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We define fecdforward control as a control policy in which the exogenous disturbances arc known ror all time a~ the moment when 

the conlrol is applied. It is shown that disturbance decoupling by fcedforward control is possihlc iff if is possible by DID control or iff 

approximate disturbance decoupling by stale feedback is possible. 

Kc;IxY~/~: Fccdrorward control. Almost invariant subspaccb. Disturbance decoupling. PID control. Impulsive control 

1. Introduction 

Consider the ubiquitous linear time-invariant system defined, in continuous and discrete time respec- 
tively, by 

2,: i(f) =/ix(f) +&t(r) + Gd(r); Z(I) = Hx(t), (I), 

2,: X(t+l)=Ax(l)+Bu(f)+Gd(l): Z(f) =Hx(r). (0, 

with XEX:=[W”, the state, u E qL: = OX”‘, the control, d EU~:= Iwq, the (exogenous) disturbance, and 
z E Y: = W’, the controlled output. In the disturbance decoupling problem we are asked for a control such 
that in the closed loop system the disturbance has no influence on the controlled output. 

The basic theory of this problem and its many variations has been the subject of numerous papers in the 
control journals (see Wonham [ l,Ch.4.5] and Willems& Commault [2] for pointers and references to this 
literature). Recently this theory has been extended to treat the case when disturbance decoupling is possible 
up to any desired degree of accuracy. This extension uses the notion of almost invariant subspaces and is 
described in full detail in Willems [3.4,5]. 

In the present paper we will give conditions under which disturbance decoupling is possible when 
knowledge of the whole disturbance trajectory d is available to the controller. We think of this as (a form of 
complete) feedforward control: there is a mechanism for measuring the disturbance ahead of time and 
communicating it to the controller. One of the purposes of this paper is to relate feedforward control to 
approximate disturbance decoupling and to control policies using differentiators (PID-control) and 
predictors. 

We will use common notation for C, Iw, Z. Iw + : = (0. oo), etc. Furthermore. C” denotes the infinitely 
differentiable functions - their (co)domain will always be obvious from the context. We say that a mapf 
with domain R or Z has /e/r (righ) compuct support if 3/,, such that f( /) = 0 for I < I, (I > r,,). C,” denotes 
the Cm functions with left compact support. u denotes the spectrum. 

2. Problem statement 

There are a number of equivalent ways of formalizing the idea of feedforward control. Let us denote by 
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2, and Z, all the trajectories which are compatible with the system (I). Formally: 

&:= ((d,u,x,z):W -4xq1 X~~X~3l~(d, u, .a-,~) E C” and ( I )R is satisfied} 

and & is similarly defined. We will say that XR admits a disturbance insensitive trajectory if Vd E Cr 3~. x 
such that( d, U, x. 0) E Z,. An analogous definition holds for Xz. We will also consider some specific classes 

of control laws: 
(i) Feedforward control: Let ~7 be an R “‘“g-valued distribution with support on some half line [(,. m) and 

let * denote convolution. For d E CF define now 

u(I)=(Y~* d)(r). (21, 

We will call this a jeedfordward conrrol law with kernel ~‘7. We will say that ~7 is rational if its Laplace 
transform is rational (in which case support YTC[O. cc) and ~i(l)=Z~=,,F,6”‘)(/)+ F(r) with F ;1 Bohl 
function and 6 the Dirac delta). Analogously in the discrete time case we will call 

I + ,v 
u(r)= 2 :?(f-&)d(k) (a, 

h=-X 

a feedforward cotwol law. 
(ii) sfafe /eedback: 

u(f) = Fx(r). 

(iii) PID confrol: 
N 

(3) 

(41, u(f) = 2 Fkd”)(f) + Fx(f), 
h=O 

or its discrete time analogue 

u(f)= i F,d(r+k)+Fx(r). 
h=O 

(iv) PD conrrol: 

u(r)= $ F,d”‘(r), 
L=O 

or the discrete time analogue. finite rc?ndobc- predictive confrol: 

u(r)= i F,d(f+k). 
h=O 

Consider the control law (4),. This yields the closed loop system 

i(r)=(A+BF)x(f)+B 5 F,d’“‘(f)+Gd(f); Z(f) =Hx(t) 

h=O 

(41, 

(5), 

(51, 

which yields, for all d E C” + . a (unique) solution x E CT, J E CT. Ify = 0 for all such d then we will say 
that (4)R decouples rhe diswrbance d from ;. Analogously for the other control laws. 

