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ABSTRACT 

In this paper we develop various representations for systems described by a set of 
high-order differential equations of the form Row + R&-t . . . + R,w(‘) = 0, with 

R,,R,,..., R, not necessarily square matrices. The variables w are the external 
variables. Particular attention is paid to the problem of obtaining minimal state-space 
realizations and input-output or input-state-output representations of such systems. 

1. INTRODUCTION 

It is customary in systems theory to deal with mathematical models of 
dynamical systems which are driven by inputs and which produce outputs. 
This is the common starting point both in the external “inputoutput” 
framework and in the internal “state-space” framework. Thus one assumes in 
effect that it can be postulated from general considerations (the signal flow 
graph of the system) through which variables the environment influences the 
system and through which variables the system influences its environment in 
turn. However, there are many situations (for a number of examples, see [l]) 
where such a cause-effect relation is not a natural starting point and in which 
an input-output model appears as a specific structure-oriented representation 
of a system. Consequently there is a need to develop a framework in which it 
can be decided on the basis of the mathematical model (or, more generally, on 
the basis of the data) what are the inputs and outputs. Of course, in order for 
this to make sense we need to start from a more general vantage point for the 
description of dynamical systems, a starting point in which the input-output 
distinction is not made ab initio. In [l] we have presented such a framework. 
In the present paper we will take a closer look at continuous-time linear 
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time-invariant finite-dimensional systems (some preliminary results were an- 
nounced in [2]). We start by briefly describing some examples justifying our 

axiomatic starting point. More details and other examples may be found in 

PI. 

2. MOTIVATIONAL EXAMPLES 

EXAMPLE 2.1 (Kepler’s laws-autonomous systems). According to 
Kepler’s laws, planets move in elliptical orbits with the sun at a focus, such 
that the radius vector to the sun sweeps out equal areas in equal times, and 
such that the ratio of the square of the period of revolution to the cube of the 
major axis of the ellipse is a constant. The collection of all such orbits 
constitutes a well-defined family of trajectories. In what sense is it a dynami- 
cal system? What is its state? We know of course that we can obtain these 
motions as the solutions of a Hamiltonian system of differential equations. 
This system is however an autonomous one: there are no external inputs, and 
hence its state-space realization is not covered by the input-output approach 
to realization theory. We shall see that autonomous systems fit very naturally 
in our framework (for more details on the realization of Kepler’s laws via 
Newton’s equations, see [ 11). 

The absence of externally defined autonomous systems is a bit 
of an annoying drawback of the classical input-output Nerode- 
equivalence-Hankel-matrix approach to realization theory. This drawback is 
absent in our framework. (We should mention however that also in 
Fuhrmann’s “polynomial model” realization algorithm, nonreachable modes 
are not necessarily canceled out). It is not true for example that one can 
identify only the reachable and observable part of a system (notwithstanding 
many statements in the literature to the contrary). As a trivial example, the 
estimation of the trend parameter (Y in the autonomous system y( t + 1) = ay( t ) 
is a natural and important question to ask in the identification of linear 
systems. 

EXAMPLE 2.2. Consider an electrical circuit consisting of the intercon- 
nection of a finite number of resistors, inductors, capacitors, transformers, and 
gyrators, and with a number of external driving ports. We can easily write 
down the equations which its branch currents and voltages have to obey. 
These consist of Kirchhoff’s current and voltage laws and of the differential 
equations (for the L’s and C ‘s) or the algebraic equations (for the R’s, T’s 

and G’s) which express the constraints imposed by the constitutive laws of 
the elements appearing in the branches. How should we define the extemal- 
port behavior of this circuit? It need not have an admittance or an impedance 
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representation. Indeed, which port variables can be considered as inputs and 
outputs depends on the circuit configuration. Nevertheless, the model is 
completely specified, we know (in principle) which external signals can occur, 
and the voltages on the capacitors and the currents through the inductors 
should qualify as state variables. We shall see that in our framework we can 
treat this situation very nicely (see Example 3.2). 

3. SYSTEMS IN EXTERNAL FORM 

We shall consider in this paper only continuous-time systems with time 
axis T = Iw. A dynamical system Z is then defined as a subset of Wn, with W 
a set called the external signal alphabet. Thus a system is simply a collection 
of maps from [w into W, i.e., a family of trajectories. Z is said to be 
time-invariant if Vr E Iw we have S,Z = Z, where S, denotes the r-shift, i.e., 
S,f:rw-,Wisdefinedby(S,f)(t):=f(t_7).ZissaidtobeZinearifWisa 
vector space and Z is a linear subspace of W ‘. We shall denote vector spaces 
by script capitals in the sequel. 

Let W[ s] denote, as usual, the real polynomials in the indeterminate s, 
R(s) the rational functions, [w”[ s] the n-dimensional vectors of real poiynomi- 
als, 58 nlxnz[s] the n, X n2 matrices of real polynomials, etc. An element of 
[w(s) is said to be (strictly) proper if the degree of its denominator is (strictly) 
larger than that of its numerator. Similarly for vectors and matrices of rational 
functions. 

The special class of systems which we will study in detail in this paper is 
defined by a real polynomial matrix R E [wrx9[s], with $6 = [wq, as follows: 

Here Cl” denotes the locally integrable vector-valued functions on [w, and 
R( d /dt )w = 0 is to be interpreted in the sense of distributions. Obviously 
Z(R) is linear and time-invariant. 

EXAMPLE 3.1. Let PEIRpxp[s], PER PXn’[~], det P(s) be unequal to 
the zero polynomial, and P ~ ‘(s)Q(s) b e a ro p p er rational matrix. Consider 
now the set of differential equations 
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This is obviously a system of the type Z(R) with 

u?,$= Rm+p, u 
w= 

[ 1 
y , and R=[Q~-P]. 

It has a special form because the first m components deserve to be called 
inputs and the others outputs. Its transfer function matrix is P ‘Q. Note, 
however, that also responses not explainable by inputs but entirely due to 
initial conditions may occur in Z([Q[- PI). In fact the autonomous case with 
Q = 0 is of particular interest. 

Note that the elements of Z(R) need not have support on a half line of the 
type [a, 00). In the classical inputoutput framework it is customary to assume 
such a half-line support. This difference is an important one. It is motivated as 
follows. Most of all, we feel that our definition is more natural. It considers 
the differential equations as the basic description modeling the behavior, 
without introducing assumptions which may be motivated by mathematical 
expediency. In addition, it is essential not to assume this half-line support if 
one wants to incorporate autonomous systems. 

