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The Certainty  Equivalence  Property in 
Stochastic  Control  Theory 
HENK VAN DE WATER AND JAN C .  WILLEMS, FELLOW, IEEE 

Abszruct-In this paper  we will give  a  general  formulation of the 
certainty  equivalence  principle for stochastic optimal control  problems. 
Special attention is paid to the  question:  “What do we  mean by a  certainty 
equivalence  control  law?”  It is then shown that in this context  the LQG 
problem is indeed certainty  equivalent. 

INTRODUCTION 

T HE PIONEERING work of Bellman  with the emphasis 
on models  using state variables and the method of 

dynamic programming has brought about a theory of 
dynamic decision  making under uncertainty and in particu- 
lar stochastic and adaptive control. One of the ideas in this 
area with a great  deal of practical and conceptual appeal is 
that of “certainty equivalence.” The basic idea here is to 
define a decision  policy by putting the uncertainty equal to 
its expected  value  given the observations. While  on first 
sight the basic intuitive content behind this  idea  seems 
quite clear, it is not an easy matter to give  precise mathe- 
matical formulations of this  principle. 

Many authors [I], [2], [5 ]  have  sought to give a general 
formalization of this notion, first stated by Simon  [6] and 
Theil [7], and in t h s  process  they  have obtained further 
cases in which the certainty equivalence principle is  valid. 
Unfortunately, some of these contributions show  serious 
disadvantages in their formulation, particularly because the 
results are often not “basis free.” (What is  precisely meant 
by this is  shown in paragraph lo), the “Nonexamples.”) 

In the present paper we  will set up  a mathematical 
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framework for stating a certainty equivalence principle 
which does not suffer from these  drawbacks. 

We will use the following notations. 
i) If A is a matrix, then its transpose is denoted by A’. If 

A =AT and x T A x 8 0  Vx, then we write A 8 0 .  If in addition 
xTAx=0=x=O, then we write A>O. 

ii) If T C  R, t E T and y :  T-, Y,  then yf -  denotes the past 
of y defined by yt-:  Tn(--co, t ) +  Y with y , - ( r ) :=y (T )  
for r<r. As usual, U T  denotes all maps from T into U, i.e., 
UT:  = { f i :  T- U } .  (Since  they appear in a different con- 
text, this will not be  confused  with transposition.) Let 
UC UT,  and F U-, YT;  then Fis said  to  be nonanticipating 
if u , u E U  and u(t’)=u(t’)  for t ’Gt  implies (Fu)( t ‘ )= 
(Fc)( t ’ )  for t’<t and strictly nonanticipating, if u(t‘)=t<t’) 
t ’ < t  implies (Fu)(t‘)=(Fu)(t’)  for t’<t. In a nonanticipat- 
ing map the past and the present values of the input 
determine the  present output value,  whereas  in a strictly 
nonanticipating map the strict past determines the present 
output value. 

iii)  Let {Q, A ,  P} be a probability space; then E { .  } 
denotes integration with  respect to the measure P. 

iv) Finally, we will denote as usual  by Lp”( t o ,  t , ) :  = {x 1 x: 
( I ~ , ~ ~ ) - , R ” * ,  Jf:Ixi(t)lPdt<-co, i = l ; . . , m ) }  and, if B, 
and B, are given  Banach  spaces, L ( B , ,  &) :={LIL:  B,  -, 
4, L linear and continuous}. 

I. STOCHASTIC CONTROL: PROBLEM FORMULATION 

In th s  section, we  will explain  what we mean  by an 
optimal stochastic control law. In order to do t h s  we first 
define an uncertain dynamical  system and a control law. 

1) Let TCR denote the time axis, U the control al- 
phabet (this is the set, usually, but not necessarily infinite 
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Fig. I .  uncertain  system G mrith feedback control law F. 

where the inputs take their values), U C  UT the control 
space, Y the measurement output alphabet, YC YT the 
output space, and P be a set  called the uncertainty space. 

Definition: An uncertain  dynamical  system  is  defined by 
a map G:  UX G? --$ Y called the plant such that Vw EP, 
G( a ,  w ) is strictly nonanticipating. 

We will denote an uncertain dynamical system  by its 
plant G. 

2) We  will  view a control policy as a recipe for deciding 
the control on the basis of the observations, which  respects 
the information flow constraints imposed by the following 
problem definition. 

Definition: A control law is a map F: Y-, U which is 
i) nonanticipating; 
ii) such that the implicit equation in u; 

U = F G ( U ,  W )  

has for all w EO, unique solution on U (this solution 
depends of course on F and w and so we will denote it by 

iii) such that the information flow  of G is not antic- 
ipated in the closed-loop  system-by  this we mean if 
3 tET ,  such that V u E U ,  G(u,w,)(t’)=G(u,o,)(t‘) for 
t ’ G t ,  then Fu(wlrF)( t ’ )=Fu(w2,F)( t ’ )  for t‘Gt (in the 
discrete time  case T=[to, to+l , - - - , r , ] ,  -mcor,<t,Gm 
and with U= UT and Y= YT assumptions ii) and iii) follow 
from assumption i)-see  Lemma A of the Appendix). 

