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ROBUST STABILIZATION OF UNCERTAIN SYSTEMS*

JACQUES L. WILLEMSt AND JAN C. WILLEMS

Abstract. In this paper we consider the systems described by

dx Ax dt + Bu dt + triFix di or .i Ax +Bu + YBiFi(x, t)Cix,

and we will derive conditions under which there exists a feedback control law u Kx such that the closed
loop system is stable for all tri or (smooth) nonlinearities Fi. The nonlinearities Fi and the noisy gains tr
are unknown uncertainties in the system, and the problem considered is to obtain a control law which is
robust against these uncertainties, as far as stability is concerned.
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1. Introduction. Robustness is a very important feature of control system design;
it deals with the question whether some relevant qualitative properties, such as stability,
are preserved if unknown perturbations are present in the dynamic system. This
property is also often called structural stability. Consequently, it is of interest to
incorporate this property as a feature of control system synthesis.

We consider the following system"

(1) (t) Ax(t)+Bu(t)+ Y. BiFi(x, t)Cix(t).
i!

In this equation the last terms represent nonlinear and/or time-varying unknown
(deterministic) perturbations. In this paper we will be concerned with the question
whether there exists a linear stationary feedback control law u(t)= Kx(t), such that
the dynamic system described by (1) remains stable for all Fi(x, t) satisfying only a
Lipschitz or some smoothness condition. A similar question is analysed for the
stochastic system described by the Ito equation

(2) dx(t) =Ax(t) dt +Bu(t) dt + Y. criFix(t) dill(t)
i!

where the processes /3i are standard Wiener processes. Intuitively (2) should be
regarded as the equation

(t)= [A +,Fif(t)]x(t)+Bu(t)
where the processes f(t) are stationary white noise stochastic processes.

There has been some previous work on these stabilizability problems. In [1]
conditions have been derived in terms of the solution of an algebraic Riccati equation.
In 2 of the present paper the same question will be reexamined; it is shown that
concise stabilizability criteria can be developed by means of geometrical techniques
using the concepts of (A,B)-invariant subspaces [2] and almost (A,B)-invariant
subspaces [3], [4]. In 3 the robust stabilization of the deterministic system (1) is
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discussed; using techniques similar to those used for the Ito equation (2), criteria for
robust stabilization are derived. It is shown that the model and also the results are
more general than in Molander’s thesis [5], which contains a rather general discussion
of the robust stabilization question. A related reference is [6] where the importance
of the problem considered here is argued. Finally, a recent special issue of the IEEE
Transactions on Automatic Control (February (1981)) demonstrates a great deal of
interest in robustness questions from the point of view of control system design.

A few words on the notation used in this paper" 1 denotes the reals, C the
complex plane, Cg := {s CIRe (s) < 0}, and g := {s CIRe (s) _-< 0}. If q is a positive
integer, then q := {1, 2,. ., q}. Script capitals are used for vector spaces and subspaces.
If A is linear andAc, then AI and A(mod) are the maps defined by
the commutative diagram

injection
A

cannical 1 1projection
A(mod

(YClA) is the largest A-invariant subspace in a given subspace {. g(A) denotes the
A-invariant subspace spanned by the eigenspaces of A corresponding to its eigenvalues
in Cg; (A) is similarly defined with respect to Cg. tr(A) is the spectrum of A and
O’g(A) := o’(A) f’) Cg. The kernel (null space) is denoted by Ker and the image (range
space) by im.

Finally, for the linear system k Ax +Bu, y Cx, with state space T, we use
(A lim B) for the reachable subspace, i.e. the smallest A-invariant subspace containiflg
imB, and (Ker CIA) for the nonobservable subspace, i.e. the largest A-invariant
subspace contained in Ker C. Finally we will be considering (almost) (A, B)-invariant
and controllability subspaces [2], [3], [4] freely; the relevant facts and results are
summarized in Appendix D. For a subspace of , *(6e), 7/’* (), ’() denote
respectively the supremal (A, B)-invariant, -almost-(A, B)-invariant, and
almost-invariant subspace contained in , while *(), *(), (S) denote the
similarly defined (almost) controllability subspaces. The subspace g*() is the
supremal stabilizable (relative Cg) subspace contained in 6e, i.e.

7/’g* (6) sup {7/" c 6el=lK such that (A +BK)V c 7/’, r(A +BK) Cg}.

g*-(6e) is similarly defined relative g.
2. Robust stabilization of stochastic systems.
2.1. Problem statement. Consider the system described by the Ito stochastic

differential equation (2) where, without loss of generality, the Brownian motions/i
are assumed to be zero mean and independent:

E[d[3,(t)] 0 Vt, Vi 1,

E[d[3,(t)2] dt Vi 1,

E[dfl,(t)dfl(t)] O



354 JACQUES L. WILLEMS AND JAN C. WILLEMS

In other words,/3i is a standard Wiener process. In (2) x R" denotes the state,
u q/= R" denotes the control input. The constant matrices A, B, F/have appropriate
dimensions. The positive factors tri indicate the intensities of the disturbances. The
symbol E denotes expectation.

We will consider the stabilizability of (2) by means of a time-invariant memoryless
state feedback law

(3) u(t) =Kx(t)

with K a constant matrix of appropriate dimension. Then (2) reduces to

(4) dx(t) (A +BK)x(t) dt + tr,F,x(t) d[3,(t).

For this closed loop system, the mean square asymptotic stability property expressed
by the definition below, will be analysed"

DEFINrrION 1. System (4) is said to be mean square asymptotically stable if for
all initial states x (0)

lim E[x (t)x (t)T] O.

This leads to the following stabilizability definitions"
DEFINrrION 2. System (2) is said to be perfectly robustly stabilizable if there exists

a feedback control (3) such that (4) is mean square asymptotically stable for all noise
intensities

DEFINrrION 3. System (2) is said to be robustly stabilizable for all noise intensities
if for all bounds {sl,’’’, Sk}, there exists a feedback control (3) such that (4) is mean
square asymptotically stable for all noise intensities satisfying

O’i Si (i 1).

The property expressed by Definition 3 is somewhat weaker than the property
expressed by Definition 2 in that the feedback matrix K may depend on the bounds
si; some entries of K may increase without bound as some of these bounds si tend to
infinity.

2.2. Stability of uncontrolled systems with state-dependent noise. In order to
derive stabilizability conditions for (2), we first discuss criteria for mean square
asymptotic stability of the stochastic system described by the Ito differential equation

(5) dx (t) Ax (t) dt + , o’iFix (t) d[3i(t).