Observe that we have postulated no smoothness in Z(R), other than 
w E PC. This is nothing unusual. It is in fact what is common in control 
theory, as shown in Example 3.1, where (disregarding initial conditions) the 
map u * y is a smooth convolution and hence we obtain y E I?“’ if u E elOc. 
We shall return to this smoothness issue in Section 8.3. 

Often systems are defined in terms of auxiliary variables. A general such 
class may be defined by R,~ll%‘~~[s] and R, ~tI%‘~~[s], with oill‘=08q, as 
follows: 

E(R,, R,): = ( w:R -+ W(w E PC 

and there is an [w ‘-vector-valued distribution [ 

with, again, equality in the sense of distributions. Clearly C(R,, R,) is also 
linear and time-invariant. 

An example of such a class of systems which will play an important role 
later in our paper is state-space systems. Another example is the systems 
studied by Rosenbrock [4] and Wolovich [5] (see also [6]). There one starts 
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with polynomial matrices P, Q, R,W and looks at P(d/dt)[ = Q(d/dt)u, 

y = R(d/dt)t + W(d/dt)u, with [ what is called the partial state. Writing 

u 
w= 

[ 1 Y 

yields a system of the type B(R,, R,). (As we shall explain later, we do not 
call u the input and y the output unless W + RP - ‘Q is proper.) 

EXLMPLE 3.2. An example of a physical system defined in terms of 
auxiliary variables is an electrical circuit. Indeed, it is most natural to view the 
port behavior of an RLCTG network as described in Example 2.2 as follows. 
Let (V,, I,) denote the vector of external port voltages and currents, and 
(V, Zi) the vector of internal branch voltages and currents. These will satisfy 
the equations K,(V,, Ii, V,, I,) = 0, K,(y, Ii, V,, Z,) = 0, L(x, ii) = 0, 
C(Vi, Ii) = 0, R(V,, Ii) = 0, T(y, Zi) = 0, and G(y, Ii) = 0, where K,, K,, L, 
C, R, T, and G denote respectively the equations obtained by writing out 
Kirchhoff’s voltage and current laws and the constitutive equations of the 
inductors, capacitors, resistors, transformers, and gyrators. Since these equa- 
tions are linear, this clearly leads to a set of equations as in Z(R,, R,), with 

w=[t] and [=[:I. 

Any system described with auxiliary variables can also be described 
without. Indeed: 

PROPOSITION 3.3. Let Z(R,, R,) be given. Then there exists R such that 

Z(R) = Z(R,, R,). 

Proof. Clearly for any unimodular matrices M, and M, we have 
Z(R,, R,)= Z(M,R,, M,R,M2). Now choose M, and M, to bring M,R,M, 
= : R, into Smith form [6, p. 3901: 

MS) = diag(pl(s),...,pk(s>) 0 
0 0 1 

with 0 * pi E [w[s], i = 1,. . . , k. Now partition M, R, conformably as 
Rll 

[ 1 R . 
12 
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The system Z(R,, R,) is hence given by 

and there are distributions Ei such that 

However, any real-valued distribution can be written as ~Jd/dt)<, for some 
distribution Ei. Consequently the first set of equations in this expression 
imposes no restriction on w. Hence Z(R,, R,) = Z(R,,). n 

The systems usually considered in linear systems theory are those defined 
in Example 3.1. The question hence occurs whether any system can be 
brought in this form. This is indeed the case. 

DEFINITION 3.4. Let Z(R) be given. If 1’ is a constant nonsingular matrix 
such that, with I’, Q as in Example 3.1, B(RT ‘) = Z([Qi- PI), then we call 

{(R(s)> Q(s)>> V an input-output (i/o) represent&ion of Z(R), with the first 
m components of Tw the inputs and the last p components the outputs. 

Clearly m + p = r. 

THEOREM 3.5. Let Z(R) be given. Then it admits an i/o representation 
((P(s), Q(s)), T}. In fact, T may be chosen to be a permutation matrix. 
Alternatively, we may choose T such that P - ‘Q is strictly proper. 

Proof. For any unimodular matrix M we have that Z( MR) = Z(R). It is 
well known (see e.g. [4, p. 301) that M can always be chosen such that MR is 
row proper, i.e. such that 

M(s)R(s)=diag(s”l,...,s”“) “,I 
[ 1 

Pl +diag(s”l~‘,...,s’“i I o $_ ... 4 1 
(where negative powers of s would appear, read zero). By choosing T suitably 
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we obtain 

M(s)R(s)T-‘=diag(s”l,..., s”,) : :’ 
[ 1 

+diag(s”l-‘,...,s”“~’ 
P; Pi’ 1 + ... 0 0 

with Pi square and nonsingular. Obviously T - ’ may be chosen as the 
permutation matrix which selects independent columns from PO. Alternatively 
T ~’ can be chosen such that Pi’ = 0. Now by defining P(s) : = 
diag(s”l,. . ., s”‘)Pd + diag(s”1,. . ., snk-‘)P; + . . . , and Q(s) : = 
diag(s”l,..., s”~)Po”+diag(s”l~l,...,Snk~‘)P;‘+ ..., we obtain an i/o 
representation. Indeed, w E B(R) iff Tw E Z( RT - ‘) = Z(MRT - ‘) = 

x0 : - PI). Furthermore, since lim S_,P-l(s)Q(s)=(P,‘)-‘P~‘, P-‘Qis 
proper, as required. By choosing T _’ as mentioned, we obtain an i/o 
representation with T a permutation matrix, or with P - ‘Q strictly proper. n 

We shall comment on the significance of this theorem in Remark 6.4. 

4. SYSTEMS IN STATE-SPACE FORM 

A dynamical system in state-space form is defined as a subset Zi c (X x 
WI", with X the state space and W the external signal alphabet. It needs to 
satisfy the following axiom, which formalizes, in a set-theoretic sense, that the 
past and the future behavior are independent given the present state. Let 
t E R and a E X, and consider the following sets: 

X,,(a):={ (~~,w-)I:(-oo,t)-XXW~~(x,w)EZi 3 x(t)=a 

and (r-,w-)(r)=(x,w)(r)forr<t}, 

Z&(a): ={ (X+,w+)l:[t,CO) -+ X x Wp(r, w) E Zi 3 x(t) = a 

and (x+, W+)(T) = (x, W)(T) for r >, t}: 

Zi,t(a): = { (r,w)(:R +X x Wl(x, w) E Zi and x(t) = a}. 

