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From Time Series to Linear System—Part III.
Approximate Modelling*
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An optimal approximate model, defined in terms of the complexity of a model and the
misfit between a model and the observed data, yields algorithms for computing an
optimally fitting model with a maximal admissible complexity or, alternatively, a
minimally complex model which explains an observed time series up to a maximally

tolerated misfit.
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Abstract—In the third part of this paper the problem of finding
a linear time invariant complete system which models an
observed time series will be continued. However, in this part it
will be assumed that the model is required to explain the
observations only approximately. This raises the question of
what is meant by an approximate model and how one should
judge a model against data which, in a strict sense, falsify
the model. The initial sections of this paper introduce the
methodology: either the maximal admissible complexity is fixed
and the best fitting model in the model class is sought, or the
maximally tolerated misfit is fixed and the least complex model
in the model class is sought. This is illustrated by means of
finite dimensional models, where natural complexity and misfit
functions suggest themselves. Subsequently what is meant by
the complexity of a (linear time invariant complete) system is
discussed. A concrete complexity function is proposed which is
defined in terms of the richness of the behaviour on finite time
intervals and is in one-to-one correspondence with the number
of inputs, the number of states, and the observability indices of
the underlying minimal i/s/o system. The next definition is that
of the misfit between an observed time series and a system. A
concrete misfit function is proposed which takes into consider-
ation the lag structure of the system and in how far the
observations fail to corroborate the (AR) equations which define
the system’s behaviour. How the misfit may be computed by
means of the correlation function of the data is then shown.
These concepts are subsequently used in order to set up
two algorithms for approximate modelling of an observed g-
dimensional time series. The first algorithm fixes the maximal
complexity—in a sense this comes down to fixing the number
and the lags of the required AR equations. The second algorithm
fixes the tolerated misfit. It is adaptive in nature in the sense
that the number and the structure of the resulting (AR) equations
will depend on the observations. These ideas and algorithms
are illustrated by means of two simulated examples.

19. INTRODUCTION
THE CLASSICAL view of modelling is the descriptive
one of the physicist: nature functions consistently
according to some universal laws and the task is
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to discover them.

In some cases, it may, in principle, be possible to
obtain such laws by deduction or extrapolation
from observed data. In Willems (1979) it has been
shown how one can for example view Newton’s
laws as a logical extrapolation of Kepler’s laws.
However, the practice in the descriptive sciences is
really not this; it is much more the concéept of
falsification than that of deduction which is the
central idea. This observation, in fact, has formed
the cornerstone of the philosophy of science since
Popper. Models and laws are postulated, often on
the basis of an Aristotelian philosophical view and
aesthetic appeal, and it is only later that one
discovers that, to some extent, they could also have
been deduced from already existing knowledge and
observed facts. In this sense, models are obtained
neither by deduction, nor by induction, but by
inspiration.

Against this background one should, as far as
the descriptive sciences are concerned, not expect
too much from the methodology put forward in
Part II, where a theory of modelling has been
proposed on the basis of observations. However,
in the prescriptive sciences, as, for example, control
engineering, signal processing, etc., particularly in
the adaptive aspects of these fields, the view of the
modelling process is much closer in spirit to the
framework which was outlined in Part II of this
paper: one has a family of measurements, and one
postulates a model class; the modelling process
then consists of selecting, on the basis of the
measurements, an appropriate element from the
model class. In Part IT a methodology was set up,
by means of which this process can be approached,
under the premise that one wants models which
explain the data exactly, and which looks for the
most powerful model which is unfalsified.

As is apparent from the derived algorithms, the
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results of Part II may not be particularly useful in
the case of “real” data corrupted by noise, round-
off errors etc. As an example, consider Algorithm
2 withg=1and T=Z,, ie. assume that a scalar
time series W = (W(0), W(1),...,W(t),...) is observed
which is to be modelled by means of a linear time
invariant complete system. General considerations,
or Algorithm 2 for that matter, show that two
possible conclusions emerge: either W was an input,
which means that it is not explained, or there exists
neZ, and p,_;, Pn_2> ---» Po€R such that
W satisfies the recursion w(t +n) +
Pu_ Wt + 1+ 1)+ - + poW(t) = O (assume that n
is as small as possible), in which case p(o)w =0
with p(s):= 5"+ p,+18" ' + " + po is chosen as
the model which explains the measurements. In
that case the conclusion is that W was the output
generated by an autonomous system. With raw
data and infinite precision arithmetic, the first
situation always results, and hence, in trying to
obtain a model which explains the measurements
exactly, a model results which explains everything
and hence teaches nothing about the underlying
phenomenon: an unfalsifiable and, therefore, a
worthless model.

On the positive side, things are not as bad as
they may seem from all this, since carrying out
rank determinations and solving linear equations
approximately is well within the expertise of numeri-
cal linear algebra techniques. As such, it can be
claimed that the algorithms in Part IT may already
provide useful methods for realistic applications.

Nevertheless, it is much more logical to let the
approximation question enter not on the level of
the numerical implementation of an algorithm, but,
if possible, to incorporate this aspect in the very
problem definition. This is the subject of the present
Part III of this paper.

As already mentioned in the introduction of Part
II, the main motivation for treating the exact
modelling issue first is that in order to make
progress on the approximate modelling question,
it is absolutely necessary to have a good under-
standing of the exact modelling question and to
have a suitable mathematical vocabulary for it
available. As such, the first task will be to refine
the language of Part II so as to incorporate the
approximation issue. As motivated in Part II, a
stochastic approach is not used. As such, the
paradigm on which the model selection is based
will be low complexity and high accuracy (not
unbiasedness, consistency and efficiency as would
be the case in the familiar statistical framework).

The key concepts in this approach will be the
complexity of a model and the misfit between a
model and the measurements. These concepts will
be treated in the next sections. Approximate model-

ling will consist of an implementation of the prin-
ciple that the desired optimal model is simply the
most accurate model within a preassigned tolerated
complexity level or the least complex model in a
given model class which approximates the observed
data up to a preassigned tolerated misfit. The idea
of formalizing complexity considerations in system
identification has also been pursued in Rissanen
(1985) and Caines (1986). Also, the idea that identi-
fication algorithms (should) have an interpretation
as optimal approximation is basic in the point of
view put forward by Ljung (Ljung and Soderstrom,
1983; Ljung, 1985).

20. METHODOLOGY

In this section the methodology which underlies
the approximate modelling procedures will be out-
lined. Actually, many classical identification algor-
ithms can be interpreted nicely in this context.

In the language of Section 13, let S be a phenom-
enon, # < 25 be a model set, and & < 25 be a set
of measurements. The complexity ¢ is a mapping
c. M — € with €, the complexity level space, a
partially ordered space. The misfit ¢ is a mapping
& ¥ x M — & with & the misfit level space, also a
partially ordered space. It is logical to demand that
{M{, My € M, M; = M} = {c(M,) < (M) and
§Z,M,) < eZ,M,) VZeZ}. In other words, the
partial ordering is isotone with respect to the usual
ordering induced by inclusion. However, in some
situations one may want to use complexity or misfit
functions which do not satisfy these conditions.

The complexity can be viewed as the inverse of
the power of a model and is hence a quantitative
measure for expressing how powerful a model
actually is. The misfit &(Z, M) indicates how far the
model M fails to explain the measurements Z. Large
complexity and large misfit are both undesirable
properties of a model. Models with large complexity
explain too much, while models for which the
misfit is large explain the observations poorly and
therefore do not inspire much confidence.

Now assume that S, A4, &, ¢. # — €, and
& & x M — & is such a modelling set-up. The
approximate modelling methods used here proceed
along one of the following lines.

First methodology

Fix the maximal admissible complexity, c**™. Then
call M*c 4 the optimal approximate model in the
model class . for Z e & if it satisfies the following
conditions:

@) o(M*) < ¢
(i) {Me M, (M) < )= {e(Z, M*) < Z, M)};

(i) {M e M, c(M) £ ™™ oZ, M) = &(Z, M*)}
= {e(M*) < (M)}
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In this methodology the optimal approximate
model has an allowed complexity level (i) and,
within this class, a minimal misfit (ii). However, if
there are many models achieving this minimum,
then it is logical to choose the one which has
smallest complexity (iii). This often induces unique-
ness, while (i) and (i) alone may not.

Second methodology

Fix the maximal tolerated misfit, ¢°. Then
M* e .# is called the optimal approximate model in
the model class .# for ZeZ if it satisfies the
following conditions:

() (2, M*) < &}
(i) {M e M, eo(Z, M) < £°'}= {c(M*) £ o(M)};

(iii) {M € M, &(Z, M) < £°',c(M) = c(M*)}
= {e(Z, M*) < &(Z, M)}.

In this methodology the optimal approximate
model has a tolerated error level (i) and, within this
class, a minimal complexity (ii). However, if there
are many models achieving this minimum, then it
is logical to choose the one which has smallest
misfit (iii). This often induces uniqueness, while (i)
and (ii) alone may not.

There are a number of minor variations on the
above procedures which can have consequences on
these algorithms. In particular, the results may
differ slightly if ¢**™ and/or &' are interpreted in
the sense that they require c(M)<c*™ or
Z,M) <& in (i) (with obvious modifications
carried through in (ii) and (iii)).

Note that when € and & are partially, and not totally, ordered,
then it will be very unlikely that (unique) optimal approximate
models exist. So, it is principally the totally ordered spaces ¢
and & which are of interest. However, for dynamical systems it
is most natural to view both ¥ and & initially as partially
ordered. In order to make them totally ordered, isotone maps
C: € —» & and E: & —» & will then be applied with ¢’ and &
totally ordered, and ¢’:= Cc and &':= Ee¢ viewed as the new
complexity and misfit functions.

The usual approach in system identification is to fix a
parametrized class of models and then choose the parameters
such that some criterion is minimized. As such these methods
may be viewed as an application of the first methodology which
is regarded as a parameter fitting method with the number of
free parameters the maximal admissible complexity. The second
methodology, which is more appealing, is adaptive in nature
since basically the structure (i.e. the complexity) of the chosen
model is adjusted so that the required fit is achieved.

Of course, most appealing of all is to have a methodology in
which a combination of the complexity and the misfit is used
in a utility function w: € x & > % yielding u(M,Z) to be
maximized. However, this will not be pursued here since it seems
difficult to come up with an intuitively justifiable utility function.

As already emphasized in Part II, only situations in which it
is assumed that realizations of the phenomenon are being
directly observed will be considered. More specifically, linear
time invariant means that it will be assumed that observations
consist of a vector time series which is interpreted by means of

a linear time-invariant system, incorporating as its signal vari-
ables the observed time series only. Of course the observations
could also be'interpreted by means of auxiliary variables, if it
is logical in that case to keep (the norm of) these auxiliary
variables small. This leads to the notion of the credibility of the
model: it makes sense to prefer (accept as more credible) an
interpretation with small auxiliary variables above one in which
the auxiliary variables are large in norm. These interesting
ramifications of the theory will be pursued at a later stage.

En passant, the classical system identification methods which
are based on the premises of statistics, such as AR, ARMA, or
ARMAX identification, prediction error methods, minimum
description length methods, maximum likelihood identification
etc., are basically methods which are based on the minimization
of the complexity, and perhaps, the credibility (likelihood), but
do not explicitly allow for a misfit. Thus Akaike’s criterion
(Akaike, 1977) should be viewed as a proposal of a utility which
is a combination of the credibility and the complexity of a model.
Ljung’s work mentioned earlier introduces approximation in
a more explicit way. The question remains in many of these
stochastic approaches, of course, of how reasonable it is to use
stochastic models, where the need comes from to insist on a
stochastic interpretation of the lack of fit between data and
model, and why—if one accepts stochastic models as an
interpretation of observed phenomena—it is desirable to have
a small noise term.

In the remainder of this paper, these ideas will
be developed in detail for finite dimensional spaces
and linear time invariant complete systems. For
illustrative purposes, however, the case of finite sets

will be treated first.
Example 8. Let S be a finite set and let || denote the cardinality.
Take # =% = {all non-empty subsets of S}, €=R,,
& = [0,1]. Define ¢(M) = log M (this complexity measure is
discussed for example in Rissanen (1985) and Kolmogorov
'Z I} Mcomplemenll
(1965)) and &(Z, M) = @
which ¢ is introduced without at least having a distance measure,
is not very subtle).

If the first approximate modelling methodology is used on
this example, then to begin with one should decide on the
maximal number of elements which the chosen model is allowed
to contain. This yields for the optimal approximate model

(clearly, this situation in

M* Z' ifloglZ} < ™™
Z' if*loglZ} > ™™,

Here Z' is any subset of Z such that [Z'| = ent(2""").

If the second approximate modelling methodology is used on
this example, then one should decide on the maximal percentage
of falsified elements which one is willing to tolerate. This yields
for the optimal approximate model M* = Z’ with Z’ any non-
empty subset of Z such that |Z — Z'| = ent(¢!|Z)).

In the case at hand a reasonable utility function would be
—u(Z, M) = 2log|M| + 2log|Z n MeomPlemen| Suitably inter-
preted, this yields M* = Z as the unique optimal model.

Example 9 (Factor analysis). Many data analysis problems
consist of fitting a linear subspace to a set of observed vectors. In
this terminology, S = R", # = {M R"|M linear} and 2 = {all
finite subsets of R”}. The observation set will be denoted Z = {z,,
23, -5 2y}, ZERY, PN,

The most common approach to this subspace fitting problem
is regression. This assumes that the observation consists of two
components, z; & col(u;, y;), with u,eR™ and y,eR™,
n=n, + n,. We call u the regressor and y the regressand. Now
look for a matrix LeR"*" such that the graph of y = Lu fits
the data in a suitable sense. In regression, L is chosen such

1 . L. . .
that N Y |y — Lufi* is minimized. Using Euclidean
i=1

. 1 X .. . .
norms and assuming that ﬁz uul is invertible, yields
i=1
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N N ~1
L* =(l ¥ y,u,T) (—1 ¥ uiu;’) as the optimal L. In our
NS NS

modelling language, the structure—and hence the complexity—
has been completely fixed by the regression set-up. The graph
of y = Lu is thought of as the model M—which is hence an n,-
dimensional subspace of R"—and one has the misfit

N
M, Z):= % Y lell* with e;:= y, — Lu,. The misfit is to be
i=1

minimized. Note that the optimal L* is completely specified by
the fact that the error e; is uncorrelated by the data:

N;
been observed without error, but that the measurements have
reproduced the model outcomes Lu; only up to the error
y; — Lu;. The model is then guessed by minimizing the average
squared error.