This system is autonomous (in the sense that there are no exogenous inputs), but it
contains a state-dependent noise term. The second moment matrix

M(t) := E[x(t)x(t)T]
satisfies the matrix differential equation

(6) /I)/(t) AM(t) +M(t)Ar + , tr2F,M(t)FS

which evolves in the cone of nonnegative definite symmetric (n n) matrices. The
mean square stability properties of (5) hence depend on the eigenvalues of the linear
mapping L on the linear space of symmetric (n x n) matrices, defined by

(7) L(M):=AM+MAr + y,. tr2iFMFf.
/el
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The problem considered here is the asymptotic stability of (7) for all noise intensities
tri. This may be resolved by introducing the subspaces o//, defined recursively by the
following algorithm"

o := {0),

i!

i.e. 1. is the maximal A-invariant subspace contained in nF-_. It is easily seen
by induction that the subspaces . are nested, i.e., ?,V.+ 7.. Hence

exists and satisfies

This limit is obtained monotonically in a finite number of steps
"THEOREM 1. The following conditions are equivalent"

(i) /oo ,T and tr(A) c Cg.
(ii) System (5) is mean square asymptotically stable for all {tri}, 1.
(iii) In a suitable basis the matrices A andF (i 1) take the block triangular form"

All A12 Alq

A= 0 A3q Fi

0 Aoo
and o’(Aii) Cg for q.

0 V/12 ,q]0 Fi,2c
0 F3qjo

(iv) The Lie algebra generated by the set of matrices {A, F; 1} (i.e. the smallest
Lie algebra containing this set) is solvable [7]; the matrices Fi are nilpotent, and
o-(A) c Cg.

Proof. The equivalence of (ii), (iii), and (iv) has been shown in [1]. The elegant
and computationally feasible geometrical condition (i) is proved in Appendix A. [3

The geometrical criterion (i) turns out to be very well suited to attacking the
stabilizability problem of system (2). This is the subject of the next section. The
possibility of writing {A, F;i i} in block triangular form is related to the Jordan-
H61der theorem and has been studied in the context of constructing canonical forms
for bilinear systems [8]. In fact, through condition (i) Theorem 1 yields a simple test
for generalization of the question when a family of nilpotent matrices can be simul-
taneously triangularized. The solution of this problem is known as Engel’s theorem
[15]. It is concerned with a basic problem in the theory of Lie algebras, and it has
implications in the theory of associative algebras and quivers.

The condition of the above theorem can be simplified if there is only one stochastic
element (1 1) with the corresponding F1 of rank one: F1 --bc, where b is a column
vector and c a row vector; in this case (5) becomes:

dx(t)=Ax(t) dt +trlbcxx(t) d(t).
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The condition for mean square asymptotic stability for all rl is that the matrix A be
Hurwitz (i.e. r(A)c Cg) and

or equivalently

im b C (Ker c IA).
This condition is equivalent to

c exp (At)b 0

or

Vt E[,

c(Is-A)-lbz=O VsEC.

This decoupling condition [2] is an obvious sufficient condition also for FI =BC of
any rank. However, if the rank of F is larger than one, then the decoupling condition
is in general much too strong.

2.3. Feedback stabilizability of stochastic systems. The results of 2.2 will now
be used to analyse the perfect robust stabilizability of (2). This system is perfectly
robustly stabilizable if and only if there exists a matrix K such that the matrices
{A +BK, Fg;i 1} satisfy the conditions of Theorem 1. This condition can be made
explicit by means of the concept of (A, B)-invariant subspaces and stabilizability
subspaces (see Appendix D). To derive the criterion the following definition is required:

DEFINITION 4. Consider the subspace *7/’g,o defined by the following recursive
algorithm"

,0 := {0},

g, := lim 7/" g,.

As was the case for o/,, this limit is attained monotonically in a finite number of steps.
THEOREM 2. System (2) is perfectly robustly stabilizable if and only if *7/’g, g.
Proof. (i) The condition is necessary. Suppose there exists a feedback matrix K

such that the conditions of Theorem 1 are satisfied with respect to the system

dx(t) (A +BK)x(t) dt + , oiFgx(t) d[3i(t).
il

Then

i!

yields g’ . Moreover, o-(A +BK)c Cg. We claim that g*,. Cj. This is easily
proved by induction. It is obviously true for ] O. Moreover

7/’g, ./C W, which proves the necessity of theyields the inductive step. Hence *
condition.
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(ii) The condition is sufficient. To prove the sufficiency of the condition by means
of Theorem 1, we need to show that there exists a single feedback matrix K such
that for all/’ the (A, B)-invariant subspaces 7/*g,j become (A + BK)-invariant subspaces
with the properties required by Theorem 1, in particular stabilizability and inclusion
of *,. in iF *7/g,.-1. This is not trivial, since we have no guarantee that the
(A, B)-invariant subspaces can be made (A+BK)-invariant by means of the same
matrix K (independent of f). This feature is called compatibility of the (A, B)-invariant
subspaces 7g,. (see Appendix D). In general, compatibility is difficult to analyse. It
is not hard to show that the (A,B)-invariant subspaces *.i are compatible as
(A,B)-invariant subspaces, because they are nested (7/g*,i c 7/’g*,.+1). However, here
we have to prove in addition that they are also compatible with respect to the
stabilizability and inclusion properties. Let the state space be partitioned as

where p is the integer such that 7/g*,, W, *g,,-1 # T, and where the subspaces . are
chosen in such a way that for all f p,

(8)

If the conditions of the theorem hold, then for all f p there exists a feedback matrix

K. such that tr(A +BKi) Cg, and

l/’g*,i ( (3 FT * ]A +BKi}
iei

Let K. be defined by

where xi is the component of x in i. Then we check that the feedback law
2 pK*x Klx -1" K2x2 +" +Kpxp

makes the subspaces //’g*,i (A + BK*)-invariant, and such that 7/’g*.i = fq,F-a *g,j--1.
In a basis compatible with the above partitioning of the state space, A* := A +BK*
and F have hence the form:

0

A2o 0
A* A22

Fi

L 0 A,o 0

Then there exists a transformation of the input and of the state, which does not change
the structure of A* and Fg (by redefining 2, ’, , such that (8) remains true), but
which transforms the input matrix B into the form [9, pp. 543-544]:

B1 0 0
o

0

B2

0 B

Since g*,l is a stabilizable (A, B)-invariant subspace, the pair (All, B) is stabilizable;
there hence exists a partial feedback of the state KlX such that tr(A11+BK) Cg.
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Also ///’g2 is a stabilizable (A, B)-invariant subspace. Hence the pair

A22 B2
is stabilizable. This, however, implies the stabilizability of the pair (A22, BE). Therefore
a feedback KEX2 exists such that o’(AEE+BEK2) CA. Proceeding in this fashion all
subspaces gi are stabilized without altering the structure of A* or F.