The axiom of state demands that for all t E R and a E X there holds 
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ZiJa) = ~Ja)~~,~,(a), where . denotes the concatenation product. The 
definition of linearity and time invariance carry over unchanged from the 
previous section. 

We now define the class of state-space systems which we will study. 

Consider the system Zi(A, B, C, 0) : k= Ax + Bu, w = Cx + Du with x E % 
= R”, UE%=lP, and w E qg = [wq. Formally Zi(A, B, C, D) : = 
{(x, w):R + % X %‘lcc is absolutely continuous, u E cl”, 2(t)= Ax(t)+ 
Bu(t) for almost all t, and w(t)= Cx(t)+ Du(t) for all t}. It is easy to see 
that this defines a linear time-invariant state-space system. A somewhat more 
general class of such systems is given by the (possibly singular) set of 
first-order differential equations Ejc= Ax + Bw. 

For a given state-space system Zi we define its external behavior as 
V : ={w:Iw +W[ix 3 (x,w)EZ~}. Obviously the external behavior of a 
riear and/or time-invariant system is linear and/or time-invariant. If Z is a 
given externally defined dynamical system which equals the external behavior 
of Zi, then we shall say that Zi is a (state-space) realization or a state-space 
representation of 2. From now on we shall assume all the systems to be 
time-invariant. 

Recall the definitions of ZJa), Xi~O(a), and Z,~,(a) as given in the 
beginning of this section. Now define analogously the external versions of 
these objects: 

E,(a): = (w:R -+W)3x 3 (x,w)EZi,a(a)}, 

42,(u): = {w- :(-oo,o)+w~3x- 3 (x-?w->-;oo(a))~ 

X,+(a):={w+: [O, m) + Wj3x+ 3 (x+, w+ > E z&(a)}. 

Obviously X,(a) c Z, (a).X,‘(a). By the axiom of state we actually have 
X,(a)=Z;(a)~Z,+(a). Also 2, = U aEXZe(u)= U .,x2,(a).X,‘(a). In 
other words, if we regard 2, as a relation on (i.e., a subset of) WC- m,o) x 

W[” 3c) then a state-space realization simply induces a partition of this > 
relation into the join of product relations (i.e., into a union of rectangular 
subsets IZ;(a).X,i-(a) of WC-“x0)X W[‘*“)). It is in this context that we 
define the minimality of a state-space system viewed as a realization of its 
own external behavior. Thus Zi is said to be minimal if: 

(1) Whenever U a EX, X,(a) = Z,, then we must have that X’ = X. (This 
says that none of the Z,(a)‘s will be empty and that none of them will be 
covered by the others. Indeed, if that were the case, we could delete this state 
from the state space and obtain a reduced realization.) 
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(2) Whenever U (I EXt E,(a) is rectangular (i.e., it can be written as 
R-.R’ with R- c W(-oo,o) and R+ C W ('2 "I), then X’ must consist of at 
most one point (for otherwise, by combining the states in X’ into one, we 
would obtain a reduced realization). 

Two state-space systems Z: c (X, X W)n and ZF C (X, X W)n are said 
to be equivalent if there exists a bijection S: X, + X, such that {(xi, w) E Et} 
= {(Sx,, w) E xf}. Obviously two equivalent systems have the same external 
behavior, and a natural question to ask is if all minimal realizations of a given 
externally defined system are equivalent. This issue is studied in [l]. In 
general the answer is nc (contrary to what happens in the classical input-out- 
put setting). There is however a natural condition for all minimal realizations 
to be equivalent. Indeed, in [l] it is shown that all minimal realizations of Z 
are equivalent iff whenever two pasts (futures) of trajectories of Z have one 

future (past) in common, then they have all their futures (pasts) in common, 

Let us denote by p (f -) the restriction of a map on R to ( - co,O) ([0, co)). 
Formally: 

PROPOSITION 4.1. All minimal realizations of an externally defined time- 
invariant system Z are equivalent iff 

(i) (w~~w+,w~~w+E~} 3 {{w;.v+EZ) H (w~~v+~~,)}and 
(ii) {u,-.uJ:,,-.~,+ EZ} j {{v-~w: EZ} e (V-.wz EZZ}} 

In terms of the notation introduced before, the above proposition states 
that all minimal realizations of Z are equivalent iff Z may be written as 

Z= tJ R;.R,f withinaddition{ar’,a”E A,a’*cw”} 
fXGA 

+ {R; n R;, =0 and R$ n R$ =0}. 

From the above proposition it follows that all minimal realizations of a 
linear time-invariant system are equivalent. (The reason for introducing in the 
present paper the more general set-theoretic version of minimality was 
precisely the fact that we can obtain the equivalence of all minimal realiza- 
tions as a result which uses linearity in an essential way.) Indeed, let Z+(O) be 
defined as 

z+(o): = { w+ :[o,c+wIo-w+EZ}, 

andletw-.w+EZ.Then{w-.w+EZ} * {(w-.zu+EZ} w {v+Ew++ 
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Z+(O)}}. Consequently(u;, .w+,w;.w+EC} * {(wl~.U+E~} c=) (2?+E 
w+ -tZ:+(O)) = {wa . o ’ E E}}, which by Proposition 4.1 yields that all 
minimal realizations of a linear time-invariant system are equivalent. The 
following theorem shows, among other things, that for this class of systems 
minimality is equivalent to the state space having as small as possible a 

dimension. 

THEOREM 4.2. 

(1) All miniwlal realizations of a linear time-invariant system are equiva- 

lent. In fact, if zfi,,,, is a minimal linear tiwle-invariant realization of 2, then 
so is Z$,, iff there exists a linear bijection S (from the state space of EL,,, 

onto that of 2t,j such that {(x, w) E 2A,i,I} 0 {(Sx, wj E 2$,}. In fact, if 
71 z ,,,,,, and 2f,i,, are both miniwml linear time-invariant systems and S is a 

bijection dewwnstrating their equivalence, then S is linear. 

(2) Let Zi and Z,,,, be linear time-invariant systems with state spaces X 

and XI,,,,, respectively, which both realize Z, and let 2,,ri,r be minimal. Then 
there exists a linear subspace X’ of X and a linear .surjective wuzp S : X’ + X,,,,, 
such that {(x, w) E E:,} ti (x(t)E X’ for all t and (Sx, W)E 2mi,I}. Conse- 

quently dim Xlrli,, < dim X. 
(3) Finally, if Z has a linear tim,e-invariant realization with a finite- 

dimensional state space, then rninimality is equivalent to its state space 

having as small as possible a dimension in the class of lineor time-invariant 

realizalions. 

