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We define feedlorward control as a control policy in which the exogenous disturbances are known for all time at the moment when
the control is applied. It is shown that disturbance decoupling by feedlorward control is possible iff it is possible by PID control or iff
approximate disturbance decoupling by state feedback is possible.
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1. Introduction

Consider the ubiquitous linear time-invariant system defined. in continuous and discrete time respec-
tively, by

Sa: x(t)=Ax(t) +Bu(r) +Gd(1). (1) =Hx(1). (Dg
3,0 x(t+1)=Ax(t)+ Bu(t) +Gd(t): (1) =Hx(1). (1),

with x €X:=R", the state, u€U:=R"™, the control, d €D:=RY, the (exogenous) disturbance, and
7 €%:=R’, the controlled output. In the disturbance decoupling problem we are asked for a control such
that in the closed loop system the disturbance has no influence on the controlled output.

The basic theory of this problem and its many variations has been the subject of numerous papers in the
control journals (see Wonham [1,Ch.4,5] and Willems & Commault [2] for pointers and references to this
literature). Recently this theory has been extended to treat the case when disturbance decoupling is possible
up to any desired degree of accuracy. This extension uses the notion of almost invariant subspaces and is
described in full detail in Willems [3.4,5].

In the present paper we will give conditions under which disturbance decoupling is possible when
knowledge of the whole disturbance trajectory d is available to the controller. We think of this as (a form of
complete) feedforward control: there is a mechanism for measuring the disturbance ahead of time and
communicating it to the controller. One of the purposes of this paper is to relate feedforward control to
approximate disturbance decoupling and to control policies using differentiators (PID-control) and
predictors.

We will use common notation for C, R, Z, R*:=[0. o), etc. Furthermore, C* denotes the infinitely
differentiable functions — their (co)domain will always be obvious from the context. We say that a map f
with domain R or Z has left (right) compact support if 31, such that f(1) =0 for 1 <t (1>1,). CT denotes
the C* functions with left compact support. o denotes the spectrum.,

2. Problem statement

There are a number of equivalent ways of formalizing the idea of feedforward control. Let us denote by
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X, and X, all the trajectories which are compatible with the system (1). Formally:
Zpi={(du,x,2):R=DXAXNXY|(d.u,x.y) EC* and (1) is satisfied}

and Z, is similarly defined. We will say that X admits a disturbance insensitive trajectory if Vd € C* Ju, x
such that(d, u, x, 0) € . An analogous definition holds for X,. We will also consider some specific classes

of control laws:
(i) Feedforward control: Let ‘% be an R™ *9-valued distribution with support on some half line [1,. %) and
let » denote convolution. For d € C¥ define now

u(t)=(F+d)(1). (2)x
We will call this a feedfordward control law with kernel 5. We will say that T is rational if its Laplace
transform is rational (in which case support % C [0, c0) and ‘¥(+)=Z}_, F,6'*)(r) + F(1) with F a Bohl
function and & the Dirac delta). Analogously in the discrete time case we will call

r+N

u(t)= 3 F(r—k)d(k) (2),

k=—nc
a feedforward control law.
(1) state feedback:
u(r) = Fx(1). (3)

(i) PID control:

N
u(r) =Y Fd™(1)+ Fx(1), (4),
A=0
or its discrete time analogue
N
u(t)= Y Fd(t+k)+ Fx(1). (4),
k=0

(iv) PD control:
AI

u(t)= 3 FdO). (5)g
&=0

or the discrete time analogue. finite window predictive control:

N
u(t)= 3 Fd(r+k). (5),
k=0
Consider the control law (4),. This yields the closed loop system
N
#(1)=(A+BF)x(1)+B Y Fd®(1)+Gd(r):; (1) =Hx(t)
k=0

which yields, for all d € C**, a (unique) solution x € Cr.y€CE. If =0 for all such d then we will say
that (4)g decouples the disturbance d from z. Analogously for the other control laws.
The control law (3) in (1), yields the closed loop system

£(1)=(A+BF)x(t)+ Gd(1); (1) =Hx(1)
which has the closed loop inpulse response We: 1€ R * s He!# * BFHG . Following [4] we will say that (1)g

may be almost (or approximately) disturbance decoupled using a state feedback control law if Ve>0 3F
such that [ClIW.(1)ll dr <e.

Our purpose is to give conditions for the solvability of the various disturbance decoupling problems
given above and to show their interrelation.
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3. Almost invariant subspaces

Consider the system =: %(1) = Ax(t)+ Bu(1); z2(t)= Hx(tr). Let \ ¥, and A}, denote the classical
notions of the supremal controlled invariant (*( A, B)-invariant’) and controllability subspaces contained in
ker H. In [3,4] these notions have been generalized to almost invariance. If we measure being close to ker H
in the £_-sence, then we obtain \* , and R}, , as respectively the supremal £_ -almost controlled
invariant and £ -almost controllability subspace contained in ker H. If instead we measure being close to
ker H in the £ -sense then we arrive at V¥, and R}, as the supremal i, -almost controlled invariant
and £ ,-almost controllability subspace ‘contained’ in ker H.

