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From Time Series to Linear System—
Part II. Exact Modelling*

JAN C. WILLEMSY

The most powerful unfalsified model is defined as that element in a model class which
explains a given set of observations and as little else as possible. Algorithms are
developed which compute the most powerful unfalsified linear time invariant model

starting from an observed time series.
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Abstract—In the second part of this paper the problem of
finding an exact model for a g-dimensional infinite time series
is considered. First a mathematical vocabulary for discussing
exact modelling is developed. It is then shown how the results
of Part I guarantee the existence of a2 most powerful (AR) model
for an observed time series. Two algorithms for obtaining such
an (AR) model are subsequently derived. One of these algorithms
gives a shortest lag input/output model. The problem of obtain-
ing a minimal state space realization of the observed time series
is also considered. In order to do that, realization theory based
on the truncated behaviour is developed. As an extensive
example, the classical situation with impulse response measure-
ments is discussed.

12. INTRODUCTION
ONE OF THE central issues in the modelling of
dynamical phenomena may succinctly be formu-
lated as follows:

Given an observed g-dimensional vector time series

F(Eo) Wto + 1o s¥0))  (—0 St < Sy S 00)

with w(z)eR?, find a dynamical model which explains these
observations.

This problem is of crucial importance in many
diverse areas of application which are concerned
with modelling directly on the basis of observations,
such as time series analysis, signal processing,
econometrics, system theory (identification), auto-
matic control (adaptive control) etc. The usual
approach towards providing algorithms for coming
up with a model is to postulate a set of equations
containing as yet unspecified parameters. These
parameters are then fitted by means of the data.
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In the process of setting up such a procedure one

_ has to face the conceptual difficulty that many
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models which one would like to use will be unable
to explain the data exactly and it may be objection-
able—at least from a Popperian physics oriented
point of view—to accept a model which in this
sense is refuted by the data. The standard way out
of this dilemma is to invoke the philosophy of
statistics and to employ models which contain,
in addition to unspecified parameters, random
elements (for example by assuming that the
observed time series is.a realization of a stochastic
process, or that it is the output of a system driven:
by a stochastic process).-Such an assumption then
usually guarantees that every (finite) observed time
series can occur with a certain probability and in
this sense the data will no longer refute the model.
The modelling question is then one of sampling: one
has to deduce from the observations the probability
measure governing the random system.

Granted, there are many situations in which such
a framework is indeed a suitable one. However, as
a general philosophy, it has many fundamental
drawbacks. The main shortcoming, in the author’s
opinion is that in most applications the lack of fit
between data and model is not in the first place
due to randomness or measurement noise but to
the fact that one consciously uses a model whose
structure is unable to capture the complexity of the
phenomenon which one is observing. As such, it is
very appealing to formulate this modelling problem
as a (deterministic) approximation question instead.
This will be pursued in the third part of this paper.

However, before setting up algorithms for obtain-
ing (optimal) approximate models it seems reason-
able that one should be able to produce algorithms
for obtaining exact models. In other words, the
excact modelling issue should precede the approxi-
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mate, respectively stochastic one. This is the topic
of Part II of this paper: algorithms will be derived
for obtaining the best (in the sense of “most
powerful”) exact linear time invariant model for
an observed infinite time series. The underlying
existence question of a most powerful model and
the specification of what is meant by a dynamical
model depends on the theory developed in Part I.
The approximate modelling question will be dealt
with in Part IIL

The motivational premise of this part is: before
making headway on realistic but difficult problems
such as obtaining non-linear, time-varying, stochas-
tic, approximate models of an observed finite time
series, one should have a good understanding
of how to obtain an exact linear time invariant
deterministic model of an infinite time series.

The reader is referred to some recent papers by
Kalman (1982, 1983) in which he discusses (mainly
in an econometrics context) the problem of model-
ling on the basis of data and in which he argues
the limited value of the statistician’s stochastic
approach.

13. MODELLING: A VOCABULARY

First of all, a mathematical language must be set
up in which modelling can be discussed in a precise
way. In view of the crucial importance which
mathematical models play in applications, it is
actually quite surprising that such a vocabulary
does not seem to be part of the standard arsenal
of notions which are taught in introductory math-
ematics, physics or economics courses. Following
the motivation outlined in the introduction, the
first issue which should be treated is exact model-
ling.

Assume that one wishes to model a phenomenon.
The first step is to “quantify” the variables involved
by means of a set S. Elements of the set S are
attributes of the phenomenon. For example, if
the phenomenon is a resistor, then S = R?, the
collection of all possible current/voltage pairs. If
the relation between the price, demand and supply
of a certain economic resource is to be formalized,
then S = R3. When Newton was attempting to
describe the relation between the external force and
the position of a point mass, he was considering
the phenomenon space S = (R x R?®, the family
of all possible force/position trajectories
t— (F(2),q(1)).

A model for the phenomenon is defined to be a
subset M — §: it is a “law” which says that the
phenomenon will only produce outcomes in M. In
the case of the resistor, M would be the graph of
the current/voltage characteristic of the resistor. In
the price/demand/supply example, it would be the
graph of the function mapping the price into
the corresponding demand and supply. Newton

claimed that only those elements of (R® x R3),
satisfying

d’q
F=M—
de?

are possible force/position trajectories. This yields
Newton’s second law as a model for the relation
between position and external force.

In modelling problems, one usually considers a
class of models #. In our setting .# will hence be
a family of subsets of S, ie. # < 25 Ohm’s law
gives an example of such a situation: Ohm claimed
that the voltage across a resistor is a linear function
of the current into the resistor. If one postulates
that a force/position relation comes from a potential
field, then # = {M|Ve¥ (R R)} with

My:= {(q,F):R SRYF = ‘;—:(q)}.

In other situations, one could assume that .#
consists of all linear subspaces of a given vector
space, or of all power laws etc. These examples
show that .# can express either assumptions of a
pragmatic mathematical nature (linearity etc.) or it
can express basic physical laws (field equations,
conservation laws etc.) which a priori limit the
possible models.

The model M, of a given phenomenon is more
powerful than the model M, if M, « M,. Indeed,
since M, allows fewer possibilities than M,, it has
more ‘predictive’ power and is hence of more value
to the user.t

Next, measurements will be formalized. Only
direct measurements of the attributes of the
phenomenon itself will be discussed. Situations
in which the outcomes of the measurements are
(uncertain) functions of the attributes of the
phenomenon will not be treated here, even though
many of the ideas generalize to that situation. The
measurements will be viewed as a subset Z < S,
and can be thought of either as experimental
data or as experimental evidence summarizing, or
perhaps extrapolating, observations (e.g. Kepler’s
laws). In addition it will often be assumed that Z
comes from a possible class of sets 2 = 25. The set
& dictates the measurement sets with which the
modeller has to be concerned. For example, &
could be all finite sets or it could formalize assump-
tions that the measurements satisfy a boundedness
constraint. The set & will play an important role

+Cf. Popper (1963, p. 36). “Every good scientific theory is
prohibition, it forbids certain things to happen. The more it
forbids, the better it is. A theory which is not refutable by any
conceivable event is non-scientific. Irrefutability is not a virtue
of a theory (as people often think) but a vice.”
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when approximate modelling is discussed in Part
IIL. A model M is unfalsified by the measurements
ZifZ M.

Assume a phenomenon S is to be modelled on
the basis of th¢ measured data, Z = § within a
given model class .# < 25 Which model should be
chosen? Clearly there is a lot to be said in favour
of choosing that model in .# which is not contra-
dicted by Z and gives as much predictive power as
possible. This is called the most powerful unfalsified
model. This is summarized in the following defi-
nition.

Definition 4. Let S be a set which quantifies a
phenomenon. A model M for the phenomenon is a
subset M < S. A model set # is a subset .4 < 2°.
A model M, is more powerful than M, if
M, = M,. A measurement Z on the phenomenon
is a subset Z = S. The set of all possible measure-
ments is a subset & < 25, The model M is unfalsified
by the measurement Z if Z = M. The unfalsified
model M, Z c« Me#, is undominated in 4 if
{ZcMed and M' = M}={M' = M}. M} is
the most powerful unfalsified model in the model class
M based on the measurements Z f Z c Mfe A
and {Z c Me M} = {M} = M}.

Of course, M¥ need not exist, but if it exists, it
is obviously unique. In fact, the set
{Me#|Z < M} may be empty. More to the
point, .# may contain many different undominated
unfalsified models. There are a number of situations
in which it is trivial to see that M ¥ exists and what
it is.

(1) Take 4 =25 Then M} = Z. This model is
often used in daily practice. It is adhered to by
those who approach things without (preconceived)
ideas (.# = 25) and consequently only believe what
they have observed (M¥ = Z).

(2) Take S = R" and .# = {all linear subspaces of
R"}. Then M# = span {z|zeZ}.

The following, basically trivial, proposition
guarantees the existence of M}.

Proposition 11. Assume that .# —2° has the
intersection property (ie. (M < M} =

{( N M)eﬂ} and that for each Ze % there

Me#’
exists a M € . such that Z < M (e.g. assume S € .#).
Then for each Z e Z there exists a most powerful
unfalsified model M in the model class .# based
on the measurements Z.

Proof. See Appendix P.

Actually the condition Se.# together with the
intersection property of # is a familiar condition
in topology. Indeed, it is satisfied for the convex
sets in what is called a convex structure, and more
importantly for the applications which we have in

mind, for the closed sets in a topological space etc.
The following are examples of this situation:
() =25
(ii) S = R", .# = {all linear subspaces of R"};
(iii) S = a vector space, .# = {all linear subspaces
of S};
(iv) S = a topological vector space; .# = {all
closed linear subspaces of S}.

14. MODELLING OF TIME SERIES

If a dynamical system is being modelled, then
using the framework of the previous section, the
phenomenon space is S = W7, with T < R the time
set and W the signal space in which the time signal
takes on its values. A model is then simply a subset
of # of WT. This identifies a model of a dynamical
phenomenon with its behaviour and yields the
definition of a dynamical system as the triple
T = {T, W, #} of Definition 1. (This provides pleas-
ing circumstantial evidence of the suitability of
Definition 1 as the basic definition of a dynamical
system.)

Now assume that a g-dimensional real time series
W:T— R? with T=2Z, or Z is observed, then in
the language of Section 13, Z = {W}: the measure-
ment set 2 consists of the singletons. The algor-
ithms which will be obtained are easily extended
to the case in which the measurement Z consists
of a finite set of time series W,, W5, ..., W,. However
for notational simplicity, the case that Z is a
singleton will be used mostly. A model in the class
of finite dimensional linear time invariant systems
is sought. Part I showed that this is equivalent to
looking for an (AR) model or for a model in any
of the other equivalent forms introduced in Section
3. It is easy to see that this model class has the
intersection property.

Proposition 12. Let T=27Z, or Z and # =
{# < (RYT|IgeZ, and ReR?*[s] such that
# = A(R)}. Then (R) e # and .4 has the inter-
section property.

Proof. See Appendix P.

The question of finding the most powerful unfalsi-
fied (AR) model for W thus becomes the following.

Find, for a given w: T—> R?, with T=Z, or Z,
a polynomial matrix R¥, if one exists such that the
corresponding (AR) model explains W (:R¥(o)W
=0), but as little else as possible (i.e. if R is
any other polynomial matrix such that R(o)% =0
then the behaviour induced by R and R} should
satisfy #(R¥) = #(R)).

The existence of R} follows immediately from
Propositions 11 and 12.

Theorem 13. Assume that w: T— R? with T=27,
or Z is an observed time series. Then there exists
a most powerful (AR) model for it:

R¥ow = 0.
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Clearly the behaviour of the most powerful
unfalsified (AR) model induced by W is simply the
closure in the topology of pointwise convergence
in (R)T of the linear span of the set {o'W|re T}.