The control law (3) in (l)n yields the closed loop system 

i(r)=(A+BF)x(t)+Gd(,); :(r)=Hx(r) 

which has the closed loop inpulse response W,: 1 E 02 + u He’,+’ + RF” G. Following [4] we will say that (I )R 
may be almosf (or approximafelv) disturbonce decoupled using a state feedback control law if QF > 0 3 F 
such that /OzII WF(f)II dr Q F. 

Our purpose is to give conditions for the solvability of the various disturbance decoupling problems 
given above and to show their interrelation. 

27x 
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3. Almost invariant subspaces 

Consider the system 2: a( I) = Ax( 1) + Bu( I ); ;( I ) = Hx( I). Let q:cr,, and CR ter,, denote the classical 
notions of the supremal controlled invariant (‘(A. B)-invariant’) and controllability subspaces contained in 
ker H. In [3,4] these notions have been generalized to almost invariance. If we measure being close to ker H 
in the l?,-sence. then we obtain ‘\;*kcr,, and (3 :.ker,, as respectively the supremal e,: -almost controlled 
invariant and t?,-almost controllability subspace contained in ker H. If instead we measure being close to 
ker H in the P ,-sense then we arrive at qzkcr,, and $8 z.ter,, as the supremal I? ,-almost controlled invariant 
and IZ, -almost controllability subspace ‘contained’ in ker H. 

The subspaces $8 z.kerF, and ?fl &kerH are readily computed. Indeed. consider the recursive algorithms 
(ACSA) and (ACSA)‘: 

9 \zri, = ker H n ( A!ti\,,,, + im B) ; ?Rte,,, = (0). ( ACSA) 

> -ie::, =imB+A(kerHnst,,,,); h -ter,,= (0); ( ACSA)’ 

then lim,_,%!,,,,, = : $RTer,, = %z.k.rH and limk-mSLerH = : sFer,, = ?R E.kerH. These algorithms show alio 

that a: kerH and a:.kcr~f have a natural interpretation in discrete time. Indeed, consider 2: x(l + 1) = 
AX(I) +‘Bu( I); ;(I) = Hx( I). Then we see immediately from these algorithms that (see Molinari [61) 

9, * u.kcrH 
= {x0 E 5 I3T< 0, U. x such that X(T) = 0, x(0) = x0, 

x(r+ I) =Ax(r) +Bu(r); HA-(~) =O for TGtGO} 

and 

” ;;i.kcrll = {x0 l ~~\:ITCO,u,xsuch that x(T) =0.x(O) =x0. 

x(r+ l)=Ax(r)+Bu(l): Hx(r)=OforT<~<O}. 

Finally, we mention the following relations among the various subspaces introduced: 

4. The main results 

The results of this paper are: 

Theorem 1. Consider Z,. Then the following sraremems are equivalent: 
(i) im G C‘\zkert,. 

(ii) Z, admits ‘a disturbance insensitive Irajectoty, 
(iii) Z, may be disturbance decoupled using feedfoward control. 
(iv) Z, rnyv be disturbance decoupled using a PID control law, 

(VI 2, ma.s be almost disturbance decoupled using a state /eedback control 1~1~‘. 

The discrete time version gives us the following expected analogy: 

Theorem 2. Consider Iz. Then the following statements are equivalenr: 
(i). (ii) and (iii) of Theorem 1. 
(iv) Z, may be disturbance decoupled using a control Ian* o/ the !,*pe (4),. 

Bringing in stability, or, more generally, pole placement, yields the following refinements. We will say 
that pole placement holds if for any symmetric subset of C, with at least one point on the real axis, there 

exists Fin a given class such that a( A + BF) C C,q. We will say that e ’ 4 +RF)’ has an arbirrag- rate of decas 

if this holds for any C, of the type C,q = (X EC 1 ResG M). 
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Theorem 3. Consider the system Z,. Then the following conditions are equivalent: 
(i) im G C clr\ ; ,..+,, 
(ii) 2, may be disturbance decoupled using a PD control law. 