We shall not prove this theorem, since it is not particularly germane to the 
rest of the paper. It follows without much difficulty from the ideas in [l]. 

With these general definitions and results in mind regarding general linear 
time-invariant systems, we now return to B(R) and Zi( A, B, C, 0). The 

external behavior of Zi( A, B, C, D) will be denoted by Z,.( A, B, C, Dj. Note 
that Z,,( A, R, C, Dj is not a priori equal to the system which we would obtain 
by letting x and u in X= Ax + Bu, w = Cx + Du be auxiliary variables as in 
the definition of C( R,, R,). This because x and u could then be distributions, 
while in Z,(A, B, C, Dj it is assumed that x is absolutely continuous. We can 
now ask the following questions: 

(1) When is Zi( A, B, C, Dj a minimal realization of its own external 
behavior C,( A, B, C, D)? 

(2) When is B,(A, B, C, Dj a minimal realization of the system obtained 
by considering x and u as auxiliary variables? We shall denote this system by 
Z;(A, B, C, D). 
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For emphasis, we repeat the definitions of Z,( A, B, C, 0) and Zi( A, B, C, 0): 

B ,( A, B, C, 0) : = {w : Iw + ‘%13x absolutely continuous and u E e.l”’ such 
that jr(t)= Ax(t)+ Bu(t) a.e. and w(t)= 
Cr(t)+ Du(t)), 

Z;(A,B,C,D):={w:IW -,“?ll‘]w~C”~ and there are distributions x and u 
such that k= Ax + Bu, w = Cx + Du}. 

Note that it is actually most natural to consider Zk(A, B, C, 0) [and not 
Z,(A, B, C, D)] as the external signals implied by the equations jc= Ax + Bu, 
w = cx + DU. 

The first of the above questions is easily settled on the basis of general 
principles. In order to do this we need to introduce a familiar concept from 
the geometric theory of linear systems. The supremal output-r&Zing sub- 
space, T*, is defined as 

7’* : = {x0 E 6x\3u E PC 3 the trajectory w generated by jc= Ax + Bu, 
w = Cx + Du, r(O) = x0 satisfies w = O}. 

The space Y* is easily computed from (A, B, C, D) (see [7, in particular 
Example 4.61 for algorithms and many applications of ?r*). We have: 

THEOREM 4.3. Z,(A, B, C, D) is a minimal realization of its own external 
behavior Z&A, B, C, D) iffV* = 0. 

Proof (outline). d : Assume ‘I’* * 0; then we can obtain a reduced 
realization as follows. Define “?(: * : = “X (mod a^*) and 

x2;:={ (x*,w):R +tx*xqq 

3(x,w)~~i(~,~,~, D) 3 X*(.)=X(.) (modV*)) 

e : Assume that Zj( A, B, C, D) is a minimal realization of Z,(A, B, C, 0). 
By Theorem 4.2 this implies that Zi( A, B, C, D) is equivalent (with a linear 
bijection) to the canonical past-induced realization (see [l]) of Z,(A, B, C, 0). 
Consequently (x, 0) E Zi( A, B, C, D) will imply x = 0, which translates into 
y* = 0. n 
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The next lemma gives us a sufficient condition under which 
Z,(A, B, C, 0) = Z;(A, B, C, 0): 

LEMMA~.~. {kerDCkerB} * {Z,(A,B,C,D)=Zk(A,B,C,D)}. 

Proof. Note that we can assume without loss of generality that 

ker 
[ 1 ; = 0 

(for otherwise, simply eliminate the U’S in ker 
[ 1 i ). Hence we need to show 

that {ker D = 0} * {C,(A, B, C, D) = Zk(A, B, C, D)}. By suitably choosing 
the basis in % and (?U- we obtain the following equations describing our 
system: 

jr= Ax + Bu, WI = C,r + u, wz=Czx, and w= 
Wl 

[ 1 w2 . 

Solving for u yields i = Ax + Bw,, w2 = Czx, with A= A - BC,. Hence 

w E C”’ implies x absolutely continuous. This yields the result. n 

We will now give the conditions for Cj( A, B, C, D) to be a minimal 
realization of Zk(A, B, C, D). In order to do this, we introduce another 
concept from the geometric theory of linear systems. The supremd C,-almost 
output-nulling subspace, vz, is defined as 

v; : = {x0 E TqV& > 0 3u E Pot such that the trajectory w generated by 
i= Ax + Bu, w = Cx + Du, x(O) = x0, satisfies l?,“llw(t)ll dt 
< E) 

This subspace is a slight generalization of the almost invariant subspaces 
studied in detail in [8], where algorithms for computing ‘“Vc are given. A result 
which is easily derived from [8] is 

Vz = VG : = {x0 E 5% Ithere is a distribution u with support on [0, co) such 
that the distribution w generated by k= Ax + Bu, w = 
Cx + Du, x(O) = x0 satisfies w = O}. 

By definition the distribution w in the above definition has support on [0, 00) 



LINEAR TIME-INVARIANT SYSTEMS 593 

and is defined as f + Du + G * u with f: t E R + c-) Ce*‘x,, * convolution, 
and G:tER+ c, CeAtB. The space V$ is also studied in [9], where its 
relevance in many control and linear-systems problems is demonstrated. 

The following theorem answers the second question posed earlier on. 
First, however, some more notation. Assume ker D c ker B. The I?# and C* 
are well defined by the commutative diagram 

In terms of these, we obtain the following 

THEOREM 4.5. The following conditions are equivalent: 

(i) Z,(A, B, C, D) is a minimal realization of Zk(A, B, C, D), 
(ii) Vl = 0, 
(iii) ker D c ker B and ?i* = 0, 
(iv) ker D c ker B and (A - B#C, C#) is observable. 

(It is easy to see that assumption (iv) is independent of B# provided, of 
course, B = B#D.) 

Proof. (iii) * (i) Follows from Lemma 4.4 and Theorem 4.3. 
(iii) * (iv): Using the basis in the proof of Lemma 4.4 leads us to consider 

i:=&+Bw,, w,=C,xwith 

A=A-B*C, and C,=C*. 

The conclusion is an immediate consequence of the definitions of ?r* and of 
observability. 