This closed linear shift invariant subspace of
(R9)L defines the desired behaviour, #%. However,
concrete representations are required. In other
words, algorithms should be set up which start
from a numerical specification of W and end up
with a numerical specification of this most powerful
unfalsified behaviour #¥. However, as seen in Part
1, numerical specifications of #¥ can be obtained
in many different forms, for example as an (AR)
representation R¥(6) w=0, or as a state space
representation ox = A'’x + B'v, w = C'x + D'v. Of
course, one could also ask for i/o or i/s/o represen-
tations or (assuming that #¥ is reachable) an (MA)
representation, etc.

This paper concentrates on what can be con-
sidered to be the most sensible exact modelling
questions: first, obtaining an (AR) representation
for ## and second, obtaining a minimal state
representation for #¥. The first algorithm gives
moreover a shortest lag description, i.e. essentially
an i/o model and the state space algorithm gives a
minimal state/minimal driving input model, i.e.
basically an i/s/o model. Schematically, the inten-
tion is to develop the diagram shown in Fig. 1.

It is very reasonable to view this problem as a
logical “first’ identification problem: given a set of
observations, the most powerful unfalsified model
is required. It is perhaps an unusual identification
problem, because the model is required to be first
exact and second, non-stochastic.

15. FROM TIME SERIES TO (AR) MODEL

In this section the polynomial matrix R of
Theorem 13 will be constructed starting from w. In
a sense this merely requires an application of
Section 8 with %, = span {col(W(z), W(t + 1),..
W(t + t)), te T}. However, the algorithms will be
stated in such a way that they can be applied almost
mechanically. As in Section 8, two algorithms for
computing R¥ will be given: one leading to a
shortest lag description and one which is more
general. Also, recall from Theorem 2 that in
T = {T,R%, B(R?)}, the external variables can be
separated componentwise into inputs (unexplained
variables) and outputs (explained variables). The
first algorithm also recognizes this separation.

Observations wwe Wy l Section 10

(A'B',C",D')

The algorithms examine the following infinite
(vector) Hankel matrix formed from the data:

#O) W) - W)
#1) W) . WE 1)
HW:= w0 we D) #e+ 1)
(case T=12.,)
or
H(W):=
W=1) WO W) - W)
#0)  Ww(l) W(Q) wE + 1)
We—1) W) W+ 1) Wt + 1)
(case T = 7)

and its truncations (W), t€ Z, consisting of the
first (t + 1)q rows (the first (¢t + 1) block rows) of
H(W).

In order to find the desired most powerful (AR)
model, a set of generators of #1(R2), viewed as a
submodule of R *4[s] (respectively R *‘[s,s™*]),
must be found. Since Z(R¥) is equal to the span of
the columns of (W), the Hankel matrix actually
gives us a rather concrete representation of
#;(R}). Now, if ¢ is such that dim (W)
— dim J#,_,(W) is constant for ¢t > ¢, then, in
order to find a set of generators for #-(RE), it
suffices to find a basis for #L(R¥). This is a
consequence of the fact that Z4(R¥) then has a set
of generators of degree, at most, t'. This observation
is the basis of Algorithm 3. However, the construc-
tion of a basis of the orthogonal complement of
the column span of J£,(W) can be done recursively
by examining (W), 5£;(W), ... and using the
computed orthogonal complement of the column
span of #,(W) in order to compute that of 3. , ;(W).
This is the idea underlying Algorithm 2.

Algorithm 2
Ww(0), W(1),...,W(),... (caseT=12.)
Data. { ., W(—1), W(0), W(1),...,W(t),... (case T = 2).

Step 1 (Determination of the dependency vector).
The first step of the algorithm consists of sorting
out the linear dependence of the consecutive rows
of s (W). Check, starting from the top row, which
of the (infinite) rows of 5#(W) are linearly dependent
on the preceding rows. This yields an infinite
dependency column vector d consisting of *s and
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es. A = in the ith spot signifies that the ith row is
linearly independent of the preceding rows, while a
o signifies dependence.

Step 2 (Determination of the input and output
variables). Observe that, because of the Hankel
structure of (W), if d has a e in its ith row, then
it will have a e in its (i + ng)th row for all neZ,.
Now fix jeq. If there is a * in the (j + ng)th row
of d for all neZ, then the jth component of w in
RX*(e)w = 0 is an input, otherwise it is an output.
Let 1 <j, €j, € '+ €jn. < q be the indices of the
input variables and 1<j; <j; < <j,<q be
the indices of the output variables thus obtained.

Step 3 (Determination of the recursions). Assume
that the ith variable, ieq, is an output. Let
l;:=min{keZ,| the (i + kq)th element of dis a
o}. Then the (i + l,g)th row of #(W) can be written
as a linear combination of the rows preceding it,
ie. there exist a; o, a; 1, ..., a;;,€ R* *? (with a;,;, of
the form a, = [al;,al,...,ai',0,...,0]) such
that

ll'
ﬁ’,(t + ll) = Z ai’kﬁ'(t + k).
k=0

(Note that one could also demand that the kth
component of a;; is zero whenever j > I;. This
would actually determine the g; js uniquely.)

Step 4 (Specification of RE). Let

Ii
ri(s): = [0,...,0, 1,0,...,0]Sli - Z ai,kSk,iE{j'l.jé,...,j;,}.
k=0

1

ithentry

Then R}:=col(r,,r,,...,r,) is the desired poly-
nomial matrix. This is stated formally as follows.

Theorem 14. Let w.:T—-R? T=2Z, or Z, be an
observed time series and let R} be as defined in
Algorithm 2. Then

Riow =0

defines the most powerful unfalsified (AR) model
for w. In fact, it is a shortest lag i/o description,
with the j;, j,,...,j.th variables as inputs and the
J1:j25--.,jpth variables as outputs. The integers ;,
l,,...,1, determine, after rearrangement in non-
decreasing order, the shortest lag structure of
#R}).

Proof. See Appendix P.

Remarks. (1) As seen in Part 1, which variables are inputs and
which outputs is certainly not uniquely specified in a given

dynamical system, not even in a (AR) model, even though in
that case a separation into inputs and outputs is always possible.
Indeed, a lowly (non-zero) ohmic resistor already provides an
example of a situation where there is a choice. Algorithm 2
seems to give a unique set of input variables. However, reordering
of the components of % will in general lead to a different set of
input and output variables in Step 2, which was clearly preju-
diced by the order in which the elements of w e R? were organized.
Actually, whether the distinction between inputs and outputs
in a model should be emphasized is, to some extent, a matter
of opinion. In the remaining algorithms in this paper, the
distinction between inputs and outputs will not be made. Recall
however Section 6 (iii), where the very strong properties of
inputs in an i/o model are spelled out.

(2) Algorithm 2 is closely related to the work of Guidorzi
(1981) and similar work which has appeared in the literature,
in an input/output setting. The contribution of Algorithm 2 is
the following. First, with the search of the most powerful
unfalsified model what the algorithm exactly computes is
specified in a mathematically unambiguous way and second,
the algorithm automatically recognizes what the inputs and the
outputs are.

Algorithm 2 is actually an implementation to the
case at hand of the procedure treated in Theorem
8. There is also an analogue of Theorem 7 which
is now stated in a very concrete way:

Algorithm 3

Data {v”v(O), w(l),..., W(t),...

Step 1 (Determination of the lag). From the
Hankel structure it follows immediately that for
teZ,

p.:= rank (W) — rank 5, _ ((W);
Po .= rank (W)

is a non-increasing sequence of non-negative
integers. Now compute a t' such that p, = p, for
t=t.

Step 2 (Determination of the linear dependence).
Compute row vectors ry, r,, ..., r,e R* *¢* Y such
that they span the orthogonal complement of the
columns of 5#,(W). (There are several ways of doing
this. For example, a maximum rank submatrix M
of #,(W) could be determined. Say that M is formed
by the (4, I5,...,1)th rows and the (k,, k,,...,k)th
columns of 3#,(W). Now write the other rows of the
matrix formed by the (k, k,,...,k,)th columns of
H(W) as a linear combination of the rows of
M. The coefficients of these linear combination
determine this orthogonal complement. Clearly,
this computation may be further refined and simpli-
fied by exploiting the Hankel structure of 5#,(w). The
coefficients which express this linear dependence
determine ry,r,,...,7, in an obvious way.

(caseT=12.)
o, W(—1),W(0), W(1),...,W(t),... ‘(case T = Z).
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Step 3 (Specification of R}). Now write r;, i€g,
as 1= [Tio,Ti1s- - Fipr] With r, ;e RY*9, define

.
Fs):= Y riys*, and RE:=col;,Ts,...,7,)
k=0

This yields the result below.

Theorem 15. Let w. T—-R% T=1Z, or Z, be an
observed time series and let R} be as defined in
Algorithm 2. Then

RXo)w =0

defines the most powerful unfalsified (AR) model
for w.

Proof. See Appendix P.

Example 5. The purpose of this first example is simply to
illustrate, by means of an artificial set of numbers, the procedure
described in Algorithms 2 and 3.

Letq=2,T=2Z,, and

The Hankel matrix and the dependency vector become

101001000100O00O01
01 1 2223333444434
01 0010001000100
1 1 222 333344441435
1 0010001 0060O0CT1O00O0
1 22 2333344444355
_*._
*
*
[ ]
d=*
[ ]

Use Algorithm 2. This shows that w, is an input and w, is an
output. Also /, equals 1 and the recursion is obtained by writing
the fourth row of (%) as a linear combination of the preceding
ones:

Wo(t + 1) = W (t) + Wy(t)
which yields
ow, —w, —w, =0
as the most powerful unfalsified (AR) model for w.

In order to demonstrate the use of Algorithm 3, choose t' = 2
and let the submatrix M be

rows of H#(W).

Cowoe
—_— O WwWo
O —=Wwweo
(= e T
W N =

columns
7 8 9 10
of (W)

Now write the 4th and 6th rows of the matrix formed by the 7,
8, 9 and 10th columns of J#,(W) as a linear combination of the
rows of M. This yieldsr, =[—1, —1,0,1,0,0]Jand r, =[—1,
—1, —1,0,0, 17 as a basis for #3(R¥) and leads to the (AR)
model

oW, —w, —w, =0

oiw, —ow, —w; + w, =0.

Note that the first equation implies the second, and hence the
same model is obtained as with the first algorithm. This example
will be discussed again in Section 17.

Remark: Generalization to a finite set of observed time series.
Consider the case that k time series W,, W,,..., W, are observed
and that the most powerful unfalsified (AR) model is sought,
based on the measurements Z = {W,, W,,..., W,}. In other words,
the algorithm is extended to the case that the measurement set
Z consists of all finite sets. In order to treat this case, it suffices
to use Algorithms 2 or 3 verbatim on the (block) Hankel matrix:

W) W) (]
W) W) W' + 1)

H(W): (caseT=12Z,)

- W.(t) W(t.+ 1) W(t'-l-t’)

with W: T— R?** defined by W(t): = [W,(2), W,(t)... %,(t)] and
with the obvious modification for the case T = Z. This generaliz-
ation will be used in the next example.

Example 6 (Impulse response measurements). The purpose of this
second example is to demonstrate that this procedure recovers
the results of Kalman’s realization theory (Kalman et al., 1969)
as a special case. .

Let T= Z and assume that responses to unit impulses are
observed in the 1st, 2nd,...,mth channel of an i/o system with
minput and p output channels. Let §;, §,,...,8, T— R? denote
the corresponding impulse responses. Define ¢ = m + 0 and W;:
T — RY, iem, by w{(t):= col (€, g, with &: T— R™ given by

. e; fort=0
& = 0 fort#0

where ¢;:=col(0, ..., 0, 1, 0, ..., 0). One has the measurement
Z = {W,,W,,..., W,} and the question is to see if the input/output
structure and the dimension of the minimal state space can be
predicted from Algorithm 2.

