}).

The problem is otentially singular:
{there always is an optimal control with regular pa zero}
{=}.

7. The singular LQ-roblem ith stabili. In this section we will generalize the
ideas of 6 in order to study the singular LQ-problem with the stability constraint
lim (t)= 0 as a side condition. We stag by analyzing the geometric structure of

as given in 2 in still a bit more detail and derive a refinement of the decomposition
(4).

7.1. A further deeomositio of *. Our approach to solve the singular
problem with stability needs a fuRher decomposition of the output nulling subspace
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o//... Consider OF-, o//, and OF+ the output nulling subspaces with respectively asymptotic
stability, neutral stability, and exponential instability. These are defined and computed
as follows.

Take any F such that (A+ BF)OF*c OF* (solutions converge neither for +c)
and (C + DF)F* {0}. Then (A + BF)* c *. Now there exists such an F with the
property that the characteristic polynomial of (A + BF)I* is equal to any given monic
polynomial of suitable degree. However, the eigenvalues of(A+ BF) (mod *) are
independent of the F which we choose. Now choose an F such that the spectra of
(A + BF)IYt* and (A + BF) (mod *) are disjoint. This yields a decomposition of o//..
into OF*=@@3@?g with Cl, c2 and //’3 (A + BF)-invariant and such that
(A+ BF)IOF1, (A + BF)II/’2 and (A+ BF)] //’3 have their spectra in the open right half
plane, on the imaginary axis, and in the open left half plane, respectively. In terms of
these, set OF+ * OF1, OFo 3* o//’2, and OF- * OF3.

Using such an F and the above decomposition of23 in (4) yields a decomposi-
tion of 2 into 2 212223 with an associated partitioning of A22, A25, and
B2 into

A22, 0 0 ] [A25,] [B2,1]
(11) A22=| 0 A2_,2 0 ] Azs=IA25.21 B,2=/B,2,2/

L o 0 A22.3 LAz5.3j

with 0"(A22,1), 0"(A22,2), and o’(A22,3 in the open right half plane, on the imaginary
axis, and in the open left half plane, respectively. Furthermore, A32--0.

7.2. The regular LQ-lroblem with stability. In the standard problem we obtain
asymptotic stability of the closed loop system as a consequence of the minimization
of . This shows that the standard problem has the same solution with or without the
side constraint lim,_. _x( t) 0. The difference starts when we consider the regular
problem.

Consider now the regular LQ problem: E with ker D {0}. By Theorem 1 we may
restrict attention to o//reg. Now consider the subspaces OF+, V, and V- introduced in

7.1. Because of regularity, these may be computed in more detail:

//’* =(C-1 im DIA’) with A’:= A-(DTD)-DTC

and, also because of regularity, *= {0}. Now make a spectral decomposition of
corresponding to the decomposition of the spectrum of A’I* into its open right half
plane, its imaginary axis, and its open left half plane parts. This yields o//./, OFo, and
OF- respectively.

We obtain the following proposition.
PROPOSITION 11. Consider the regular LQ-problems" E with ker D= {0}, with the

stability condition lim,_., _x(t) 0. Then
reg(i) For all Xo , there exists a control _u 0"//tab(Xo) such that ,,(Xo, u_ < az ifand

only if (A, B) is asymptotically stabilizable. Assume this to be the case.
(ii) There exists a supremal nonnegative definite symmetric solution, P+, to the

algebraic Riccati equation (7). We have inf,ou%, (Xo, _u) inf, OUsS’a% (X0, _U) xroP+xo.
reg

U(iii) For all Xo there exists an optimal control u* tab(Xo) (hence (_ Xo)
_xro P+xo) if and only if OFo {0}.

(iv) Assuming this to be the case, then u* F+x with F+ :=
-(DTD)-(BT"P+ + DTC) generates the optimal control.

(v) {inf,%ta (X0 _U) =0}:{xoker P+}Cz>{Xo OFo+
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(vi) P+- Po (and consequently the nonnegative definite solution of (7) is unique)
if and only if += {0} (i.e., exponential detectability).

(vii) u* Fox will yield also asymptotic stability ifand only ift/"+ + t/ {0}. In this
case, the LQ problem , with and without stability give identical answers.

Proof. Of course, part (i) is obvious. Assume thus that (A, B) is asymptotically
stabilizable using the representation derived at the end of 5. It follows that we should
prove this proposition for the LQ-problem in which we are asked to minimize o (11 /

Ilyll 2) dt for the system Ax + Bu; y Cx. Then V* (ker ClA), while V+, F, V-
correspond to the decomposition of V* associated with the partition of the spectrum
of A[ V* into its components in the open right half plane, on the imaginary axis, and
in the open left half plane, respectively. The associated algebraic Riccati equation is

ATp + PA PBBTp + cTc =0.