(i) * (iii): (i) * {?r* = 0} f o 11 ows from Theorem 4.3. Now choose the basis 
in OZL and ‘W such that the equations become 5 = Ax + B,u, + B,u,, w1 = C,r 
+ ul, w2 = C,x. Equivalently, 3i= Ax + B,w, + Bzuz, w2 = C,x with d: = A 
- B,C,. Now (i) implies that Z,(A, B, C, D) = XL(A, B, C, D); hence (look- 
ing at wi = 0) X&A, B,, C,,O) = Zi(A”, B,, C,,O). By considering the fact that 
elements in Z,( A, B,, C,, 0) are necessarily absolutely continuous, we see that 
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this equality can only hold if C,(Zs - A) ‘B, = 0. Consequently 

C i P1imB=:(A]imB2), 
k=l 

Hence ‘I!-* 1 (A]im B,). Since ?‘* = 0, this implies B, = 0, as desired. 
(ii) = (iii) is worth stating separately: 

LEMMA 4.6. {?:z = 0} - {ker D c ker B and %:^* = O}. 

Proof. * : 3; = 0 trivially implies ill-* = 0. Assume again 

ker 
[ 1 B 0 

D = ’ 

The basis used above gives us i= Ax + B,u, + Bzuz, w1 = C,x + ul, w2 = C,x 

for the system equations. From the results in [8] it follows immediately that 
im B2 c ?Tz = 0. Hence ker D = 0. 

= : w = 0 in the sense of distributions implies w = 0 in the Cl”’ sense. 
Now ker D c ker B implies by Lemma 4.4 that the corresponding x will be 
absolutely continuous. This yields ‘1’1_* = ‘c’*. 

This ends the proof of Lemma 4.6 and Theorem 4.5. W 

The conditions ?I’* = 0 and ‘7’2 = 0 which feature in Theorems 4.3 and 4.5 
are reminiscent of strict observability. Indeed, Y* = 0 iff knowledge of the 
output (w in our case) on t 2 0 allows to reconstruct x on t > 0 without 
knowing the driving input u E C’O’. In the literature this is called strict 
observability. The condition Y( $ = 0 allows a similar interpretation. In fact, 
‘77 = 0 iff knowledge of the output as a distribution on t B 0 with an 
unknown input distribution on t 2 0 allows one to reconstruct x as a distribu- 
tion on t > 0. One could call this distributional strict observability. 

The following corollary follows immediately from conditions (i) and (iv) of 
Theorem 4.5. Note that in this corollary we consider not just the output y, but 
the input and the output as the external variables, i.e., w = (u, y). 

COROLLARY 4.7. k= Ax + Bu, y = Cx + Du, w = (u, y) is a minimal 

realization of its own external behavior iff (A, C) is observable. 
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It is important to note that in Corollary 4.7 minimality requires only the 
observability of (A, C) and not the reachability of (A, B), contrary to the 
familiar situation, (minimality} = {(A, I?) reachable and (A, C) observable}, 
in the input-output setting with the signals all having half-line support. In our 
framework, jr= Ax, w = Cx with (A, C) observable is a perfectly well-defined 
minimal state-space representation of its own external behavior. We shall 
return to such autonomous systems in Section 8.1. 

Given an arbitrary system Z,(A, B, C, D), which need not be a minimal 
realization of Zk(A, B, C, D), we can reduce it by means of the following 
algorithm, which is only a slight variation of Silverman’s structure algorithm 

PI. 

Step 1. Choose the basis in %!L and a nonsingular matrix T such that 

Write conformably 

Ul 
U= 

[ 1 Wl 

u2 ’ 
T%= %&@‘b&, and Tw= w2 , [ 1 

to obtain jr= Ax + B,u, + B,u,, w1 = C,x + ul, w2 = C,x. If im B, = 0, go to 
step 4; otherwise go to step 2. 

Xl 
Step 2. Write % = %i@im B, and x conformably as x2 , to obtain 

[ 1 
jr, = A,,x, + B,,u, + B,,x,, w1 = C,,x, + u1 + C,,x,, w2 = C,,x, + C&,x,. 

Step 3. Define 

A: =A,,, B: = [B,, B,,], C:=[E;f], D:=T-‘[i2 F], 

and go to Step 1. 
The above loop ends with a system of the form 

?=Ax+B,u,, w,=C,x+u,, w2=C2xl, Tw= Wl 

[ 1 w2 . 

Step 4. Compute 9Z = (ker C,lA - BC,) : = fl i=i(A - BC,)pk+’ 
ker C,, the unobservable subspace of jr = (A - BC,)x, w2 = C2x, and compute 
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A, B, C as defined by the commutative diagram 

Then 

w,=&, 

is a minimal state-space representation of Zk(A, B, C, 0) (and in fact a 
minimal i/s/o representation in the sense of Definition 6.1). 

5. STATE-SPACE REALIZATIONS OF Z(R) 

In this section we consider the state-space realization of a system Z(R) as 
defined in Section 2. We shall establish that there always exists (A, B, C, 0) 
such that E(R) = Z,(A, B, C, 0) = Zk(A, B, C, D) in a minimal way. 

THEOREM 5.1. Let R E lwrx”[s] b e g iven. Then there exists (A, B, C, D) 
such that Zi(A, B, C, D) is a minimal realization of Z(R) and, in fact, 
&(A, B, C, D)= Z:(A, B, C, D)= Z(R). 

Proof. The proof of this theorem starts from Theorem 3.4 and applies 
the familiar observer canonical form [6, p. 4141. However, in our case, 
because of our definition of a system, we need to prove a bit more than mere 
equality of transfer functions. By Theorem 3.4 there exists a nonsingular 
matrix T such that w E Z(R) iff 

Tw= ; 
[ 1 

is governed by P{d/dt)y = Q(d/dt)u with P(s) = diag(s”l,.. . , s”p)- S(s)A 
and Q(s)=S(s)B, where S(s)=diag(d,(s),...,d,(s)) and d,(s)=[l s ... 
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s”:- ‘1. Now define 

0 
1 

I I 

I I 

I I 

I I 

A= 

lI I 
I I 0 
I a,1 1 
I I 
I I 

I I 

I I 

I I 

I I 

I I 

I I 

I I 

n,-th 

A= [q 

B=l?, 

I I I 

I I I 

I I I 

I I I 

I I I 

I I I 

I I I 

I u2 I ... I 

I I I 

I I I 

I 

I 

I 

I 

I 

I 

I 

’ aP 
I 

I 

lI I I I 

I 0 

I 

I I I 

I I I 1 I 

I I l *. I 

I I I I 

I I I 1 I 

(n, + n,W (n, + + n&h 

column column 

010 1 . ..I0 . . . 0’ 0 

o/1; . ..I0 *** 0; 0 

:I: I l : :’ : 