Properties i) and ii) are of course natural assumptions. 
Property iii) guarantees for instance that if G(u, w ) =  
G’(u, w( w ) ) ,  w :  P-, W T  with W the disturbance input 
alphabet and H’ the disturbance, then Fu( 0 ,  F)=FJ w(*), F )  
with FL( -, F )  nonanticipating in w. 

Assumption ii) is nothing more than a natural generali- 
zation of this constraint. 

We  will call the maps Fu and Fy defined by Fy(w, F ) :  = 
G ( w ,  Fu(w, F ) )  the closed-loop  system  functions. The above 
definitions are illustrated in Fig. 1. 

3) In order to choose a control law for an uncertain 
plant one needs to define a family [F of admissible  control 
laws and a decision rule. This rule is usually obtained by 
modeling the system performance. Thus, one defines the 
cost function 

J :  UXP-,Re. 
(Re = R U { - m} U { + m}. It is reasonable not to assume 
a priori that the performance of the system  is finite, e g ,  in 
infinite time problems.) This induces a map 

F ) ) ;  

j :  [FXP+Re 

defined by j ( F ,  w ) :  =J(Fu(w, F ) ,  w ) .  The object is to mini- 
mize j by  choosing F ElF. However,  since there may not be 
any F+ €IF, such that j (P,  w ) < j ( F ,  w )  for all w EP and 
FEF, one may turn to the average performance which 
brings us in a very natural way to stochastic control by 
modeling the uncertainty space P as a probability space. 

4) Assume that the uncertainty space P is a probability 
space {a, A ,  P}, and  that for all admissible control laws 
F E E ,   i ( F ,  .) is an (extended) real random variable such 
that J A v ( F ) : = E { j ( F ,  -)} is  well  defined. This obviously 
induces a map 

JAv: IF -+ Re.  

The problem in optimal stochastic control is then to find a 
control law F* €IF, such that 

for all FEE;  cv is called the optimal  performance and F* 
an optimal  control law. 

5) In terms of the above notation the continuous finite 
time interval LQG-problem reads as  follows: 

T = [ t o , t , ] ,  -m<toGt ,<m,  
U=R” 9; u= V ( f o ,  t ,  ), 

Y = R P ,  Y=L,P(t,, t , )  

and the plant G is  defined through the state x E R by 

dx(r,.)=A(t)x(t,.)dt+B(t)u(r)dt+G(t)dw,(t,.) 

dy(r,.)=C(r)x(t,.)dt+D(t)dw,(t,-) (5 .2 )  
(5.1) 

x ( t o , - ) = x , ( - ) ,  y ( t , )=O.  

Here w, and y are, respectively,  n-dimensional and p-  
dimensional disturbance inputs defined on the uncertainty 
space 0. 

In order to give a mathematical meaning to (5.1) and 
(5.2) we assume that  {wl(r, 0 )  to G r G t , }  and {w2(t, -) to G t  
Gr, }  are,  respectively,  n-dimensional and p-dimensional 
independent standard Wiener  processes  defined on a prob- 
ability space { Q ,  A ,  P} and that xo( .) is an n-dimensional 
Gaussian random vector independent of both w,(r, .) and 
w2(r, -). Furthermore, A ,  B ,  C are matrix valued functions 
on [ r o , r l ]  with the entries of B,CEL2(to, t l )  and of A €  
Ll(to, t , ) .  Thls then defines via the definition of the It& 
stochastic integral [ 111 a plant G: UX P+ Y of the form 

G 
( u ,  w )  w L u + a ( w )  (5.3) 

with L a (deterministic) bounded linear operator and a a 
p-dimensional Gaussian L2(t0,  r , )  stochastic process on 
[ t o ,   t , ]  [9],  [lo]. The cost functional is  given by 

/“[xT(r7*)Rl(t)x(t:.)+u(t)R2(t)u(t)] r dt 

with R, = RT, R, = R;, and R,, R ,  appropriate dimen- 



1082 IEEE TRANSACTIONS  ON  AUTOMATIC CONTROL, VOL. AC-26, NO. 5 ,  OCTOBER 1981 

sional matrix valued functions on [ to ,  t l ]  with the entries of 
R ,  EL,( to ,  t , )  and R ,  EL,(to,  t l ) ,  respectively.  (As  it 
stands the problem is  well  defined.  However, in order for 
an optimal stochastic control to exist, more conditions on J 
need to be satisfied.) 