Denote  G():=[B,(t), 8:(t),....En()] and W(e):=[W,(0),
Wy(2),..., W,(t)]. The relevant block Hankel matrix becomes:

0 0 I 0

0 0 GOy GO
0 1 0 0
e 0 0 1 2

CfO) G.(l) C{Z) C§3)

Consider now rank #(W) = dim #,(R}). Clearly it equals
(t + 1)m + rank #,(G) with

G1) 6 o G()
6o 63 - G+D

#©):= Git) G(t'+l) . C{t+.t’—1)

If rank #(G)= co, then the most powerful (AR) model
unfalsified by Z = {W,, W,,...,W,,} will declare that some of the
output channels actually produce unrestricted signals (in the
sense that its restrictions, if any, would only have become
evident at t = o0). In this context of complete systems, these
outputs channels are declared to be input channels.
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Assume henceforth that rank #(G) =:n < oo. Now use Algor-
ithm 2. The dependency vector d immediately shows that the
Ist, 2nd,...,mth channels are indeed input channels, while the
(m + Dth, ..., (m + p)th channels are indeed output channels.
Furthermore, by Theorem 6, the dimension of the minimal state
space, n*, equals ,11.’2 (dim H#(RY) — (¢ + D)m) = ,11’2, rank #{(G),
showing that n* is indeed equal to what would have been
predicted by classical realization theory.

In order to obtain the relevant RY, assume that rank
#(G) = rank #(G) = n. Now consider the following truncation:

Hp(W):=
.0 0 I 0 . 0 :
0 0 GOy G o G)
0 1 0 o0 .. 0
0 &(0) G G Gt +1)
I o0 o 0 0
L. GO) .. G- Gr) Gr+1) .. G(2r)

Clearly its rank equals m(t + 1) + n.
Now apply Algorithm 3. One method for doing this is by first
solving the equations

PG+ PGt + 1)+ + PGt +1)=0 tet

for PeRPC*D-mXp 01, ...t. such that the matrix
M =[P, P,...P,.] has full rank p(t' + 1) — n. The matrices
Qos @1,-..,Q, can then be determined recursively by

0, =PGO)+ P, G+ + PGt — 1) t=0,1,...,r.

This yields R§(s) = [P(s): —Q(s)], with P(s) = Pps" + -+ + P,
and Q(s) = Q,s" + ... + Q, as the desired most powerful unfalsi-
fied (AR) model.

This example will be reconsidered in Section 17 in order to
compute a minimal state model, thus obtaining a complete and
convincing generalization of the classical impulse response
realization procedure.

Note also that in the impulse response case when T=7,,
the most powerful unfalsified model will be described by the
equation ou = 0 together with the model obtained in the case
T = Z. Note that one may now as well set @, =Q, ==
Q, = 0. In other words, the most powerful model will also
explain the “input”. Formally, in this setting, it should therefore
also be considered as an output. In fact, in the end the whole
system becomes an autonomous one.

A few comments are in order.

First, note that the case in which the impulse response G(0),
G(1),...,G(), ..., leading up to the model y(r) = Y G(z — t)u(),

'€t

is measured cannot logically be viewed as an identification
problem, since with the impulse response the model is basically
already given. Note, however that this procedure will yield the
convolution sum as the most powerful unfalsified model only if
rank #(G) < co. If this is the case, then (assume T = Z) the
restriction of the most powerful behaviour to sequences w
vanishing on a half line (— oo, ] will give us exactly the graph
of the convolution, whereas in the case rank #(G) = o there
will be additional elements in the restriction of the most powerful
behaviour. Thus the closure of the graph of the convolution,
restricted to sequences vanishing on a half line, will give the
graph of the convolution iff rank #(G) < co.

Second, consider some peculiarities of the case T=127,. If
rank #(G) < oo then an autonomous system is obtained as a
model. The relation between the impulse variables w, and the
response variables w, will be of the type

wyt + )+ Poywy(t +1— 1)+ - + Pow,(1)
=0wit+ D+ Q- wit +1—=1+ -+ Qow;(1)

but with a certain arbitrariness in the Qs. This can be explained
as follows. Even though the most powerful unfalsified model is
unique, there are many transfer functions with a given set
of outputs corresponding to zero input but arbitrary initial
conditions. Ifit is required that the impulse response correspond-
ing to zero initial condition yields the model then the Qs which
yield the convolution sum are obtained.

Third, note that in the case T=Z,, rank #(G) = co will
imply that (some of) the impulse variables w, will be explained
by the variables w,. This results in the fact that in the most
powerful unfalsified model it may occur that the impulse
variables are the outputs and the response variables are the
inputs (a phenomenon which cannot happen in the case T = Z).

16. CONSTRUCTION OF STATE SPACE MODELS:
THE EFFECT OF TRUNCATION

This section is basically a continuation of Section
9 where the problem of passing from the behaviour
% (or #*) to a minimal state space representation
of it was discussed. One difficulty with the results
in Section 9 is that the spaces #*, #°, &', /7,
A and A! are infinite dimensional and hence
that the calculations also appear to be infinite
dimensional. However, since in the end everything
must reduce to finite dimensional linear algebra it
seems plausible that there should exist modified
algorithms which avoid infinite dimensional spaces
altogether. This is, fortunately, possible by examin-
ing truncations of 4 to a finite but sufficiently long
time interval and by considering only the elements
of &/ = #* of a finite but sufficiently high degree.

Of course, the same concern for obtaining algor-
ithms which are based on truncations and/or which
are recursive in the data also exist in the classical
impulse response realization problem. In fact, many
efficient and elegant algorithms based on such ideas
have appeared. These will not be reviewed here.
The element which is new in this approach: how to
identify simultaneously the state space and the
driving input space will be emphasized. Efficient
implementation of the mathematical constructions
and the very important generalization to the finite
time case will be pursued elsewhere.

The three basic ideas which yield the realization
procedure put forward in this section are: first,
truncation; second, isomorphism—when the trunc-
ation interval is sufficiently large, no information
about the behaviour is lost in the truncation process;
and third, that, again when the truncation interval
is sufficiently large, the relevant truncated spaces
may be computed from the truncated behaviour.

16.1 Truncation

Let #eL and consider #*:=n*%B, B°:=
() (6*)'#*" and #':= B°kern® =c*%B° as
teZ +
studied in Section 9. Define their truncations as
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follows #,; = ©'B*,(#°): = ©'#° and (B'): = wA".
It follows immediately that there exist maps M| and
M}, such that the diagram shown in Fig. 2 com-
mutes. Note that S!,, and S? are automatically
surjections.

16.2 Isomorphism

If S}, , and S? are bijections then the construction
of (M,,M,) required in the primal version of
Theorem 9 can be replaced by the construction of
(MY, M5). Tt will be shown that this holds for ¢
sufficiently large.

16.3 Computability

In general it will not be possible to compute (%#°),
and (%), from 4&,. However, the following spaces
are defined solely in terms of %

#:= () ©@7%

osrst

Bl:= B ~kern®

Here o*: £, —» %, is defined by o} := n'g* it is
the forward shift followed by filling in zeros and
truncation. In other words,

B ={weZ,|(cHWeBNOL Y <t}

Note the significance of the spaces %,, (%°),,
A°, (#Y),, and B!. The space &, represents all
sequences of length t+ 1 compatible with the
behaviour; (#°), represents those which could have
been preceded with any number of zeros and hence
those which started in the zero state; (#'), represents
those which in addition are zero at time 0; #?

0 n° g' o g°
id £ £
n° o
0 1 o
G ®|
iny | '™ inj| ™ inj | ™
r? n° 8" o 8"
t
id £+ K
“0 a
q
R B:+l Bt
j j . roj
proj prol proj pred proj pro
& 8" (modB)) 8" (modB°)
M M
: 2 1 1 . ]
id ot Sevr ot Se
2 1
q 1 o
R Bt+l(m0d(8 )t+l) Bt(mod(B )t)
F1G. 2.

represents those sequences of length ¢ + 1 which,
when preceded with any number of zeros, and then
truncated to aninterval of length ¢ + 1, will generate
elements of #,; ! represents those which in
addition are zero at time 0. This yields the lattice
diagram shown in Fig. 3.

The following inclusions hold: #! < kern® and
6#,, < B°. The latter inclusion follows immedi-
ately from the definitions, 6%,,, c %,, and the
observation that o6¥, | = o*c + n°. It follows from
these inclusions that there exist maps M’ and M}
such that the important (primal) truncated structure
diagram (Fig. 4) commutes.

It turns out that #° and #! are equal to (#°),
and (4#!),, respectively, for ¢ sufficiently large.
Proposition 16 (Primal version). Let # € L. Then the
following conditions on teZ . are equivalent:

(i) dim &, ., — dim &, = dim %,,, — dim 4, for
¢ > t(ie. in terms of the structure indices of Section
7, t+1=t*:= mZin{tlp, =po})

ted +

(ii) dim 4, (mod (#°),) = dim #(mod %°);
(iil) dim %, (mod (#'),) = dim #(mod £");
(V) BYi1 = (B4 15
V) Bli1 = (B)s1

Proof. See Appendix P.

Example 7. This dazzling line-up of subspaces and their differ-
ences will be illustrated by means of two simple examples.
Consider first the trivial system consisting of a free
input: 2 = (R Then B = B° = (R, and
B' ={w:Z, > R|w(0) = 0}. Further, B° =, for all ¢ and
Bl ={weZ,|w0)=0}. It is easy to see that
Enzin {t]p; = po} =:t* = 0. Proposition 16 is easily verified.

Next consider the system on T = Z, described by the (AR)
equation w(t + n) =0, i.e. w(0), w(l),...,w(n — 1) are arbitrary
real numbers and w(t) = 0 for ¢t > n > 0. Let #*(n) denote the
behaviour of this system. Then #* = #*(n), 2° = #! = {0}.
Hence (#°), = (#"), = {0}. Further #, = &, for t <n—1 and
B, ={weZ,|w(t)=0 for t' 2 n} for t >n It follows that
Ezin {tip, = po} =:t* = n. A simple calculation shows further

that % = &, for t <n—1 and & = {0} for ¢ > n. Similarly,
B ={weZ,|w0)=0}forr<n—1and B = {0} fort=n.
Proposition 16 is again easily verified. \

It is the front level of the truncated structure
diagram with ¢ > ¢* which is of particular interest.
It is redrawn here for emphasis (Fig. 5). Note that

VI and M}, are well defined even when ¢ < t*. This
fact is promising for partial realization questions
and recursive implementation of these algorithms.
This will be briefly discussed at the end of this
section.

t

B

inj inj inj
tinj inj
0 PR A . .Bt Lt

inj inj inj

@h, @&

t t

F1G. 3. Lattice diagram.
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0 w 8! [+ B°
t+1 t
i n m
. id "o o
1 (]
g ; G 0 L 1E,
n° g
0 =1 =0
. B 8
inj P 8" I°] 8"
q
i IR t+i “t
© g
a B
g/ B id s id ¢
n o}
r? Biet 8,
q My B moay| Mi 8" (modB)
R P .
. id i
pre) Mt ?/ Mt id
2 1
LY B (mod(B' 8 8°
) ; ey (MOd (B )y ¢ (mod (B7) )
ﬁ; ﬁ;: 1d
q 0
R By (modB ) B (modB?Y)
q,
R X
iso id X6 U @
IRq X
id igf X0V id
. (' '] (A' B']
W =R n

XxeU TR" e R"

XTR

F1G. 4. Primal truncated structure diagram.

Theorem 17 (Primal version). Let #eL and let
t*:=min {t|p, = p,}. Now assume that t > t*.
teZ 4

Then there exist linear maps M} and M} such that
the truncated structure diagram commutes. The
map M = (M, M): &,,, (mod &/, )~ %, (mod
2?) x R?yields, identically as in the primal version
of Theorem 9, a state space representation T (A4’,
B, C, D) of # with a minimal number of states
and driving inputs.

Proof. See Appendix P.

Remark. There is one more refinement which may
be introduced in the truncated diagram and which
will be used in the next section. It may be explained
as follows. In the truncated structure diagram
#!., and B, have been considered so that the shift

o =1 =0
0 n Bt+| [ Bt
inj inj inj
o
w B a B
t+l
R t
proj proj proj
1
" B, (modB,, ) B, (modB?)
EN EH
2 1
isl iso iso
"t [A' B')
R {c' D')

XE R"

xeu= R+ R"
F1G. 5. Front level of truncated structure diagram with ¢ > t*.