Another approach to this problem is factor analysis. In there,
it is again assumed that in the observation there is a component
of the model and an error. The model produces n-vectors of the
form Lu with ueR™ the factors, and LeR"*™ the loading
matrix. The observations are obtained by adding an error term
e = col(ey, €,,...,ey), yielding z = Lu + e. The problem now is
to deduce from the data z,, ieN, the model parameters (m, L)
and, if possible, also the factors u;, ie N, or at least the explained
part of the model m; = Lu,, i€ N. The assumption which makes
this problem a well-defined one is that the factors u and the
components of the error e!, €2, ..., ", are independent. This

1 X . .
— ¥ eu] = 0. Basically regression assumes that the u;s have
=1

1 N
independence is taken to mean ﬁz uef=0 and
i=1
1

N2
It is possible to phrase the problem of finding (m,L) as a
matrix analysis problem. Introduce the data covariance matrix
N
I = % Y z;zT. Obviously £, = ZT > 0. Now assume that X,
i=1
can be written as £, = LE LT + £, with 0 < Z, = ZTeR™*™,
LeR"™™ and X, =diag(c?,02,...,02). Then, assuming that
N 2 2n, it may be shown that there exist 4, and ¢;, ieN, such

. 1 1 X
that z; = Lu, + ¢, ieN, =Y uul =%, =% eel =Z,, and
N2 NS
1

e’-‘e}" =0forall k,kenk #£k.

i

1=

N 1 N
Y uwel =0, if £, = ﬁz z;z] equals L, LT + Z,. Conse-
i=1 i=1

Z|

quently, the factor analysis problem reduces to writing

N
T,:= —]%J— Y zz] in the form LY LT + £, with £, = ZT > 0 and
i=1
X, diagonal and non-negative definite.
Define the complexity of the factor analysis model

n=Lu+e ieN ™)

as ¢(M):=m, the dimension of the factor space. Denote

1 X 1 ¥ 1 X .
I, = Ni; 22T, & = ﬁ‘; Luf(Lu)7, and X, = ﬁs; eel. With
this choice of the complexity, the factor analysis modelling
question with minimal complexity leads to the problem of
determining, for a given I, = LT > 0, a minimal rank matrix
£ =£T > Osuch that X, = X — £ is diagonal with non-negative
entries, i.e. of trying to model the observations X, with a
minimally complex model.

There always exist many admissible models with complexity
(n — 1). Simply take any non-zero non-negative definite diagonal
matrix A, determine the smallest non-negative root i of
det(X, — uA) =0, and choose £ =3 — jiA. Taking for

©,...,0,1,0,...,0)
A = diag 1 corresponds to least squares
ithelement
regression with the ith observed variable as regressand. Taking
for A = diag(1,1,..., 1) corresponds to what is called orthogonal
regression. This may be interpreted as assuming that the errors
on all variables are equal. The cases for which 1 or (n — 1) are
the minimal achievable complexity can be identified. Indeed, it

can be shown that {¢*(X,) = 1} <> {Z, is a Spearman matrix, i..
up to change of sign of the variables z,, all elements of X, are
strictly positive and 6,0 — 6,6, = 0; 6,6, — 6,6, < 0 for all
i#j#k#1} and {*Z)) =n— 1}« {Z ' is a Frobenius-like
matrix, i.e. up to a change of sign of the variables z;, £ ! has
strictly positive elements}. For a discussion of this, see Kalman
(1984) and Bekker and De Leeuw (1985). Determining explicit
conditions for c* to be 2,...,n — 2, appears very difficult. The
case ¢*(Z,) = n — 1 is particularly interesting. The ith column
of £ ! determines the regression coefficients if the ith variable
is taken to be the regressand. Hence, if £ ! is Frobenius-like,
then regression against any variable as regressand will yield the
same sign pattern for the weights in the regression equation
obtained by taking any of the variables as regressand.

It is logical to define the misfit of the factor analysis model

N
m as &M,2)= ,=%Zeie,f or as ¢&M,Z)=Trace
Li=1

N
Z = % 3 lel® It is worthwhile to pursue the resulting
i=1
app;oximate modelling problem with m as the complexity and
1 Y lleil* as the misfit.
NS

Both regression and factor analysis can also be viewed in a
stochastic context as an attempt to approximate an n-dimen-
sional (normally distributed) random vector by means of one
which has its support on a subspace. Actually regression may
then be explained either as writing y = Lu + ¢ with u and e
independent or such that &{[le||?} is minimized. The details will
not be pursued here.

Regression has the advantage over factor analysis that it
is explicitly solvable (without even requiring that algebraic
equations be solved), whereas factor analysis as a general
problem appears untractable. However, factor analysis has
important invariance properties: indeed, it is invariant under a
reordering of the components of z. Explicitly, if IT is a permu-
tation matrix and if (m, L) is a minimally complex factor model
for the data z;, ie N, then (m,I1L) will be a minimally complex
factor model for the data Ilz,, ie N. Regression on the other
hand is severely prejudiced by the separation of z into col(y, y),
a separation which is very artificial in most applications. Also,
if 7! is not Frobenius-like, then regression may not be very
sensible to start with since already the sign of the coefficients
of the resulting linear relation will depend on the choice of the
regressand.

Another approach to the subspace fitting problem which is
invariant under permutation of the components of the obser-
vation vector is the total least squares approach. It is explicitly
solvable using a singular value decomposition (SVD) and hence
it requires solving algebraic equations. This approach will be
pursued in the next section.

21. TOTAL LEAST SQUARES

In this section the methodology explained in the
previous section will be illustrated in order to fit a
linear subspace to a finite number of points in R"
by means of a total least squares criterion. As will
be shown, this problem can be solved by means of
SVD. The results of this section will serve as an
important tool when the dynamic case is discussed.

Let S = R", equipped with the Euclidean inner
product, .# = {all linear subspaces of R"}, and
% = {all finite subsets of R"}. Take ¥ = [0,1],
equipped with the natural ordering and define the

dim M
.Let &=

complexity ¢: 4 — € as o(M) =

R, endowed with the lexicographic ordering. Now
define the misfit &(Z, M). Considering the measure-
ment matrix Z = [z,,2,,...,2zy] and, for aeR",

-y

C
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define d(Z, a)—the misfit between the data and the
law{a,z) = 0—as

\ /-ﬁi ] IKa, z >

lall

M=

d(Z,a):=

= minimum
a;lspana

Now define the (total) misfit &(Z, M) as

&Z,M):= Jmax d(Z,a).

This definition of complexity chooses as the mea-
sure of complexity the number of linearly indepen-
dent constraints—in other words, the number of
laws—by which a model restricts the behaviour.
The choice of the misfit function can be explained
as follows. If a L M then the basic claim is that
{z,a> =0 is a law which holds for phenomena
consistent with the model M. Consequently d(Z, a)
measures how far the measurements violate this
law. Hence the misfit &(Z, M) gives the degree in
which the worst law which is implied by accepting
the model M fails to be corroborated by the
measurements Z. This expresses the fact that a
model obtained by a chain of laws is judged by its
weakest link: the combination of a truth and a half
truth remains a half truth.

The following proposition shows how to compute
the misfit.

Proposition 23. Let Z = {z,,2,,...,zy}€Z and
denote by Z also the measurement matrix
Z =[z,,2;,...,2y]€ R**¥. Define the covariance

. 1
matrix of the measurements by HZ:=WZZT. Let

Me # and let Q,, = I — Py, with P, orthogonal
projection onto M. Then &Z, M) = amax( Z )

Ov—r
N,
=« O max (QMHZQM)'

Proof. See Appendix P.
The solution of the approximate modelling ques-
tion for the case at hand is discussed next.

Theorem 24.Let UZVT be a SVD of \/1—_Z with SVs
N

6, = 0, = 2o0,>0 and left singular vectors u;,

ien. Let ¢*™, the maximal admissible complexity, or

alternatively, £, the maximal tolerated misfit, be

given. Then an optimal approximate model M* is

obtained as follows. Assume c¢**™ given. Then,

ifent(n-c*™) = 0, M* = (;
ifent(n-c*™) > r, M* = span(z,, z,,...,2y);

1 N
le:l lz; — aillz'

otherwise, M* = span(u,,u,,...,4;), with the
integer k defined such that

Ok > Oxsq = Oen(nc™™)+ 1.
Assume ! given. Then,

if &' >0, M*=0;
if & < g,, M* = span(z,,z,,...,2y);

otherwise, M* = span(u,,u,,...,4;), with the
integer k defined such that

0, > 20,4,

The corresponding complexity and misfit are
cM*)=k and Z,M*) =0, ;.

Proof. See Appendix P.

It is actually possible, by modifying the definition of the error
level in the spirit of Proposition SV(V), to obtain M* as the
unique optimal approximate model.

A few words regarding the sensitivity of the model M* with
respect to the data follow. This sensitivity is clearly related to
the sensitivity of the span of the left singular vectors of the data
matrix Z. Now if ZeR"*¥ js the data matrix and u,,u,,...,u,
are its left singular vectors corresponding to its first k singular
values ¢, 2 6, = ** 2 0, = 0,4, = - then it is known that
(see, e.g. Golub and Van Loan, 1984, p. 287) the sensitivity of

span (u,,4,,...,4) is proportional to . As expected,
Oy — Opryq

this sensitivity becomes infinite when ¢, = 6,,,. Even when
c*¥™ s imposed, however, this difficulty will not be encountered,
due to the choice of ¢ and the secondary minimization (iii) in
the methodology for choosing M*. All this implies is that it is
important, when applying Theorem 24, to consider the ¢, and
6,.+, corresponding to the optimal approximate model and, if
o, is nearly equal to g,,,, to decrease c**™ or increase &
somewhat. This will yield a model which is much more robust,
which will be less complex, but which fits the data with almost
the same accuracy as the original model.

The results of Theorem 24 depend of course on the chosen
expression for &. However, similar results can be obtained for
other least squares type misfit functions.

For example, if &(Z, M) is defined as

then a similar result to Theorem 24 is obtained with k such that

r r
[§ 42 < g0l 2
Yol<et< | ¥ of.
=k i=k+1

Note, however, that this error measure will not give uniqueness
of M* in the case of repeated singular values o, = 6, . Also,
for the case at hand nothing changes, clearly, if ¢*™ is interpreted
as requiring c(M) < c**™ simply replace ent(n-c**™)+ 1 by
ENT(n- c**™) in the rule for the choice of k. However, if ¢ is
interpreted as requiring &Z, M) < &', then k should be deter-
mined by 6, > £° > 6, , ;.

In the example under consideration of least squares fitting of
a linear subspace to a cloud of points in R", the choice of the
complexity of the model is rather compelling and equals the
dimension of the subspace which defines the model. The choice
of the misfit, however, is not as compelling. The misfit

L3 oz
N(;I |<a!zi I

Z =
AZ.M) = a1

used in Theorem 24 is basically an equation error oriented misfit
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measure since it expresses the fit by checking how far the
equations defining the model fail to be satisfied. The misfit

. 1 X
Z, M) =min [ — 22
Az, M) =min [ 3 Iz~

on the other hand is a behaviour error oriented misfit measure
since it expresses how far the data can be reproduced by the
model. However, for the case at hand these two measures lead
to solutions which are essentially equivalent. Later in the paper
it will be shown that the distinction between both situations is
of much more consequence in the dynamic case.

A recurrent question concerning the approach presented here
is how fixing the maximally admissible complexity compares
with methods which fix a maximal number of free parameters
and subsequently fit these parameters to the data. This number
of free parameters could then be interpreted as being related to
the complexity. The two ideas are not unrelated, but there are
important differences. For one thing one insists on talking about
the complexity of a model class and it is awkward to judge a
posteriori a chosen model by the class out of which it was selected.
Secondly, the number of free parameters in a model class is
not always mathematically a well-defined concept. The relation
between the notion of complexity and the number of free
parameters becomes visible in determination of the dimension of
the manifold of models having a maximally admissible complexity.
For the modelling set-up discussed in the present section the set

{M et |c(M)= n;} is a manifold of dimension n(n — n). It is

reasonable to identify this number with the number of free
parameters. This expression shows however that there is not even
a monotonic relationship between the number of free parameters
and the definition of complexity. As such it is a difficult matter
to speak about the number of free parameters in the set
{Me.#|c(M) < c**™} since this set will in general not even be a
differentiable manifold. In conclusion, there is only a vague
relation between complexity and parsimony (in the number of free
parameters).

22. THE COMPLEXITY OF DYNAMICAL SYSTEMS

Up to now, complexity spaces which are totally
ordered have been considered. However for
dynamical systems a partially ordered complexity
measure will be introduced.

Recall that L:= {all linear shift invariant closed
subspaces of (R)T, T= Z or Z ., equipped with the
topology of pointwise convergence}. Take
%:=[0,1]%+, i.e. each element ce% is a map c
Z,. —[0,1]. Endow ¥ with the partial order of
pointwise  domination:  {¢'=c"}:i<>{c, = ¢/,
VteZ,}.

The notion of complexity will be defined as
follows.

Definition 5. The complexity of a linear time
invariant complete system {T,R9, %} with #eL is
defined as ¢: L — % with

where %B,:= % |r0.-

This definition of complexity simply measures
the relative number of degrees of freedom which
are visible in the system’s behaviour in each time

window, i.e. the relative number of independent
sequences which the system can conceivably gener-
ate in a time interval of a given length. The more
sequences, the fewer constraints they are required
to satisfy, the higher the complexity.

This definition is very similar to what one can
take as the complexity of a real number ae[0,1].
Assume that a is written in binary expansion as
a=a,a,...a,... . Define N, as the number of
distinct subsequences of length t appearing some-

T . N
where in this binary expansion, and ¢,:= 2—t’as the

relative number of such distinct sequences. It is
reasonable to define the sequence (c,,¢5,...,¢,,...)
as the complexity of the number a. It is easy to see
that ¢, is non-increasing. Hence ¢, := tlirzx0 ¢, exists.