Let Po be the infimal nonnegative definite symmetric solution of this algebraic Riccati
equation. Since (A, B) is asymptotically stabilizable, such a solution exists. Using
standard calculations, it is easy to see that, whenever limt_ _x(t)--0, then (Xo, _u)=
x{Poxo+o u- + BTPox-(Xo, -u)[[ 2 dt. Now use the preliminary feedback u v- BrPox.
The problem then requires the minimization of o II-vll 2 dt for Aox + By with Ao :=
A-BB’Po, under the stability constraint limt_ _X(Xo, _v)(t)=0. Let +, o, w- be the
decomposition of corresponding to the partition of the spectrum of Ao into its
components in the open right half plane, on the imaginary axis, and in the open left
half plane. By Proposition 9, we know that ker Po-oF*= (ker CIA). Further o//., is

Ao-invariant and Ao (mod F*) has its eigenvalues in the open left half plane.
Now minimize (_Xo,_U)=o Ilvll = dt subject to =Aox+Bv, _x(0)=Xo, and

lim,_,oo_X(Xo,_V)(t)=0. Clearly if Xo-, the optimal control _v*=0, and
min ’(Xo, _v*)=0. Next, if 0 Xo o, infj,(Xo, _v*)=0 (see [5, Lemma 3.2]) but no
optimal control exists since _v* =0 does not meet the condition lim,_ _X(Xo, _v*)=0.
Consider now the situation Xo +.

Define A/ := Aol/ and B/ := QB with Q the projection of r onto / along
o-. Note that the stabilizability of (A, B) implies that (A/, B/) is controllable.
Further the eigenvalues of A/ are in the open right half plane. Now solve the
minimization of o ]l_v 2 dt for + a+x+ + B+v with _x+(0) X+.o and lim,_o _x+(t, _v)
0. The optimal control for this problem is v* =-BT"WT_lx+ with W/, related to the

Tcontrollability Grammian, defined as the unique solution of A/ W/ + W+A+ B+B/.
Clearly W/ W+r> 0, and hence 7r/ W_7_ is the supremal (alternatively, the unique

Tpositive definite) symmetric solution of 7r/A/ + A+Tr/ zr/B/B/ zr+ 0. Now combine
the solution which we obtained for -, o, and +. Define

7r= 0 0

0 0

to conform with the partition of into gg=+@@-. This yields xzrXo as
inf’(Xo, _v). If =3f/@ then v*=-Brrx is the optimal control law.

Combining this solution with the preliminary feedback yields x(Po+ 7r)xo for
inf(xo, _u) and u* =-BT(Po+ r)x. Define now P/ Po+ 7r and unify all the state-
ments of Proposition 11.

7.3. The singular case with stability. We are now in a position to state the solution
of the general singular LQ problems with stability. We will assume that the problem
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is already in the form (4)-(5) with the refinement of 1 leading to the partition of A22
as given in (11).

THEOREM 3. Consider the singular LQ-problem (2) with the stability constraint
limt_ _x(t) =0. Assume that by a preliminaryfeedback and a proper choice of the bases,, is already in the form (4)-(5), with 2 further decomposed so as to induce the form
(11). Then

0dist(i) For all Xo , there exists a control u stab(Xo) with (Xo, ) if and only
if (A, B) is asymptotically stabilizable. Assume this to be the case.

(ii) Let Po be as defined in eorem 2 (i). Now let W+ be the solution of
T(12) A22,1 W+ + W+Af2,1 B1E,1B12,1 + A25,1Afs,1.
T W1X21,0"en W+ W> O, and Pa(X0) XoPoX,o+ x:,o

dist(iii) For all Xo , there exists an optimal control * SstabX0) ifand only if22 0
(in the notation of 7.1 this means *= ++ -). is optimal control is generated as

follows
(13) u -BPox- B,, W;!x21
and u* such that x is regular and satisfies
(14) x (CC)-’(APo+ CC21)x, rA21,1 Wlx21

7.4. Computation of optimal input. In this pa we will discuss the computation
of the optimal input. Using Theorem 3 (iii), we will obtain u*, x, x, Xl for initial
conditions xlo and x21,o. To compute u* we consider the differential equation