AUT 22:6-B

o: Bl — B, will be well defined. However, if t >
t¥, since dim %,(mod #!)=dim#,,, (mod
B!, ), then B(modB}) =~ RB,., (modZ.,,). So,
provided the action of the shift as a map 4,
(mod #}) — &, (mod #?) can be followed, no exam-
ination of 4#,,, and #!,, is needed. This remark
is summarized in the commutative diagram (Fig. 6),
where the map M =(M,,M,) can serve as a
means of obtaining a realization analogously as in
Theorem 17.

The previous discussion will now be dualized, skip-
ping many of the details. Let ZeL and consider
N:=BY Nt=@B), H¢°=A@) and
Nt = (8'), as studied in Section 9. Consider also
Np=H"nL¥, (W= H4'N"F* and
W= AHN"'nL¥, and F:i= Y (YA,

[LESES4
N = P + R *0]). Note that the lattice diag-
ram holds (Fig. 7).

!
0 ° B o B:
iy o
' o
inj t inyj| inj
inj
™© Byy © B,
RrY £
]
n
Bt i
proj proj PTo)
pro 1 B°
B:H(modB'tH) B, (mod )
‘e = =
R v M; iso Mﬁ
2 1 M,
Bt(mOdHt)
F1G. 6.
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inj !

Tlo
t
0,_ini n) inj inj J

I3 ini Yt
inj J

o
w7, 5,

FIG. 7. Lattice diagram.

Further, imi® ¢ & !} < (#Y), (A7), 2 (N D11,
and sAP = A/ L.

Note the significance of these spaces: A4/, viewed
as a subspace of R!'*[s], represents all (AR)
relations of lag less than or equal to ¢ satisfied on
B; A0 adds all polynomials which can be obtained
from A4/, by dropping the lowest order terms and
then dividing by the smallest power which was not
dropped, while #,! adds in addition all zeroth
order polynomials.

Example 7 revisited. For the first situation discussed in
Example 7, &% =A4°={0} and #'=R'*90]. Hence

HF = (¥, = H7 = {0} and (F'!), = ¥} = R *[0].

For the second situation, 4" =s"R[s], and
N =t =R[s]. Hence A ,={0} for t<n and
N, =s"¥*, for tz=n Consequently, for 0<t<n,

AN, = (WY, =ZL¥* N =N ={0}; and &} = R[0], while,
fort=2n (N0, =W, =F=N)=2¥

The dual of Proposition 16, of the truncated
structure diagram (Fig. 8), and of Theorem 17 now
follows.
Proposition 16 (Dual version). Let #€L. Then the
following conditions on teZ, are equivalent:

(1) IR R?*? [s] such that Z = #(R)and t = (R)
(i.e. in terms of the lag structure studied in Section
7, t2008);

J. C. WILLEMS

(i) dim (A°), (mod &) = dim A"° (mod A");
(i) dim (A1), (mod A#) = dim A" (mod A7);
(V) #:%1 = (A .0)t+ 1

WA =W esy-
Proof. See Appendix P.

Theorem 17 (Dual version). Let 4 L. Now assume
t 2 t* = g%. Then there exist linear maps (M})*,
(M%)* such that the dual truncated structure diag-
ram (Fig. 8) commutes. The map M* = (M%)*,
(M5*¥): (W 2(mod A ), RY) — A, 1 )mod A, 4)
yields, identically as in Theorem 9 (dual version), a
state space representation X (A4, B, C', D) of #
with a minimal number of states and driving inputs.

Proof. See Appendix P.

Example 7 revisited. For the second system of Example 7, when
tz2t*=n, B ={weZ|wit)=0 for ¢>=n}, B=23!
={0}, N, =5%r, N°=H*=%F Hence 3B,
(mod B°) = X = B,,, (mod B, ) = #,(mod B}), and X = R",
U = 0. Choose as basis for X = R" the elements ¢; with ¢;
~{w|w(t)=0fort#i—1and w(i — 1) = 1}. This yields

o1 .- 00
00 - 00
A= o andC' =[1 0 0.
00 .. 0
00 - 00

The primal structure diagram yields (4, —, ', —) as a
natural minimal realization of the system ¢"w =0 with T=12,.
Now apply the dual structure diagram.

H{mod ¥,%) = X & N,y (mod FL ) = A (mod 471

0 i° v s I
id o Lt it
0 i s
N v
id id t+l id t
.0
1 S
0 — 7
inj tfé t
Ixq¥. 1 S y
R 1 o
t+] N .t N
i 3 1
.0
Rl"q 1 ] s o
, @, )
nd id
.0 s |
1x L
q
R —1 o
Wi v,
Rq 4 M; (Ml.l) y
N o +
r ; t+1 : N” (modN "}
) Gy M| id
Proj R N £ )
N o
id " (_A_l_‘)t+l(m°d"c+1) Z, [¢4) )t(mod[Vt)
. M), M7) .
R 1 _
f/v“l (mod¥,_) W (modF )
®a
i igf XoU % X
iso q
R X® U ) X
id T i T id
{¢' p') {a' B']
~ N
w=RrY XU ¥R eR" X< R

F1G. 8. Dual truncated structure diagram.
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and X > R", U =~ 0. Choose as basis on X >~ R" the elements ¢,
with e; = s"~*. This yields

00 00
10 00

A= 1l | apdC" =[0...0 1]
00 - 00
00 - 10

and (4", —, C", —) is obtained as another minimal realization
of the system.

The dual version of Theorem 17 will now be
implemented in an algorithm which is basically a
refinement of Theorem 10, where a state space
model for a given (AR) system was constructed.

Algorithm 4
Data R(s)e R?*9[s].
Step 1. Determine t' = d(R).
Step 2. Determine

Nl i={p(s)e R *[s]|d(p) < t'andp = fR
R *4[s] case T=17,
fi _
orsome f(s) € {Rl “a[s,5'] caseT=2Z

'/T/I?,t’:= Z (S*)'/VR:

o<tsr

Ngpi= Ny + RV[O0).

Step 3. Determine complementary bases f,
faseo s [eRY[s] for A, (viewed as a subspace
of £¥) in A, and uy, u,, ..., u,e R *s] for
Ny in NG, Let F:=col(f,, fs,....f,) and
U:=col(uy,u,,...,u,). Note that by Step 1,
dim #'§,—dim A%, =dim A/ Z, —dim AZ, _,
for r>t. Further AN = N0 L,
j/g,t’=/vg,t’+1n$tt and ‘/T/‘I{,t'=‘/vé,t’+ln$t*'
This shows that f,...,f, and u,,...,u, also
form complementary bases for &g 1, in Ay 44
and for #Qp 11 in A4y,

Observe that the construction of these bases is
very easy to carry out if it is assumed that a shortest
lag description R = col(ry,r,...,r,) of #(R) is
used. Assume 0;=0(r;) and 0<0, < - <9,
Then ¢ =0, and s*ry,...,(s%'ry, s*ry, ...,
(s*)Y2r,, ..., s*r,, ..., (s*)r, form a complementary
basis for 4%, in AR, and for u;, u,, ..., U, a
complementary basis for (s*)°1ry,
(s*)°2ry,...,(s*)%r, in R'*90] should be con-
structed. These observations make Algorithm 4
very concrete if a shortest lag (AR) description is
used.

Step 4. Find matrices A, B, C', D' and
N =col(ny, ny,...,n,4,), with meNg,,, for
ie(n + q), such that

sF(s) A B
|:--'I"':| [‘"':IF(S) + |: ]U(S) + N(S)

Corollary 18. Let (4', B, C', D’) be computed as in
Algorithm 4. Then X(A’, B, C, D’) defines a
minimal state space realization of X(R) with a
minimal number of states and driving inputs.

Proof. This is an immediate consequence of The-
orem 10. The only reason for restating it explicitly
is to emphasize the finite dimensional nature of the
realization algorithm starting from R. O

Example 4 revisited. It is clear that ¢ =n=J(p). Hence
Nghe = {a[p, —q] |« R}. The f;s still form a basis for a com-
plement for A%, in 4%, and [0,1] forms a basis for a
complement for A2, in A,.. The calculations for (4’, B, C,
D’) remain unchanged but can now be considered as taking
place in the finite dimensional space .Z}* or, better yet, in span
«.ﬂ’ ien), [pv —(1], [09 1])

Remark. The development in this section shows the crucial
importance of the ‘partial’ behaviour spaces %#,, %,, ...,
%,,... . As seen in Section 7, the dimension of these spaces
determine the lag structure of the (AR) equations which describe
the system and the observability indices of the i/s/o represen-
tations. In Part 3 these dimensions will be used as the definition
of the complexity of a system.

These partial behaviour spaces also allow formal study of the
finite time structure of a system as follows. Call an element
BeL t-complete if {(weB}<>{n'c"weh,, Vi'eT}. Let L,c L
denote the family of all t-complete systems. In fact, {#eL,} < {t
satisfies the conditions of Theorem 17}. Actually, contrary to
L, L, is not closed under addition but it nevertheless has the
intersection property and consequently there exists a most
powerful t-complete system containing any subset Z < (R9)T.
Consequently, the computation of the most powerful t-complete
model for any observed time series Z = {w}, or for any behaviour
% < L, for that matter can be considered. This yields the t-
completion of the behaviour %, denoted by #¥. Actually these
computations are easy to carry out, since in this case relations
with unknown long lags need not be considered. When Z = {W}
it suffices to use Algorithms 3 or 5 with the ¢' in Step 1 imposed
instead of computed from the data (this has the pleasing
consequence that these algorithms then basically operate only
on matrices with a finite number of rows. Similarly, when Z = 4,
a state space realization of #* can be obtained by using an
identical computation as set up in Theorem 17 but with ¢ again
imposed.

These refinements and their ramifications will not be pursued
further. However, note the relation with the question of persist-
ency of excitation (see Chen, 1986 and references therein).
Consider an i/o system with behaviour #eL for which one
input/output response pair W = (@, §)e(R™ x R?)T has been
observed. Then it is possible to prove that 4 itself is the most
powerful unfalsified (AR) model for {W} iff &, o@, ..., 6'Q, ... are
linearly independent in (R™)7, ie. iff R¥ = 0. It is natural to call
such an input sequence completely exciting. If a priori knowledge
is assumed on 4 such that #eL,, then & will be the most
powerful unfalsified t-complete (AR) model for {#} iff i, od, ...,
¢'ii are linearly independent. Such inputs are called completely
exciting for t-complete systems.

Consideration of t-completeness allows truncation of the
number of rows of J#(W). Is it also possible to truncate the
number of columns of #(W)? For t-complete systems, when
trying to construct the behaviour from W, first consider the
truncations n'o'W, t'eT, compute @B, =imH (W)=
span(n'e’W,t'€ T), and deduce # from there. if, however,
ImJ# (W) = span(z'c* W, n'c" " 1W, ..., w6 * *W) then it is obviously
possible to deduce # from the truncatlons n'e"'Ww, n'e" T, ...

‘a‘ +Aw. It is possible to prove that this will be the case 1ﬂ'
n'e"li, n'a" T 14, ..., n'e" T il are linearly independent as elements
of &, = [R"'““) ‘Such an input sequence is fully exciting on the
interval [t',t' + A] for t-complete systems. If this holds for all
t'e T then such an input is called persistently exciting of order
A for t-complete systems. These considerations make precise in
what sense the combined assumptions of t-completeness and of
persistency of excitation of order A can be used in order to
reduce Algorithms 2 and 3 to algorithms which operate on finite
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dimensional matrices only. This will be pursued in detail
elsewhere. Note also, very importantly, that an input will
generically be persistently exciting of order t for t-complete
systems.

17. FROM TIME SERIES TO STATE SPACE MODEL

One of the most natural problems which comes
up in linear system theory may be formulated as
follows:

Given an observed g-dimensional vector time series: W(t,),
Wito + 1),...,W(0),..., W(ty) (—o <ty <t<t; €0), find a
minimal state space system: ox = A'X + B'w; w=C'x + D'y,
which explains this time series.