Note  that in the class of mathematical models  discussed 
here one uses the measure in (52, A, P} in order to define 
G. In any  case one. ends up with a situation of type (5.3) 
and it is not unnatural to consider (5.3) as the primary 
“experimental” description of G and to consider (5.1) and 
(5.2) as a mathematical reformulation for (5.3) after 52 is 
made into  a probability space. 

The class of admissible control laws consists of all 
(possibly nonlinear) operators F: Lf’(to, r , ) - ) L ~ ( t o ,  t l )  
which are nonanticipating and  such that I-LF has a nonan- 
ticipating inverse on Lf’(to, t l ) .  (This is  what i), ii), and iii) 
reduce to in this case. In particular, this  includes  all 
nonanticipating operators with  local  Lipschitz constant less 
then unity; see [12].) Since 52 was already assumed to be a 
probability space in order to give  (5.1)  and (5.2) a mathe- 
matical  meaning-the  averaging of 4) in the average perfor- 
mance  can now be carried out. 

This example  shows that the framework  sketched in 4) 
does not imply that if the  model is given  by an Ita 
equation, then it should allow a sample pathwise interpre- 
tation of the solution. Rather a measure  on 52 should then 
enter in order to interpret the model and a measure  (which 
will be but- to make the point-  would not forceably  need 
to be the same) will enter in order to interpret the “average” 
performance. 

6 )  Although the above setting of optimal stochastic con- 
trol is quite natural and the underlying ideas well known, 
there has  been a tendency in control theory, particularly 
when it is approached from a purely probabilistic point of 
view, to use alternate approaches. Sometimes one finds 
formulations in which a famdy of a-algebras, A, for t E T is 
given and the control is a random process u E U such that 
u( t ,  - )  is A,-measurable for all t .  In this context A ,  de- 
scribes the information available to the controller at time t .  
This formulation ignores the important fact that the con- 
trol itself  may  influence the information available in the 
future and this formulation is  hence of very  limited  use and 
generality. This possibility of manipulating the information 
received is, in fact, the  basis of the so-called dual effect in 
stochastic control [2] .  A second formulation is  to  call a 
stochastic process u E  U and admissible control if u(t.  .) is 
A,-measurable where A,  is the a-field  generated by the 
corresponding observation process y of course obtained by 
taking y =  G(u,  e). The inadequacy of this definition is 
illustrated by considering the optimal control problem  with 

Y = u  y(to)=O 

plant 

and cost function 

J h  

where w is Brownian motion. As  can  be  seen after some 

rewriting,  this  problem  is actually of the LQG-type. In the 
formulation suggested in the beginning of this paragraph 
u= w will be an admissible control (which  gives an excel- 
lent performance)  which  is of course quite unacceptable. 
Our framework  would  give u=O as the optimal control 
law,  which  is more like it. 

We  feel that the formulation given in (1)-(4) is  logical 
both from mathematical and more importantly also  from 
the “practical” point of  view where it corresponds to  the 
idea that a control policy is a processor (often a device-a- 
computer) which generates decisions  on the basis of the 
available observations and not some type of random gener- 
ator (or a measure  selector)  suggested  by  more probabilis- 
tic formulations. A related formulation is found in [4]. 
Finally, it ought to be  mentioned that by and large all 
available formulations are equivalent for discrete time  sys- 
tems. 

11. THE CERTAINTY  EQUIVALENCE CONTROL LAW 

In this  section we  will define, essentially  on  the  level of 
generality  used before, what we mean  by the “certainty 
equivalent control law.” 

7) The basic idea is the following.  Assume that we face 
the decision of choosing a control u E U so as to minimize 
the cost functional J(u, a). In the case of perfect informa- 
tion, i.e.,  if ~ € 5 2  is known,  this leads to the decision u * ( w )  
choosen,  such that J(u*(w),  w)<J(u ,  o) for all u E  U. 
However, if  we only  know w only through the observations 
y ( w )  and we cannot solve the problem of finding the 
corresponding optimal feedback control law u*( y )  it  is not 
totally without merit to use the control law 

i i ( y ) : = E { u * ( w ) (  j’(o)=y} 

where we have  assumed that this conditional expectation is 
well defined. This idea  is  called certainty equivalence and 
will  now be formalized in a dynamic framework. 

8) We  will consider the discrete and continuous time 
case separately. Let T =  { t o ,  ro + 1; . - , r l }  with - rx) <to G 
r ,  G c o ,  and  assume that the plant G [see l)] and the cost 
functional J [see 3)] are given and that the control input 
alphabet U is a subset of a finite-dimensional vector space 
(or any  space,  such that expectations can be  defined). For 
simplicity we will also  assume that U= U T  and Y= YT.  

Let U E  U. t E T and consider  now the following “de- 
terministic” optimal control problem: 

where 

u , , , : = { u ~ U l u ( r ‘ ) = v ( t ’ )  fort‘<t}. 