Ifc,, > Othen acan be thought of as being ‘random’.
Random numbers are certainly irrational in this
sense. If the g;s are stochastically generated and
independent, with P(q;=0)=p, p+#0,1, then
¢, = 1 with probability 1, as such numbers with
0 < ¢, < larerandom in a non-probabilistic sense.
Recall that associated with an element ZeL
there are a number of important related integers.
First consider d(#): Z, -+ Z, defined by
d(#):= dim B,. Its derivative p(B). Z, > 7, is
defined by p(B):=d(#)—d,_(#) (define
d_, (#):=0), and the negative of its second deri-
vative, the structure indices, y(#). Z , — Z , are defin-
ed by y{(%#):= p,—1(B) — p{%) (define p_,(%):= 0).
From the results of Section 7 it follows that d(%)
is non-negative (d > 0), monotone non-decreasing
(d=p=0), and concave (d" = —y < 0). These
indices can also be approached from the AR descrip-
tions. Let ZeL be described by R(o)w = 0 with
R =col(ry, r;, ..., r,). Then (R) = (0,,0,,...,0,)
with 9,:= d(r;)) (assume without loss of generality
0<9, <0, < < 3,)is called the lag structure of
R, while §,, ¢€,,...,&,,..., with {,:= the number of
0,5 equal to ¢, is called the equation structure of R.
Since many polynomial matrices R define the same
behaviour ZeL (for Rs with full row rank this
family is generated in the case T=Z, by the
transformation group R — UR where U ranges
over the unimodular polynomial matrices—this
statement should be suitably modified for the case
T = 7), this leads to the definition of the shortest
lag AR description of # defined with g = g*(%) as
small as possible (¢g* = normal rank R(s)) and,
within this class, 0}(%), 0%(®),...,0 (#) lexico-
graphically minimal (see Section 7 for a more precise
formulation). The associated equation structure is
called the tightest equation structure. This sequence
$(B), CH(P),...,LXB), ... has the significance that
{¥(#) represents the number of equations of lag ¢
when the equations are expressed with minimal
possible lags. The specification of all these indices
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can also be approached from the state space point
of view. Indeed in a state space model for # with
a minimal number of states and driving inputs let
m*(%) be the minimal number of driving inputs
and v¥(%), v3(%), ..., v}(#) the observability indices
of the associated pair (4, C).

In Section 7 it was shown that there is a one-to-
one relation between

do(B), 4,(B),...,d(B),...)
(0o(B), p1(B), ..., p( %), .. )
(B, 7,(B),...(B),...)
(8*(), 01(B), ..., O )
(E3(B), C1(RB), ....LHA) . )
and (m*(B), vi(B),..., vi(B)).

d,(%)
qt + 1)

Now, since ¢(%) = the complexity

o(B) = (co(B),c1(B), ..., c(%),...)

can be added to this list.

Theorem 25. The complexity function introduced
in Definition 5 has the following properties:

(i) {#.#ecl, BcB}={d(B)<cAB)};
0 < ¢(%) < 1; and ¢,(#B) < 0: ¢(#) is monotone non-
increasing;

1 n
t+1 ¢
with m the dimension of the input space in any i/o
or i/s/o representation of &, and n the dimension
of the state space in any minimal state space
representation of #. Hence ¢ (%):= tllrg c{B)

i) For ¢ sufficiently large (%) ='—;’ +

equals %1 , and the rate at which this limit is
approached, v_(%):= ,llm HelB) — c,(P)), equals

n/q.

(iii) There is a one-to one relation between ¢(%)
and the structure indices, or, equivalently, with the
shortest lag indices, with the tightest equation
structure, or the number of inputs and the observ-
ability indices of a minimal input/minimal state
i/s/o representation. Let %', #" L, m’, m" be the
corresponding number of inputs, n’, n” be the corre-
sponding number of states in any minimal i/s/o
representation of &, and {' = ({5, &3, .. ), ¢" = ({§ »

L »-..) be the corresponding tightest equation struc-
ture. Then {¢(#') = o(#")} = {m’ = m"}, and

{c(%) = (")} <

{i G+ < S G+ I)C{’forallkel+}.
i=0 i=0

In particular, {(#)=c(#B") and m =m"}

= {nl 2 nll}.

Proof. See Appendix P.

Statement (iii) illustrates in perhaps the most
direct way how to interpret the notion of com-
plexity. Complex systems are described by few and
high order equations: they obey a small number of
laws and those laws which they obey are rather
“loose” in the sense that they involve large lags and
hence lead to hard constraints only if large segments
of the time series involved are considered.

The above theorem shows the relation between
the notion of complexity and the number of par-
ameters in the class of linear time invariant finite
dimensional models with a given complexity. There
the complexity fixes the number of equations
describing #—this corresponds to fixing the number
of outputs (and thus the number of inputs)—and
the degrees of the equations describing #. By
looking at shortest lag descriptions much of the
freedom in this representation is exhausted but
some parameters can still be eliminated while
respecting the degrees of the polynomials of the
(AR) equations describing the behaviour. In any
case it shows that high complexity means few and
high order (AR) relations. This implies that there
will be no simple monotone relation between the
complexity and the number of parameters charac-
terizing the class of systems with a given complexity.
This shows again that there is only a vague relation
between complexity and parsimony.

As already mentioned, there also exists a one-to-
one relation between the complexity with its partial
ordering and a combination of the number of inputs
and the observability indices of any minimal i/s/o
representation. However, the exact expression is
not particularly illuminating. If, on the other hand,
one concentrates on systems with a fixed number
of inputs and states, then the connection becomes
more direct. The next theorem explores this
relationship. In particular it will be shown that the
generic elements are the most complex ones. This
formalizes in yet another way the intuitive state-
ment: non-generic <> structured <> not complex.

Recall that if the i/s/o system ox = Ax + Bu,
y = Cx + Du, w = col(u,y) is considered as being
parametrized by the matrices (4, B, C, D)e
R +am+pitpm then the elements which yield an
observable pair (4, C), with (1) MOD(p) observability

indices equal to ENT(%), and p-(n)MOD(p) observ-

ability indices equal to ent<£>, form an open, dense,
D

and measure exhausting (the Lebesgue measure
of its complement being zero) subset of
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R»*+#m+pntpm These elements have generic observ-
ability indices.

Theorem 26. Let &', #” L, m’, m" be the corres-
ponding number of inputs in any i/o representation,
n, n” be the corresponding minimal number of
states, and v' = (v{,v3,...), v/ = (v{,v3,...) be the
corresponding observability indices in any minimal
i/s/o representation. Then

(i) {c(B)=c(RB)}={m =m"}

(i) {c(#) = o(#") and c(B) = c,(#") (equival-
ently, m = m")} = {n' = n"}

(ii) {c(B) = ¢(B"), Co(B) =co(B") and v, (%)
= v,(#") (equivalently, m’ = m” and n’ = n")}

=9 2 v= Y v/ for all keZ, (equivalently,

ijvi<k iy <k
’ ”
Y v Y v/’ for all keZ+)}.
ilvizk ilv; 2k

Proof. See Appendix P.
The following corollary is particularly interesting.

Corollary 27. Consider the class of finite dimen-
sional linear time invariant i/s/o systems with a
fixed number of inputs, states, and outputs. Then
the elements with generic observability indices are
precisely those with maximal complexity.

The following diagrams show typical graphs for
a complexity function ¢(%) and d(#) with
d(#) = dim &, = q(t + 1)c(£) (see Diagrams 1 and
2).

The partial ordering which has been taken on
the complexity space implies that %’ will be more
complex than £” iff, on each time interval, %'
allows more sequences than #£”. This is a very
strong ordering and in approximate modelling total
orderings will be considered which are isotonic with
but weaker than the above ones. In the algorithms
in Section 25, the lexicographic ordering:
{¢’ = ¢"} = {either ¢’ = ¢” or there exists te Z such
thate; > ¢, and ¢, = ¢/ for 0 < ¢’ < t} will be used.
This total ordering expresses strong preference for
short order lag relations (further comments in
Section 25). At this point, however, the reverse
lexicographic ordering is, in view of Theorem 26,
perhaps more appealing. The reverse lexicographic
ordering is defined by {¢’ = ¢"}:<> {either ¢ =¢”
or there exists te Z such that ¢, > ¢;” and ¢, = ¢,
for t' > t}. This ordering tries to keep the number
of inputs (unexplained variables) and the number
of states small and is a total ordering on e¢(L).
However the development of approximate model-
ling algorithms in this case is much more compli-
cated and is a topic of future research. In any case,
¢(%B) itself appears as quite a compelling measure

of complexity of a linear time invariant finite
dimensional system.

23. THE MISFIT BETWEEN AN OBSERVED TIME
SERIES AND A LINEAR TIME INVARIANT SYSTEM

In order to measure the misfit between an
observed time series and a model, norms will have
to be introduced. This will be done by assuming
that the components of the observed time series
belong to a litear subspace X — RT which is
assumed to be a shift invariant (6 <« H ' f T=2Z,
and o = X if T = Z) inner product space with
inner product and norm denoted by {.,.), and
Il » respectively. The subscript 2" will be dropped
whenever there is no danger of confusion. Also
assume that ¢ in non-expansive on X, i.e. that

lok| x < ||kl forallke "

Examples of spaces X~ are:

(1) (I;-spaces): X" = I,(T; R9).

(2) (Weighted I,-spaces): Let p: T— R, be given

with p positive and non-increasing and define ¢

byt := {keR7| |k|Z:= ¥ k*(t)p(t) < 0}.  Par-

teT

ticularly important is the case p(t) = o' for some

0 < a < 1 (exponential weighting).

(3) (Filtered I,-spaces): Let 0 # ReR[c], S = .

1,(T; R% with norm |k||% = |R(o)kl,,.

(4) (Almost periodic sequences). Let T=Z7Z, or Z

and X consist of the almost periodic sequences (i.e.

all k: T— R such that Ve > O there exists T(e)eZ .

such that |k(t + T(¢)) — k(t)] < ¢ for all teT). The

almost periodic sequences are countable sums of

the type Y a; cos(wt + ¢) with a;, w,eR,,
ieZ .

@;€[0,2r) (and the infinite sum suitably defined).

1 t
Take (ki ksdy-lim—— 3 ki) ky(o) for
t=0

1 H
2+ lt;_'kx(f)kz(f)

T=12Z,and (k,,k,)¥¢ = ,1‘}2
for T=2.

The misfit measure which will be considered is
an equation error oriented misfit function. It is
inspired by the misfit for linear relations used in
Section 21. However, for the case at hand the model
% e L will induce, through #*, an infinite number
of linearly independent laws. Nevertheless, this
infinite family is in effect generated by a finite
number of laws: let T=2Z, and
R = col[ry,r,,...,r,] with r(s)eR'*?[s] be such
that # = 2(R). Then all elements of %' are of the

form i pi(s)ris) with p{s)e R[s]. The same holds,

i=1
with p(s)eR[s,s ], for TeZ. It is this finiteness
which will be exploited in order to come up with
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DIAGRAM 2,

a misfit measure which will consist of a finite set
of non-zero real numbers. In analogy with Section
22 where a linear subspace M imposing dim M
independent linear laws gives rise to dim M misfit
figures (the square root of the largest eigenvalues
of Q,I1,0,,), in first instance g misfit numbers will

be associated with an (AR) system of equations
specified, in the above sense, by g generating
independent (AR) laws. Recall that this
g = p = q — m with p the number of outputs and
m the number of inputs in any i/o representation
of #.
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Let # €L and define

Nb= By
N = Bt (B + o*By)*

=B O (B + o* By

Note the following significance of A7/. Since
A, represents the tth order (AR) laws satisfied by
B, B, + o*B_, represents the rth order (AR)
laws which can be obtained by simply shifting the
(t — 1)th order laws, since if a(s)e%;—,, then
(o + ays)a(s)e B for all oy, o, €R. Hence A,
consists of all (AR) laws satisfied on £ and which
are “truly” of tth order.

Let r,:= dim .4",. Assume that & consists of all
singletons {W} with W = col(W,,W,,...,W,) and
Ww,e A for ieq. Define ) r, non-negative real

teZ

numbers as follows:

W, %)= ini . a(o)w
H(W,#):= minimum maximum lla(@)¥
,,V::‘,V; aeH’ ”a" .
dimA#' 2r—k+1 41

fork=1,2,...,r,and t=0,1,2,... . If #” = {0}
la@¥lr _ o

lall #;

These numbers can be interpreted as follows.
They correspond to the lack of fit with which w
fails to corroborate p = Y r, well chosen represen-

teZ 4
tative orthogonal AR relations specifying 4. These
relations are chosen in such a way that the first r
of them for an orthogonal basis for &5, the next
r, form an orthogonal basis for an orthogonal
complement of B + o*%B5 in &y, etc. As misfit
the sequence #°,7',...,7",... will be chosen.

Definition 6. The misfit between {W} € 2 and the
dynamical model {T,R? #} with ZeL is defined
as &(W, #) e E with E:= (R%)**+ and

then define

& (W, B): = ni(W, %)

for k < r, and &¥(W, #) = 0 otherwise.-

This misfit measure may be explained as follows:
(W, %) is a measure for the lack of fit of the tth
order lag (AR) relations specifying %, obtained by
considering only ‘truly’ tth order lag relations and
disregarding the (¢ — 1)th order relations and their
shifts.

As a first illustrative example, assume T=2Z, g =1, and
H =L(Z;R). Let Q=l.9(p) with p(s)=ps' + p- s ' +
4+ Pg» PoPy # 0, and Y p? = 1. Then g%, %) =0 for t # 1,

=0

while (W, &) = |po'® + p;_,0' "W + = + poW|, is the equ-
ation error for the measurement % when the model # is
postulated.

As a second example, let # be defined by the (AR) relations
(c+ )y, =w (6> + 0+ 1y, =u on the variables w = col

(4,y,,y,). Then &(W,#)=0 for t#12 &i(W%B) =

1 . o~
7 (e + 1)§, —il,,, and

v

- 8 o 1 -
845, 8) = 5510 + 0 + D, + (o> — 20 — 3,

1 _
~ g(o + 9l

In general, in fact, these misfits are suitable equation errors.