+)I . ..I0 . . . 0; ; 

a2 *-. 
UPIT 

c=T-l O 
[ 1 (2’ 

D=T-' ; . 
[ 1 

We claim that Z(R) = Z,(A, B, C, D) = Zk(A, B, C, 0). This last equality 
follows immediately from Lemma 4.4. That Z(R) = Z,( A, B, C, D) follows by 
direct verification. The idea is as follows.. The (2,. . . ,n,, n1 + 2,. . . , n, + 
n,,...)th rows of k= Ax + Bu, y = & allow us to express x as a linear 
combination of u, y, and their derivatives up to order maxi(ni - 1). The 
(l,n,+l,...)th rows of jr= Ax + Bu become, after substitution of X, exactly 
the equations P( d/dt )y = Q( d/dt)u. From there it is easy to prove that 

(x41) E Zi(A, By C, 0) 
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implies P(d/dt)u = Q(d/dt)y, and conversely, if this equation is satisfied, 
then with x as constructed above we will obtain 

The minimality of Zi(A, B, C, D) follows immediately from Theorem 4.5(iv). 
n 

The combination of Theorems 3.5 and 5.1 yields an algorithm for obtain- 
ing a minimal realization of Z(R). This requires making R row-proper by 
premultiplication by a unimodular matrix and deriving a standard observable 
realization from there. We make no claims as to the efficiency of this 
procedure. What we would actually like to develop is a generalization, 
starting directly from R, of Fuhrmann’s elegant “polynomial model” realiza- 
tion [3]. 

It is useful to note that realizing Z(R) simply requires finding (A, B, C, D) 
such that [C D] ker[ Is - A i - B] = kerR(s) [ll]. This condition for s E C 
guarantees only that 8:( A, B, C, 0) = Z(R). If we add the condition at 
s=co, i.e., if we demand that [C D]lim,,,ker[Zs-A 1 -B]=imD= 

ker R(s) (convergence to be understood in the Grassmann sense), then 
z’mzy conclude that Z,(A, B, C, 0) = Z(R). 

6. INPUT-STATE-OUTPUT REPRESENTATIONS 

The analogue of Definition 3.4 for state-space systems is the following: 

DEFINITION 6.1. A system defined by 

i= Ax + hi, y=&+Du, w=T-’ u [ 1 Y 

with T a nonsingular matrix is said to be in input-state-output (i/s/o) form 
with u in the input, x the state, and y the output. We will denote such a 
system by {(A, fi, C, B), T). Note that for an i/s/o system we have, by 
Lemma 4.4, zk( .) = Z,( .), and hence we need not worry about smoothness. 

From Theorem 4.5, it follows that an i/s/o system is minimal iff (A, C,) is 
observable. As an immediate consequence of the proof of Theorem 5.1 and 



LINEAR TIME-INVARIANT SYSTEMS 599 

Proposition 3.3 we have: 

THEOREM 6.1. Every system C(R) admits a minimal i/s/o representa- 
tion (i.e., given any R, there exist (a, R, c, d) with (A, c> observable, and a 
nonsingular T such that the system defined in Definition 6.1 generates exactly 
the w’s in Z(R)). The same holds consequently for Z(R,, R,) and 

Z:(A, R, C, D). 

As may be expected, there is an intimate relation between i/o and i/s/o 
representations of Z(R). Indeed, we have 

THEOREM 6.2. Let Z(R) be given and T be a nonsingular matrix. Then 

F(P, Q) such that ((P(s), Q(s)), T) is an i/o representation of Z(R)) * 
(3(d, R, c, D) such that {(A, R, c, D), T} is an i/s/o representation of 

z(R)). 

Proof. * follows directly from the proof of Theorem 5.1 
* : It suffices to show that the external behavior (u, y) of jc = Ax + Bu, 

y = & + D,u equals that of P(d/dt)y = Q(d/dt)u for suitable P,Q’s as in 
Example 3.1. We do not show this in detail. The proof proceeds as follows: 
first note that without loss of generality we can assume (d, c) observable 
(otherwise reduce x to r (mod %) with % = (ker CIA) : = n ;=,d-k+‘ker r?‘, 
the unobservable subspace of (a, c). Then use a basis transformation in the 
state space to put (A, c) into the observer canonical form as used in the proof 
of Theorem 5.1. This then defines, as shown in that proof, the equivalent 
equations P(d/dt)y = Q(d/dt)u. n 

As an immediate corollary of Theorems 6.2 and 3.5, we obtain 

COROLLARY 6.3. Z(R) admits a minimal (i.e., observable) i/s/o repre- 
sentation with T a permutation matrix, or alternatively with D= 0. 

REMARKS. Theorem 3.5 and the above theorem allow us to draw a 
number of interesting conclusions: 

REMARK 6.4. Any system Z(R) [and hence Z(R,, R,) and 
Zk(A, B, C, D)] admits an i/o and an i/s/o representation. Consequently for 
this class of systems the causality issue does not arise. It is merely a 
representation fact. 
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REMARK 6.5. Since T may be chosen as a permutation matrix, we may 
conclude that we can always partition the vector w componentwise into 
inputs and outputs. Thus an i/o representation is a matter of partitioning the 
external variables correctly. 

REMARK 6.6. If we do not insist on a componentwise partitioning of w, 
then we can even assume strict properness of the transfer function. Thus 
strict causality is also a representation result. 

REMARK 6.7. We should expect global representation results such as 
those obtained in Theorems 3.5 and 6.2 to be limited to linear and time- 
invariant systems. In fact it can be argued [lo, l] that one should not expect 
i/s/o representations in a nonlinear differential-geometric context. The start- 
ing point k= f(x, u), y = g(3c, u) of much of control theory is more restricted 
than is often realized. 

REMARK 6.8. Assume that Z(R) is given, and consider now the following 
subspace of %: 

wu: = ( ~0 E %]3~ E Z(R) with w(t) = 0 for t < 0, 

w continuous for t > 0, and t l$~+ w( t ) = wo> . 