Let u*( u, I ,  w )  be a minimizing control (hence,  assumed to 
exist). By considering its value at time t thls defines a map 
R :  UXP- U by 

R ( u , w ) ( t ) : = u * ( v , r , o ) ( r ) .  
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”W’ 
Fig. 2. The idea of certainty equivalence at time f [(l) and (2)] and for 

all t (3). 

This R(u, o)(t)  is the control which  we  would  use at time t 
if  we faced the situation in which there is perfect informa- 
tion ( w  known) but the previous  decisions (the control u 
before t )  have already be decided upon. The observations 
up  to time t which  would  have occured under the above 
assumptions are given  by G(u, w )  and G(u, w ) ( t ’ )  for t’Gt 
would  be available at time t. The certainty equivalence idea 
explained in 7) would  suggest to use at time t the control 
value 

E { R ( u ,  . ) ( t ) l G ( u , . ) ( 4 = y ( d  -}. 
(We assume this conditional expectation to be well  defined.) 
This then defines a map S: U X  Y-,  U defined by 
S(O, y ) ( t ) : = E { R ( u ,  -)(t) lG(o, - ) ( T ) = ~ ( T )  T G ~ } .  This 
map is nonanticipating in y and strictly nonanticipating in 
u. Consider now the simultaneous equations 

s(0, y ) = u ;  u=u 

(which  says nothing more than that the certainty equiva- 
lence idea is used for all t ) .  By Lemma A of the Appendix 
these equations define a unique map 

Fce: Y+ U 

which  also defines a control law in the sense  explained in 
2). We will call Fce the certainty equivalence  control law. 
Using this control law is called the certainty equivalence 
principle, and we will say that the certainty equivalence 
property holds for a stochastic control problem if the 
optimal control law F* = Fce. 

The above definitions are illustrated in Fig. 2. 
9) In the continuous time case the ideas are similar, but 

the details are somewhat more technical.  Assume that 
T = [ t O ,  t l ]  (where - m<tO G t ,  Goo) and  that Uis a subset 
of a finite dimensional vector  space.  Let u*(o, t ,  w )  be 
defined analogously as in 8) and assume that it is continu- 
ous from the right. This defines, as in 8), a map R: 
UXQ-. U T  and S: U X  Y+ UT.  By assuming  now that 
there exists a unique nonanticipating control law Fee: Y -  U,  
such that u = Fce( y )  solves the equations: S( u, y )  = u; u=u, 
for all y E  Y one then obtains the certainty equivalence 
control law in the continuous time  case. Thus, the only 
difference with the discrete time  case  is that  the solvability 
of the equation S( u, 0 )  = u has to be postulated while in  the 
discrete time  case it follows  from  Lemma A of the Appen- 
dix. 

10) “Nonexamples”: Previous attempts to formulate a 
general certainty equivalence principle were  based on the 
idea of replacing all the random quantities in the system 
equations by  their  mean in order to obtain an “equivalent 

deterministic problem” which  would in general be easier to 
solve. Thus, the obtained deterministic control law ob- 
tained this way is then used in  the stochastic control 
problem. (Already here we are confronted with the ques- 
tion: What is precisely meant by “use”?). If this action 
results in optimal performance the problem is called  cer- 
tainty equivalent.  However, this idea of equivalent de- 
terministic system  is not well defined as is easily  shown  by 
the following example: 

x ( k , . ) : = a ( . )  k = t o , t o + l , - - - , t , ;  

. a ( - ) :  Q~R+:= [o ,co ) .  

Define b: =hi then the system  may be written in the form 

x ( k ; ) = b 2 ( - ) .  

Replacing in both the equations the random quantities by 
their mean results in x d ( k )  = E { a ( . ) }  and x d ( k )  = 
[E{b(.)}I2. In general, [ E { b ( - ) } I 2   # E { b 2 ( . ) } ;  hence, we 
have obtained two different deterministic systems. 

This ambiguity of what to consider  noise input does not 
occur when  we consider an equivalent deterministic system 
defined in terms of sample paths, as suggested in 8) and 9). 

Consider, therefore, the following discrete time stochas- 
tic control problem: 

x(k+l,.)=a(k,.)x(k,.)+bu(k) x ( O ) : = X ,  

Y ( k ,  - ) = x ( k ,  4 
{ ~ ( k ,  * )  k = O , * .  . , t ,} (10.1) 

a sequence of independent identically distributed random 
variables, a( k,  - ): Q -, R + . 

The cost criterion J is  given by x 2 ( t , ,  -). Assume wE!J 
known, this results in a deterministic optimal control uod(t, 
- 1, w ) =  -a(t,  - 1, w) /bx( t ,  - 1, 0) and uod(t,  w )  arbi- 
trary for t=O;.  - , t ,  -2. 