This problem is studied here for the case
to=—oocandt, = o (T=2Z)ort,=0andt; = x©
(T = Z.,). A special case of it has been treated very
extensively in the systems theory literature, namely
when the observed time series is an impulse response
(see Example 6). The resulting theory has become
known as realization theory. If realization theory is
viewed as it should be seen, namely as the problem
of simulating the i/o map given by the convolution

y(t) = ’2:‘0 G!—t’u(tl)

by means of a (minimal) i/s/o system
ox = AX + Bu; y=Cx + Du; x(0)=0,

then this problem is basically a matter of represen-
tation; given a dynamical model of a dynamical
system in one form, try to express it in another,
more structured, more convenient, more useful one.

The question which is treated in the present
section is more akin to (state space) identification
theory: starting with an arbitrary observed time
series, try to model it (exactly) in state space form.
As a basic first problem in identification theory,
this question is a much more natural one than the
impulse response modelling of realization theory
(since this corresponds to very special measure-
ments) and it is also more general. In fact, algor-
ithms will be obtained which have the classical
realization procedures as a special case.

However, it is not clear a priori what is meant
by a realization 6x = A'x + B'u; w = C'x + D'u, of
an arbitrary observed time series Ww. In fact, the
model 0.w = 0, corresponding to the state space
model (—, —, —, I), explains every observation and
since it is memoryless it has a state space of
dimension 0—in a sense it is hence even minimal!
Thus it must be made clear how the behaviour of
the model is to be related to the data. The precise
formulation, which depends heavily on the concepts
developed in Part I and the previous sections of
Part II, is as follows.

Let W be a given map from T=Z or Z, to R
Consider the model class # consisting of the

external behaviour of the finite dimensional linear
time invariant systems with external signal space
R? (i.e. each element of .# is defined by two integers,
m and n, and four matrices: 4'eR"*", B'e R"*™,
C' eR?*" and D’ e R?*™ which determine the exter-
nal behaviour of the system ox = A'x + B'u;
w = C'x + D'u as explained in Section 3.3). The
problem is to find a most powerful model in
the model class .# which is unfalsified by the
measurement Z = {W}, and among these, to find
one for which n, the dimension of the state space,
and m, the dimension of the driving input space,
are as small as possible.

It is immediately clear from Theorems 3 and 13
that such a model exists: nothing other than a
minimal state space realization of #(R¥), the most
powerful unfalsified (AR) model, is required. Thus,
in a sense, the problem is already solved: Section
14 shows how to obtain R¥, while Theorem 2 and
the proof of Theorem 3 show how to obtain an i/o
representation and subsequently a minimal state
space realization of R¥. This route is a very
roundabout one however, and in this section algor-
ithms will be obtained which pass directly from w
to (4, B, C, D).

Two algorithms will be presented. The first one
uses the Hankel structure of #(W) in an essential
way, while the other does not and is therefore less
effective but, in a sense, more general.

Algorithm 5 is an implementation to the problem
at hand of the primal version of Theorem 17. On
the basis of #(W), a t must be found which satisfies
the conditions of this theorem. Then #,, #° and
B! will be computed. These yield the state space
X =~ %, (mod#°) and the input space U = %?
(mod #}). Finally the representations of the shift
and the evaluation map which gives the desired
state space realization will be computed. In doing
this the primal truncated structure diagram is
implemented, making use, however, of the refine-
ment explained in the remark following the primal
version of Theorem 17.

Algorithm 5

w(0), w(1),...,w(),... (case T=12,)
Datay  G(—1),w(0),%(1),... (case T=2).

Step 1 (Determination of the lag). Determine a
t'eZ. asin Step 1 of Algorithm 3.

Step 2 (Determination of the truncated behav-
iour). Determine £, := span{w,(t); teT}. Here
W,(t): = col(W(z), w(t + 1), ..., W(t + t)).

Step 3 (Determination of the state space and
the input space). Define ¢*: R *1 - RI'*1 and




From time series to linear system—Part II 687

7% R D 5 R? by *: col(ag, ay, ..., a)+— col(0,
g, ..., Gy _,) and n°% col(a,, a4, ..., ay)>ag with
aeRy,  t=0,1,...,t'\ Determine %°:=
() (6¥) '8, and B} := B, " kern°.

<t

Step 4 (Determination of the system parameters).
Determine a (t' + 1)q x n, submatrix H of 5 (W),
a (n, x n) matrix Q,, a (n, x m) matrix @,, and a
(n x (t' + 1)g) matrix P such that the following
properties hold:

4.1) B°@imHQ, = B,;
42) #'@®imHQ, = B
43) PHQ, =1, P& = 0.

It is clear that such matrices indeed exist. Now
determine the matrices ¢H and H° defined as
follows. Assume that H consists of the (ky, k5, ...,
k,,)th columns of #,(W). Then oH consists of the
(ky + 1, ky + 1, ..., k,, + 1)th columns of #,(W),
while H® consists of the (1, 2, ..., g)th rows and the
(ky, k2, ..., ky,)th columns of J#,(W).

Now define the (n + g) x (n + m) matrix M by

PoH
M= "I-{-O" [Qx Qu]

It is worth stating the result formalily.

Theorem 19. Let w: T—>R%, T=7Z, or Z, be an
observed time series, and let M e R*+9 X+ m) pe 45
defined in Algorithm 3. Partition M as

A48
M= C E D’

with A’eR"*", BeR"*™, C'eR?**" and D'e R?*™
Then X (4, B, C', D') defines a most powerful
unfalsified minimal state space model for W with a
minimal number of driving inputs.

Proof. See Appendix P.

The next algorithm is based on the idea of
splitting the ‘past’ and the ‘future’ of W. As can be
seen from Appendix S, the algorithm can in fact
also be used in order to split purely static relations
as well. Before spelling out the algorithm the notion
of the relative row rank r(M,; M,) of a partitioned

M. .

Mo|s introduced. Assume
2

first that M = col(M,; M,) is finite: M, e Rk1*¥

M,eR¥**  Then r(M;; M,):=rank M, +

rank M, — rank M. Next, assume that M has an

infinite number of columns.

(infinite) matrix M = [

Then

WM My):= }}{g "My My,) =r(My; My).

Here M;, denotes the truncation of M, at its tth
column, and M = col(M,, M,) is a maximal rank
submatrix of M. This definition is extended in an
obvious way to a matrix with a two-sided infinite
number of columns. Finally, assume that M, and/or
M, have an infinite number of rows. Then we define

rMy; My):= v ;11_1}00 "(Mtn tz)

Here M} and M} denote the truncation of M, and
M, to their ¢ highest and lowest rows, respectively.

It is easy to see that adding rows to M} and/or
M, never decreases the relative row rank. From
there it follows that

rMy; M) = supr(M5; M%)
t,t’

and that r(M; M) is the supremum of the relative
rank over all submatrices of M; and M, obtained
by deleting any number of rows in M; and M,.
Now consider w: Z — R? and define the following
partitioned (4 way infinite) Hankel matrix

KW ]
H LWy |
W—t—1) W—1) #0)
W=2) W1 we — 1)
M) WO W)
CLUTWO)T T WD W+ )
We—1) W) Wt + 1)
i : : |

The relevance of the motion of relative row rank
follows from the following result.

Proposition 20. r(s# _(W), o ,(W)) < co. In fact, it
equals the dimension of a minimal state space
representation X (A’, B, C', D'} of #(R}), the most
powerful unfalsified (AR) model for w.

Proof. See Appendix P.

Observe that it follows immediately from Prop-
osition 20 that the relative row rank of any infinite
block Hankel or Toeplitz matrix will always be
finite.

For the next algorithm, since the case T=27Z,
causes certain complications, only the case T=Z
will be considered. Later on comments on the
generalization to the case T = Z, will be made.




688 J. C. WILLEMS

Algorithm 6
Data. ..., W(—1), w(0), w(1),...,W(z),....

Step 1 (Structure determination in 3 (W)). Deter-
mine matrices H_ and H,, with H_ consisting of
rows of J# _(W)and H , consisting of rows of ¢ , (W),
such that

r(H_;H) = r(H_(W); (W) =:n.

(Actually, with ¢ as in Step 1 of Algorithm 3, the
g(t' + 1) bottom rows of s _(W) and the g(t' + 1)
top rows of J (W) is a suitable selection.) Next,
determine a matrix col (H,, H,) consisting of a finite
set of columns of H = col(H_, H,) such that the
columns of col(H,, H,) span those of H. Of course,
r(Hy; Hy) = n.

Step 2 (Determination of the state space). Deter-
mine the kernel of H, and define o/ := H, ker H;.
Note that dim((im H,)(mod X)) =n. Then X =
((im H,)(mod ')). Define x(t):= h_(t)(mod ),
with h_(¢) the tth column of H .

Step 3 (Determination of the input space). Define
f(£): = col(W(t), x(t)), and S : = span {f(t), € Z}. Obvi-
ously the projection =:S-— X defined by
n f(t):= x(t) is surjective (mathematically this
specifies $ as a vector bundle over X). Identify a
vector space U and a surjection n,:= S — U such
that S=X@ U ie such that n:=(n,m,) is
bijective. Clearly dim U = dim S — dim X. Define
u(t): = Pf(t).

Step 4 (Determination of the system parameters).
Determine ¢;,ie(n + m), such that the f(¢;)s form
a basis for S. Then f(t;) = col(x(t,), u(t;) forms a basis
for X @ U. Now determine the (n + gq) x (n + m)
matrix M such that

x(ti) x(ti + 1)
M: [u’('i;)]H[ w(t) ]
This yields:
Theorem 21. Let w:Z — R? be an observed time

series, and let M eR®*9*®*m pe ag defined in
Algorithm 6. Partition M as

with A’eR**™, B'eR"*™ C'eR?*" and D'e RT*™
Then X (A', B, C', D) defines a most powerful
unfalsified minimal state space model for W with a
minimal number of driving inputs.

Proof. See Appendix P.

Remarks. Algorithm 6 needs some adjustments in the case
T=27,. These modifications are minor when %(R}) =

cZ(R}) but more complicated otherwise. It is easy to decide
whether or not this condition is satisfied. Determine (as explained
in Step 1 of Algorithm 2) the dependency vectors of W and oW,
denoted respectively by d(W) and d(oW). Then

{B(RY) = o BRY)} <> {d(W) = d(oW)}.

When this is the case, then Algorithm 6 requires only the

following minor modification. Consider the Hankel matrix

H(W). Partition H(W) into IH(W) = col(H#_ (W), " (W)

with o (W) the first g(t + 1) rows of J#(%). Now look for a ¢

such that r,=r(H (W); H' (W) equals m;txr,. In fact
tez ,

maxr, = }im r, and any t' as in Step 1 of Algorithm 2 will yield
teZ, —+ o

r, = maxr,. Now apply Algorithm 4 with (%) replaced by

teZ |
H*'_ (W) and (W) replaced by 3", (W).

When d(W) # d(oW), fhe situation is more involved. The
difficulty stems from the fact that then there will be nilpotent
unreachable models in R} (see comment (i) in Section 6 of Part
I). The full details for this case will not be given. The idea is as
follows. Compare d(#) with d(oW). Determine a ¢’ such that d(%)
and d(oW) coincide in their entries starting from the (g¢' + 1)th
entry. This implies d(c"%) = d(¢*' " 'W) and hence a realization
for 6*'W can be constructed in the manner explained before. This
realization can now be run backwards in time using the driving
input obtained directly from w, as explained for example in
Algorithms 5 and 6. Now subtract the output obtained this way
from W, and denote this difference as Aw:Z, — R It will have
the property Aw(t) = 0 for ¢ > t". Now realize this AW minimally:
this yields, of course, an autonomous system (no driving inputs
are needed) with a nilpotent A’ and an observable (4’, C'). The
parallel connection of this realization with the original one
yields the analogue of the realization of Theorem 21 for T= Z, .