From the definition of *g, it is immediately clear that an equivalent statement
to the criterion of Theorem 2 is as follows"

COROLLARY 1. System (2) is perfectly robustly stabilizable if and only iffor some
finite integer k

(9)

Proof. Condition (9) implies

and hence

Y. im Fi 7/’g,k.

/el

Here also the condition can be simplified if there is only one stochastic element
and the corresponding matrix F1 has rank one"

(10) dx(t)=[Ax(t)+Bu(t)]dt+trlblclx(t)d[31(t).

Then the stabilizability condition becomes

*,2
or

im Fx im b //’gX Og (Ker c 1).

This condition implies the existence of a feedback matrix K such that A +BK is
Hurwitz and c(Is-A-BK)-lbl vanishes identically. The condition of Theorem 2 is
then equivalent to the criterion for disturbance decoupling with stability from the
disturbance input imF or im b to the output with KerF or Ker c. In general,
however, the condition of Theorem 2 is much weaker than the disturbance decoupling
requirement.

We notice that the criteria of Theorem 2 or Corollary 1 are also sufficient for
feedback stabilizability in cases where:

(i) the stochastic disturbances are zero-mean but not necessarily white, provided
they have finite second order moments which are uniformly bounded in time,

(ii) stabilizability with respect to other moments than the second moment is
considered.

2.4. High-gain stabilizability of stochastic systems. In this section it is investigated
to what extent the criterion of 2.3 can be relaxed if only stabilizability of system (4)
is required for all o-; this means that for any {cri} a stabilizing feedback matrix K must
exist, such that

(11) 2(A +BK)M +M(A +BK)’ + , O" FiMFi
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is asymptotically stable in the cone of nonnegative definite (n x n) matrices. Since the
matrix K may depend on the noise intensities cri, some elements may go to infinity
as the noise intensities increase without bound. Then there does not exist a single
feedback matrix which stabilizes (4) in the mean square for all noise intensities.
Considering the criterion derived in 2.3, one might be tempted to conjecture that
for this type of stabilizability the conditions of Theorem 2 may be relaxed by replacing

(A, B)-invariant subspaces by almost (A, B)-invariant subspaces [4],
Cg by Cg.

The notions of almost invariant subspaces have been introduced in [3] and
further worked out in [4]. The relevant facts from that reference are summarized in
Appendix D.

It is unlikely that the above conjecture is correct because of the high gains involved
in the transfer function which results when the gains o-i --> o. The criterion of Theorem
3 below is not as strong as the above conjecture, but nevertheless it yields a useful
relaxation of the conditions of Theorem 2; indeed in the last step (A, B)-invariance
may be replaced by almost (A, B)-invariance and Cg by Cg.

THEOREM 3. Let the subspaces 7/’g*,i be as defined in 2.3. Let ’ (5) be as

defined above. Then system (2) is robustly stabilizable for all noise intensities if the pair
(A, B) is stabilizable and

(12) imFi //’(n F)--lCg*.o)+t(N F-lT/’g*,oo).
ii i! ii

Proof. From the definition of the subspaces 7/’g*,i, it follows that there exists a
constant feedback matrix K such that in an appropriate basis and with the control

u(t)=Kx(t)+v(t)

the system representation (2) takes the form

A1,1 A1,2 Alq+l

dx(t) i A2,2 A2’q+l.. x(t) dt+ v(t) dt

0 Aq+lq+

B1

0 0
fi, l,q fi, l,q +

Fi,2,q Fi,2,q +

0 0 0 fi,q,q+
_0 0 0 F.o+,q+_

x (t) dfli(t)

o//.g, The conditions of the theorem implywith o’(Ai,i) (Jig for s q, and with
, o//,g,q.,

that the pair (Aq/l,q/l, Bq/l) is stabilizable and that

Y’. imFi,q+l,q+l //"ff (i Ker Fi,q+l,q+l) +l(il Ker Fi,q+l,q+l)
ii

where and 7/’ are taken relative to (Aq+I,+I, Bq+I). Corollary B.2 and Lemma
A.3 from the appendices then show that the reduced order system

(13) dxq+l(t) =Ao+l,q+lxo+l(t) dt +Bq+lV(t) dt + , triFi,+l,o+xq+l(t) di(t)
i!
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is robustly stabilizable for all noise intensities. The remainder of the proof of the
theorem now easily follows from the triangular structure of the system equation.

Theorem 3 is particularly interesting in the special case considered in (10), where
there is only one stochastic element and the corresponding matrix F1 has rank one.
Then the criterion for robust stabilizability can be derived from the criterion for
perfect robust stabilizability from 2.3 by just replacing (A, B)-invariance by almost
(A,B)-invariance and Cg by Cg" system (10) is robustly stabilizable for all noise
intensities if and only if (A, B) is stabilizable and

im b 7/’ (Ker c 1) -- (Ker c 1).

Suppose in addition that there is only one input: B is a column vector which is denoted
by b. Then the perfect robust stabilizability and the high-gain stabilizability conditions
for system (10) can be expressed in terms of the transfer function

F(s) := Cl(IS -A)-lbl
Cl(IS -A)-lb

We assume that (A, Cl) is a detectable pair [2]; this entails no loss of generality, since
the stabilizability of the pair (A, b) implies that there exists a feedback vector k such
that (A + bk, c 1) is detectable. System. (10) is perfectly robustly stabilizable if and only
if (A, b) is stabilizable, F(s) is strictly proper, and, after cancellation of common
factors, F(s) has no poles with nonnegative real parts. System (10) is robustly stabiliz-
able for all noise intensities if and only if (A, b) is stabilizable and, after cancellation
of common factors, F(s) has no poles with positive real parts.

3. Robust stabilization of uncertain deterministic systems.
3.1. Problem formulation. In this section we consider the deterministic counter-

part of the problem analysed in 2. Here the question is: When can a system with
an unknown nonlinear and/or time-varying elementcan be stabilized bymeans of a linear
state feedback regulator? In 1 we introduced the class of systems (1) which we have
in mind. However, this equation may be written in the following form, which makes
it more alike to the systein considered in 2"

(14) 2(t)=Ax(t)+Bu(t)+ E fi(x(t), t)Fix(t).
i!