Solving. the stochastic problem one obtains using dy- 
namic programming: 

Using the notation uod(tl  - l)=h(a(t, - 1, o), x(t ,  - 1, a)), 
we  see that uos(tl - l)=h(ri(t, - I), 2(t ,  - 1))  where ci and 
2 denote, respectively, the conditional mean of a and x 
given the observation y ( t ,  - 1, -). We conclude that this 
problem is certainty equivalent according to the classical 
definition. 

Now,  let  us  assume that for one reason or an other it 
may be necessary to define c: = h i ;  the above  system then 
reads 

x ( k + l , . ) = C * ( k ; ) X ( k ; ) + b u ( k ) .  (10.2) 

The deterministic problem (i.e., w EL? known) is solved by 

and solving the stochastic problem gives 
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Using the certainty equivalence control law in the classical 
sense  yields 

( E { c ( 4  - 1, .)b(t,- 1 9  . ) I )  2 

uce(tl-l)=- X ( f ,  - 1, -). 

In general, E { c ~ ( ~ ,  - 1, -)b(tl - 1, . ) } # ( E { c ( t ,  - 1, -)b(tl 
- 1,  Hence, uCe(tl - l)#uoS(tl - 1) from which  it 
follows that our system  is not certainty equivalent.  Yet 
(10.1) and (10.2) stand for the same stochastic systems. [In 
our sense the system is certainty equivalent  regardless 
whether we  use  (10.1) or (10.2)!] 

The above  examples  clearly  show that the crucial point is 
the question: What is meant by a certainty equivalence 
control law? It is  precisely this question we have tried to 
give an answer in 8) and 9). 

b 

111. CERTAINTY EQUIVALENCE FOR THE 
LQG-PROBLEM 

In this section it will be shown that the LQG-problem is 

11)  Consider first the discrete time LQG-problem. Let 

Y=RP, Y=  YT  and the plant G be defined  analogously as 
in 5) through the state x E R by 

x ( t + ~ ) = ~ ( t ) x ( t ) + ~ ( t ) u ( r ) + w ~ ( t )  

certainty equivalent. 

T=[t0,to+1; * . , t l ] ,  -mooto<t,<oo, U=R", u=uT, 

Y ( t ) = C ( t ) X ( t ) + W 2 ( t )  

x(to)=xo y(to)=O (11.1) 

with {xo, w,(t,); - .,w,(t,),  w2(t0); * -,w2(tl)} mutually in- 
dependent Gaussian random vectors, E { x , } :  =FoE{(xo  - 
x o ) ( x o - ~ o ) T } : = 2 ( t O ) ;  wl,w2 white  noise  with  zero  mean 
and covariance Vl(t) and V2(t) ,  respectively, and A ( [ ) ,  
B ( t ) ,  and C ( t )  matrices of appropriate dimension for E T. 
The cost functional is  given  by 

, , - I  

- 

[ x T ( t +  1 ) ~ , ( t +   l ) x ( t +   1 ) + u T ( t ) ~ , ( t ) u T ( t ) ]  
10 

t x ~ ( t , ) P , x ( t , )  (11.2) 

with P,=P;, R,(t)=RT(t), and R , ( t ) = R ; ( t )  matrices of 
appropriate dimension, R,(t)>O, R2( t)>O for t E  T and 
PI 20. The admissible control laws  consist of all nonantic- 
ipating maps from Y into U. Assume,  as in all of LQG 
optimal control theory, that the discrete time Riccati equa- 
tion 

P(t-1)=[A(t-1)-B(t-l)F(t-l)lT 

F(t-l)=[BT(t-l)(Rl(t)+P(t))B(t-l)+R2(f-l)]-I 

. [R,(t)+P(t)]A(t-1) P ( t l ) = P I  (11.3) 

*BT(f-l)[Rl(t)+P(t)]A(t-l) (11.4) 

has a solution for t o G t ~ t , .  

We will now prove the following. 
fieorem 1: The discrete time LQG-problem is certainty 

equivalent. 
Proof: The proof  is  based on two  lemmas. The first 

lemma  is no more than an exercise in (deterministic)  LQ- 
theory and is  proven  explicitly in [9]. 

Lemma 1: For the problem under consideration the 
control u*(u, t ,  o) introduced in 8)  is  given for t € { t ,  t+ 
1,. . * , t l }  by 

~ * ( ~ , t , ~ ) ( t ' ) = - F ( t ' ) x ( t ' , o ) + L ( t ' , o )  (11.5) 

where F is defined by  (1  1.4) and L is given  by 

L= -fwl - P  (11.6) 

with 

~ ( ~ ) : = [ B T ( ~ ) ( R ~ ( I + ~ ) + P ( ~ + I ) ) B ( ~ ) + R ~ ( T ) ] - '  

.By( t ) (R , ( t+ l )+P( t+ l ) )  