The algorithms obtained in this section at first sight show
more than casual similarity with the classical impulse response
realization algorithms (see Example 6). Both operate on the
Hankel matrix formed by the data. The crucial role played
by the Hankel matrix is, of course, no accident: realization
algorithms must examine first, the span of {¢'W,te T} and
second, the action of the shift on this span. Now, both these
operations are very effectively displayed by the Hankel matrix
of the data. However, the major difference between the classical
impulse response case and this one is that here one has to be
concerned not just with the rank but with a type of relative
rank: a permanent rank increase in the Hankel matrix will be
due to an input and, since it does not lead to complex
dynamics, will be relatively easy to handle. As such, viewing these
algorithms as extensions of the classical impulse response
realization algorithms is not a particularly effective way of
penetrating what is going on—witness the fact that the proof
of Corollary 22 (where it is shown how the impulse response
case may be viewed as a special case) is not particularly easy.
Algorithm 5 is viewed as an implementation of the abstract
theory of Section 15 and Algorithm 6 as an implementation of
the abstract theory of Appendix S.

Algorithms 5 and 6 can be refined, streamlined and improved
in many different directions: recursivity, truncation, use of
efficient numerical procedures etc. These implementations will
be pursued at a future stage.

Example 5 revisited. The application of Algorithms 5 and 6 to
the time series of Example 5 will be illustrated here.

For Algorithm 5, take ¢’ = 2. Then

1010 1 00 00
011 2 0 00 00
0100 010 10
112 2| #°=im|1 0 0| and %}=im|0 0]
1 0 01 1 01 01
1 22 2 110 1 0

1 0

0 2

00

TakeH=|1 2|,

11

0 2




From time series to linear system—Part II 689

0 1
the 1st and 4th column of (W), Q, = [1:]_. Q.= [O:I and

I

P =[~4%.%0.%0,0]. With

10
- 0 _
oH = and H° = I:O 2],

WO N = NO
N O = o= =D

0 1
this yields 4A'=1, B =3, C' = |:2:|, D= I:O:l, i.e. the system

oX =X + u; w, = u; w, = 2x, which is indeed a minimal i/s/o
realization of ow, = w, + w,.

Now turn to Algorithm 6. Since d(W) = d(oW) there are no
nilpotent unreachable modes and the algorithm can be applied
in its uncomplicated form even though T= Z . In the notation
of the above remark, r; = maxr, and Algorithm 4 can be applied

teZ
with
101001 -
H-=lo 11222 .
and
010010 -
Hi=ly 12223 |
1t 010 0100
Take H, = 011 2 and H, = 11 2 2.Then
1 0
1 -2
kerH, =span| __1 0
1

1
and )" = H,kerH, = span[0:|, giving

01

x=(1,1,2,2,2,3,..) and S=im|1 1

11
Hence U = R.
Sy

Take P, = |52 |+—s,. Thenu=(0,1,0,0,1,0,...).
53

1 2
Hence M must map [(1) i] into [0 1| which yields
11

M=

—_ O

I
1| and the state space model ox =x+uw; W, =
0

w, = X as a minimal i/s/o realization of ow, = w; 4+ w,.

Consider now the case that k time series W,, W,,..., W, are
observed. As with Algorithms 3 and 4, Algorithms 5 and 6 may
be applied unchanged in this case, with, of course, notational
adjustments to block Hankel matrices etc. This generalization
will be used in the next example.
Example 6 revisited (Impulse response measurements). The pur-
pose now is to prove, both as an illustration of Algorithms 5
and 6, and as a result of independent interest, the following
algorithm.

Consider the impulse response matrix G = {G(0), G(1), ...,
G(#), ...}, and assume that rank #(G) =:n < . Determine a
submatrix H of #/(G) such that rank H = n. Assume that H

consists of the elements in the (r,, r,, ..., r,,)th rows and the
(kys kyps .o k,,z)th columns of #(G):

(i) oH, the matrix formed by the eclements in the (r,,
r2,...,Ty Jth rows and the (k, +m, k, +m, ..., k, +mjth
columns of #/(G) (equivalently, in the (ry + p, 7, +p,...,
r,, + p)th rows and the (k, k,, ..., k,,)th columns);

(ii) A°, the matrix formed by the elements in the first p rows
and the (k,, k,, ..., k, Jth columns of #(G);

(i) A,, the matrix formed by the elements in the (r,, 75, ...,
r, Jth rows and the first m columns of J#(G).

This is stated formally below.

Corollary 22. Let A, 68, A® and A, be as defined above. Let
P and 0 be matrices such that PAQ = I,. Then {PcAQ, PA,,
B°Q, G(0)} defines a minimal i/s/o realization of the matrix
impulse response G.

Proof. See Appendix P.

Note the following special cases of Corollary 22.

(1) The algorithm of B. L. Ho (Kalman et al., 1969)

Let Hyy be a leading submatrix of 5#(G), consisting
of its first pN rows and its first 2N’ columns such that rank
Hyy =n'. Determine Re R *?N and SeR™ ™V guch that

|
RHy S = [é"-;-g} Compute A = E,, .yR(6H)y y.SE x. ,;
B=E, wRHyyE ym C=E, .y, Hy ySE 5., D = G(0). Here
(0H)y v denotes the (PN x mN') leading submatrix of #(¢G)
and E; denotes the (i x j) selection matrix with (E;),, = ;.
This algorithm is a special case of Corollary 22 with H = Hy y.,
P=E,. R, and § = SE ..

(2) Silverman’s algorithm (Silverman, 1971)

Determine a non-singular submatrix FeR**" of s#(G). Say
that F consists of the elements in the (r,r,,...,r,)th rows and
the (k,k,,...,k,)th columns of #(G). Let 6F denote the matrix
formed by the elements in the (r, + p, 7, + p,...,7, + p)th rows
and the (k,, k,,...,k)th columns of #(G), F, by those in the
(ry,75,...,1,)th rows and the first m columns, and F, by those
in the first p rows and the (k,, k,, ..., k,)th columns. Compute
A=(eF)F'\,B=F,, C=F,F~} and D = G(0).

This algorithm is a special case of Corollary 22 with A = F,
P=Iand 0=F1

Many other realization algorithms for impulse responses,
better structured and more efficient numerically, have appeared
in the literature. However it would be going too far to demon-
strate how they can be viewed as special implementations of
Corollary 22. Ho’s and Silverman’s algorithms have been
mentioned primarily because of their historical importance. As
a basis for all impulse response realization algorithms, Corollary
22 is both new and elegant: one can start with any maximal
rank submatrix of #(G) and it is completely symmetric in the
input and the output.

18. CONCLUSIONS

The appealing modelling language developed in
the first sections of this paper allows discussion, on
a set theoretic level, of modelling questions in a
mathematically precise and consistent way. This
yields the notion of an optimal exact model: the
most powerful unfalsified model from a given model
class. This is the model which explains the obser-
vations but as little else as possible. The existence
of such an optimal model follows immediately from
the intersection property. Linear time invariant
finite dimensional systems defined in the way
developed in Part I satisfy this condition as a
consequence of the fact that their behaviour corre-
sponds precisely to the closed linear shift invariant
subspaces of (R9)7. Note en passant that such a most
powerful model may not exist in the traditional
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input/output setting. The framework set up this way
allows an approach to what could be considered as
truly the first question in identification theory:
to find the most powerful unfalsified linear time
invariant system which explains an observed vector
time series. Rather concrete algorithms can indeed
be set up both for the case in which passage from
the time series to an (AR) model or directly to a
state space model is required. A pressing refinement
is the recursive implementation of these algorithms
in terms of the notion of t-completeness.

The two most important contributions of this
second part of this paper are the following. First,
an elegant framework leading to the notion of the
most powerful unfalsified model, a simple concept
which, the author believes, will play a basic role in
modelling expositions, has been provided. Second,
several algorithms for obtaining the most powerful
unfalsified (AR) or linear time invariant finite
dimensional model for an observed time series have
been outlined. This time series was totally arbitrary
and not even an a priori distinction between inputs
and outputs had to be made. These algorithms (or
refinements thereof) should eventually be of interest
in many identification, adaptive signal processing
and adaptive control algorithms.

The ‘real’ problem in system identification is, of
course, approximate modelling. That, in fact, is the
subject of Part III of this paper.
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APPENDIX N: NOTATION

A few new elements of notation which have been added since
Part I are the following.

The collection of all subsets of the set S is denoted 2°. The
continuously differentiable maps from A into B is denoted
%(A; B). The overbar is used for (topological) closure.

A family .# of subsets of a given set will be said to have
the intersection property if the intersection of any (possibly
uncountably infinite) collection of elements of .# is again an
element of 4.

If S is a set and ~ is an equivalence relation on it, then the
map which takes se§ into s(mod~)eS(mod~) is called the
natural projection.

A Hankel matrix is a matrix whose (i, j)th element depends
on (i — j) only. This nomenclature also applies to block matrices:
I, denotes the (n x n) identity matrix, while E,,. denotes the
selection matrix whose (i,/)th element equals J,;, with & the
Kronecker delta. A leading submatrix of a given matrix is simply

the matrix formed by a number of its first rows and columns.

Let S be a set. A binary relation, <, on S is called a partial
orderif (i) s < sforall se§, (i) {s, <s,ands, <s,} = {s, <53},
and (iii) {s; < s, and 5, < 53} = {5, = 5,}.

APPENDIX S: SPLITTING LINEAR RELATIONS

As can be seen from Proposition 20, the notion of relative
row rank is closely related to the problem of state construction.
This can be explained by means of a brief discussion of the crux
of the problem of state realization: that of splitting relations.
Only linear relations and finite dimensional vector spaces will
be considered. This appendix serves as a preparation for the
proof and to provide the intuition needed for Proposition 20
and Theorem 21.

Let ¢, =R", £, =R" and L =Rz P, x £, Let
# be a linear subspace of #. Further, let X =R" and
B P XX, B, <X x £, be linear subspaces. (Z, #,, #,)
is a splitting of # if the composition of the relation #, and
B, equals B, ie. if B=RB,0B,:={(;,L)eF, x &,|
3x:(l;,x)e %, and (x, fz)egz}. In other words, in the ex-
tended relation #°*:= {(I;,x,1,)|(l;,x)e B, and (x,,l,)eB,},
the variable x will ‘split’ the variables !, and [, or, said again
in an alternative way, [, and [, will be independent (in a set
theoretic sense) given x. If dim 2 is as small as possible (under
this splitting constraint) then (%, #,, #,, is a minimal splitting
of B. & in B, =« ¥, x & is called accessible if P{#; = ¥ and ¥
in#, c ¥ x &, is called accessible if P3#, = &. Here P} (resp.,
P3%) denotes the natural projection of &£, x & (resp., & x &,)
onto Z. x in 4, is induced if there exists a partial map S: %, —
& such that {(l,,x)e #,} =(l, € Do(S,) and x = §,(},)}, i.e. if B,
is the graph of S,. Similarly, x in #, is induced if
there exists a partial map S,:¥,—»% such that
{x, L)} e &,} =(,eDo(S,) and x = Sy(l;)}. Tt is easy to see
that because of linearity, {x is induced
in #,}<{{(0.x)e#,}=>{x=0}} and {x is induced in
RB,} < {{0,x)e B,} = {x = 0}}. Note also the analogy of accessi-
bility with reachability and controllability, and of inducedness
with observability and reconstructibility.

Two splittings (2", #;,%;) and (X", R, B5) are equivalent
if there exists a linear bijection S: %" -» &” such that {(l,, x')e
B} ={(,, Sx'ye #;} and {(x', |,)e B3} = {(Sx’, I,)e B3}. Fin-
ally, consider the following preorder < on the splitting triples
of a given & {(¥', B, #,) (X", #;, B7)}:={3 a partial
surjection S$: %' - %" such that {(;,x)e®]; and
X =fx") = {(l, x") e By} and {x, L)e®;,  and
X = f(x)} = {(x", L)e®)).

It is easy to give some canonical constructions for splittings

of #. Three important ones are the following.
Define #%:={l,e%,1(,,00e®}, B3:={,€£,10,1,)eB}
and B° = B9 x B P,: ¥, x ¥ - &, the projection onto &,
and P, the projection onto ¥, and Py & x &, —» ¥, the
projection into & ,.

(1) Take & = #(mod B°).