The subspaces R¥,..,, and R} ., are readily computed. Indeed. consider the recursive algorithms
(ACSA) and (ACSA)":

(‘VR’;(:rllI =kerHN (A(:Rﬁ(crll + lmB)’ (:Rokcrll = {0} . (ACSA)
1Rfu:“kr;l = lm B + A(ker H N S:crll); S2crll = {0} . (ACSA)’

then lim,_ o R\ = Ry = Rl perns aqd limk—mgfmf{ = S%ern = R sern- These algorithms show also
that ®%, ., and R}, have a natural interpretation in discrete time. Indeed, consider 2: x(+1)=
Ax(t)+ Bu(t); 2(t) = Hx(t). Then we see immediately from these algorithms that (see Molinari [6])

REoon = {x0 €X|3IT <0, u, x such that x(T) =0, x(0) = x,.
x(1+1)=Ax(t) + Bu(t); Hx(t) =0for T<t<0}
and
RE et = { X0 €X|IT<O0.u, x such that x(7) =0, x(0) = x,.
x(t+1)=Ax(r)+ Bu(t): Hx(1) =0 for T<1<0}.
Finally, we mention the following relations among the various subspaces introduced:

R * — AR * H . Xk — R * . Nk — % Of *
R} kertt = ARY oy Tim B, Vohern = Voen TR perns’ N vernt Vorerr + R b e

4. The main results
The results of this paper are:

Theorem 1. Consider Zq. Then the following statements are equivalent:
(i) im G C\ fyere
(il) =g admits a disturbance insensitive Irajectory,
(iii) =g may be disturbance decoupled using feedforward control,
(iv) =g may be disturbance decoupled using a P1D control law,
(v) Sg may be almost disturbance decoupled using a state feedback control law.

The discrete time version gives us the following expected analogy:

Theorem 2. Consider = ,. Then the following statements are equivalent:
(1). (ii) and (iii) of Theorem 1,
(iv) =, may be disturbance decoupled using a control law of the type (4),.

Bringing in stability, or, more generally, pole placement, yields the following refinements. We will say
that pole placement holds if for any symmetric subset of C, with at least one point on the real axis, there
exists F in a given class such that o(A4 + BF) C C . We will say that e' 1+ BF)Y hag an arbitrary rate of decay
if this holds for any C of the type C, = {x€C |Res<s M}.
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Theorem 3. Consider the system 2. Then the following conditions are equivalent:
(i) imG CRYperms
(if) Zx may be disturbance decoupled using a PD control law,
(iii) (assume (A, B) controllable) =g may be disturbance decoupled using a PID control law with pole
placement on A + BF,
(iv) (assume (A, B) controllable) 2, may be approximately disturbance decoupled using a state feedback
control law and requiring an arbitrary rate of decay on e'4*8F),

An analogous theorem holds (without (iv)) for 2, and with in (i1} a finite window predictive control Jaw.
Finally, it is of interest to note the following interpretation of 4} §..,, (we state only the continuous time

case):

Theorem 4. Consider Zp. Then the following conditions are equivalent:
(i) imG CR ¥y
(i1} Zx may be disturbance decoupled both by using a PD and a state feedback control law,
(1) Zg may be disturbance decoupled using a state feedback control law with pole placement on (A + BF).

5. Discussion

5.1. Theorem | shows an interesting connection between feedforward control, PID control, and high gain
feedback as it results in approximate disturbance decoupling [4]. We also note that it follows from the
theorem that there exists any disturbance decoupling feedforward control law (i.e. any (nonlinear
time-varying) map :d € C¥ »u € CZ such that the (unique) solution x € C* to (1)g yields ¢ = Hx =0)
iff there exists a PID control law or, as is easily seen to be equivalent, a rational convolution operator
feedforward control law.

5.2. The maximal order of the differentiation, N, in the required PID control law is given by the smallest N
such that, in the notation of (ACSAY. imG C S +* . This yields the known results in the cases
N=0and N=1. An analogous statement holds for Z,. All this indicates once more that differentiation
should be considered as a predictive element even though it is hard to justify this formally.

5.3. In the continuous time case the unbounded nature of the differentiators is an intrinsic feature of the
problem and cannot be traded for example for a smooth non-causal control law of the type u(t1)=
JIXF—1)d(r)dr.

S5.4. By suitably interpreting (ACSA)' it is easy to come up with algorithms for computing F, Fy,..., F’s
which yield a disturbance decoupling PID control law.

3.5. The results obtained are symmetric in time and the same disturbance decoupling conditions hold if we
consider the systems 2, or 2, with inputs with right compact support.