&t):=[B~(t)(Rl(t+1)+P(t+1))B(f)+R2(t)]-1 

- B T ( t ) N ( t , o )  

where N ( t ,  w )  is the solution of the backward difference 
equation 

~ ( t , w ) = [ ~ ( r ) - - ~ ( t ) ~ ( t ) ] ~ ~ ( r + l , w )  

+ [ A ( t ) - B ( t ) F ( t ) I T  

. [ R , ( t + l ) + P ( t + l ) ] w , ( t , o )  

N ( r , , w ) = O .  (11.7) 

Finally, x in (1 1.5) is  defined  recursively by the plant 
equations (1  1.1)  with 

i for t'< t 
u( t ' )  = 

- F ( t ' ) x ( t ' , w ) + L ( t ' , o )  fo r t ' a t .  0 

With Lemma 1 at hand it is  now  easy to identify what the 
map R of 8)  is. Thus, 

R :  ( u , w ) H ~  

with d given  by 

d= - F x + L  (11.8) 

with x recursively  defined  by 

x ( t + l , w ) = A ( t ) x ( t , w ) + B ( r ) u ( t ) + w , ( t , w )  

x ( t o , w ) = x o ( w )  

and L given  by  (11.6)  for t oGtGt I .  
We  now turn to the computation in the LQG case of the 

map S as defined in 8) in general. 
Lemma 2: Let ti be  defined as above and let y be  given 

by the plant equations (1 1.1) (In both equations we con- 
sider u as a deterministic function.) Then E{d(  t)l y,-}  is 
given  by E{ti(t)l y , - }=  - F ( t ) E { x ( t , w ) l  ut-} .  

Proof: Solving (1 1.7) and substitution of the result 
into (1 1.6)  shows that L( t ,  o) is linearly dependent on 
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w, ( t ,  w ) , w l ( t +  1, w ) ,  . , w l ( f l ,  w ) .  Moreover, the measure- 
ments  up  to  time r are  functions of the  past 
wl( to ,  w ) , .  -,wl(tl - 1, w )  and of w2(r, w ) .  Hence, L(t ,  w )  is 
independent of yt- . 0 

From Lemma 2 it follows that S: U X  Y-, U is defined 
by S(u, w ) ( t )  = - F ( t ) f ( r )  with 2( t ) :  = E{x(t) l  yt- }. 
Evaluation of 2 ( t )  is  simply the discrete time Kalman filter 
and is recursively defined by 

2 ( t + l ) = A ( t ) i ( t ) + B ( t ) u ( t ) + L ( t )  

. [ u ( t > - W W ]  
2(  t o )  = x o  

with i ( t )  the Kalman filter gain obtained, as is  well 
known, via the solution of a Riccati type equation (see, for 
example 131). It is important to observe that L( t )  is de- 
terministic. 

In order to compute the certainty equivalent control law 
it now  suffices to solve the equations S(u, y )=u which 
after substitution in the above expression for S yields that 
FCC: Y-, U is  defined by 

( F c , u > ( t ) =  - F ( t ) W  

2(t+l)=[A(t)-B(t)P(t)]R(t)+L(t) 

- [ Y ( t ) - - ( t ) 2 . ( f ) ]  

with 2( t )  recursively defined by 

~ ( t o ) = E { x o l  

which defines as is  well known [3] the optimal feedback 
control law for the LQG problem. We conclude that the 
LQG problem is certainty equivalent. This ends the proof 
of Theorem 1. W 

12)  We  will consider now the continuous time LQG- 
problem as introduced in 5). We will also assume that 

i) 36>0 such that R , ( t ) = R ; ( t ) > t l  for tETand  
ii) the Riccati differential equation 

k(t)= -A'(t)K(t)-K(t)A(t)+K(t)B(t) 

.R,'(t)B'(t)K(t)-R,(t) K(t , )=O (12.1) 

has a unique solution for to G t G t l .  
We then have the following. 
Theorem 2: The continuous time LQG-problem is cer- 

tainty equivalent. 
Pro08 The proof  is again based on several  lemmas. 

The first lemma  is the analog of Lemma 1 of the discrete 
time  problem.  However, to prove it we need  some stochas- 
tic calculus. We  will omit the proof  here and refer the 
reader to [9] for the details. 

h m m a  3: For the continuous time problem the control 
u*(u, t ,  w )  introduced in 9) is given for t ' € [ t ,  t ,] by 

u*(u,  t , o ) ( t ' ) =  -R,l(t ' )B(t ')K(t ')x(t ' ,o) 

+ i ? ; ' ( t ' ) B ( t ' ) r ( t , + t , - t ' , w )  (12.2) 

where K( t )  is given  by  (12.1), and r( t )  is the solution of the 
stochastic differential equation: 

d r ( t ,  -)= [ ~ ( t ,  + r l  - t ) - ~ ( t ,  +t ,  - t)R;'( to +t,  - t )  