The error level space & = (R, )?+, introduced in Definition 6,
will be endowed with the lexicographic total ordering. Thus
{¢ = 8"} <> {either & =&" or there exists teZ, such that
g > and &, = & for 0 <t < t}. The vectors g, being vectors
R". are themselves also endowed with the usual lexicographic
ordering.

The misfit function is related, but not identical, to the widely
used prediction error criterion. It is perhaps best to illustrate the
difference for the case ¢ = 1, T = Z, and # <L an autonomous
system. Then % can be described by one AR relation
plow = (p,6' + py_,6' " + -+ + po)w = 0, where it is assumed
Do # 0. The one step ahead prediction misfit is then given by

Ilp(«lr;vlvllx compared to & #) = EO¥r for the mishit of
i i

R4

i=0

.. o)W ..
Definition 6, and %”—” for the backwards prediction error.
(]

Neither the misfit function nor its total ordering are
compelling choices. Indeed, there are a number of other misfit
functions which are suitable for the purpose. For example, & =
R, , and as another equation error oriented misfit function:

&(W, #) = supremum &(W, %)
teZ |

with&(W, ) = maximum 199% |«
e’ lal e

could have been taken. In fact, much is to be said for using
& = (R,)*+ and the sequence &W,%#) as misfit. Clearly this
sequence is monotonically non-decreasing. When equipped with
the reverse lexicographic ordering this partial ordering is in fact
quite appealing. Approximate modelling in this case together
with the analogous reverse lexicographic ordering for the
complexity function is a topic for future research.

The same thing holds for the following behaviour misfit
oriented misfit function:

of, ) = infimum W — ¥

Behaviour misfit oriented functions are much less localized
in time than equation error oriented misfit functions and as
such they have important advantages, at least in principle.
However, it appears much more difficult to find the best fitting
behaviour than it is to find the best fitting equations.

Note, finally, that the misfit measures used do not take into
consideration the purpose for which a model will be used. As
such, these models are purely descriptive in nature. Models
explicitly constructed for, say, prediction, or adaptive control,
will have to reflect this purpose in the choice of a suitable misfit
function.

However, in the present paper the multivalued
misfit function of Definition 6 will be used. It takes
explicitly into consideration the lag structure of #
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and can, as shown in the next section, be computed
by analyzing finite dimensional matrices only (in
contrast to the other above mentioned misfit func-
tions, which are infinite dimensional in nature, in
the sense that they require the analysis of infinite
dimensional operators).

24. THE COVARIANCE OPERATOR
Let {W}eZ, hence W = (col(W,,W,,...,W,) with
w,e A for all ieq. Now define for all ¢, t' € Z, the
real (¢ x q) matrix with (i,j)th element given by
{6'W;,0"W;> 5. This matrix will be denoted by
|o*W><{a*W|. Consider the infinite matrix

II(W):: =
W) (W W)W [W)>{a"W|
|av"v?<v~v| |o\7v).(av"v| la\Tv>'<a'v”v|
Ia'v"v:><\"v[ Io'\"v>:<av"v| |a‘\7v>:(a"\7v|

(case T=12,).

Clearly I'I(W) is a matrix representation of the real
symmetric non-negative bilinear form on #* x #*
which maps (a,b) ino {a(c)W, b(o)W),. Call II(W)
the covariance operator of W. Note that if |-}, is
shift invariant, ie. if |k|y = ||lok|ly, VkeX
(as in Examples 1 and 3 when T = Z, and in Exam-
ple 4), then TIW) will be Toeplitz, i.e.
lo'W> {6'W| = |o' "WD<{W|. This offers important
computational advantages which will not be pursued
here. Note finally that II(W) can also be viewed as a
map from £* into Z.

The truncation II, (W) consisting of the block
rows indexed 0,1,...,t and the block columns
indexed 0, 1,...,¢ of II(W) will also be considered.
The truncation II, (W) with ¢ = ¢’ will be denoted
by II(W). The matrix I1(W) is obviously symmetric
and non-negative definite. Its kernel, viewed as a
subspace of Z* =~ (R' *9)* * Y and its image, viewed
as a subspace of &, = R%* 1 determine the most
powerful unfalsified (AR) model for {W}. It is
interesting to observe that all the important
invariants of the i/o and i/s/o representations of
this most powerful model can be obtained directly
from the rank increase of the consecutive matrices
I1,(W).

Proposition 28. Let {W}eZ and II(W) bé its
covariance operator. Let R} define the most power-
ful unfalsified (AR) model for {#W}. Denote
B* .= B(RY), B¥:=B¥rr0. (BN =N*c
Z*, and (B%)"- =: /* = Z*. For simplicity w will
be dropped in the notation for II(W), etc. The
following hold for IT viewed as a map from ¥*
into &Z.

AUT 23:1-G

() imIT = #*, kerIl = 4™, imIl, = #¥, and
kerIl, = AF.

(ii) Define dim im I[T_, = dimkerITI_, = 0. Then
(dimimII, — dimimIl,_,) is monotone non-
increasing and reaches its limit in a finite number
of steps. This limit equals the number of inputs in
any i/o representation of #*. Further, (dim ker I1, -
— dimkerI1,_,) is monotone non-decreasing and
reaches its limit in a finite number of steps. This
limit equals the number of outputs in any i/o
representation of #*.

(iii) Let ¢ be such that (dimimIl, — dimim
In,_,) = tllrg (dimimIl, — dimimII, ;) =:m, or,

equivalently, such that (dimker I, — dimkerII, _))
= ,llm (dimkerIl, — dimkerIl,_;) =: p. Then

the excess over these limits m and p,
dim im II, —m({ +1) =p(¢ + 1) —dimkerIl,,
equals the dimension of the state space in any minimal
state space representation of #*.

Proof. Clearly
{alo)iv = 0} <> {|lale)¥|lx = 0} <> {a"Tla = O}

with a(6) = aq + a,06 + --- + a,6' + -+ identified
with a = col(ay, a,, ..., a,, ...). This shows that
ker IT = .#"*. The results follow from Theorem 6. O

From Proposition 28 the following algorithm for
computing R} on the basis of II(W) is obtained.
This algorithm has the advantage over those dis-
cussed in Part II in that beyond Step 2 it requires
the construction of the kernel of symmetric finite
dimensional matrices only. In fact, suitably modi-
fied, it can be used to compute the most powerful
t-complete model for an observed time series of
finite length, by examining the q(t + 1) x gq(t + 1)
dimensional matrix IT(W).

Algorithm 7

#(0), %(1),...., (1)
Data. {...,W(—l),W(O),v”v(l),...

(caseT=172,)
(case T = 2)

with W,e A ",Vieq.

Step 1 (Computation of the covariance). Compute
|oc'Ww>{c"'W| for all t,t'eZ, .

Step 2 (Determination of the lag). Determine
t'eZ, such that (dimim IT(#) — dimimII,_,(W))
= (dim im I1,(W) — dimim IT,. _;(W))for ¢t > ¢'.

Step 3. (Determination of the system parameters).
Compute first A7 := ker I1(W), and a basis (f],
Saroonfy,) for A, Now compute recursively,
for t=1, 2,....t, N | :=N_+6*N,_,,
N =kerII(W), and a complementary basis

(f;;o+n1+~-+n,_l+1a f;10+n1+-~~+n,_1+2, (RS
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Srgtny+eetmoy+n) fOr A in A

Now consider the polynomial vectors r{(s) derived
from the fis by setting f; =:col(f; ¢, f.1,...) With
fi;€R? and defining r(s):= Y fIs. Then

teZ +

R(s):= col(ry(s), 75(s), ..., Tugsny+---+n(5)) defines
the most powerful (AR) model unfalsified by {W}.

The approximate modelling procedure discussed
in the next section is very similar in structure to
Algorithm 7. Also, it is possible to refine Algorithm
7 so that it gives directly a state space representation
of R}.

The covariance operator allows one to compute
the misfit function (as introduced in Definition 6)
between an observed time series and a model Z€L.

Proposition 29. Let {W} € Z and & € L. Now define,
for teZ,, the g(t + 1) x g{t + 1) matrices P, so
that they correspond to the orthogonal projection
from R * Y onto .4, viewed as a subspace of
R*1 Then (/o(PJII(%)P),0,...,0) equals
(W%, B), n(W,B), ..., n.(Ww,4B)). Consequently,

&(W, B) equals (/0 pax( PIL(W)P)O,...,0)

Proof. See Appendix P.
From the above proposition the following basic
properties of the misfit function can be deduced.

Theorem 30. The misfit function introduced in
Definition 6 has the following properties.

(i) {e(W, B) = 0} = {We R}

(ii) 0 < ¢,(W, #) and, since ¢ is non-expansive on

q
X, e (W, B) < \/ Y W li%/(¢ + 1). Moreover &(W, )
i=1

is non-zero for at most p elements te Z ., where p
equals the number of outputs in any i/fo or i/s/o
representation of .

(iii) Generically, there holds {#', #"¢L, # > #"}
= {&(W, #') > &(w, B")(lexicographic ordering). This
genericity should be interpreted as a property of
I1(W) as explained in Appendix N.

Proof. See Appendix P.

The genericity in (iii) of the above theorem can
also be interpreted in terms of #' and #". In any
case, the fact that (iii) holds only generically is
obviously a weakness of the misfit function used in
this paper.

The assumption introduced in Section 23 that
each component of the observed time series W,
belongs to the inner product space J¢ is a con-
venient way to discuss the introduction of misfit
functions. However, the assumption that ; belongs
to, say, either the space [,(R%Z), or the space of
almost periodic sequences, is not a particularly nice
one in most applications. A much more practical
idea is to assume that only the average mean square

of W, exists. In other words, it is much more
reasonable to assume something like

t
31‘22‘%,20 I%{£)]1* < oo (case T=Z.,).

Unfortunately, the space of sequences for which
this limit exists is not even a linear space and is
hence not suitable as a ) -space.

Most of the error criteria which will be discussed,
in particular the one introduced in Definition 6 and
which will be used in Algorithms 8 and 9, are
entirely based on the equation error |a(c)W| as a
measure for the lack of fit between the observation
w and the AR relation ae R! *9s]. This equation
error, however, can be defined if the correlations

.
fim ——— Y WA+ WL

caseT =17
Jim o X ( 2

v

Y W{ + W)

= —¢

i

im —— caseT =7
fow 2t + 1, ( )

are assumed to exist Vte Z, i, jeq. In that case it is
clear that

lim L Zt: (a(o)W)(t'Xb(c)W)t) (caseT=12,)
mot + 1,5

1 o i
2t + 1,,;,(“(")")(‘ Yb(o)W)t) (case T = Z)

lim
t—

is well-defined for all a, be R! *9[s]. With a slight
abuse of notation this limit can then be denoted as
{a(o)W, b(6)W) 4, with the obvious resulting mean-
ing for |la(o)W] . With this definition of |[a(c)W/|
and the resulting interpretation of the misfit in
Definition 6 and the covariance operator the sequel
can also be used (with a few exceptions where the
most powerful unfalsified model is referred to) under
the assumption that the correlations mentioned all
exist. Note, in particular, that this assumption will
be satisfied with probability one whenever W is a
realization of an ergodic second order stochastic
process.

25. AN ALGORITHM FOR APPROXIMATE
MODELLING OF AN OBSERVED TIME SERIES

In this section the main results of this paper will
be given. These consist of two algorithms for
approximate modelling, i.e. identification of a multi-
variable time series. First the algorithms will be
outlined. They are based on the methodology put
forward in Section 20. For the complexity and
misfit the definitions introduced in Sections 22
and 23 will be used. However, since the ordering
introduced there on the complexity is only a partial
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ordering, it is not directly employable for minimiz-
ation and a variation of this ordering relation will
be used. The algorithms themselves examine the
covariance operator of the observed time series, as
introduced and discussed in Section 24. The analysis
of the covariance operator is a least squares type
of analysis, along the lines of the algorithm put
forward in Section 21. .

The setting to be used is formally defined as

follows.

*The model set # is L, the collection of all linear
shift invariant closed subspaces of (R9)T, equipped
with the topology of pointwise convergence.

*The measurement set is %, the collection of all
singletons {W} with we(R?)7 such that each com-
ponent W, e ¢ for all ieq.

+The complexity is defined as ¢: L - %:= [0, 1]%+

. ._ dim %,
with ¢,(%):= Gl
on® = [0,1]%* will be used, i.e. {¢’ > ¢"} <> {either
¢ = ¢” or there exists te Z, such thate¢, > ¢," and
¢, = ¢/ for 0 < ¢’ < t}. Clearly this defines a total
ordering on € which is isotone with regard to the
partial ordering studied in Section 23.

+The misfit is defined as &% x L - &:= (R, )%+
with & (W,#):= min dim 4" <1, — k — 1 max

. N> w, aed,
% where A:= B (B, + o*B- )"

Z4
The lexicographic ordering on (R%)%+ will be used,
ie. {¢ > &"}: <> {either & = ¢" or there exists teZ,
such that e, = ¢/ for0 <t <tande > ¢'}. On R®
itself we use the lexicographic ordering. Clearly this
defines a total ordering on &.

The lexicographic ordering

It is important to note that using the lexico-
graphic ordering on the complexity and the misfit
level space shows a great preference for short lag
relations. Structured, non-complex systems have in
this definition a relatively large number of relations
with short lags, and a good fit between data and
model means that the (AR) relations with short lags
are put in evidence by the data with small equation
error. This preference for short lag relations is
reasonable but not compelling. It is reasonable
because an equation involving a short lag inspires
prima facie more confidence than one with a large
lag. Indeed, in order to use the latter (for prediction
purposes for example) data from the far past
will have to be employed which is, in principle,
undesirable. Similarly, everything else being the
same, it makes sense to prefer models which fit the
short lag relations well but the long lag relations
poorly over those where the converse is true.
However, this prejudice for short order relations is

not compelling: why should an accurate (AR)
relation of lag 1 and a very poor one of lag 4
be preferred above a model consisting of two
moderately accurate relations, one of lag 1 and one
of lag 2?