[A22,3 0 0 A25] [x2,3] [/12,3 0 1A33 A34 A351 IX3 ] /B,3, B23+
/ "14 / "41

u"4 0 A44 A4/ x4

5 0 A54 A55J X5 [ B15 J B25J

We will first compute )2,3, )3, 94, 5 by taking u Ul* and u 0. Since from Theorem
3 part (iii) 22 0 we can conclude

A33 A34 A35/ B23
0 A44 a4,J’ JB24/
0 A54 A55J LB25J

0 0 0 I3

has T’*+b* (see Proposition 6.2). Therefore, we will compute u* such that
Axs(t) 5(t)- xs*(t) will be zero. If Axs(0) # 0, u* contains impulses. Using the
results of [6] one can directly compute the impulsive and regular parts of u*. We will
first find the feedback F and chain Bi which are defined by Proposition 5 by using [6,
Theorem 1] for A’= A-BIC1, B2 and C2. By applying the nested version of the left
structure algorithm one can find output transformation Q, input transformation
G and feedback, F such that AF A’+ B2F, C’= [(C1) T.. (Ca) T] and
B2--[B21""" B2a+l] where (C*) T, B2i nx(qi-qi-’). If Q I one has to introduce
Q into ARE in Theorem 3. We will choose T3 T4]
Im[B22 B23 AFB23’’’ B+I’’’ A-2B+I] and Ts=[B21 AFB22’’’ A-IB2] where
columns of T3 T4] and Ts are basis vectors for x3, x4 and x5 respectively. With this
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special basis selection we will obtain the matrix

where

A33 A34 A35 B23 10 A44 A45 B24
0 A54 A55 B25

Nll Nlo, lNo21 No2ol

and for each i::laj*(i) such that Nij*(i)= I where j*(i)< i. Then we will apply the
column elimination algorithm [6] to eliminate nonzero elements of each row. Let
J {jl:li j*(i) =j}. For eachj J, gj.(i) + A55Axs(t). We start the procedure with 02,
at each step we know xi and compute xj.) since j*(i)< i. Recursively one can find
x(t) Vi and u(t). From the special selection of the basis vectors in 5 it is not hard
to prove that the impulsive part of u has the following property: u=
[’lTS(t) ’(t)’’’’T t-I-1 (t)]. The numerical aspects of the computations are
investigated in [6].

Appendix A. Proof of Theorem 2. We start with the system in the form (4)-(5).
The idea is now to consider the subsystem

’- (ll_u ll=/ IlC21_xl/ c2,_x, 2) dt

with x5 considered as a control (i.e., as being unconstrained). Obviously

inf P’(X1,o) =< inf P(xl,o, X2,o, X3,o, X4,o, Xs,o).
Since the LQ-problem thus obtained is regular, we can apply Proposition 10. Observe
that asymptotic stabilizability of (A,B) implies asymptotic stabilizability of
(All, (A15BI)). The resulting optimal control (u*, Xs*) is then given by (9)-(10) and
consequently in order to prove statements (i), (ii), and (iii) of Theorem 2 it suffices
to show that there always exists a distribution _u2* such that (10) will be satisfied. More
explicitly, define L := -(CsC2s)-(AsPo+ C5C21). Then we should generate _xs* L_x*
with _x* defined by

* (A1, / A,sL- B1,BPo)x_ x_ (O) X,,o.

The fact that the desired _u* exists is an immediate consequence of Proposition 7.2.
Note that since in particular Xs,o may be unequal to -LXl,o, we obtain in general
distributions for u* and hence for _x3*, _x4*, and _Xs*. The uniqueness claim (iv) of
Theorem 2 may be shown as follows. From the original construction of _xs* and _u* it
follows that they are unique. From Proposition 4 it follows that _x3* is not unique, while
from Proposition 7.5 it follows that _x* and _xs* are unique.

Appendix B. Proof of Theorem 3. We start with the problem in the form (4)-(5)-
(11) and consider first the subsystem
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for which we will minimize

:tab-- ([l_/’/ll 2+ C21_Xl -{" dt

with x5 considered as a control and with the constraint limt_c,(_Xl(t), x_2(t))= a. Since
this is a regular problem, we can apply Proposition 9. This yields the optimal trajectory
_x*, _x2*, _x* which converges to zero at t-> oo. Using the ideas of Appendix A, this will
yield Theorem 3 provided we can show that there exists a _u* which generates _x3*, _x4*
which also converge to zero. This, however, immediately follows from the fact that in
Proposition 7.2 a right inverse with a polynomial transfer function is obtained.
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