.B=( to+t l - f )K( to+t l - - t ) ]=r( t , . )d t  

- ~ ( t O + t , - ~ ) G ( t o + r l - t ) d ~ ' ( t , ~ )  
r ( to)=O (12.3) 

and {w'( t ,  -) to G t G t , }  the standard Wiener  process  de- 
fined by 

~ ' ( t , ~ ) : = ~ , ( t , , ~ ) - ~ ~ ( t ~ + t , - - t , ~ ) .  (12.4) 

Finally x in (12.2) is defined  by the plant equations (5.1) 
with 

u ( f ' ) = {  the right-hand side of (12.2) for t ' 2 t '  

The map R is thus given  by R: (u,  a)& with ii defined by 

i i ( t )=  - R , ' ( t ) B ( t ) K ( t ) x ( t )  

4 t ' )  for t'<t 

+ R , ' ( t ) B ( t ) r ( t , + t , - t )  (12.5) 

with x defined by 

d~(t,.)=A(t)~(t,.)dt+B(t)u(t)dt+G(t)dwl(t,.) 

x ( t o , . ) = x o ( * >  

and r ( t ,  .) given by (12.3), tOGtGt, .  W 
To compute the map S as defined in q for the continu- 

ous time problem we  need the following  lemma. 
Lemma 4: Let ri' be defined by (12.5) and let y be given 

by the plant equations (5.1) and (5.2). (We consider u to be 
a deterministic function.) Then E{ ri'( t)l y t - }  is  given by 

E(ri'Wl Y J =  -R,'(t)B(t>K(t)E{.(t)l Y,- 1. 
(12.6) 

Proof: This easily  follows from the fact that r( to  +t ,  
- t )  is independent of y(s, a )  s G t ,  with y ( t ,  a )  given by 
(5.2);  which is a direct consequence of the definition of 
r( t ,  -) and w'( t ,  -) to GtG t ,  and the independence of w,( t ,  -) 
and w2( t ,  .) (for details see [9]). W 

The map S: U X  Y-,  U is  given  by S( u, y ) (  t )  = 
-R; ' ( t )BT(r )K( t )2 ( t ,  e) with 2(t ,  . ) : = E { x ( t ,  .)I ut-}  
solution of the continuous time Kalman filter 

d2( t ,  . ) = A ( t ) $ ( t ,  . ) d t + B ( t ) u ( t ) d t + J t ( t )  

. [ d y ( t , . ) - C ( t ) 2 ( t ; ) d t ]  

~ ( t o ) = E ( x ( t o ,  .)} (12.7) 

with i ( t )  the  Kalman gain defined by Z ( t ) :  = 
Z(t)C=(t)(D(t)D=(t))- '  of 

z(t)=A(t)Z(t)+Z(t)AT(t)+G(t)GT(t) 

-z(t)c'(t)(D(t)DT(t>)-'C(t)Z(t) 

Z(to)=E{ (x0   -xo) (xo  -x,)'} 
with 
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We still have to compute the certainty equivalent control 
law FCe by  solving the equations S(u, y )  =u. In general, 
these equations do not have a unique nonanticipating map 
as their solution (we  explicitly  assumed  existence in the 
continuous time  case!).  However, for the case  at hand 
existence  may  be  shown. Substitution of S(u, y )  = u into 
(12.7) yields 

~ ~ ( t , . ) = [ ~ ( t ) - ~ ( r ) ~ ; ' ( t ) ~ = ( t ) ~ ( r ) - i ( t ) c ( r ) ]  

.a ( t ,  e )  dt+L( t  )dy ( r , .  ) 

and this defines (notice that L(f) is deterministic) together 
with S( u, y )  = u a nonanticipating map Fce: Y+ U given  by 

( ~ e ~ " t ) = - ~ , ' ( t > ' ' ( t ) K o l Z ( r )  

which  yields as is  well known the optimal feedback control 
law for the LQG problem. We conclude the certainty 
equivalence. This ends the proof of Theorem  2. 0 

IV. CONCLUSIONS 

13) In this paper we have given a general  framework for 
defining a certainty equivalent control law. The basic idea 
is that in certainty equivalent control policy one chooses, at 
every instant of time, as the control the conditional expec- 
tation (given the measurements until that moment) of what 
would be the optimal control if there were no uncertainty. 
Within this  framework it is then not difficult to prove that 
the discrete as well as the continuous time LQG-problems 
are certainty equivalent. We have given here an explicit 
proof of the case of finite time intervals, but these results 
are easily extended to the infinite time  case. 

The framework  used in the paragraphs 1)-4) of our 
paper may actually give an appealing framework for defi- 
ning and studying other stochastic control principles as the 
separation principle and neutrality, caution and probing, 
and information state in stochastic control. Providing an 
adequate mathematical framework for these tantalizing 
intuitive ideas seems  very  much in the spirit of Bellman's 
contribution to decision  making under uncertainty. 