R, = {(,,x)35:(1,, l5)e #and x = (I, [3¥mod £°)}

B, = {(x, 1)1 315: (1, ], € Band x = (I}, L, mod £°)}.
(2) Take X = (P, #)¥mod 4Y9).
2, = {(;,%)|l, € P,Band x = | ;(mod #})}

B, = {(x,1,)|3;:(;,,,)e Band x = I,(mod #)}.
(3) Take & = (#,8)mod £9).
2, ={(l;,%))315:(l,,])e Band x = I,(mod £9)

A, = {(x,1,)|1,€ P,Band x = l,(mod #I)}.

It is left to the reader to verify that in all the above cases the
defined splittings of £ with x in #, and #, are both accessible
and induced. The next proposition will show that they are
therefore also minimal.

An arbitrary splitting can be made into one in which x is
accessible and reduced by the following reduction procedure. Let
&, #,, #,) be a splitting. If x in B, is not accessible, define a
new splitting (27, #;, 8) as follows:

' ={xeq|3;:(,,x)e B},
#; = {(, 0, x)e B},
and
B, = {(x, 1) | xe X" and (x,1,) e B,}.

-

L4
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By a similar construction if x in %, is not accessible, x-
accessibility in both #, and #, will be obtained. If x in 4, is
not induced, define a new splitting (27, #;, #5) as follows:
&' = Z(mod #,(0)) with

B,(0):= {l,e £, 0)e R},
By ={(,,x)e Ly x F'|3(;,x)e B,
such that x' = x(mod #,(0))},
and 8, = {(x,1)e2" x L,|3(x,,)e#,
such that x' = x(mod £,(0)}.

Of course, a similar construction can be applied if x in 4, is not
induced. It is easily verified that by applying these constructions
@if necessary all four of them), a splitting in which x is accessible
and induced in both #, and #, is obtained.

Proposition S. Let # ¢ &, x &£, be a linear subspace with
%, =R" and &, = R". Define P,, P,, #?, #5 and #° as
before. Let n*(#) denote the minimal splitting dimension of #.
(1) n*(#) = dim P, # — dim £ = dim P,# — dim %)

=dimP,# + dim P,# — dim #
= dim # — dim #9 — dim 49.
(2) Let (¥,, #,, #,) be a splitting. Then the following are
equivalent:
(2.1) it is minimal;
(2.2) x is both accessible and induced in both #, and #,;
(2.3) any other splitting (2*, 87, #;) satisfies (¥, 8,, #,)
<@ By, B2)
(3) (Isomorphism). All minimal splittings are equivalent.
Proof. First, if (¥, #,, B, satisfies 2.2, then
P, %(mod #9) = & =~ P,%(mod #9). In order to see this, observe
that accessibility and inducedness of x in &, implies that there
exists a surjection S,:P,®#,—-% such that {(,, x)e®,}
<« 8,1, =x}. Consequently {(/,,0)e%®,}<>(,,0)e#}. Hence
ker S, = #°. A similar result holds, of course, for #,. Therefore
the diagrams in Fig. 9 commute and §, and S, are bijections.
Now, since §;, and §, are bijections, this implies
P,# (mod #%) ¥ = P,#,(mod #3). Also it follows that all
splittings (%, #,, #,) for which x is accessible and induced in
both £, and #,, are equivalent.

From the reduction procedure, it follows that minimality
implies 2.2. Furthermore since all splittings satisfying 2.2 have
the same dimension, 2.1 <>2.2. This also implies 3. Combining
this with the reduction procedure shows that 2.2<>2.3.

Now consider the dimension formulas. It has already been
shown that n*(®) = dim P,# — dim #¢ = dim P,# — dim %#3.
From the construction of the canonical splitter 1, which satisfies
2.2, n¥(#) = dim P, # + dim P,# — dim #. These three expres-

sions for n*(®) finally yield n*(#) = dim # — dim #9 — dim #9.

O
Note that the proof of Proposition S implies that the canonical
splittings 1, 2 and 3 are all minimal. Furthermore, if # is a
linear relation, and (%, #,, #,) is a minimal splitting of 4, then
there exist surjections S,:P,#, - & and S,:P,%#, - % such
that {(l,,l,)e#}<{S,l; =S,l,}. Tt is useful to think of
§,1, = 8,1, as the (unique up to isomorphism) common features
in the variables of £, and &, induced by the relation &.
Now consider the problem of feature extraction, i.e. that of
determining the common features among two sets of variables
on the basis of a sequence of observations.

Sy S2
P, B X P,B X

proj S, proj S,
P,8(mod BY) P,B,(mod BY)

Fi1G. 9.

Let g, £, = R" and b,e ¥, = R™, keN, be a sequence of
observations. Define # = span (c,]keN) and consider the
problem of computing:

(i) n*(#), the number of common features in the as and the
bs;

(i) a minimal splitting (%, #,, #,) of #; and

(iii) the common features in the observations, i.e. x,€ %, keN,
such that (a,, x,)e®, and (x,,b,)e#B,.

In the context of application to dynamical systems, a can be
thought of as the strict past, b as the present and future, and x
as the (minimal) state to be constructed.

This problem is a straightforward application of the theory
just outlined. Let A:= col(a,,a,,...,ay), B:=col(b,,b,,...,by),
and C:= col (4, B). Then n*(#) = r(4; B). This shows the rel-
evance of the notion of relative rank. This formula follows
immediately from Proposition S, item 1, since r(4; B) = rank
A + rank B — rank C = dim P,# + dim P,# — dim # = n*(#),
the dimension of the minimal splitting.

In order to construct the common features, proceed as follows.
Define X = B ker A, & = im B(mod ), and x, = b, (mod '),
keN. That this is indeed a solution follows immediately from
the canonical splitter 3 since, with # = imcol (4, B), #3 = X".

APPENDIX P: PROOFS

Proof of Proposition 11
Take M¥ = [} M. Clearly M} is non-empty (since there
Z>MeM
exists at least one Z < Me.#), M¥e.# (by the intersection
property), and {Z =« M e #}=>{M} = M} (since M is one of the
intersected sets). O

Proof of Proposition 12
To show that (R)Te.#, take R = 0. Three proofs of the
intersection property will be given.

Proof 1. The first proof starts from the polynomial matrices
themselves. Let R, e R%*[s], a€ A, with A a parameter set, and
consider & ,:= {w: T— R?| R (o)w= 0,Ya e A}. Assume without
loss of generally that g = 1 for all ae A.

(i) Let T = Z,, . Consider the subset .#° ¢ R!*9[s] consisting
of all elements reR!*9[s] such that H{o)w = 0 for all we & ,.
Obviously {r(s)e ¥} = {p(s)r(s)e A"} YpeR[s]. Consequently
A is a submodule of R! *[s] viewed as a g-dimensional module
over R[s]. Hence (6, p. 247) 4 is finitely generated, i.e.
Ary,ry,... 1 e R *[s] such that & = r;R[s] + r,R[s] + ... +
r,R[s] implying that 2, = {w: T R|r{o)w = 0,icg} = B(R)
with R:=col(ry, r,, ..., 1)

(ii) Let T = Z. Repeat the above proof with R[s] replaced by
R(s,s ']

Proof 2. The second proof starts from the characterization of
# in terms of linearity, time invariance, and completeness (see
Theorem 5). Let #,€.#, ac A. Then the &,s are linear, shift

invariant, and complete. Obviously ﬂ 4, is also linear. That it
acA

is shift invariant follows from ¢* (| 2, = () ¢'®#, < () 2,. To
acA aeAd acA
show completeness, observe that

{we N Q,}a{we.@,,VaeA}

acA

<> {Wlrape,1€ % Iznptge, YR EA and
—00 <ty <ty < o}

<> {(Whrapee 1 €( () B |ragee ¥ — © <to Sty < o}
aed

Hence ﬂ 4, is linear, time invariant, and complete. Now apply
acAd
Theorem 3.

Proof 3. By Proposition 4 and Theorem 5, .# = L, the family
of linear shift invariant, closed subspaces of (R?)7, equipped with
the topology of pointwise convergence. Clearly L has the
intersection property. Now apply Proposition 11. A
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Proof of Theorem 14

The notation of Section 8 is used. Step 3 immediately yields
R¥(o)W =0, i.e. the model is unfalsified. In order to prove that
it is the most powerful unfalsified (AR) model, show that
B(RE) = span{c"W |70, 7€ T} for all t € T. From the definition
of the r;s it follows that for ji + ql; <t < ji, 1 + gli,y, ie(p— 1),
or for t=j, + 91, there holds that {r,(s),...,s'hr(s), ry(s),

o STy, L., rdS), ..., STThrds) span(span{a wlr,‘[0 @
te T})* while for ¢t <j, + ql,, there holds span #}(R}) =
(span{e*W |0, T€ T} In order to prove the other claxms of
the theorem, observe that it is trivial to see that R} is a row
proper matrix polynomial. Hence by Theorem 6 it defines a
shortest lag description in the case T=Z,. In the case T=Z
it must also be proved that R}(0) has full row rank. Assume to
the contrary that Jiep and o eR, ke(i — 1), such that

Qo = Z o 0. Now consider r(s) =r(s) — Z o rds). Then

k=
obvxously r@W=0 and r0)=0. Hence r(s) =5"1(s)
satisfies r'(6)W = 0. Examination of this relation shows that the
(ji + qU; — )th row of #(W) is already linearly dependent on
the preceding rows. This contradicts the definition of /;, and
proves that RX defines a shortest lag description. The statements
about the inputs, outputs, and the shortest lag structure are
now obvious. O

Proof of Theorem 15

Let 2,:=span{o™W|r,jo,, 7€ T}. By assumption dim %,,,
— dim &, = constant for ¢t > ¢'. Further r, r,, ..., r, span %;.
Now apply Theorem 7.

O

Proof of Proposition 16

Consider first the following lemma.
Lemma. Let AcR"*", Ce RP*", and te Z", and define

Hp= () A "kerC

ostr'st
Hi= AL,
A :=H[_ nkerC= AN,

Then, if (4, C) is observable, there holds:
@) dim &, = dim ", = dim X',’;

(i) {o, = 0}¢{ () O, +H1_) = 0}.
=0

Proof. (i) It will be proved that K, nker A'*! is an A-invariant
subspace contained in ker C. Since ), < ker C the last part is
obvious.  Also, {aed,nkerd'*'}<s{Ca=CAa="--=
CA'a=0; A'*'a=0}= {AaeX, ckerdA'*'}. Hence, by
observability, #,nkerA'*! =0 and dimJ; =dimA'*1.x,
=dim.#",. The proof that dimX," =dimX, is completely
analogous.

(ii) (=)‘ Assume that o, =0. It will be shown that

F= ﬂ (A + A;_,)is an A-invariant subspace contained in

kerC whlch by observability, yields & = 0. The term with t' =0
equals X" + o, = ker C, hence ¢ < ker C. Further,

AY = A(Z nkerC)
t
= () (AXy + AX|_,) " Aker C)
t'=0

which, since AkerC> AX,  equals ﬂ (AX, +

AX[_.nkerC). Now, X,,, =A"'A, mkerC hence
AX i =H N Aker C. Similarly X, ., = AKX, nkerC).

3
Hence AL = (Y (Ko nAkerC) + Ay yy) with
=0
A _:=R" Using A,_,,, =« Aker C = A", + X, this yields

AY = ﬂ((.}i’,_1+xf, ve1) N Aker C)

D- ||

O+ Ay-r)

=0

=2,
which gives 4. < &, as desired.

(<=): This is an immediate consequence of
1
HoDH > >AHhence ', () (A, +4,.,) O
=0

o=

Return now to the proof of Proposition 16. Actually, as will
be proved, all the statements of Proposition 16 are equivalent
to o, = 0. Since these claims are basis free, the basis in W = R?
may as well be chosen to advantage, namely such that &7 is
the external behaviour on T=Z, of the observable system
oX = AX + Bu, y = Cx, w = col(u, y). Now, by observability,
every element we# ™" is uniquely specified by a w Z, - R™
and an x(0)e R". Furthermore we #° corresponds precisely to
x(0) = 0, while we #? corresponds to (x(0) = 0 A w(0) = 0). This,
together with the results of Section 7, yields the following
dimension formulas:

dim®, = (¢ + Ym + n — dim
dim (#°), = (t + Im

dim ("), =
Further, dim#* (mod #°) = n
and dim#B*(mod &) =n+m.