This formulation has (1) as a special case. To see this write the nonlinear term in (1)
as

BiFi(x, t)Ci E [Fi(x, t)]r,s[Bi]r[Ci]s

where [Be]r denotes the rth column, [Ce]s denotes the sth row, and [Fe(x, t)]r,s denotes
the (r, s) entry of Be, Ce and Fi(x, t), respectively. The system formulation (14) also
has as a special case the system

(15) 2(t) =nx(t)+Bu(t)+ E E BiiFi(x(t), t)Ciix(t),
ik i!

which is perhaps the most logical starting point for the class of robustness problems
considered here.

DEFINITION 5. We say that (14) is perfectly robustly stabilizable if there exists a
feedback law (3) such that the null solution of

(16) 2 (t) (A +BK)x(t) + E fi(x(t), t)Fix(t)
ii
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is asymptotically stable in the large for all bounded nonlinear and/or time-varying
gains fi(x, t). We assume throughout that the gains fi(x, t) are sufficiently smooth, e.g.
Lipschitz, such that the existence and the uniqueness of the solution of (1) is ensured.
We say that (14) is robustly stabilizable for all uncertain gains if for any set {mi; 1},
there exists a control law (3) such that the null solution of (16) is asymptotically stable
in the large for all fi(X, t) satisfying Ifi(x, t)l < mi.

Note again that in the second formulation K may depend on the bounds mi,

while in the first formulation this is not possible. The results which will be obtained,
actuallyimply the stabilizability of the system with the structure of (14) in which the
nonlinearity fi is any 2-input/output stable operator. The robust stabilizability prob-
lem for the related but more restricted class of systems

(15’) 2(t)=Ax(t)+Bu(t)+Gf(Hx, t)

has been studied previously by Molander [5] in essentially the same setting. Without
actually introducing ahnost invariant subspaces he does obtain results which are
important special cases of ours. Specifically he shows that (15’) is robustly stabilizable
if the system (A, B, G, H) may be stably almost disturbance decoupled in the 5fa-sense.
This result is a special case of our Theorem 6; it requires that

im Gc 7/’g* (Ker H) + (Ker H).

A similar result has been obtained independently in [4, Thm. 17].

3.2. Criterion for perfect robustness. In order to derive a criterion for robust
stabilizability we first consider the uncontrolled system

(17) 2(t)=Ax(t)+ _, fi(x(t), t)Fix(t)
i!

and investigate when the null solution of this system is asymptotically stable in the
large for all bounded functions fi(x, t). Our sufficient conditions are:

(i) the matrix A is Hurwitz;
(ii) the matrices Fi are nilpotent;
(iii) the matrices {A, Fi, l} can be transformed to upper block triangular form

by means of the same similarity transformation.
Expressed geometrically this yields"

THEOREM 4. The null solution of (17) is asymptotically stable in the large for all
bounded gains fi(x, t), if the matrix A is Hurwitz, and 14/’ g, with 74/’ defined
preceding Theorem 1.

This result follows immediately from Theorem 1. By means of Theorem 4 and
the ideas used in proving Theorem 2 from Theorem 1, we obtain"

THEOREM 5. Let *Ug, be as in Definition 4. Then (14) is perfectly robustly
stabilizable if *

The condition of Theorem 5 is of course equivalent to Yii im Fi c g*,q for some
integer q. The criteria of Theorems 4 and 5 can be simplified in the cases

(18) (t) =Ax(t)+Bu(t)+B1Fl(X(t), t)Cx(t),

in which case the criterion requires that the system

2 (t) Ax (t) +Bu (t) +Bld (t), z (t) C1x (t)

should be disturbance decouplable with internal stability by state feedback [2]. In the
more general situation

2(t)=Ax(t)+Bu(t)+ E BiFi(x(t), t)Cix(t),
i!
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the criterion requires that the system

A(t)=Ax(t)+Bu(t)+ Bdg(t), zi(t)=Cx(t), el,
il

should be strictly triangularly disturbance decouplable with internal stability in the
sense that there should exist a feedback K with r(A +BK)c Cg such that in the
closed loop system

(t) (A +BK)x(t)+ Y Bidi(t), zi(t)=Cx(t), el,

there should exist a permutation of such that the resulting transfer function
(dl, d2, ", dk)+-(zl, z2, , zk) is strictly upper block triangular.

3.3. Criterion for robustness for all uncertain gains. As in 2.4, it is tempting
to conjecture from Theorem 5 that robustness for all uncertain gains would be
achievable under the conditions of Theorem 5, but with almost (A, B)-invariance
replacing (A, B)-invariance and Cg replacing Cg. However, since the stabilizability
condition in this case comes down to impulse response quenching in the -sense, it
is not possible to replace Cg by Cg (see the example at the end of Appendix C).
Nevertheless it is possible to use almost (A, B)-invariant subspaces in the last step of
the algorithm of Theorem 5.

THEOREM6. Let the subspace 7/’g.oo* be as defined in 2.3 and let
(ff]ieFY [/’g, be as definedpreceding Theorem 3. Then (14)isrobustly stabilizable

for all uncertain gains if (A, B) is stabilizable and

(19) Y imF c 7/’g, + (q F-l//’g*,oo
i! i!

Proof. The proof of this theorem follows exactly the same route as the proof of
Theorem 3 except where Lemma A.3 of Appendix A was used. Here instead Proposi-
tion C.1 of Appendix C yields the result.

Note that condition (19) could equivalently be expressed as

(20) Y im F/c 7/" fq F [/’g, + 1"] F YAg*,
i! \/el i!

This shows more clearly the relationship between Theorems 3 and 6.
It is straightforward to specialize the result of Theorem 6 to the case where, as

in equation (10) for the stochastic case, there is only one nonlinear term; the corres-
ponding matrix F1 has rank one, and there is only one input:

(21) (t) Ax (t) + bu (t) +f(x (t), t)bac lx (t)

where the same notation as in (10) is used, and b is a column vector. Suppose (A, cl)
detectable and (A, b) stabilizable. This system is perfectly robustly stabilizable if the
transfer function F(s), defined in {} 2.4, (i) is strictly proper and (ii), after cancellation
of common factors, has only poles with negative real parts. It is robustly stabilizable
for all uncertain gains if (ii) holds.

The conditions of Theorem 3 are in general not sufficient to guarantee robust
stabilizability for all uncertain gains in the deterministic case. This distinction is an
intrinsic one and may be illustrated by means of (21) and

(22) dx(t) =Ax(t) dt +bu(t) dt +o’lbClX(t) dl(t).
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Robust stabilizability of (22) for all noise intensities requires for any e > 0 the existence
of a feedback vector k such that r(A + bk) c Cg and

w(t)2 dt

where

w t++Cl exp [(A +bk)t]bl,

H: s ++cl(Is-A-bk)-lbl.
On the other hand, robust stabilizability of (21) for all uncertain gains requires

I0 Iw(t)l or supdt<=e [H(]’)I <_- .
Take for example

1’ bl= 0’ Cl----[0 1].