Then clearly if {(P(s), Q(s)), T} or {(A”, B, 6, B), T} is an i/o or an i/s/o 
representation of Z(R), we have 

From this it immediately follows that dim % = dim %,,. Hence dim % and 
dim?4 are invariants of Z(R): the number of input and output variables is 
intrinsically defined, while the variables themselves are not. However, if we 
concentrate on strictly causal representations (D= 0), then, since % = TWu, 
we obtain also that the input space is intrinsically defined, while for the 
output space ?I we can take 9 = Tq$,, with ‘?lr, any complement of wU. 
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7. THE TRANSFORMATION GROUP ASSOCIATED WITH A 
MINIMAL REALIZATION 

The following theorem gives all minimal realizations having the same 
external behavior: 

THEOREM 7.1. Assume that Zi( A, B, C, D) is a minimal realization of its 
own externul behavior Z,(A, B, C, D), with 

ker 
[ 1 i = 0. 

Then all such minimal realizations are obtained by the transformation group 

(A, B, C, 0) dI;$“, (S(A+ BF)Spl,SBR,(C+ DF)S-‘, DR). 

d&R=0 

Proof By Theorem 4.2 all minimal realizations are linearly equivalent. 
Let S be a nonsingular matrix. We would hence like to find (A’, B’, C’, 0’) 
such that (Sx, w) E Zi( A’, B’, C’, D’) e (x, w) E Zi( A, B, C, D). Now, 

Sk- SAS-‘Sr Eim SB 

w - csslsx I [I D * 

Hence 

In other words, defining 

[ 1 sjr =:r 

W 
sx=:z, 

im 
[ 1 
B’ =: c’ 

D’ ’ 
im 

[ 1 SB =: C 
D ’ 

A’ 
[ 1 C’ 

= M’, 
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weseethat (r-M’z)E~?’ = (~-MMz)E~. F rom this it follows that C ’ = L’ 
and that MZ = M’z (mod C). Now, M = M’ (mod C) iff there exists F such 

that 

M’=M+ ‘; E 
[ 1 

and, since 
SB I 1 . . 
D 

IS mjective, C’ = C iff there exists R, det R * 0, such that 

[;]R=[;:]- n 

The above theorem shows that in our setup the relevant transformation 
group contains not only the state-space isomorphism group, but also the 
feedback group. This is basically due to the fact that feedback does not 
change the set of possible trajectories produced by a system. In particular it 
implies that if (A, B) is reachable, then we may always obtain a minimal 
realization with (A, B) in Bnmovsky canonical form [7, p. 1181. 

As we have seen, we can always choose an i/s/o representation such that 
D= 0. From Remark 6.8 it follows that this corresponds to writing T”:$ as 
u?LCB '?J with 91 = T%fU. Considering only these representations yields the 
following corollary. 

COROLLARY 7.2. Let {(A, fi, c,O), 7’) he a minimal (i.e., observable) 

i/s/o representation of its external behavior. Then all such realizations are 

obtainable by the action of the transform&ion group 

T-T 
Rl FR,’ 

/ 1 0 R;l 

8. COMMENTS 

8.1. Autonomous and Reachable System 
In the context of our definitions it is possible to view the fact that a system 

is autonomous or reachable as external properties. The system Z(R) is said to 
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be autonomous if 3f: %--03,0)-+%i0,M) such that WEE(R) a 
W + = f( w- ). It is said to be reachable (from 0) if for all w E Z(R) there 
exists Ez) E Z(R) with w+ = - + w and 5- of compact support, i.e., the family of 
future trajectories equals those which follow trajectories which are zero in the 
far past. In an autonomous system we have qKU = 0. In terms of an i/o 
representation, an autonomous system has Q = 0, while a reachable one has P 
and Q left coprime. An autonomous system admits a realization of the form 
jc = Ax, w = CX [with (A, C) observable e minimal&y], while Z(R) is 
reachable iff it has a realization Zi(A, B, C, 0) with (A, B) a reachable pair, 
in which case all its minimal realizations or i/s/o representations will be 
reachable. We can always define the reachable component of Z(R). The 
reachable component Zr is defined by taking a minimal realization 
Zi(A, B, C, D) of Z(R) and considering the external behavior of 

I;( A, B, C, D) : = { ( x,w)~Z~(A,B,C,D)lx(t)E(AlimR)~t}, 

which is still a state-space system. By Proposition 3.3, Z, = Z(R,) for some 
R,. Finally Z(R) can always be written as Z(R) = Z, + 1, with Z, autono 
mous. 

8.2. The Algebraic-Geometric Structure 
It is trivial to see that all what we have said up to now also holds for 

% = Q= 4. In this section we assume that we are working over C. A system 
Z(R) defines a map S from Q= into gq, the set of subspaces of Q) q, defined by 
S(s) : = kerR(s). The set 9 : = {(s, w)ls E C, w E S(s)) obviously defines a 
fibration over the base space C. However, since dim S(s) need not be 
constant, $0 is in general not a vector bundle. Nevertheless, since S(s) is the 
kernel of a matrix polynomial, % has some nice mathematical structure. It is 
what in algebraic geometry is called an algebraic coherent sheaf. Now, if S(s) 
has constant dimension, there exists a bijection from 9 to Z(R), and 
moreover %I is actually a vector bundle over C. Furthermore, dim S(s) is 
constant for all but a finite set of points s. Let us denote by m this “normal” 
dimension of S(s), and by Q=, the points where dim S(s) > m. 

This algebraic-geometric structure is exploited in [ll] in order to obtain 
elegant interpretations of a number of system-theoretic facts, in the spirit of 
[12]. For example, {dim S(s) = m Vs E C} e {Z(R) is reachable}, and the 
points in Q=, correspond to the unreachable modes of any minimal i/s/o 
realization of Z(R); m equals the number of inputs in any i/o or i/s/o 
representation of Z(R). Now, lim, _ m S(s) is well defined in Gz, the Grass- 
mannian of m planes in Co, and equals %YU, the intrinsic input space. 
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Replacing S(s’) by lim, -t sI S(s) at points s’ E Q: a corresponds to replacing 
Z(R) by its reachable component 2,. Let R,(s) be such that Z,. = Z(R,). 
Assume now that Z(R) is reachable (or that R is replaced by R,), and by 
defining S( co) : = %,, , extend 9 to an algebraic vector bundle 91’ over P’, the 
projective line. The problem of realization-i.e., finding (A, B, C, 0) such 
that [C D]ker[Zs- A / - B] = S(s)-corresponds to unfolding 91’. By a 
theorem of Grothendieck, every algebraic vector bundle over P is isomorphic 
to a direct sum of line bundles. The Chern numbers of these line bundles are 
precisely the input Kronecker indices of any minimal i/s/o representation of 
Z(R). The Chem numbers of 3” : = ((8, w)ls E P, w E (kerR(s))l} are the 
output Kronecker indices of any minimal i/s/o representation of Z(R) with 
b = 0. Finally, all this induces a bijectionfrom the set of algebraic (and hence 
holomorphic) vector bundles over the Riemann sphere with positive Chem 
numbers to the reachable linear time-invariant finite-dimensional systems. For 
details and proofs of all this, see [ 111. 