25.1. Modelling with limited complexity

In our first approximate modelling algorithm,
assume that the maximal admissible complexity,
c*m = (cym, c%dm, .., 2™ )e[0,1]%% is given. It
is important to realize what this means. In effect it
implies that the model is required to contain at
least a certain number of (independent) zeroth order
lag (ie. static) relations. If it has this minimal
number of zeroth order lag relations, then it must
have a certain number of first order lag relations
etc. A typical choice for ¢*™ would be ¢24™ = 1 for

t<landc‘:d’“=-m—+<1—ﬂ>
q q/t+1

is equivalent to requiring p = g — m relations, all
of maximal lag .

Note that d(%#) = g(t + 1)c(%) will be integer
valued and monotone non-decreasing for whatever
model ZeL is chosen. Consequently one may as
well assume that c*™ has these properties to start
with. Otherwise, simply go through the substi-
tutions

for t = I This

i ’ adm
Lo ent(q(t + Deem) ming(t’ + 1)
t N
qt + 1) qt + 1)

The algorithm examines the SVs of the consecu-
tive truncated correlation matrices and uses their
singular vectors in order to decide how many and
which (AR) relations of a given lag should be
honoured at each stage. The main part of the
algorithm is recursive. It has been structured as
follows. First define the variables involved in the
algorithm, then show the initiation step, the next
step computation, and finally the termination rule.
The algorithm works with any data set W with
w,ex” for all ieq. However, since considerable
simplifications occur in the generic case, the result-
ing implications will be mentioned explicitly. Gen-
ericity should be interpreted as a property of I(W)
in the sense explained in Appendix N.

In the algorithm

L¥:= R} *[s]:= {a(s) e R* *[5]|0(a) < t}

will be identified with R%**D by identifying
ao + a;s + -+ + a5 = a(s)eR! *¥s] with a = col
(al, al, ..., al)eRW* Y, The notation will indicate
how ae Z} should be viewed.
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Algorithm 8
Input:

Dat {v"v(O),v“v(l),...,\Tv(t),...

(caseT=12,)
A W(=1), #(0), W(1), ..

(case T = 2)

with W,e A, Viegq;
€™ = (e, cidm, ... ,e2m ), 0 < 3™ 1, with
d29™: = g(t + 1)c29™ integer valued and monotone
non-decreasing in t.

Introduce also the function d: Z, — Z deduced

from ¢*9™ as follows:
d,:= min@*~d,_, + @_, - d,_,)

(define d_, =0 and d_, = —g). This d is non-
negative, monotone non-decreasing, and concave.
In fact, it is the largest (in the sense of the lexico-
graphic partial ordering) concave function satisfy-
ing d < d*™. From d deduce k: Z, - {0, 1,...,q}
as follows:

Et:= max(0, (ar—l - at—Z) - (d:dm - at— )
= at—l - a:—z - (at - at—l)'

Preliminary step (Examination of the trivial
model). If ¢3™ = 0 then w = 0 defines the optimal
approximate model and the algorithm is termi-
nated.

Recursive part. (Computation of the (AR) relations
of the approximate model).

(1) Declaration of the variables and their signifi-

cance.

*[1,(W) e RI¢+ 1) *a0+1): the tth order truncated cor-
relation matrix of the data.

*nh,ny,...,nteZ,: the number of zeroth,
first, ..., tth order (AR) relations honoured by the
approximate model at stage t. [Generically,
nt=kVvo<gi<t]

#ri (s)eR} *[s], i=0, 1,...,t, jeni the (AR)
relations honoured by the approximate model at
stage t.

* N, < ¥ =RID: the span of these (AR)
relations and their shifts.

*m, the dimension of 4. There holds m, =
t t

Y (¢t—i+1)ni. [Generically, m,= Y (t—i+ 1)k;]
i=0 i=0
*f1,f25- > fm, € RI* Dz an orthogonal basis for A4,.

(2) Initialization.

xCompute I1y(W) = [W)H{W|.

*Examine its SVs ¢9 > 09>
erically, 7o = ¢.]

xDefine k, as follows. If ge%™ > rq, set ko =r,.

= o) > 0. [Gen-

Otherwise, choose ko, such that of > o9 .4 =

Ogessm s 1 [Generically, ko = ko = qeis™,
*Compute the corresponding left singular vectors

Uyt 15 Ug+25 - - > Ug € RT Of TIo(W).

*Define

0 _

no =q— kg

0 ~ 0 1xgq . 0
Toj = ey +jp70,;€R [s],jeng

(1] . O
N = span(ro,j,Jeno)
my = "8

_ 0 :
fi=ropfieR%jemg
*Examine the termination rule

(3) Next step computation.

*Compute |WH{a'W|, |oW){o'W|, ..., |0'W)>{a'W| and
form, from these and IT, _,(W), IT(W).

*Compute A ,_, +o*N,_ =M, £} and extend
SisforeoosSmey With fr s fon 425 -+ +5 fp, SO that
(fieRI* 1D jep,), forms an orthonormal basis for
M,. Note that

_ -1 -1, ... -1
pp=m_y+n,  +n "+ + 1

t—1
=Y (¢t+1—im L
i=0

-1
[Generically, p, = Y (¢t + 1 — i)k;.]
i=0
«*Compute Il = PII(W)P, where P,=1—
Y. fifT. Note that #, = ker P, < ker II,. [Gen-
icpy
erically, ker P, = ker I1, = .#4,.]
*Compute its SVs ', > ¢ > ... 2 o} > 0. Clearly
r, < q(t + 1) — p,. [Generically, r, = g(t + 1) — p,.]
*Define the following selection rule for d,:
If gt + De™ =1, set d, =r,.
Otherwise, choose d, such that ¢} > a4, =
O%+ esam+1,- [Generically, d, = d,.]
Set n, = q(t + 1) — d, — p,. [Generically, n, = k,.]
xCompute the left singular vectors corresponding
to the smallest SVs of TI; u, 4 1, Ug425---5 Ugan,
Sis foreoes fp,eRETD of T
Let %,:= span(uy, + ;,j €Ny).
»xIf %, ~ £¥ | = {0} [generically this will be the
case] then set
n=n"fori=01,...,t—1;
n: =n,
riAs) =ri;'s)forjeni" fori=0,1,...,t — 1;
HAS) = g, 11 ;€ R “[s] for jenm,.
wxIf U, L¥ | #0 to observe that, as a conse-
quence of the fact that ¢ is non-expansive on X",
(U, N LX) =¥%. Now apply the procedure
STRUCTURE (see4) to %, in order to find an
orthonormal basis for %,. Note that since %, is
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already orthogonal to .#,, this will yield an
orthonormal basis for .#, + %,. This returns 7,
fiy,....,meZ, and pis)eR} *s],i=0, 1,....t
jen,. Set
m=n"t+nafori=01,..,t—1

n = n,;

rs) = rﬁ,;l(s).forjenﬁ'l, i=0,1,...
rim-14+18) = pi{s) for jemn;, i=0, 1,...
r;, () = p{s)forjen,.

«Further, set
Ny = span(uy, . ;, [ EN,IEP,)
=M+ U
m,=p,+n,
Joo+j = Ua e pJEM,.
«Examine the termination rule.

(4) Procedure STRUCTURE.
This procedure [which generically will never have
to be invoked] streamlines and orthonormalizes a
set of (AR) relations.

Let A", = ZF* be such that s(A/,n FLE ) c AN,
It computes
A, =dim A with & =NV, N"LEN(N . NnLX,
+ (N, N FE ) ori=0,1,...,t and pYs)e
R} *4[s] such that (p}, i€ ) is an orthonormal basis
for#ifori=0,1,...,t.

(5) Termination rule.

The termination rule examines two things: an

inequality involving the most powerful unfalsified

(AR) model (of course, the approximate model will

always contain the most powerful unfalsified model,

since this causes no augmentation of the error) and

an inequality involving ¢*%™. Assume that a t’ has

already been computed as defined for example in

Step 1 of Algorithm 3 of Part II. [Generically ¢

will be zero].

*If t < ¢, then augment r — ¢ + 1 and proceed with
the recursive step.

«If t > t' examine whether

qt" + 1) — (" + nfy — t'ny — -
— (" —t+ Dnt < q(t" + e3im

holds for all t" > t.

*xIf it does not hold, augment t >t + 1 and
proceed with the next recursive step.

*xOtherwise terminate the algorithm.

Output:

The result of this computation is a set of poly-
nomials r{ {s)eR* *9[s], i =0, 1,...,¢t, jen] with ¢
the stage at which the algorithm was terminated.

Define

* . __ i 1 t t t
R*:=col(ro,;,70,25+ > omy 1,15 71,25+

Fims s Th1o 2o s Tt
and
RB* .= B(R*).

This ends the description of Algorithm 8.

We emphasize that #* is always defined and that
R* will be obtained in a finite number of steps.

As will be seen in the next theorem, £* is (only)
generically the optimal approximate model. The
finiteness of the algorithm should be understood in
the sense that the recursive step of the computation
will have to be invoked at most g times. However
an a priori upper bound for the stage at which the
algorithm can be terminated cannot be given.
[Generically the algorithm will terminate at stage
tif

at+ 1= at = th_g}o (at’+ 1 at’)= n}in(at'-i- 1= at)]

To see that the recursive step will have to be
invoked at most g times, observe that each time it
is invoked, it will lead to an augmentation of the
total number of (AR) relations, ny + n'y + - + ny,
with at least one. Now if ny +niy + -+ n=gq,
then, for ¢’ > ¢, there holds

gt + 1) — (@ +nfy—t'n, —-+ —(@'—t+ )n;

=qt+1)—(t+ nf —tnf —- —
np < gz + 1)ei*™ < g(t' + 1™,

This shows that the termination rule will automati-
cally be satisfied.

Theorem 31. Let % and ¢*™ be given and #* be
computed as in Algorithm 8. Then there holds:

(i) (B*) < ™
and, generically in TI(W),

(i) {#BeL,c(B) < ™} = {g(W, B*( < &(W, B)};

(iii) {BEL, ¢(®) < ™™, &(W, B) = &(W, B*)}
= {%# = B*};

R |
) e = "

forteZ,.
Proof. See Appendix P.

Note that it follows from Theorem 31 that for a
generic data sequence W, Algorithm 8 will generate,
with #*, the optimal approximate (AR) model (in
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the sense of the first methodology of Section 20)
with complexity limited by ¢*4™,

25.2 Modelling with limited misfit

In the second approximate modelling algorithm,
assume that the maximal tolerated misfit,
gl = (el gv,..., 8% .. ) e(R,)?+ is given. We will
assume that each element & is of the form
o, col(l,1,...,1). By slight abuse of notation we will
also denote a, by £, A typical choice for &' would
bee® = g, Vi€ Z ,:allaccepted (AR)relations are
required to be corroborated by the data within a
given required accuracy. Another suitable choice
would be &' =g, for 0 <t<!and & =0 for
t > I: only exact (AR) relations of large lag are then
acceptable. For algorithm 9 the same notation as
in Algorithm 8 will be used.

Algorithm 9
Input:

#(0), %(1),...., %(D),...
Data. { . W(=1), #(0), #(1), ..

with W, e X", Vieq.

(case T =12,)
(case T = Z)

tol __ (,tol _tol tol tol
el = (e, e,....8°%,..).&> = 0.

Recursive part (Computation of the (AR) relations
of the approximate model).

(1) Declaration of the variables and their signifi-

cance.

+I1,(W)e RI¢+ 1) X4+ 1) the tth truncated correlation
matrix of the data data.

*nh,n,...,nie Z ,: the number of Oth, first, ..., tth
order (AR) relations honoured by the approximate
model at stage ¢.

#ri ()R} *[s], i=0, 1,...,t, jen: the (AR)
relations honoured by the approximate model at
stage .

* N, c F¥ =R the span of these (AR)
relations and their shifts.

xm,; the dimension of 7 there holds:

t
mo=Y (t—i+1)nj.
i=o

*f1,f2s- . frn € R D: an orthogonal basis for .4/,

(2) Initialization.
*Compute I1,(W) = [#){W|.
+Examineits SVso? > 02 > -
cally, ro = q.]
wxif £ > /09, set B* = {0} and the algorithm is
terminated.
*Otherwise, define k, as follows:

= 62 > 0. [Generi-

=xif e < \/07, set ko =r;
xxotherwise, choose ko such that
0 tol 0
VOky > 8 2/ Okyt1-

*Compute the corresponding left singular vectors

Upy+ 1> Upg+2s -+ > Ug€ R Of TIo(W).
*Define n) = q — k,

0  ~ 1x ; 0
To,j = “ko+j,r3_,€ Ro q[s]’.]eno

— (1} . 0
N = span(rg ;,j €ng)
my = "8

— 50 .
fi=ropfieR,jem,

(3) Next step computation.

*Compute |W){o'W|, [oW){o'w|, ..., |c'W)>{c'W| and,
from these and I1, _ ,(W), form IT(W).

+*Compute N,_, + 0*N,_, =M FL} and
extend fy, fo, cos fon o, With fo 1) S i420 oos
f,, 0 that (f,e R** 1, jep,) forms an orthonormal
basis for .#,. Note that

p=m_,+ny 40 4+ niz]

t—1
=Y (t+1—imL
i=0

*Compute I1; = P,II(W)P,where P, =1— Y f.fT.
iep;
Note that .#, = ker P, c kerII;. [Generically, ker
P =ker Il = #,] '
*Compute its SVs a4 > 65 > -+ = 0}, > 0. Clear-
ly r,<gq(t+1)—p,. [Generically, r, =
gt + 1) — p.]
xDefine the following selection rule for 4
*»+if &' > /o', setd, = 1;
»if g < [0} ,setd, =r,;
xxotherwise, choose k&, such that oy,
> g >y O4+1e
*xSet n, =gt + 1) —d, — p,.
t—1
#xif Y ni"!+n,>gq, invoke the procedure
i=0
TERMINATE;
xxotherwise, proceed as follows:

*Compute the left singular vectors

q(t+1
Ug 415 Ud 425+ Ugamp S1o S 2o fp €R )

corresponding to the smallest SVs of I1,.
Let %,:= span(u, ., ;,j€mn,).
#+If %, Z¥ , = {0} [generically this will be the

case] then set
n=n"tfori=0,1,...,t —
n: =N,
rfs) =riji(s)forjeni 1,i=0,1,...,t — 1;
11 A8) = ug 41 € R I [sHorjenm,.