Then system (22) is stabilizable for any noise intensity. However, (21) is not perfectly
robustly stabilizable. Even for linear time-invariant gains f(x, t)= k, there does not
exist a feedback strategy which stabilizes the system at the same time for all gains
satisfying [k[< kmax if kmax > 1. This is in agreement with the above reasoning. Indeed,
taking

u (t) kx (t) [-a -fl ]x (t)

yields the closed loop transfer function

H(s)=
s +(l+a +/3)s +a

The condition r(A + bk) c Cg requires a > 0, 1 + a +/ > 0. Now ]H(0)[ 1 cannot be
influenced by a and/, whereas

1
IH0"o)l &o =2(1 +a +/3)2rr

can indeed be made arbitrarily small.

4, Discrete-time systems. A similar analysis can be performed on the stabilizabil-
ity of the discrete-time stochastic system

(23) Xt+l Ax, + But + Y o’iFixtfit
i!

where the scalar processes fit are zero mean uncorrelated normalized white noise
processes, and with respect to the robustness of the nonlinear discrete-time determinis-
tic system

(24) Xt+l Axt +But + fi(xt, t)Fixt.
i!

It follows from Appendix A that the criteria for perfect robust stabilizability of
(23) and of (24) are exactly the same as in the continuous-time case, provided of
course Re (s) < 0 is replaced by [z[< 1. However for robust stabilizability of (23) for
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all noise intensities or robust stabilizability of (24) for all uncertain gains, it is not
possible to relax the conditions as much as in the continuous-time cases. For (24) in
fact no relaxation has been obtained. For robust stabilizability for all noise intensities
of (23) it is possible to replace the condition Iz l< 1 by Iz I<= 1 in the last step.

The distinction between discrete-time and continuous-time systems can be seen
as follows. The feedback strategy u (t) Kx (t) stabilizes the stochastic continuous-time
system (2) if and only if the linear mapping

(25) M+--L(M) := (A +BK)M+M(A +BK)7" + E rF,MF
il

has only eigenvalues with negative real parts. The feedback strategy ut Kxt stabilizes
the stochastic discrete-time system (23) if and only if the linear mapping

(26) M+-L(M) := (A +BK)M(A +BK)T + E riF,MF
il

has only eigenvalues with magnitude smaller than 1. The eigenvalues of Ld(M) are
larger than the eigenvalues of the mappings

2 TM-Lg(M) := o’gFgMFg.

The eigenvalues of Li(M) are rh(F)h(Fi), where h(Fi) and h(Fi) are arbitrary
eigenvalues of F. Hence the existence of a stabilizing feedback for all noise intensities
requires that the matricesF have only zero eigenvalues. This is also true if the feedback
matrix K is allowed to depend on the noise intensities {rg}, hence for the property of
robust stabilizability for all noise intensities. A similar conclusion is not valid however
for continuous-time systems.. ExamlMe. In this section the application of the criteria developed in 2, 3,
and 4, is illustrated on the example [2] of a second-order system with the data:

A=
0

b= F=bc, b= c=[a 1].

The continuous-time and discrete-time, stochastic and deterministic, cases will be
examined"

(27)

(28)

(29)

(30)

dx(t) =Ax(t) dt +bu(t) dt +rxFxx(t) da(t),

A(t) Ax(t) + bu(t) +fl(X(t), t)FlX(t),

Xt+l =Axt + but +o’lFlXtflt,

Xt+l Axt + but +f(xt, t)FlXt.

For the continuous-time case we obtain"

(i) a < 0: * * */’g, {0}, /’g (F-1,) ={o},

(ii) a 0:

(iii) a>0, a#.5"

(F-1 *7/’g,) im b,

, , , [1]V’g, {0}, 7/’r (F-1g,) im
__0

b* (F]-lg,) im b,

g, im ’(F-g, o) im b,
--a

(iv) a 5" *"--. c/’ g,
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For the discrete-time case the results are:

(i) a =.5’

(ii) lal< 1,

(iii) [al 1"

(iv) [a[>l’

Hence the stabilizability criteria are derived
(i) The stochastic continuous-time system (27) is perfectly robustly stabilizable

if a .5. It is robustly stabilizable for all noise intensities if a _-> 0.
(ii) The deterministic continuous-time system (28) is perfectly robustly stabiliz-

able if a .5. It is robustly stabilizable for all uncertain gains if a > 0.
(iii) The stochastic discrete-time system (29) is perfectly robustly stabilizable if

a .5. The same condition holds for robust stabilizability for all noise intensities.
(iv) The deterministic discrete-time system (30) is perfectly robustly stabilizable

if a .5. No relaxation of this condition is obtained for robust stabilizability for all
uncertain gains.

Appendix A. The first part of this appendix is relevant to the proof of Theorem
1. We consider the following linear mappings in the space of (n xn) symmetric
matrices:

(A.1) M>LI(M) :=AM+MAT + Z o’iFiMFi
i=l

(A.2) M ++L2(M):= o’2Fi exp (Ar)M exp (A) dr FL

(A.3) M+--L3(M):=AMA T + o’iFiMFi
i=1

(A.4) M+-+L4(M):= Y o’Fi E AiMAriF,
i=1

where L2 is only defined if A is a Hurwitz matrix, i.e. r(A)c Cg, and where L4 is
only defined if A has only eigenvalues smaller than 1 in modulus. Since L2 and L4
map the cone of nonnegative definite matrices into itself, it follows that the largest
eigenvalue of L2 and L4 is real and positive, and that it increases with increasing
0"17 0"27 O’l.

LEMMA A.1. (i) The linear mapping L has all its eigenvalues in Cg if and only
if the matrix A is a Hurwitz matrix and the mapping L2 has only eigenvalues with
modulus smaller than 1.

(ii) The linear mapping L3 has all its eigenvalues inside the open unit disk of the
complex plane if and only if all eigenvalues of the matrix A and of the mapping L4 are
smaller than 1 in modulus.