Also, from Section 7, {p,+, = po}<>{H,=0}. From these
expressions the equivalence of (i), (ii), and (iii) follows, since they
are all equivalent to 4, = 0.

Now consider (iv). Observe the following two facts. First, let
x(0)e R", w: [0,t] »Z, — R™ be one element which generates a
given we%,. Then it is easy to give all pairs (x(0),w) which
generate this w. In fact, (x(0) + X,u) are all such elements.
Second, if we 4, is such that w(z) = 0 for 0 < 7 < ¢’ < ¢ then the
corresponding underlying x(¢') lies in .¢',..

Now let we®’ ,. Equivalently (0%, /we4®,,, for
0<t <t+ 1. Let a + &, be the linear variety of initial states
explaining that, in particular, we %, . ,. Then, by what has just
been shown, the underlying state at time t explains that
(0* )'we,,, must on the one hand lie in a + ,_,, and on
the other hand in X',._,. Hence (a + ',_,)n ", _, is non-
empty. Equivalently ae X,_, + . _;. Hence the initial state
corresponding to we %°, | is zero if ﬂ (Mo +H )=

By the lemma, this is the equivalent to J( = 0. This proves that
{o, =0} :{.@,ﬂl = (#°,,,}. To show the converse, assume
A, # 0. Then by the lemma %, # 0. Now by what has been
shown above, any initial state x(0)e ¢, and any u will generate
a we#’. ,, then there is a response we®? , such that
w0)=---=w(t)=0, u(t + 1) = 0 but y(zr + 1) # 0. Clearly this
yields a w¢(#°),,,. In order to establish such a response it
suffices to show that CX, #0. Assume that instead
X, < ker C. Then X,  ker C satisfies AN, =
ANA =A< H,_,nkerC =,". Hence X" is then A-
invariant and contained in ker C, thus o¢,” = 0, which implies,
by the lemma, that ¢, = 0. This gives the desired contradiction.

Finally, {f, = 0} < {B°, | = (8%}, hence (iv).

Now (iv) = (v) is obvious. The proof that (v)= {X, = 0} is
identical to that of (iv)= {J, = 0} 0

Proof of Theorem 17 (Primal version)

By Proposition 16, for ¢ > t*, (#°), = #° and (#'), = &!.
Hence #, (mod#!)=~%(mod#’) and B, (modAB!)
~# (mod#'). This shows that the mappings M,;, M,
MY and M,, M4, M} in the truncated structure diagram are
isomorphic. The result follows from Theorem 9. O

Proof of the dual versions of Proposition 16 and Theorem 17
First observe that as a consequence of Section 7,

min{teZ, |p, = p,,} =:t* =} = mm{a(R | B(R) = B}.

The results now follow by straightforward dualization. The
details are left to the reader. O

Proof of Theorem 19

It is clear that #(R}) = span(c'W |t e T). For simplicity this
behaviour is denoted by #. Then %, = span{W,(z); e T}. From
this it follows that Steps 1, 2, and 3 of Algorithm 5 determine
a t' satisfying the conditions of Theorem 17, such that the
realization procedure can be applied with the truncated structure
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diagram shown in Fig. 10 (incorporating the refinement men-
tioned following the statement of Theorem 17). To show that
the matrices M, and M, defined in Step 4 of Algorithm 5 indeed
correspond to those shown in the above diagram, identify the
state space X with im HQ, =~ &, (mod #?) and the input space
U with im HQ, = #°(mod #}). Now the shift, 5, maps HQ, into
6HQ, and HQ, into cHQ,, while the evaluation map =° maps
HQ, into H°Q, and HQ, into H°Q,. Take the columns of HQ,
as a basis for X and those of HQ, as a basis for U. Then
H[Q.:0]1=[C:D]. In order to determine A’ and B,
¢H[Q,:Q,] should now be expressed as a linear combination of
the columns of HQ, and elements of &2, ie.
oH{Q,:Q,] = cH[A':B] + F, should be solved for the
unknowns A’, B, and F,, with im F, = #2. However, in the
end, only A’ and B’ are needed. Now, premultiply both sides of
this equation with P in order to obtain PH[Q,:Q,] = [A":B],
as required. |

Proof of Proposition 20 and Theorem 21

Preamble. The reader is referred to Appendix S where the
basic ideas underlying the construction of Algorithm 6 have
been explained in a simple ‘static’ setting.

Define

ZF ={wZn[0,t] >Ry xR

and
& ={wZn[—10)> R} =R

Let T=2Z and consider #ecL. Define for t, t"eZ,,
B, ") = Byn-v Clearly B(¢,t") can be viewed in a natural
way as a linear subspace of &, x Z£/. As such it admits a
minimal splitting, say (2", #;, #5), which by Proposition S
is unique up to isomorphism. Now define % = (R? x 2)*
as follows: {(w,x)eB{} <= {(6'Wlz [-r.0) X(1)EB; and (x(t),
o'Wz 0.0 ) EB,, for each te Z}.

Nowif " +12¢t*and t' 2 t*:= mzin {t]p. = po}, then B

teZ

defines a minimal linear time invariant state space representation
of 4. Linearity and time invariance are obvious. In order to see
that it is a minimal state space representation, assume that
B; = (R* x R")? is a minimal linear time invariant state space
representation of #. Define #, = &, x R" by #,:= {(w,x)}
3(w,x)e®; such that w=Ww|; o and x(0)=x} and 4,
:= {(x,w)| 3(x, w') such that w = W' |50~ and x(0) = x}. It is an
easy consequence of the axiom of state that (R", #,, #,) is a
splitting of #(¢', t"). From the fact that %, is minimal, it follows
immediately that x in both &, and #, is accessible. Exploiting
the representation for 4, and the lemma used in the proof of
Proposition 16 it follows, using minimality, which implies
observability, that {(0,x)e #,} <> {,/_, = 0} and {(x,0)e %!
<{#, =0}]. Further, {#,=0}={A]=0={t+121*.
Consequently, if ¢ = t* and t” + 1 2 t*, then x is induced in both
%#,and #,. Hence if ¢ > t*and ¢ + 1 = t*, then (R", #,, %)) is a
minimal splitting of #(r’, t"), consequently, by Proposition S, item
3, isomorphic to (27, #1, B), and this 4% is a minimal state space
representation of .

=
0 “0 B:H 4] Ei
IS t
n
3! ..
inj t inj inj
inj
a o But O Bt
R L
o
n
Bt .
proj proj pro)
proj B!
B, wodB, ) B, (modBy)
Ll -
R M; iso M';‘
Mz Ml
1
Bc(modgt)
Fic. 10.

Proof of Proposition 20.

Let " (W) and ", (W) denote the bottom gt' rows of # ..
(W) and the top q(t” + 1) rows of S (W) respectively. Then im
col (H#'L(W), H'.(W)=B(R¥ (I,t"). By the preamble and
Appendix S this yields that for ¢’ = t* and t" + 1 = t*, r(#_(W);

. (W)) equals the minimal state space dimension of Z(Rp), as
desired.

Proof of Theorem 21.

First observe the following refinement of the construction of
Appendix S. Let B ¥\ x &y, ' ¥+ &L, T): £, &)
all be linear. Denote T\8T,:= {(I1,13)]3(,,1,)e # such that
I'= Ty, I} = T,1,}. Now if (2, #,,4#,) is a splitting for %, then
it follows that (X, T,#8,,%#,T,) is a splitting for T, #T,. It may
not be minimal, but if it is then, by Proposition S item 3,
(x,15)eB,T, and I3 = T5l, will imply (x,1,)e &,.

Now assume that ¢’ and t” are sufficiently large such that
H" (W) (resp., #*, (W) contains the rows of H_ (resp. H..). Then
applying the above in the situation where T; and T, constitute
the obvious selection of components (yielding H_ from " (%)
and H, from 3" (W)), it is clear that a minimal splitting for the
columns of col(H_, H,) will induce a minimal splitting for the
columns of col (#" (W), #",(W)) and hence by the preamble a
minimal state space representation of Z(R}).

The path to be followed in making this into an algorithm is
now laid out. Consider # defined as the span of the columns
of col (H_, H ), construct a minimal splitting (%, #,, %,) for it,
and obtain x(t), t € Z, as the splitting variable for the tth column
of col(H_,H,). In Step 2 of Algorithm 6 the procedure of
Appendix S is applied to the case at hand. In this way, the
state/external trajectory (w, x) is obtained and matrix represen-
tations of this trajectory must be determined. This is in fact
exactly what is done in Steps 3 and 4. Further details are left
to the reader. O

Proof of Corollary 22 ]
Corollary 22 is an application of Algorithm 5. Schematically.

H(W) =

0 0 I 0 e 0
0 0 G(0) Gy - G
0 1 0 0 .. 0
0 - G(0) G() GQ) G +1)
0 . 0 0 0 . 0
0 [el8)) GQ2) G2 - G +2
I 0 0 0 .0

B GO - Gr-2 G-1 G G + 1)

spans &L spans U spans X

where ¢ is chosen such that H is contained in #,(W) as a
submatrix.

Choose H in Algorithm 5 to be the columns of 5,(W) making
up the m columns marked ‘spans U’ in the above scheme and
the columns which also appear in A. Now define Q, = col (/,,,0)
Q,=col (0, 0), and P as follows. For the columns of P
corresponding to the rows of J#,(%) which also appear in H,
choose the corresponding column of P. In the columns of P
corresponding to the other rows of ,(W) containing the
matrices G(t), put zeros. Finally choose the columns of P
corresponding to the rows of J#,(W) containing the Is, such that
PHQ, = 0 and P#} = 0. It is obvious that this is possible, and,
in fact, since the numerical values of these entries are not needed,
it suffices to observe that it can be done. Note that Equations
4.1-4.3 of Algorithm 5 will be satisfied by this P. Now it is easy
to verify the following equalities: )

PcHQ, = PcAQ
PoHQ, = PH,

HQ, = [ H(ZQ]

ro-lco
«=| o) |
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This yields Corollary 22.

In order to illustrate the application of Algorithm 6, how
Algorithm 6 yields Corollary 21 is demonstrated. It is easily
verified that the choices of H, and H, schematically shown
below satisfy the relative rank and other requirements of
Algorithm 6;

corresponding columns of £
A

ky ky - kn,~1 knz
. Lol Lol
0 - 0:0 O 0 1
0 -~ 0i0 0 1 0
) 001 . 0 0
: 0 - 0 0
[Hl] 0 ................................
Hy | ™ |, ot o er,
0 - Rows of A
: intertwined [T Il Y
with those
corresponding to | «r, _,
- : the Is '
...................... P ey
corresponding
rows
of A.

The state at time ¢t can now identified with the ¢th column of
H , (mod ') with & as identified in the above diagram. Now
examine f(t) = col(w(r), x(t)). Denote the columns of H . (mod ")

corresponding to those of A and ¢A by A(mod.¥) and
oH(mod ), respectively. The following matrix has as its image
span {f(t),te Z}

I, 0
s=|GO: H°
0 A(mod )

Clearly the first m entries in the columns of S can be identified
I, 1 I,
with the input. Then D: I, —-»IE"'EI, ie. D= |E"‘E|. In order

to compute matrices (A, B, C) a suitable coordinate represen-
tation of the columns of A (mod o) should be chosen with:

A as the matrix representing the map which takes the columns
of A(mod ) into those of cA(mod X);

B as the matrix representing the columns of H,(mod x');

and

Cas the matrix representation of the map A which takes the

0
columns of A(mod ') into those of Izb'o]

Now choose the state vector x corresponding to the column h
of A as x = Ph. Then A:PHA — PoH, B = PA, and C:PH -

0 0 .
lzl‘q‘ozl. Consequently A = PeAQ, B = PA®, C = |:-I-?‘-’-Q-:| and

D= IE éz(iﬂ is a minimal realization, which yields Corollary 22.
Od

Wy