APPENDIX 

Let ~ : = { t o , t o + l , - - ~ , t , }  - - o o t o ~ r l < m  and U,Vbe 
given spaces and U= UT, V =  V'. Let F: UX V- ,  U with F 
nonanticipating and strictly nonanticipating on U. We  will 
now  prove the following  lemma. 

k m m a  A:  Consider the following equation: 

u = F ( u ,  u ) .  ( * I  
Then, there exists a map Fu: V +  U,  such that Fu(v) is the 
unique solution of ( * ). Moreover, Fu is  strictly nonantic- 
ipating. 

Proof: The proof  goes  by induction. Take t=to; then 
U( tO)=F(u, u)(to). Hence, there exists a map 9: V-. U, 
such that ~ ( l ~ ) = $ ~ ( u (  to));  where the existence of Go: 
Y+ U follows from the fact that F is strictly nonanticipat- 
ing. Take t = t o + i ,  i = O , l ; - . , k  and let 

u( to+~)=~,(u(t,),...,u(to+~)) ( *  * )  

with @i: Vi+' + U, i=O, 1,- * *,k. 
We then have 

u ( t o + k + l ) = F ( u , v ) ( t o + k + l )  

= ~ ( ~ ( t o ) , ~ ~ ~ , u ( t o + k ) , u ( t o ) , ~ ~ ~ , u ( t 0 + k + i ) )  

(where we have repeatedly made use of the fact that F is 
nonanticipating in V and strictly nonanticipating). Now 
using ( *  * ) we  get 

~(to+k+i)=~,+,(u(~o),~~~,~(ro+k+~)) 

with Gk+, defined by 

& + I :  (o( to) , . . . ,u( to+k+l))  

H + ( 9 0 ( 4 f O ) ) ,  9 , ( 4 t o ) , 4 t o  + l k  - * )  

+ k ( 4 t O ) , . .  .,u(to +k)), 
u ( t , ) , - . . , o ( t , + k + l ) ) .  

Hence, there exists a unique map Fu: V +  U defined by 

(E;u)( t )=9~-- l , (u( tO) ," . ,u( t ) ) ,  t+o,to+1,.- ' , t l]  

which  is nonanticipating. 0 
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A Singular  Perturbation  Approach to 
Modeling  and Control of Markov  Chains 

RANDOLPH G. PHILLIPS AND PETAR V. KOKOTOVIC, FELLOW, IEEE 

Abstract-Finite state continuous time. Markov processes with weak 
interactions  are  modeled as singularly perturbed systems. Aggregate states 
are  obtained using a  grouping algorithm. Two-lime scale  expansions sim- 
plify cost equations and lead to decentralized  optimization algorithms. 

M 
INTRODUCTION 

ARKOV decision  processes  have  played an im- 
portant part in Bellman’s  development of dynamic 

programming [ 11-[3]. Recent applications, such as manage- 
ment of hydrodams [4],  [5] and queueing  network  models 
of computer systems [6]-[8], have accentuated the need for 
reduced order approximations of large scale Markov chains. 
In this regard particularly promising is a perturbational 
decomposition - aggregation method of Pervozvanski, 
Smirnov, and Gaitsgori [9]-[12], and Delebecque and 
Quadrat [5],  [13]. The method  assumes that the groups of 
strongly interacting states are known and treats the weak 
interactions between  these groups as perturbations. The 
result is a short-term decomposition. Over a longer period 
the weak interactions become significant, while  each group 
of the coupled states can be replaced  by an aggregate state. 
A long-term aggregate  model is thus obtained. In con- 
trolled Markov processes this time  scale separation leads to 
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hierarchical  algorithms in which fast subsystem optimiza- 
tions are coordinated at a slower  aggregate  level [5],  [12]. 

This paper contributes to the further development of the 
perturbational decomposition-aggregation method. First, 
an explicit  singular perturbation form of the model of a 
process  with  weak interactions is proposed. This form 
interprets earlier aggregation results and improves the ac- 
curacy of the aggregated  model.  Second, it is  shown that a 
grouping algorithm developed for power  systems [14] can 
be used to identify the groups of strongly interacting states. 
Third, the singularly perturbed form has simplified the 
treatment of the cost equations and decentralized  algo- 
rithms in optimization problems. 

SINGULAR PERTURBATION MODEL 

Consider an n-state Markov process in which the N 
groups of strongly interacting states have  been identified, 
groupj consists of nj states and X&nj =n .  We  express the 
weak interactions between  the states in different groups as 
multiples of a small  positive scalar E and form the continu- 
ous time  model 

- dP = p ( A + d )  d r  (1) 

where p is the n-dimensional  row of probabilities p i  to be in 
state i at time 7. Thus, 

n x p i = l .  (2) 
i =  1 

We assume that for O < E ~ E *  matrices A ,  E B ,  and A + E B  
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