Part (ii) follows from an earlier paper [10]; part (i) is proved in a similar fashion
and is left to the reader. The lemma can also be obtained using the analysis of [11].
Lemma A. 1 yields the following theorem"



366 JACQUES L. WILLEMS AND JAN C. WILLEMS

THEOREM A.1. (i) The mapping L1 has all its eigenvalues in Cg for all {eri; e !}
if and only if the eigenvalues of the mapping L2 vanish for some nonzero values of
erl, , err. In this case all eigenvalues ofL2 vanish for all {eri; e l}, i.e. La is nilpotent;
moreover, the eigenvalues ofL are independent of {ere; e l}.

(ii) The mapping L3 has all its eigenvalues in the open unit disk g :={z e CI]zl < 1}
for all {eri; e l} if and only if the eigenvalues of the mapping L4 vanish for some
nonzero values of er, , erl. In this case all eigenvalues ofL4 vanish for all {eri; e l},
i.e., L4 is nilpotent; moreover, the eigenvalues ofL3 are independent of

Let the subspaces o/. and 74+ be defined as in 2.2, preceding Theorem 1.
LEMMA A.2. The following statements are equivalent:

(i) 4/’+ ,
(ii) La is nilpotent,
(iii) L4 is nilpotent.
Proof. Only (i):>(ii) is proven; (i) => (iii) is completely similar. We need to prove

that L(M) 0 for allM =Mr and m >=n(n + 1)/2.
(i) The condition is sufficient. Let x e /4/). Compute Lz(xxT). Because of the

definition of 74#., we have

and

exp (At)x e

Fi exp A x e lI/’. (Vi el).

Hence

L2(xxT) ’. yky [
k

with all yk e 74._1. Repeatedly applying L2 yields

L(xx T) =0
for a _->f. This proves the sufficiency of the condition since any symmetric matrix can
be expressed as the linear combination of dyads of the form xx 7".

(ii) The condition is necessary. If 7g’+ # W, then

kl/’+=-(i,Fl[+lA)
Let x*e and x* 7g+. Consider La(x*x*); from the above property of /’+ it
follows that Fi exp (At)x* e tt/’+ cannot be true for all and all t. Hence

TL2(x*x*’r) ytyt,
k

where at least one of the vectors yg 7///’+. Repeatedly applying L2 yields that L2(x *x .T)
cannot vanish for any integer c.

The second part of this appendix is relevant to the proof of Theorem 3.
LEMMA A.3. For all {F e l} and {Ki <; e l} there exist bounds {aij > 0; i, ] e I}

such that system (5) is mean square asymptotically stable for all noise intensities
{erileri <-Ki} and all system matrices A such that er(A) c Cg and

Io llFi exp (At)F.II2 dt < ii (i,] el).
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Proof. The largest eigenvector A* of the mapping L2, defined by (A.2), corres-
ponds to a nonnegative definite eigenvector M* which, for nonzero A *, is of the form

M*= E FNr.
jel

Let M. denote F.N.Ff. We have/V. _-> 0, M. _-> 0,/" e 1. The eigenvalue equation

A’M* i o’iFi exp (A’)F.N.JZ exp(ATr)d,rFT

leads to

---i! Io + T +T TA’M* o’Fi exp (Ar)F./F.N.F F exp (A) drF/

whereF[ denotes the generalized inverse [12, pp. 142-144] of the matrix F.. This yields

A’M* 2 o’/Fi f0 exp (A-)F..F+M..F+rFT,.. ,.i exp (ATr) drF
i!
jei

and

Il IIM*I[- E tr/2F[ 2 f life exp (A)F.II= d IIM.II,
ii

The matrix M* can be taken to be of unit norm; since M*=M. and since the
matrices M. are symmetric and nonnegative definite, then ]]MII--< 1, ] 1. Hence the
eigenvalues of the mapping L2 are smaller than 1 in modulus if the constants cq are
sufficiently small.

Appendix B. In this appendix the following problem is investigated" let A, B,
G, H, respectively, be (n xn), (n xm), (n xq), (p xn) matrices; we want to state
conditions on these matrices such that for all e > 0 there exists an (mx n) feedback
matrix K such that

(i) r(A +BK) = C,

(ii) Io IIw(t)ll= dt <= e

where

WK" R + +--H exp [(A + BK)t]G.

This property is called impulse response quenching in the L2-sense with internal
asymptotic stability. It is well known that a constant K exists such that (i) is true and
WK 0 if and only if

im G c ?/’* (Ker H).
If it is only required that (ii) hold, i.e., that WK can be made arbitrarily small in the
Sf2-sense, then one could expect two refinements"

(i) 7/’*g(Ker H) may be replaced by 7/’ff (Ker H) since by a small feedback the
eigenvalues can be shifted from the imaginary axis into the left half plane.
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(ii) im G may be allowed to have a component in Y * (Ker H), since in that space
it is possible to make WK arbitrarily small by high gain feedback [4].

The following result is indeed obtained.
THEOREM B.1. Impulse response quenching in the 2-sense with internal

asymptotic stability is possible if
(i) (A, B)is stabilizable (relative Cg),

(ii) im G = Y * (Ker H) +V (Ker H).
The proof of this theorem proceeds via a number of propositions and lemmas"
PROPOSITION B.1. Assume that (A,B) is stabilizable (relative Cg) and that

Xo F (Ker H). Consider now

J(xo):=inf f [ly(t)ll dt
Jo

subfect to: Ax +Bu, y Hx, x (0)= Xo, u 2(0, oo), x 2(0, oo). Then J(Xo)= O.
In order to prove this proposition, we start with a lemma.
LEMMA B.1. Assume (A, B) controllable and o.(A) {s CIRe (s) 0}. Then

where

lim W-1(0, tr) 0

t
exp (-A do’.W(0, t):= exp (-AO.)BB

Proof. It suffices to prove that aT"W(O, t)a =Mtllall2 with lim,rM =oo. By
controllability of (A, B) there is a 6 > 0 such that

B T (-a o’)a d _-> Ila ,exp

Now, since r(A)= {s C[Re (s)= 0}, the solutions of =-Ax have the property
that there exists T > 1 such that IIx(T)ll=_->llx(0)ll= (to see this, assume A in Jordan
form" if A is semisimple, it is immediate, otherwise it follows from some simple
estimates). This yields

NT

Io liB (-Ao’)a = d >-_ N6 [la 2.exp

This yields the desired growth of W(0, t).
LEMMA B.2. Assume (A, B) controllable, Xo given and o.(A) {s C]Re (s) 0}.

Then, for all e >0, there exist T >0 and u =2(0, 0(3) such that the solution of
ax +Bu, x (0) Xo, satisfies x (T) 0 and Ilu IIe2o.) <-- e.