(iii) (assume (A, B) controllable) X, ma-v be disturbance decoupled using a PID control law n-ith pole 
placement on A + BF, 

(iv) (assume (A. B) controllable) 1, ma.v be approximate&v disturbance decoupled using a state feedhack 
control law and requiring an arbitrar) rate of deca.v on e’ A iBF)r. 

An analogous theorem holds (without (iv)) for Z, and with in (ii) a finite window predictive control law. 
Finally, it is of interest to note the following interpretation of $4 zerl, (we state only the continuous time 

case): 

Theorem 4. Consider 2,. Then the following conditions are equivalent: 
(i) imGC$ti* kcrlf' 

(ii) 2, may be disturbance decoupled both b-s using a PD and a state /eedback control /uN~, 
(iii) 2, mqv be disturbance decoupled using a state jeedhack control lars with pole placement on ( A + BF ). 

5. Discussion 

5.1. Theorem I shows an interesting connection between feedforward control, PID control, and high gain 
feedback as it results in approximate disturbance decoupling (41. We also note that it follows from the 
theorem that there exists any disturbance decoupling feedforward control law (i.e. any (nonlinear 
time-varying) map :T: d E Cy HU E Cy such that the (unique) solution x E CT to ( l)R yields ; = Hx = 0) 
iff there exists a PID control law or. as is easily seen to be equivalent, a rational convolution operator 
feedforward control law. 

5.2. The maximal order of the differentiation, N, in the required PID control law is given by the smallest N 
such that, in the notation of (ACSA)‘. im G C src,: -t- ‘l\~~j,,. This yields the known results in the cases 
N = 0 and N = 1. An analogous statement holds for Xz. All this indicates once more that differentiation 
should be considered as a predictive element even ihough it is hard to justify this formally. 

5.3. In the continuous time case the unbounded nature of the differentiators is an intrinsic feature of the 
problem and cannot be traded for example for a smooth non-causal control law of the type u(t) = 
jl+zF( t - T)d( 7) d7. 

5.4. By suitably interpreting (ACSA)’ it is easy to come up with algorithms for computing F, F,,..., FN’s 
which yield a disturbance decoupling PID control law. 

5.5. The results obtained are symmetric in time and the same disturbance decoupling conditions hold if we 
consider the systems XR or Z, with inputs with right compact support. 

5.6. A number of straightforward variations of Theorems 1-4 referring to stability regions, existence of 
PID control laws with N given, etc., can be stated. It may be of interest to give the condition for the 
existence of a finite window disturbance decoupling control law of the type 

u(t)= ; F,d(t-k) with N - < 0 G N + 
k=N 

or, in the continuous time case, a ‘classical’ PID controller ’ 



Volume 1. Number 4 SYSTJZMS & CONTROL LETTERS January 1982 

The condition for disturbance decoupling in this case is im G C %&rH + I‘ti;*.kcrH where V;llkcrH is the 
supremal ‘deadbeat ’ controlled invariant subspace in ker H, i.e. sup{e ) 3F: (A + BF >‘t? c C and 
a(( A + BF) ] l?) = (0)). ?2ker,, is just a bit larger than r:i\ terH. 

6. An outline of the proofs 

Theorems 1-4 follow without much difficulty from the results in Appendix A of [5]. In order to show the 
idea we will give a ‘time domain’ proof of Theorem 2. 

Proof of Theorem 2. We will indicate the reasonings in the logical sequence (i) -(ii), (i) -(iii), (i) -(iv), 
(iii)=(i), (ii)-(i), (iv)-(iii). 