«*If U, L* | # 0 observe that, as a consequence
of the fact that ¢ is non-expansive on X,
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(%, &L* )= U,. Now apply the procedure
STRUCTURE (seed) to %, in order to find an
orthonormal basis for %,. Note that since %, is
already orthogonal to .#,, this will yield an
orthonormal basis for #, + %,. This returns ng,
ny, ..., n€Z, and pis)e R} *[s], i =0, 1,...,¢
jen,;. Set

m=n"'+mfori=01,..,t—1;

n; =i

ris)=ri;i(s)forjmi~Li=0,1,...,t = 1;
rim-1408) = pi(s)forjen;,i=0,1,...,t — I;

7 s) = p{(s)forjen,.

xFurther set
'/Vt = span(u,,t,,j,ﬁ;jen,,,'ep,) = "”t + U,
m =p,+n;

Joti = YajpJ €M

t—1
«If Y ni™!+n,=gq, terminate the algorithm;
i=0
otherwise augment ¢ — ¢t + 1 and proceed with the
next recursive step.

(4) Procedure STRUCTURE.
This procedure [which generically will never have
to be invoked] streamlines and orthonormalizes a
set of (AR) relations.
Let A, = &* be such that s(4,n LX) < AN,
It computes 7; = dim A", with

Ni=WNnEHON nLEy + SN L)

for i=0, 1,...,t and pi(s)eR}*?[s] such that
(pi,ien)) is an orthonormal basis for A7 for i = 0,
1,...,t
(5) Procedure TERMINATE.

t—1
+Set n; =g — Y, ni”! and compute left singular

i=0
vectors

q(t+1)
up,+n',aup,+n}—1""’up,+lsf1,f2"'-’fp,eR

corresponding to the smallest SVs of II;.
«Setni=n"tfori=01,..,t—1;

m=ng

rifs)=ri;'()forjeni™t, i=0,1,...,t — 1

r:,j(s) = up,+j(s) € lRt1 ) q[s]’j € nt"

+Terminate the algorithm.

Output:
The result of this computation is a set of poly-
nomials

riis)eR ™[s],ieZ,;jen;.
Define

. — I t !
R*:=col(rh,1,70,25+ > T0,mt 1,1 71,250+

3 t t ' 4
PimtseosTe1sTt20 oo Tents e )
and
RB* .= B(R*).

This ends the description of Algorithm 9.

Note that #* is always defined, and that R* will
be obtained in a finite number of steps.

As becomes apparent in the next theorem, #*
is (only) generically an admissible and optimal
approximative model. The finiteness of the algor-
ithm should be understood in the sense that (as in
obvious from the procedure TERMINATE) there
will be at most g stages where new singular vectors
and new (AR) relations need to be computed.
However, it is not a priori clear how many times
SVs will have to be computed, unless, of course,
one assumes &°' = 0 for ¢ sufficiently large, in which
case only a finite number of stages of the recursive
part of the algorithm, augmented with an examin-
ation of the most powerful unfalsified model, need
be carried out.

As will be clear from the next theorem, it is very
convenient to assume that & is non-increasing in
t. This assumption is moreover natural in the
context of the total orderings which are used on
the complexity and the error level space. Under
this assumption it follows that the procedure
STRUCTURE will never have to be invoked, since
8! < g, implies #, N #* | = 0. Indeed, assume
that this was not so and that 0 # ae#, N F¥ ,.
Then

lafo)¥le
faller, <% <%0
t—1

which shows that ae #,_,. However, %, L A, _,,
which gives a contradiction. In addition it may be
shown that under this assumption the procedure
TERMINATE will never have to be invoked. In
order to see this, it suffices to observe that the
linear span of more than g independent tth order
(AR) relations will always contain non-zero

elements of #* for some ¢’ < t. From this it follows
t—1

that, if &' > & for ¢’ <t, at most g — Y n{™*
i=0
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singular values of I1; will be bounded by &' Indeed,
if there were more, a suitable linear combination
of the corresponding singular vectors would lie in
Z¥, for some t' < t, and would have been disco-
vered and incorporated in £} at a previous stage
of the algorithm.

Theorem 32. Let w and &°! be given and #* be
computed as in Algorithm 9. Then if either we
consider the situation generically in II(W) or if we
assume that &' is non-increasing in ¢, there holds:

(i) oW, B*) <&

(i) {BeZ,e(W,B) < e(w, B*) < &'}
= {c(B*) < c(B)};

(iii) {B e L, e(w, B) < &) =
{either ¢(B) > c(B*) or &(W, B) > &(W, B*)
ore(B) = c(B*)and &(W,B) = &(W, B*)}.

Proof. See Appendix P.

Note that it follows from Theorem 32 that for a
generic data sequence W or for non-increasing
g's, Algorithm 9 will generate, with £*, an approxi-
mate (AR) model (in the spirit of the second
methodology of Section 20) with misfit limited by
&(W, B*) < "

This section closes with a few preliminary comments on the
robustness of the approximate model obtained in Algorithms 8

and 9 with respect to the observed time series W. As a consequence
of the sensitivity of singular vectors (as discussed after Theorem

24), this sensitivity will be related to Mo, 20,44,
04— 04 +1 ' !
then it is advisable to decrease ¢*¥™ or increase £'°' somewhat.
This will lead to a robust optimal approximate model which is
less complex but only slightly less accurate than the original
one. However, the sensitivity will also be related to the singular
values obtained at stage t and at stage t + 1 of the algorithm.
In fact, if one obtains very little improvement in the accuracy
of a model by increasing the model lag by 1, then one should
expect a high sensitivity of the higher order model. The exact
study of the robustness of Algorithms 8 and 9 is still a matter
of research. In any case, a judicious use of these algorithms will
ask for a good feedback between the specifications ¢*™ and &*!
and the SVs of the consecutive (reduced) correlation matrices.

26. SIMULATIONS

The approximate modelling algorithms will be now illustrated
by means of two purely numerical examples. Applications to
signals deduced from industrial processes and econometric time
series will be considered elsewhere.

Simulation 1

In the first simulation the algorithms will be applied to a two
dimensional time series generated by an autonomous system.
The experiment consists of two parts. In the first part an
essentially perfect (AR) signal will be analyzed, while in the
second part a non-linear, noise corrupted, modification of the
first signal will be considered.

Simulation 1—First experiment. The first component W, of the
observation vector consists of a periodic signal s with a period
3 added to two exponentials, yielding: W,(t) =s(?)

—p T oy t=1, 2,...,500, with s(1)=1, s(2)= —0.5,
s(3) = —0.7, p, = 0.996, and p, = —0.995. The second compon-
ent W, of the observation vector is deduced from the first by

the recursion: W,(t + 2) = —0.81 xW,(¢) + 0.5%W,(¢) for t =1,
2,...,498, and with W,(1) = W,(2) = 0.

The signal flow graph generating % = col(w,, w,) is shown in
Diagram 3. The matrix R(s) of the (AR) relations describing W
are:

[ —0.5 o2 +081][w, | Riow =0
(@® — 1) — 0.996)c + 0.995) | 0 w, | o=

The resulting signals W, and W, are displayed in Fig. 1.

In order to analyze the data, first compute the truncated
correlation matrix IT,; (W). (What was actually analyzed was
the correlation matrix with a suitable exponential weighting, in
order to avoid effects due to the finite data length, and with
both components of W normalized to have equal norm). Figure
2 shows the square root of the SVs of I 5(%) (with ¢, normalized
to 1). From Fig. 2 and Proposition 28 it is clear that, since
rank T1(w) = 6, a model with zero inputs and six states should
be expected. From the way the model was generated seven states
would have been expected. The reason for this discrepancy is
the fact that it appears impossible to distinguish the pole at
s =1 (in 5* — 1) from the one at s = 0.996. (Simple and easy to
explain facts such as this one already indicate that approxi-
mation should be the central idea in identification.)

Note that it is not possible to see from the SVs of IT, 5(W) (or
II(%)) what order the resulting (AR) relations will have. This
can be done by applying the procedure. The square roots of the
SVs of IIy(W), IT,(W) and II,(W) (with W] normalized to one)
are given by:

for Iy (W) for TI,(w):  for IT,(W):
1.1644 1.2542 1.4586
0.5989 1.1578 1.1953
0.6192 1.1075
0.3795 0.5627
0.2272
0.0027

This indicates that there is one lag 2 (AR) relation which fits
the data with an accuracy of better than 0.3%. Computation
of the SVD of I1,(W) yields this (AR) relation:

a’w, — 0.0002+ow, + 0.8100 x w,
= 0.0001 = 62w, + 0.0001 x 6w, — 0.5001 » w,

which indeed fits very closely the first of the original (AR)
relations producing the data.

In order to find the next (AR) relation, one must examine the
correlation matrices IT(W), IT,(W) etc., reduced by the (AR)
relation which has already been accepted. This reduction works
according to the projection procedure explained in the next step
computation of Algorithm 9, following Proposition 29. The
normalized square roots of the SV’s of IT'$#***d(%) and
IT°$3ve=d(W) are given by:

for II""==d(W): for ITrg8ueed(w):

1.5328 1.6635
1.4802 1.5058
1.1705 1.4537
0.9010 1.0891
0.3319 0.3565
0.1895 0.3063
0.0000 0.0039
0.0000 0.0000

0.0000

0.0000

This indicates that there is a lag 4 (AR) relation which fits the
data with an accuracy of better than 0.4% . Computation of the
SVD of I159°°*%(W%) yields this (AR) relation:

—0.2542 % 0w, — 0.2539 x 3w, + 0.0317 6w,
+0.1434 +ow,; + 0.1339 x ow,

= —0.0672 % a*w, + 0.2178 63w, + 0.1817 x 0w,
+ 0.1764 + ow; + 0.1912xw,.

In order to explain the resulting (AR) polynomial matrix R(s)




w
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F1G. 1. Simulation 1—Experiment 1: the signals.
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F1G. 2. Simulation 1—Experiment 1: the normalized square root of the SVs.

formed by the two (AR) relations found, compute the roots of
det R(s) and compare them with those of det R(s). The result is
shown below:

roots of det K: roots of det R:

1.0000

0.9963 0.9960

—0.9950 —0.9950
—0.5000 + 0.86601i —0.5000 + 0.8660i
—0.5000 — 0.8660 i —0.5000 —~ 0.8660i
—0.0000 + 0.90001 —0.0000 + 0.9000i
—0.0000 — 0.9000i —0.0000 — 0.9000 i

Observe the inability of this (or any) algorithm to bifurcate the
(theoretical) roots at 1.0000 and 0.9960 present in R(s).

Simulation 1—Second experiment. In the second experiment,
the first component ww, of the observation vector was taken to
be ww, . W, + n, with %, as in the first experiment and with n,
zero mean gaussian white noise with variance adjusted such
that the signal-to-noise ratio is 10. The second component Ww,
of the observation vector was obtained from the first one by
first computing y according to

¥t + 3) = 0.81 « f{y(t + 1) + y2(£)) + 0.5 = f(WW(t + 1)),

with y(1) = y(2) = 0, y(3) = 0.5 » f(ww(1)), and f: R — R the satu-
rating function with characteristic shown in Diagram 4.

The time series Ww, was produced from y by Ww, =y + n,,
with n, zero mean gaussian white noise with variance adapted
such that the signal-to-noise ratio is 10.

The signal flow graph generating Ww = col(ww, , Ww,)is shown
in Diagram 5. The resulting signals ww, and ww, are displayed
in Fig. 3.

Computation of the normalized square roots of the SVs of
T, ((WW) leads to the results shown in Fig. 4. It is difficult to
decide from there what a reasonable order of an autonomous
model would be. The approximate modelling algorithm will
now be applied to the data sequence ww. First assume that a
maximal tolerated relative misfit of 1/6 ~ 17% is imposed. In
terms of the notation of Section 25, ¢ = [1/6, 1/6, ..., 1/6,...].

Computation of the normalized square roots of the SVs of the
relevant correlation matrices leads to the following results:

for MoWw):  for TI,Ww):  for I, Ww):  for IT;@#w,):
1.3071 1.3584 1.6104 1.7524
0.6245 1.3250 1.3631 1.5924
0.6586 1.1613 1.2643
0.4183 0.5962 0.9435
0.3198 0.3719
0.1796 0.2919
0.1837
0.1585

From these results it follows that there will be one third order
lag (AR) relation satisfied with an accuracy of about 16%.
Computation of the SVD of I,(ww) yields this (AR) relation:

—0.0920 % 0w, — 0.0399 » g2w, + 0.1716 + ow, — 0.0130 » w,
= —04330% 03w, + 04797 x 52w,
—03851s0w, +0.1689sw,  (+)
f

DIAGRAM 4.
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FiG. 4. Simulation 1—Experiment 2: the normalized square root of the SVs.

In order to find other (AR) relations, examine IT,(ww)
reduced by the above (AR) relation which has already been
accepted. The normalized square roots of the SVs are:

for IITgduecd(ww);
1.9251
1.6211
1.5464
1.1599
0.4160
0.3293
0.2123
0.1362
0.0000
0.0000

Examination of this table results in a fourth order lag (AR)
relation, which will be satisfied with a relative misfit of about
14%:
0.1244 « o*w, + 0.0957 « a3w, + 0.0921 » 52w,
—0.0592 ¢ ow; — 02118 xw,
= —0.2097 * o*w, — 0.0058 » g°w, + 0.1350 « 5w,
—0.2926 xow, + 0.1384 x w,. (»%)

The (AR) relation (x) and (**) together define the optimal
approximate model obtained by requiring a maximal relative
tolerated misfit of 1/6.

If a maximal admissible complexity had been imposed, then
in view of the signal flow graph of the systems which generated
the data ww, it would have been logical to impose c*™ = (1,
1, 1, 7/8, 8/10, 8/12, 8/14,.. ). This corresponds to requiring one
third order lag and one fifth order lag (AR) equation.