Proof. Consider, for tr fixed, J(xo):=min’orllu(t)llZdt subject to =ax +Bu,
x(O) Xo, x(tr) 0. It is well known (see [13, p. 137]) that J(xo) xW-a(O, tf)Xo. The
result follows then from Lemma B.1.

Proof of Proposition B.1. Since (A, B) is stabilizable (relative Cg), there exists K
such that

(A +BK)?# (Ker H) F (Ker H),

o.[(A +BK)IV (Ker H)] Cg,

o.[(A +BK)(mod 7# (Ker H))] c Cg.
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By suitably choosing the basis, this yields

=2, A+BK=[Ao
with

o-(A 1) {s ClRe (s) 0},

A021

B1] H [0 H2].o’(A2) c Cg, B
B2

Furthermore, since (A, B) is stabilizable, (A1, B1) will be controllable. From Xo
7/’’ (Ker H) it follows that H exp [(A + BK)t]Xo vanishes for all t. Lemma B.2 implies
that for all e >0, there exists u and T>0 such that x(0)-xo, and
x (T) T2. This yields

=H2 J0 exp [A2(t-z)]B2u(r) dry(t)

which, since r(A) c Cg, is the convolution of an l-kernel {t --exp (A2t)B} with an
arbitrary small u 2(0, ). Hence y is arbitrarily small in the 2-norm. It is also
immediate that the corresponding x 2(0, ). This yields J(xo)= 0, as desired. [3

PROPOSITION B.2. Assume Xo ’ (Ker H). Consider now J(Xo) :=
inf Ily (t)ll dt, subject to 2 -Ax +Bu; y nx; x(O)= Xo, u .2(0, c), x .2(0, c).
Then J (Xo) O.

Proof. That o [[y (t)ll dt vanishes without the constraints u s 2(0, c) and x s
(0, ) follows immediately from [4, Thm. 10]. However, it is easily seen by
examining the proof that the u and x used for showing that this infimum is zero are
indeed 2-functions. This yields the proposition. [3

Proof of Theorem B.1. Consider the least squares control for the system 2
Ax +Bu with cost functional, with e > 0

Io (llull / llxll=) / llHxll dt.

Let J (Xo) be the optimal cost with Xo x(0) and u Kx the optimal control law.
From Proposition B.1 it follows that lim_,o J (x0)= 0 for Xo 7/’ (Ker H) and from
Proposition B.2 this follows for x0 s* (Ker H). Since (A, B) is stabilizable (relative
Cg), u =Kx is an asymptotically stabilizing control law with J(xo)->0 Ilnxll dt
arbitrarily small for e $0 and XoS(KerH)+TA(KerH). This yields the
theorem. 3

COROLLARY B.1. Simultaneous quenching of the impulse responses

Hi exp [(A +BK)t]Gi (i k, ] 1)

in the .e-sense, with internal asymptotic stability (by means of a common feedback
matrix K) is possible if

(i) (A, B) is stabilizable (relative Cg),
(ii) Yi, im G. C : (1" ik Ker Hi)+ f’ (1’- ik Ker Hi).

This corollary is an immediate consequence of Theorem B. 1. The next result follows
directly from Corollary B.1 and Lemma A.3 in Appendix A.

COROLLARY B.2. Consider the linear mapping

M-LK(M):= E o’Fi f exp [(A +BK)z]M exp [(A +BK)rz]dzFS
i! .0
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in the space of (n n) symmetric matrices. Then for all {0"i} there exists a matrix K such
that the eigenvalues ofL: (M) are smaller than 1 in modulus if

imFi c((q KerFi)+ 7/’((q KerF/).
i! i! i!

Appendix C. In this appendix a question similar to that in Appendix B is con-
sidered, but now with respect to the fl-norm. With the same notations we say that
impulse response quenching in the l-sense with internal asymptotic stability is possible
if for all e > 0 there exists a feedback matrix K such that

(i) r(A +BK) Cg,

(ii) Io Ilw(t)lldt <= .
The obtained condition is slightly stronger than the criterion of Theorem B.1; it is
expressed by the following result:

THEOREM C.1. Impulse response quenching in the l-sense with internal
asymptotic stability is possible if

(i) (A, B) is stabilizable (relative Cg),
(ii) im G c (Ker H) + Vg* (Ker H).
Proof. (i) It may be shown that there exists an (A, B)-invariant subspace 7/’1 and

a matrix K1 such that (A +BK1)V1 V1, tr((A +BK1)IV1)c Cg, and

* (Ker H) + 7/’g* (Ker H) (KerH) 7/’1.

(ii) By the results of [4, Thm. 12] there exists an (A,B)-invariant
and a matrix K such that -,o ’ (Ker H), (A +BK)
r((A +BK)1) Cg, and

Io Iln exp [(A + BK)t]G’II dt <- e

where G" im G f3Y - is the canonical injection.
(iii) Let K 0//be defined by K[7#1 KIIV1, KIg/ KI and r(A +BK)

Cg. The stabilizability of (A, B) guarantees the existence of such a K. Also

Io [IH exp [(A + BK)t]G[I dt Io [[H exp [(A +BK)t]G’II dt <-e

which yields Theorem C.1.
Notice the difference between the conditions (ii) in Theorems B.1 and C.1. In the

former case im G should lie in the almost stabilizable almost (A, B)-invariant subspace
"contained" in Ker H; in the latter case im G should be part of the stabilizable almost
(A, B)-invariant subspace "contained" in Ker H. It is not possible to replace condition
(ii) of Theorem C.1 by the slightly weaker condition (ii) of Theorem B.1. This is
illustrated by the following example:

A=
-1’

B=
1

G=
0’ H=[O 1].
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Then

[1] *(KerH)={O}, (KerH)=[1]7/(KerH)=im
0

g
1

This shows that condition (ii) of Theorem C.1 is not satisfied; it is shown in 3.3 that
impulse response quenching in the l-sense with internal asymptotic stability is not
possible. On the other hand, condition (ii) of Theorem B. 1 holds, and impulse response
quenching in the 2-sense is possible.

COROLLARY C. 1. Simultaneous quenching of the impulse responses

Hi exp [(A +BK)t]Gj (i k, j 1)

in the L-sense with internal asymptotic stability (by means of a common feedback
matrix K) is possible if

(i) (A, B) is stabilizable (relative Cg),
(ii) j, im G C((qik Ker Hi) + g* (ik Ker Hi).