(i) -(ii): Assume im G CL\zker,, = ?fi X kcr,, + ‘J’,*,,,,. Let d E C” be given. We need to find II, x 
satisfying (I), such that Hx =y ‘= 0. Assume first that d is a pulse at 0: d(t) = 0 for I # 0. Let d,: = Cd(O). 
Now, d, may be written as d, = -d, + dz with d, E !a ;t.kerH and d, E I?zcr,,. Hence, by the characteriza- 
tion of ?I? * h.ker,, given at the end of Section 3, 3u of compact support such that the corresponding compact 
support x satisfies Hx( t) = 0 for t < 0 and Ax(O) + Bu(0) = d,. Using this control yields x( 1) = Ax(O) + 
Bu(0) + Cd(O) = d, + d, = d, E ?$,),. It is hence possible to choose u such that also Hx( r) = 0 for I > 0. 
By superposition this proves the result for any d such that d( f ) = 0 for t < 0. By considering the reverse 
time trajectories (see [5. Sect. 81) this conclusion also follows for d’s such that d( t ) = 0 for t > 0. Since any d 
may be written as d= d, +d- with d+(t) = 0 for I (0 and d-(t) = 0 for t >O, this yields trajectories 

(d, ,u+ ,x+, O), (d_,u-.x-,O)E~E, which, since Xz is obviously linear, yields a (d, u,x, 0) E 2, as 
required. 

(ii) =(iii): is basically the first part of the proof of (i) -(ii). 
(i) -(iv): use F such that (A + BF )‘Tzer,, C il,‘k*e,,, and the predictive law suggested by the first part of 

the proof of (i) =3 (ii). 
(iii) =1(i): Let u(t) = x,“=, Fk d( t - k) + Fx( t) be a disturbance decoupling control law. Take d to be a 

pulse at 0. Then there exists a trajectory ((d, u, x, 0) E Zi ) where 2: denotes the elements of Xz with left 
compact support; Since d is a pulse at 0, since x has left compact support, and since x(t) E ker H for t g 0, 
we have x(O) E <R :.lrerH. Similarly, since x( r ) E ker H for t 2 0, x( 1) E ‘T”k*,,H. Hence, Cd(O) = x( 1) - 
Ax(O) - Bu(0) E “ize,,, + A% : kcrH + im B = L1;i*.kerH, which yields im G C L‘C;5*.ker,,, as desired. 

(ii) -(i): This is more similarly to (iii) -(i) except that now we arrive at x(O) E i/fke,,, + !R zskerH. 
However, since ?zerH + Aa’,*,,,, + A% :.kcrH + im B = ?zker,,, we arrive at the same conclusion. 

(iv) =)(i): This is obvious, again by looking at a pulse for d. 

7. Extensions 

7.1. Disturbance decoupled estimation. All what has been said up to now may be dualized and applied to the 
disturbance decoupled estimation problem. There, one considers i = Ax + Cd. y = Cx, z = Hx, with y the 
observation and z the to-be-estimated output, and we are looking for conditions for the existence of an 
observer defined by the convolution z = :T*y such that, with all variables in Cy, the map d-e: = E - i is 
zero. Theorems completely analogous to Theorems l-4 may be stated for this case. The relevant solvability 
condition becomes ker H > 5: imc, where 5: imG denotes the infimal I!? ,-almost (‘(A, C)‘) conditionally 
invariant subspace containing im G [5]. This condition is satisfied iff there exists a PID type of observer. 
Analogous results hold for the discrete time case. 

7.2. Disturbance decoupling with outpur observations. If we consider again the system Za but if we assume 
that instead of measuring d or x, we can only measure y, given by i, = Ax, + Cd; y = Cx,, then we are 
able to find a disturbance decoupling feedforward control from y to u iff im G C ‘tzker,, and sz.i,,,c C ker H. 
This is equivalent to the solvability, over W(s), of the equation H(ls - A)-“BX(s)C( IS - A)-‘G= 

281 
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H(ls - A)-‘G in the unknown matrix X(S). If we now make the (generic) assumption that there exists F(S) 
such that F(s)( I + C( IS - A)-‘BX(s)) = X(S) then we may conclude that there also exists a PID feedback 
control law which disturbance decouples for i = Ax f Bu + gd, y = Cx, z = Hx. A similar result holds for 
the discrete time case but considering predictive elements in a feedback configuration poses some 
conceptual difficulties, however. 
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