8.3. Smoothness 
We have chosen to interpret Z(R) and Z(R,, R,) with w E Cl”, and with 

the auxiliary variables, the derivatives, and the equations to be interpreted in 
the sense of distributions. It was only when considering Z,(A, B, C, 0) that x 
was assumed to be absolutely continuous and u E Cl”. If, for some reason, we 
require more smoothness (e.g. that wck) E Cl” or [(1) E C”‘), then we should 

simply add the equations wck) = w’, 5”) = 5’ and apply the results with 

[ 1 
[ 1 z, 

as external variables and 
5 
5’ 

as auxiliary variables. However in this case we 

shall not always obtain an i/o or an i/s/o representation of the original 
w-system. In fact Z&A, B, C, D), for example, need not have an i/s/o 
representations. 

It is interesting to note that a theory which assumes all signals to be C” 
would yield essentially identical representation results (like Theorems 4.5,5.1, 
and 6.2) to those obtained from the distributional viewpoint taken here. The 
only difference is that our axiom of state jr= Ax + Bu, w = CX + DU would 
then not be valid any more. However, this provides additional evidence for 
the point of view which takes Z(R) = Zi(A, B, C, D) as the basic equality to 
demand in realization theory. By Theorem 4.5 this then supports the im- 
portant role which V: and almost controlled invariant subspaces can be 
expected to play. 

8.4. An Example 
The following (trivial) example serves to illustrate some of the ideas of the 

paper. Take %? = Iw ‘, let p,, p, E W[s], not both zero, and consider the 
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system, with 

Wl 
w= 

[ 1 w2 ’ 

described by 

P,( $)w1= P2( $)w2* 

We regard this as defining a family of trajectories (wi( a), w2(.)): simply those 
which satisfy this differential equation in the sense explained earlier. What 
should we choose as the input? This is very easy to decide for the system at 
hand. Let ni : = degree p, and n2 : = degreep2. If we consider component- 
wise partitions of w into inputs and outputs, then, if ni > n2, wi is the output 
and w, the input. Conversely, if n, < n,, w, is the output and wi is input. If 
n, = n2, then wi or w2 may be chosen as input, and the other becomes the 
output. In this case we will have a not strictly proper transfer function, 
however. If we want a strictly proper transfer function, then we should 
choose u and y as linear combinations of wi and w2. In the case at hand, if 
PI(S) = rlsn + * - * and p2(s) = r,s” + * . . , with rir2 * 0, then it is easily 
verified that if we set y = “(rrw, - r,w,), cu * 0, and u = rr’wl i rlw2 with 
rir, * r{ri, then u and y are related by an equation of the type 

P($)Y’4($)U 

with p, q E R[s], p of degree n, and 9 of smaller degree. This is an i/o 
representation of the system with 

and u, y related by the above differential equation. 
Finally, a few remarks on the state-space realization of this system. Its 

minimal linear time-invariant realizations will always have state-space di- 
mension exactly n: = max(n,, n2). Common factors will have as a conse- 
quence that a minimal realization is not reachable. In fact, the number of 
common factors of p1 and p, equals precisely the difference between the 
dimension of the minimal state space and the reachable subspace. It is easy to 
write down a minimal realization. Assume n = nl > n2. Let pi(s) = pns” + 
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P”VlS 
n-l+ . ..+p.andp,(~)=q,,s”+~,_,s”~‘+~~~+~~.Let 

P?,(S) __=,,,+;+2+ . . . 
P,(S) 

be the Laurent series expansion of p,/p,. Then choosing 

0 1 . . . 0 

0 (j ..: i 
-PO -Pl - Pnp1 _ - . . . ___ 
P* P, PIl 

B= 

h 

b' ’ n -- 1 

bn _ 

C=[l 0 ..’ 01, D=b, 

yields, with ?= Ax + Bw,, w1 = Cx + Dw,, a minimal state-space (in fact 
i/s/o) realization. In particular, if p, = 0, we see that the system reduces to 
the autonomous wr governed by pr( d/dt )w r = 0 and the completely unre- 
lated free input ws. Its minimal realization is jr = Ax, wi = CX, with (A, C) as 
above, and w2 arbitrary (in C”‘). Clearly the only wr trajectory with half-line 
support is then the null trajectory. 

9. CONCLUSIONS 

In this paper we have provided a theory for the input-output and 
state-space modeling of systems described by higher-order differential equa- 
tions f(w,tb,..., wck)) = 0, with f linear. The main conclusion is that such 
systems always admit a familiar i/o and an i/s/o representation. Hence 
“causality” is a matter of choosing the inputs and outputs appropriately. 

All this yields ample additional evidence for the fact that the standard 
input-output framework of Kalman [13] provides essentially an impeccable 
setting for linear systems theory. Indeed, even the seemingly more general 
context R(d/dt)w = 0 can be reduced to it in a precise way. In some sense 
the main new element which this more general vantage point brings out 
(other than an intellectually perhaps more pleasing framework) is that one 
should not take reachability for granted. Indeed, in our more general setting it 
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is not a consequence of working with a minimal realization. This is contrary to 
what can be obtained in the input-output setting. 

When writing down the dynamical equations modeling a system, 
we shall usually end up with a set of equations of the type 

fi(w,~,...,W(k),~,~,..., EC')) = 0, where the w’s are the variables which are 
being modeled and the E’s are auxiliary variables introduced in order to 
facilitate writing down equations for the w’s If fi is linear, then we can 
reduce this situation to that of the previous paragraph, i.e., the auxiliary 
variables may always be eliminated from the equations. 

Of course, there may be situations where, for reasons having to do with 
the background of the problem, one wants (for example) certain components 
of w to be inputs or outputs, or certain or all 5’s to be causally related to the 

system inputs, or the relation between certain of the 1~‘s or the E’s to be a 
(possibly nonproper) transfer function (as for example in Rosenbrock’s system 
matrices). This will in general lead to compatibility conditions between these 
requirements and the model, i.e., these requirements add structure to the 

system. The framework presented in the present paper demonstrates however 
that in principle such issues need not arise in a general theory of finite-dimen- 
sional linear time-invariant systems. 
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