The result of Corollary C. 1 can be used to derive a condition for stabilizability of the
nonlinear time-varying system

F

(C.1) 2(t) Ax(t)+Bu(t)+[F F2 Ft]M(x(t), t) F2 x(t)

with x I". The matrices Fi are square (n n) matrices. The gain matrix M(x, t) is
of dimension (ln ln). Let a linear time-invariant feedback u(t)= Kx(t) be applied
to this system. Then, according to the small loop theorem [14], the system is p-input-
output-stable if

(i) tr(A +BK) c Cg,
(ii) IlM(x, t)ll<a Vx,
(iii) maxi.il [IF, exp [(A + g)t]F,.ll dt < /Zz.

Hence Fix(t) 2(0, oo); the Hurwitz character of A +BK then shows that the solution
of (C.1) tends to zero as for all initial conditions. Hence the null solution of
(C.1) is asymptotically stable in the large. Sufficient conditions for the existence of a
feedback matrix K satisfying (i) and (ii) can be derived from Corollary C.1. Consider
now the special case that M(x, t) is a block diagonal matrix

M(x) diag [f(x, t)F f2(x, t)F f(x, t)F?]

when the functions fi are scalar and F- denotes the generalized inverse [12, pp.
142-144] of the matrix Fi. Then (C.1) reduces to (14); the following result is hence
obtained"

PROPOSITION C.1. For any > 0 there exists a constant feedback matrix K such
that the null solution of
(C.2) (t) (A +BK)x(t)+ , fi(x(t),t)Fix(t)

iel

is asymptotically stable in the large for all nonlinear gains satisfying

Ifi(x, t)l < a (i 1, Vx,

if (A, B) is stabilizable (relative Cg), and if

imFi c(i, Ker Fi)+ 7/’*(f’) Ker Fi).
il
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Appendix D. Following the suggestion of one of the reviewers we have collected
in this appendix the relevant facts on (A, B)-invariant and almost (A, B)-invariant
subspaces used in this paper. More details may be found in references [2], [3], [4].

Consider the system k =Ax +Bu with x f := R". A subspace c is said to
be an (A, B)-invariant subspace if there exists a matrix K such that is (A +
BK)-invariant (i.e. such that (A+BK)r ). An equivalent property is that satisfies

where 3 := im B.
Let V(ff’) denote the set of all (A, B)-invariant subspaces contained in a given

subspace if’. Then this set is closed under subspace addition, i.e. 1, 2 V(ff’)=>
1 +2 V(5). Hence there exists a largest (A, B)-invariant subspace in 6, which is
denoted by 7/’*(5). Systematic finite and linear algorithms are available [2, 3] to
compute 7/’*(if’). A related concept, denoted by (if’), is defined as follows

V’g* (9) := sup {T" V(SC)[:IK such that (A +BK)T" T" and o-(A +BK) c Cg}.

It is easily proven that this subspace is well defined. It is called the largest stabilizability
subspace contained in 5v and is readily computed from *(5v) [2]. Finally 7/’ is
similarly defined with Cg replacing Cg in the definition.

Let Y/i, k, be a family of (A, B)-invariant subspaces. Then, by definition, there
exist matrices Ki such that (A +BKi)i Vi. However, there is no guarantee that there
exists a single K such that (A +BK) for all k. If this is the case, then the
subspaces F’ are said to be compatible (A, B)-invariant subspaces. It is easy to prove
that the subspaces V’ are compatible, for example, if they are nested (c C 2 C. C

7/’k), but in general compatibility is a difficult matter to verify.
A further generalization leads to controllability subspaces. Thus

Yt*(Sv) := sup{ V(6e)lfor K such that (A +BK)V’ 7/’,

there holds (A +BK[ (-1 im B) F’}.

Again, Yt*() is well defined. For equivalent definitions and algorithms for computing
Yt*(6) we refer the reader to [2].

An interesting generalization of (A, B)-invariance is almost (A, B)-invariance.
These notions have been introduced in I-3] and further worked out in [4]. The largest
almost (A, B)-invariant subspace contained in a given subspace 6 is the subspace of
initial states in 5 for which there exists an input such that the resulting state trajectory
is almost contained in 6. However, this depends on the topology chosen. In particular,
we obtain a somewhat larger subspace if we measure "almost being contained in" in
the v-sense (1 <_-p <) rather than in the -sense. Similarly, the largest almost
controllability subspace contained in 6 is the subspace of initial states in S’ which, by
means of an input, may be transferred to any terminal state in that subspace, such
that the resulting state trajectory is almost contained in 5. Let 7#a* (5) and 7/’* (S)
denote respectively the supremal -almost-controllability and the p-(1 _-<p <
o)-almost-controllability subspace contained in 6. Similarly Yta*(S) and
denote respectively the supremal o-almost-(A, B)-invariant and the p-(1 <=p <
)-almost-(A, B)-invariant subspace contained in 6.

In the present paper we use primarily gt (5). We therefore define it formally:

gt ’ (5):= sup Rb (5)
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where

Here

and

Rb(Q) := {lb [X0, Xl lbZ:lT>O, such that for all e >0,

there exists x Zx with the properties: (i) x (0) Xo,

(ii) x(T) xl, and (iii)lld(x(t), )llSel(O.T) <- e}.

d (x (t) ) := inf [Ix (t) s

Ex :- {x R lx is absolutely continuous and ::lu

such that 2 (t) Ax (t) +Bu (t) almost everywhere}.

This definition merely says that Y () is the largest subspace of in which any two
states can be transferred to one another while keeping the 5l-norm of the distance
of the state trajectory to 5 arbitrarily small. This has an obvious interpretation in
terms of l-(almost) output nulling for the system 2 =Ax +Bu, z Hx, with 5
Ker H. The subspace (5) is readily computed by means of the following finite
linear recursive algorithm:

Then

k+l= im B +A(5 (’1 k),

eo {0}.

: (5) 5o := lim

where this limit is obtained monotonically in at most Min [codim (im B), 1 + dim
steps.

The subspace F() may be defined completely analogously as

7/’ () := sup V()

where

Vb () {7/’b ]VXo Ub and e > 0=lx 2; with the properties’

(i) x (0) Xo and (ii)lid (x (t), f)ll(o,) }.

In [4, Thm. 10] it is proven that : (5) *(5)+9’ (3). Its main use in feedback
system synthesis stems from the following result [4, Thm. 12].

THEOREM D.1. Consider the finite dimensional linear system 2 Ax +Bu, z
Hx. Let 1 <-_ p < oo. Then for all e > 0 there exists a matrix K such that

if and only if
im G c 7/’ (Ker H).

This theorem is also the basic tool for our results on robust stabilizability.
However, a number of refinements were needed (Theorems B.1 and C.1). We note
in closing that, because 1 _-<p <, b* (5) and Ub* () need not be contained in 0.
This fact is amply discussed in [4].
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