5.6. A number of straightforward variations of Theorems 1-4 referring to stability regions, existence of
PID control laws with N given, etc., can be stated. It may be of interest to give the condition for the
existence of a finite window disturbance decoupling control law of the type
N
u(t)= 3 Fd(t—k) withN <0<N"
k=N~
or, in the continuous time case, a ‘classical’ PID controller °
Nt IV , ,
1
u(t)= 3 Fra)+ 3 F[ [ e [Md(r) drdry - dyg .
k=0 A=1 00 0
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The condition for disturbance decoupling in this case is im G C R}y p + Vi where V2, . is the
supremal ‘deadbeat’ controlled invariant subspace in kerH, i.e. sup{C|3F: (4+BF) CE and
o((A+ BF)|£)={0}}. V¥ is just a bit larger than KR}, ,,.

6. An outline of the proofs

Theorems 1-4 follow without much difficulty from the results in Appendix A of [5]. In order to show the
idea we will give a ‘time domain’ proof of Theorem 2.

Proof of Theorem2. We will indicate the reasonings in the logical sequence (i) = (ii), (i) = (iii), (i) = (iv),
(1ii) = (i), (ii) = (1), (iv) = (iii).

(i)=(ii): Assume imGCV¥ =R . +Vx . Let dEC* be given. We need to find u, x
satisfying (1), such that Hx =y =0. Assume first that d is a pulse at 0: d(7) =0 for ¢ # 0. Let d,,: = Gd(0).
Now, d, may be written as d, = —d, +d, withd, R}, , and d, €V .. Hence, by the characteriza-
tion of R %, given at the end of Section 3, 3u of compact support such that the corresponding compact
support x satisfies Hx(t) =0 for +<0 and Ax(0) + Bu(0) = d,. Using this control yields x(1) = Ax(0) +
Bu(0) + Gd(0)=d, +d, =d, €} _,,. Itis hence possible to choose # such that also Hx(r) =0 for r>0.
By superposition this proves the result for any d such that d(¢+) =0 for 1t <0. By considering the reverse
time trajectories (see [5, Sect. 8]) this conclusion also follows for d’s such that d(7) = 0 for + > 0. Since any d
may be written as d=d , +d_ withd (t)=0 for t<0 and d_(¢)=0 for +>0, this yields trajectories
(d,.u,,x.,0),(d_,u_,x_,0)€Z, which, since £, is obviously linear, yields a (d,u,x,0)EX, as
required.

(ii) = (iii): is basically the first part of the proof of (i) = (ii).

(1) = (iv): use F such that (4 + BF )\, CV> , and the predictive law suggested by the first part of
the proof of (i) = (ii).

(it1) = (1): Let u(t)=ZV_,F, d(t—k)+ Fx(t) be a disturbance decoupling control law. Take d to be a
pulse at 0. Then there exists a trajectory {(d, u, x,0) €ZJ ) where X denotes the elements of X, with left
compact support. Since d is a pulse at 0, since x has left compact support, and since x(¢) € ker H for t <0,
we have x(0)ER¥, .. Similarly, since x(r)EkerH for +=0, x(1)& Nk 4 Hence, Gd(0)=x(1)—
Ax(0) — Bu(0) €V}, +AR%, ., +iMB= N eersr» Which yields im G C ’\‘;;“‘kw,,, as desired.

(i) =(i): This is more similarly to (iii) = (i) except that now we arrive at x(0) €V}, +R% ..
However, since V¥, +AVr  +AR:, , +imB= N kersy» We arrive at the same conclusion.

(iv)=(i): This is obvious, again by looking at a pulse for d.

7. Extensions

7.1. Disturbance decoupled estimation. All what has been said up to now may be dualized and applied to the
disturbance decoupled estimation problem. There, one considers £ = Ax + Gd, y = Cx, ¢ = Hx, with y the
observation and z the to-be-estimated output, and we are looking for conditions for the existence of an
observer defined by the convolution z = tF+ y such that, with all variables in C?, the map d—e:=z— ¢ is
zero. Theorems completely analogous to Theorems 1-4 may be stated for this case. The relevant solvability
condition becomes ker H DS,";_imG, where 57, - denotes the infimal £,-almost (‘(4,C)’) conditionally
invariant subspace containing im G [5). This condition is satisfied iff there exists a PID type of observer.
Analogous results hold for the discrete time case.

7.2. Disturbance decoupling with output observations. 1f we consider again the system Zg but if we assume
that instead of measuring d or x, we can only measure y, given by ¥, = 4x, + Gd, y = Cx,, then we are
able to find a disturbance decoupling feedforward control from y to w iff im G CV}}, ., and &%, - Cker H.
This is equivalent to the solvability, over R(s), of the equation H(Is —A) 'BX(s)C(Is—A)"'G=
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H(Is — A)”'G in the unknown matrix X(s). If we now make the (generic) assumption that there exists F(s)
such that F(s)(1 + C(Is — A) " 'BX(s)) = X(s) then we may conclude that there also exists a PID feedback
control law which disturbance decouples for ¥ = Ax + Bu + gd, y = Cx, : = Hx. A similar result holds for
the discrete time case but considering predictive elements in a feedback configuration poses some

conceptual difficulties, however.
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