The resulting (AR) relations would be () together with (=),
obtained form the SVD of IT"$<d (ww):

0.0721 x o*w; — 0.1247 » 6*w, — 0.0884 + o3w,
—0.0877 x a?w, + 0.0284 xow, + 0.2171 % w,
= —0.2146 « 63w, + 0.1777 » 0%w, — 0.0328 * o>w,
—0.1794 % o%w, + 0.1648 x ow, — 0.0277 » w,. (€D

This last equation is satisfied with a misfit of 12.66%. In order
to compare these models, consider now the poles of the various
(AR) systems found so far.

for R: for R:
1.0000
0.9960 0.9963
—0.9950 —0.9950
—0.5000 + 0.8660i ~-0.5000 + 0.8660i
—0.5000 + 0.8660i —0.5000 — 0.86601
—0.0000 + 0.9000i —0.0000 + 0.90001i
—0.0000 — 0.90001 —0.0000 — 0.90001i
for (), (x=): for (%), (#=):
1.6763
0.6287 0.6567
0.9963 0.9983
—0.9972 —0.9961

—-0.5081 + 0.8699i
—0.5081 — 0.8699i
0.2581 + 0.8157i
0.2581 — 0.8157i

~0.5017 + 0.86731i
—0.5017 — 0.8673i
0.2796 + 0.75501i
0.2796 — 0.75501i

The discrepancy between R and R has already been explained.
The discrepancy between R and (x), (++) is due to the non-linear
term in the system which generates ww, from ww,. Indeed,
computation of the poles of the (AR) relation corresponding to
the left hand side of (») yields:

poles of LHS of (%):

0.6575
0.2251 + 0.7365i
0.2251 — 0.73651.

Taking this into account, together with the signal generation of
ww,, explains the results («), (#+) very well. The additional
pole (1.6783), obtained in (»), (**), must be explained by
overspecification of the order and will be very unrobust.
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This can be seen by comparing I175%°*¢(ww) with [1rgdveed
(Ww). It has already been seen what IT°s%"°*d(wWw) is equal to.
Computation of I1'¢%**¢(ww) yields:

for TIreouced (Wiw):

2.0106
1.6428
1.6408
1.6199
0.4175
0.3995
0.2125
0.1919
0.1266
0.0000
0.0000
0.0000

This shows that (%)’ give less than 1% improvement over (x#)
and as such one should expect, as found here, one very unrobust
pole in the combination of (*) and (). This demonstrates that
fixing the tolerated misfit is much more appealing than fixing
the admissible complexity.

Simulation 2

The second simulation will show how the approximate
modelling procedure allows computation of a low dimensional
model for a (non-causal) impulse response. For the observed
time series W = col(W,,W,), with T=27Z, W,(t) = §, with  an
impulse: 8(0) = 1 and () =0 for t # 0, and Ww,(t) = 1/(t| + 1)
were taken. The resulting impulse response W, is shown in Fig.
5. From this graph it is clear that it should be possible to model
W, reasonably well by means of a sum of few exponentials:

n
Y a,pl!l. Hence low order systems with a non-causal symmetric
i=1

impulse response should give adequate approximations.
First analyze what accuracy can be expected from the best

(AR) relation of order n = 0, 1, 2... Computation of the relevant
SVs yield the following misfit vector:

[0.3997
0.1061
0.0185
0.0053
e= | 00042
0.0041
0.0040
0.0040
0.0039
0.0039
[ 0.0039 |

Here e, ., equals the equation misfit of the best nth order (AR)
relation (with |W| normalized to one). This shows that very
little improvement should be expected from using a relation of
lag larger than 4.

The best fitting (AR) relations of order 0, 1, 2, 3 and 4,
computed from the relevant SVs, are given below:

04816 xw, = 0.8764 xw, (optmod0)

—0.6283 xow, + 0.6283xw,= —0.3244xow, + 0.3244 x w,
(optmod1)
0.3563 x aw, — 0.7540 x aw, + 0.3563 x w,
= —0.0981 * 62w, — 0.3981 xow, + 0.0981 +w,
(optmod2)
—0.1802 x 03w, + 0.6225 x ?w, — 0.6225 %« 6w, + 0.1802 + w,
= —0314+a%w, + 02812+ 0w, — 0.2812xow, + 0.0314 % w,

(optmod3)
0.0853 x g*w, — 0.4269 » 3w, + 0.6846 * o*w,
— 04269 xow, + 0.0853 » w,
= 0.0104 x 6*w, — 0.1630 * a>w, + 0.3145 % o%w,
—0.1630xow, + 00104xw,. (optmod4)

IMPULSE RESPONSE W2
5
T

0.40 -

0.30 |-

0.20 |-

0.10 |

0.00 T G 16 30 3 0 50
TIME

FIG. 5. Simulation 2. The impulse response.
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In using these results formally in the optimal approximate
modelling algorithm, assume first that the maximal admissible
complexity has been specified as cidm = {1, 1, 5/6, 6/8, 7/10,
8/12,...}. This corresponds to looking for a model described by
one (AR) relation of lag 2.

This yields (optmod2) as the optimal approximate model.
This model fits with an error of about 2%. If, on the other
hand, the maximal tolerated relative misfit had been imposed
as & = {0.5%,0.5%, 0.5%, ...}, then the optimal approximate
model would have been (optmod4), which fits with a relative
accuracy of about 0.42%.

Note that (optmod1) and (optmod3) contain an autonomous
component with characteristic root at 1. This root is actually
imposed by the time symmetry. Hence these models are not
reachable and allow an arbitrary constant col (0, a) to be added
to any signal col(w,,w,) in their behaviour.

The poles and the zeros of (optmod2) and (optmodd4) are
shown below:

for(optmod?2): for(optmod4):
poles:1.4042 poles:2.6029
0.7122 1.1363
0.8801

0.3842

zeros:3.7933 zeros:13.5329
0.2636 13211
0.7570

0.0739

We have already seen that going to models of order higher
than 4 will yield very little improvement as far as the misfit is
concerned. This can also be seen from examining for example
the optimal 10th order model. Its poles and zeros are given by:

poles: 2.5013 zeros: 13.6561
1.1085 1.2473
0.9021 0.8018
0.3998 0.0732

—0.5558 + 0.8313i
—0.5558 + 0.8313i
0.0983 + 0.9952i
0.0983 — 0.9952i
0.8160 + 0.57801i
0.8160 — 0.5780i

—0.5555 + 0.8315i
—0.5555 + 0.8315i
0.0991 + 0.99511i
0.0991 — 0.9951i
0.8131 + 0.5821i
0.8131 — 0.5821i

This shows that higher order models obtained by this method
do little more than finely tune the poles and zeros of (optmodd),
in addition to adding essentially non-reachable factors with
characteristic roots of unity modulus.

Figure 6 shows the graphs of the impulse response of the
original system compared to those of (optmod2) and (optmod4).
It follows from all this that the fourth order lag approximation
(optmodd) is a very adequate one.

These results have also been compared with what would have
been obtained by using reduction by balancing. In order to
accommodate the fact that reduction by balancing considers
only strictly causal systems, the reduction of the impulse response
W, has, in fact, been computed for t = 1 and the reduced non-
causal impulse response has been taken to be equal to this
reduction for ¢ > 1, to be equal to 1 at ¢ = 0, and to be symmetric
in t. The normalized SVs of the relevant Hankel matrix give
some insight into the behaviour of the achievable fit by this
reduction:

[1.0000
0.2047
0.0884
0.0644
0.0429
s=|00374 |.
0.0289
0.0265
0.0220
0.0205
| 0.0178 |

Here s, , , equals the misfit (defined as the first neglected SV) of
an nth order approximation. Note that it is much less obvious
from this that the impulse response allows a good low order
approximation. This is of course due to the fact that the infinite

Hankel matrix defined by the sequence {%} has a continuous

spectrum.

— W2
1.08 | — o (OPTMOD 2)
— o (OPTMOD 4
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o
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FIG. 6. Simulation 2. Impulse responses of (optmod2) and (optmodd).

1




From time series to linear system—Part III 111

The poles and zeros of the second (balred2) and fourth order
(balred4) models obtained from reduction by balancing are
given by:

for (balred2): for (balred4).
poles: 1.1287 poles:1.5279
0.8860 1.0477
0.9545
0.6545
zeros: 1.5118 zeros: 3.4186
0.6614 1.0806
09254
0.2925

These differ considerably from what was obtained with the
approximation procedure of Section 25.

Figure 7 shows the graphs of the impulse response of the
original system compared to those of (balred2) and (balred4).

In order to provide a final comparison of the various results
obtained so far, Fig. 8 shows the difference between W, and
the impulse responses of (optmod2), (optmod4), (balred2) and
(balred4). The conclusion to be drawn from this simulation is
that the method of approximately fitting an observed time series
to a low order system also yields very satisfactory results when
used for model reduction.

Note, finally, that the framework of studying systems as being
defined by any set of (AR) relations works very effectively in the
context of non-causal impulse responses. In fact, in the final
models obtained, say in (optmod4), w, can be considered as an
input to a causal system with output w,. However, this system
is an unstable one: its transfer function has poles both inside
and outside the unit disc. The system (optmod4) can however
also be viewed as a non-causal, stable system. This equivalence
of causal unstable and non-causal stable systems is discussed in
detail in Willems and Heij (1986).

27. CONCLUSIONS
In this sequence of papers there have been several
goals. The first, to present a clean conceptual
framework for discussing dynamical systems; the

second, to put forward an effective language for
discussing exact and approximate modelling on the
basis of data and the third, to propose an algorithm
for the construction of approximate multivariable
dynamical models directly on the basis of an
observed vector time series.

The emphasis throughout has been on linear
time invariant complete systems. As shown, com-
pleteness is equivalent to finite dimensionality.
However, contrary to the classical approach, no a
priori distinction has been made between inputs
and outputs. This assumption, which in any case
is natural and compelling, has functioned very
effectively in the modelling algorithms, both for the
most powerful model constructed in Part II and
for the optimal approximate model constructed in
Part III.

The results presented here should be of interest
both on the conceptual and on the algorithmic level.
As such, the approximate modelling algorithms
should be of immediate interest in applications.
Particularly the fact that the input/output structure
itself will be decided by the data is of much potential
relevance (for example in econometrics). The prob-
lem of determining the input/output structure has
been pursued earlier in the work on errors-in-
variables models (Deistler, 1986).

Finally, the work presented here should be viewed
as an alternative but very much related approxi-
mation philosophy as that proposed by L. Ljung
in his basic work on identification theory (Ljung
and Soderstrém, 1983; Ljung, 1987).

— W2
—— o (BALRED2)
—— o (BALRED4)

0.90
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0.60 -

0.50 -
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i Il 1

1 1
-40 -30 -20 -10

0 10 20 30 40 0
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F1G. 7. Simulation 2. Impulse responses of (balred2) and (balred4).
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FiG. 8. Simulation 2. Approximation errors.

Optimal approximation, with a tolerated misfit
as an essential part, is a much more logical approach
to dynamic system identification than the more
classical statistical consistency thinking. One way
of arguing this goes as follows. If a robust modelling
procedure is required which also yields a finite
dimensional model when data produced by an
infinite dimensional system are observed (which,
presumably will always be the case in reality), then
consistent identification methods simply cannot be
used.

The ideas presented here are presently being
extended in several directions:

—to I,-systems (as defined in Willems and Heij
(1986)); in this context a natural symbiosis with
model reduction is aimed for, ¢ la AAK and
Nehari;

—to finite time systems;

—to systems with a more general “time” set, of
relevance, for example, in image processing;

and finally,

—to stochastic systems; introduction of complexity
considerations in stochastic systems offers a
potential justification of stochasticity. Is it too
much to speculate that a stochastic, chance 1/2,
model for explaining the outcome of the flip of
a fair coin is as accurate as a very complicated
deterministic model, but preferable precisely
because it is less complex?
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APPENDIX N: NOTATION (CONTINUED)

The cardinality of a finite set 4 equals the number of elements
which it contains and is denoted by |4]. If |4} = 1, 4 is called a
singleton. The set Z N (Z)=°mPleme™ js denoted by Z — Z'.

Let (S, <) be a partially ordered space. Then it is said to be
totally ordered if Vs,, s, € S there holds either s, < s,, 015, <'5,.
Let (S,, §) and (S,, §) be partially ordered spaces. Then f:

S, — 8, is said to be isotone if {s} § sy} ={f(s)) §f(s1’)}. An

fe

-

o




From time series to linear system—Part III 113

example of a partial order on R" is the order of pointwise
domination:

{eol(x(, X3, s X,) < COWYy, V3., Y} o {x; < y,Vien}.

Another example is the lexicographic order:

{col(xy,x,...,%,) < CONY1, Y2,- -5 V)
> {eitherx; = y;,Vien,ordien

such that x; =y, for j < i and x; < y,}. Obviously the identity
map on R" is isotone as a map from R" endowed with the order
of pointwise domination to R" endowed with the lexicographic

order. Analogous structure holds on RZ+, etc.

The matrix whose (i, j)th element equals a, ; will be denoted
by [a;]. If A=[a;;]eR™"" has a,;=0 for i #J, then 4 is
called diagonal and denoted as A = diag [a,,1, d3.25 -5 Gp,n)
with n = min (n,,n;). For example, I, = diag[1,1,...,1]. The

n-times

zero matrix in R™ *"2 will be denoted by 0, , : A matrix M e R"*"
is said to be orthogonal if MMT = M™M =1,.

A mapping L: V; x ¥, —» R with ¥ and V, real vector spaces
is said to be bilinear if L{v,,.) and L{(.,v,) are both linear maps
for all v,eV, and v,eV,. f ¥V, =¥, =V then L is called a
bilinear form on V. If, in addition, L(v,,v,) = L{v,,v,) for all
v,,0,€V it is called symmetric and if, moreover, L (v, v) = 0 for
all ve V it is called a real symmetric non-negative bilinear form
on V.

Let acR, . Then ent(a) denotes the largest integers smaller
than or equal to a and ENT(a) denotes the smallest integer
larger than or equal to a or n, meZ,, m>0, such that
n=dm+rwithd reZ, and 0 < r < m, define d =:(n)DIV(m)
and r:= (m)MOD(m).

The expected value of a random vector is denoted by &.

An important notion in modern applied mathematics is that
of genericity. It will be defined here only in the context in which
it is used’in this paper. Let P, eR?*%, ¢, t"€Z., be a family
of matrices defining the infinite matrix

Po,o PO.l Po.:'

Pl.O Pl.l Pl.t’
P= : : et

Px.o Pt.l Pt.!'

Assume that P, .. = P}, .. Then obviously the infinite matrix P
is also symmetric. Denote by 2 all such infinite symmetric
matrices. Let P, denote the truncation of P consisting of its first
g(t + 1) rows and columns: In an obvious way P, can be
considered to be an element of R%**1*4¢+242 Denote by II,
the map which takes the matrix P€# into its truncation
M,P:= P,eRM+V*at+2/2 et 4 c 2. Elements of ¥ can be
thought to consist of all infinite symmetric matrices having a
certain given property. This property will be called generic if it
can be considered a property of typical elements of 2. Formally,
if, for all teZ,, IL% (which is hence a subset of
Re¢+ D *a6+2)2y contains an open, dense, measure exhausting
(meaning that its complement has zero Lebesgue measure)
subset, then we will call 4 generic.

APPENDIX SV: SINGULAR VALUES

Let M eR™*", Then a singular value decomposition (SVD) of
M is a decomposition of M into the product M = UZVT with
UeRm*m, TeRm*", VeRm™", U and V orthogonal
(U™ =1,,VV"=1,), and T of the form

diag(al,o'z,...,a,)l 0, x(n, -n

o(nz—r)xr | O(nz—r)X(n,—r)

With 0y =0, 20, 2" 20, =0y, > 0.

AUT 23:)-B

It is easy to see that every matrix admits a SVD. The numbers
6y, G, -..,0, are called the singular values (SV) of M, and
Oomax i Called the principal singular value of M. Note that 6,
is the induced norm of M. Denote 6(M) = (0,, 065,...,6,). The
columns of U = (u, u,,..., u,,l) are called the left singular vectors
of M, while the columns of ¥V = (vy,0,,...,v,, ) are called the right
singular vectors of M.

Some basic properties of the SVD in the SVD are listed in
the following proposition.

Proposition. The SVD of M has the following properties.

() o(M)=o(M") = /o(MMT) = \/o(M™M). If M = M then
the SVs of M are the absolute values of its eigenvalues
(ordered non-increasingly).

(ii) r = rank M.

IMx]

=

(iii) o, = maximum minimum
dimL2k 0#xeLl

o | Mx|
= minimum maximum
dimLzn~k+1 O#xeL [Ix
here L denotes a linear subspace of R™. In particular

o, = max IMx| = ||M|| (induced norm).

ixh
(iv) Let U,:= col(u;,u,,...,u,). Then

M | Mx]
0, = minimum ——and 6, , ; = maximum ———,
0#xeimt, x| o#xeimuy x|

(v) Define, for a k-dimensional subspace £ of R™

R . fMx| . L
(L) = nug‘n;n}lm‘ mg)élglg'm il Equip gL):=

dimZ,=k—i+1

(6,(2), e2( D), ..., (%)) with the lexicographic order'ing, Then
&) = e((im V) = (6x+1,..+,0,0,...,0).

Moreover,ifo, > 0, ,,then (im V,)* is the unique subspace having
&oZL) = (6x415-.+,010,...,0)

APPENDIX P: PROOFS (CONTINUED)

Proof éf Proposition 23.
Clearly for all ae M* there holds

1
N,

3 2 L, 1 2
i - Z
dZ(Z,a):= l:;l Kayz)| B N“a OuZl _ aTQuanMa.

lal® lall® flal®

The result is an immediate consequence of statement (iii) of the
proposition in Appendix SV. [

Proof of Theorem 24
This proof is based on the proposition in Appendix SV.

(i) Assume c¢*™ given. Let k:=ent(n-c**™). If k' > r then
oimZ) = 5 < ¢*m and ¢(Z,imZ) = 0. Further {&(Z, M) = 0} <

{M =imZ} which shows that M* = Z is then the unique
optimal approximate model. Assume now that k' < r and that
k is such that o, > 6,,, = 0.4,. Clearly c(M*)=k and
oZ,M*) = 6,,,. Moreover,

T
a'Z/ /N
s(Z,M)=nﬁ}( I ||¢/z|| I -1
a
s . ||aTZ/:fN||
minimum maximum .
dimZ2n—dimM O#*ac? llall

Hence {dim M < k'} = {(Z, M) > 6, = &Z, M*)} and

{dimM < k =dim M*} = {e(Z,M) 2 Gaimp+1 = Ok > Ok
= oZ,M*)}.

This shows that M* is optimal. Moreover, since 6, > 6,,,, M* is
a k-dimensional subspace which achieves Z, M) = o, ...
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(i) Assume ¢ given. If ¢ <o, then {dimM <r}
= {d(Z, M) € Ogimp+1 < 0,}. Hence an admissible model must
have dimM > dim Z. If M* = Z is taken, then &Z,M*) =0,
while if M 3 im Z then &(Z, M) > 0. This shows that M* = Z is
the unique optimal approximate model in this case. Assume
now that &' * ¢, and that k is such that o, > &' > g, . Clearly

o(M*) = s and §Z,M*) =0, ,, < &' and

{dimM < k} = {6(Z,M) 2 0gymp+1 = 0 > £°'}.

This shows that M* is optimal. Moreover, since o, > 6, ,, M* is
a k-dimensional subspace such that {Z, M) = 0, ., = &Z, M*). If
& > g,, then g, = &Z,0) < & and M* =0 is clearly opti-
mal [

Proof of Theorem 25

In the proof the # in ¢(&#), etc. will be dropped when there
is no possibility of confusion.

(i) Clearly {# c#'}={# cB'}={dimB, <dimA},
which shows that {#' < #"} = {d(#) < (@")}.

That 0 < ¢ < 1 is obvious from the definition of ¢. That ¢ is
monotone non-increasing follows from the concavity of d.
Indeed, d” <0 implies d; <d,_, <. Hence d,=d; +
d/_, + - +dg = (¢t + 1d;, which 1mp11es d=>@+ l)d, Now

4 4,
&=r31 T
= (t + 1)(": - dt—l) - dt
tt+ 1)
= (t+1d, —d, <0.
tt + 1)

(i) From the proof of Theorem 6 (v) it follows that for ¢ such
that d; = ‘h_{rulo d,d = (t + 1)m + n. This yields (ii).

(iti) Since ¢, = the partial ordering on ¢ is identical

q(t + 1)
to the one on d defined by

{U#) > (@)} {d(F) > d(@")

forallteZ,}. Alsod, = p, + p, + ** + p,. Now examine Table
2 of Part I and relation (vi) of Theorem 6 to obtain the desired
result. (]

Proof of Theorem 26.
From Theorem 25, (i) and (ii) are obvious. To see (iii), observe
that for

#eL,d(HB) = dim B,
=mft + 1) + Y min(v;, ¢ + 1).
i

Further n, the minimal dimension of the state space, equals
¥ v;. Hence
i

4(®) = dim &,
=m(t + 1) + n — Y max(v, — t — i,0)
i

From this, (iii) follows immediately. [J

Proof of Proposition 29

Let ae#* and identify a(s)=a,+ a,s+ - + as' with
col(a},al,...,al). Then [a(c)Ww|% = a"II(W)a. Hence for
ac KH], |lalo)w}? = a"PII(W)P,a, while for al 47+ acker
P, T1(W)P,. Hence Jmax aTP,TI(W)P,a is attained for an element

al(w)', ie. for aew. This implies that

7 (W, B) = /0, (PTI(W)P,), as clmmed The expression for
ny(w, &), n4(w,B),..., can be obtained in a similar way. [

Proof of Theorem 30

The W and # dependence will be dropped whenever this can
cause no confusion.

(i) («=) is obvious. The proof of (=>) goes by induction. It will
be shown that {(0*W)|rno.-116% -1, VPeT, and g =
0} = {(o* W)UT“W 4€R, V' eT} Let ac B} Write a=a, + a,
with a,e#;-, + o*#- | and a,e 4. Then al(a)w 0 since
"W znt0-11€B,-1, V€T, and ay(o)¥ =0 since 5 = 0. The
result follows.

(ii) & >0 is obvious. Further observe that, with a(s)
= Y as and q, = (a},a},...,a), there holds

teZ ,

aoyWw = Y Zaa‘v"v,.

teZ +

Hence

lalo)le < 3 T lail o'W,

1€z, ieq

[ o
< lallg [ 3 3 o'Wl
ieqe=0
< Vo@ + Dllallgn [ T 1905
ieq

The inequality follows immediately from this. The fact that g, is
non-zero for at most ¢ (in fact p) ts follows immediately from
the observation that #; = #-, + o*®,_, whenever the short-
est lag (AR) descnptlon of # contains no equations of lagt.
Since the shortest lag (AR) description contains at most p
equations, the result follows.

(ili) (Outline of the proof). Fix &', #" € L,# > #". Let t' be
such that 8, _, = #,/_, and #,. # #,.. Let P’ denote orthogonal
projection onto A, = (B)) (B, - )" + o*(B,._ )Y and
le¢ A4, and P’ be analogously defined. Clearly
NN, #0 and A # N,. Observe that ker P’ o ker P,
ker P’ # ker P”. Now it may be shown that in the set of symmetric
matrices N = NTe R+ )¢+2)/2 thoge for which 6, (P"NP") =
Omax (P’NP') is closed and has Lebesgue measure zero. The
result follows when this N is allowed to play the role of
). O

Proof of Theorem 31
(i) From the selection rule for k, in Algorithm 8 it follows

that

d. 1) c29m Consequently at stage ¢ the algorithm will
already honour enough (AR) relations so as to obtain
dim #, = k,. New (AR) relations which could be added at a
later stage may possibly further reduce dim #, [even though
generically that will not happen]. Hence

dlmgx‘ d! adm
< <c
gt +1) gt+1)

In order to prove (ii)—(iv), observe first the following lemma:

Lemma. Generically in TI(#) there holds:
(i) II; has gt + 1) — p, distinct posmve and p, =
Z (t + 1 — ) K, zero eigenvalues where p,:= Z ¢+1-ik;

=0
(11)% ngr, ={0}

The proof of this lemma is rather technical. Since the lemma is also
intuitively reasonable and acceptable, its proof will be deleted.

Observe that this lemma yields immediately the generic state-
ments in Algorithm 8, in particular (iv) of Theorem 31, and the fact
that the procedure STRUCTURE will generically never have to
be invoked. Indeed, the lemma implies that the singular values u
computed at the rth stage of Algorithm 8 will generate k(AR)
relations of order exactly ¢, and hence #* will be specified in the
tth stage already.

X

XY
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Now turn to the proof of (i) and (iii). It will be shown that,
generically in I(#), there holds:

{BeL,B,_, =Bt}

= {either (%) > c(B*) = ;™
or  cfB) = c(B*) =c}'",
and &(w,B) > e{w, B*);
or  ¢(B) = c(B*) =",
and  &(w,®) = & (w, B*)—

which can only be the case if #, = %#}.
In order to prove this implication, consider first the case

K =0,ie.d, = gt + 1) — p,. Then &(W, #) = 0. Further, from the
assumption #,_, = #% ,, we obtain

B B, + B = (B + MR ) =@M

which is generically equal to ker IT;. It follows that #, = #* and
that &, = B* iff (W, &) = 0. The required implication follows
when k, = 0. When K, > 0, then d, < g{t + 1) — p,. In this case

(Ot 1etm 42,050, 0) = &(W, B*)

Further, from the above lemma and the proposition in Appendix
SV we have, in fact, that {dim & > g(t + 1X1 — ¢}*") and

L # (B} :{Bt(ﬁ’g’) > (/O 1)c‘,""+l’0" -0}

Therefore
(B, # B*anddim #, < q(t + 1)e}*™} = {a(w, B) > 8w, 2%)}.

The implication follows. []

Proof of Theorem 32.

Observe first the following lemma:
Lemma. Generically in TI(®), or if &' is non-increasing in ¢, there
holds that the singular vectors u computed at the tth stage of
Algorithm 9 satisfy %, n £, = {0}.
Proof. If W is generic, the result follows from the lemma in the proof
of Theorem 31. If £°! is non-increasing in t, the result follows from
the comment preceding the statement of Theorem 32. [0

Now return to the proof of Theorem 32. It follows from the
above lemma that under the conditions of Theorem 32, the
procedure STRUCTURE will never have to be invoked and that
we will have 8(W, #*) = (/0% +1,0,...,0) < &' (suitably modi-
fied at the terminal stage). This yields (i).

Now turn to the proof of (ii) and (iii). If the procedure
TERMINATE is invoked, denote by t,, the stage at which it is
invoked. It will be shown that

{BeL,B,_, = B \,t <t}
= {either c/(%&) < c(B"Y)

and s (W, ®) > &

or c(RB) > c(B*);

or c(B) = c(B%);
and &(W, &) > st(W, B*);

or o (B) = c(B*),
and g(W, &) = &(W, &),
—which can only be the case provided #, = 27}

In order to see this, observe first that as a consequence of the
proposition in Appendix SV, there holds:

{dim&®, < dim 2} = {?3}' /a"TLa/al
204> 82 /0,4, = 8} (W, %)}

Also {dim @, = dim #¥ and #, , B} = {8|W, B) > s(¥, a%)}.
Next, it will be shown that

{ReL,B,_, = Bt = tg,} = {c(B) = c(BY)

and &,(¥,B) = & (W, &%) for t' >t}

In order to see that dim &, > dim #¥ observe that otherwise &,
wouldlead tomore thangindependent(AR)relations, contradicting
the assumption #,_, = & ;.

Consequently,dim #, > dim @} which yields, by the proposition
in Appendix SV, a(w, &) > s(w,#*). For ¢ > ty,, finally, it is
obvious that g.(%,&) > e (W,#*)=0. The implication
follows.

Using these implications recursively in ¢, yields (i) and (iii) of
Theorem 32. O




