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Almost  Invariant  Subspaces: An Approach to 
High  Gain  Feedback  Design-Part I: 

Almost  Controlled  Invariant  Subspaces 

J A N  C. WILLEMS 

NE of the most important new  developments in lin- 0 ear system theory in the last decade has been,  without 
any doubt, the introduction of ( A  - B )  and ( A  - C) in- 
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variant subspaces [2], [3]. From a linear algebra point of 
view it is  most  logical to call  these subspaces A(mod imB) 
and A lker C invariant subspaces; we will call  them con- 
trolled invariant and conditionally invariant subspaces, re- 
spectively. This nomenclature is  suggested  by their system 
theoretic interpretation and was also used in [3]. The 
“geometric” approach of Wonham [2] provides an elegant 
and, in applications, very  effective approach to this prob- 
lem area. In addition, this approach admits a  very  effec- 
tive separation of the structural questions (linear operators 
and subspace operations) from the numerical and compu- 
tational ones (matrices and linear equations), which leads 
to a  very  clear, transparent, and sophisticated theoretical 
picture. Not only have  these concepts been of crucial 
importance for providing a deep understanding of the 
“fine structure” of linear systems but they  have  also 
served as an excellent framework for solving  a number of 
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very  convincing control system synthesis problems as, for 
example, the disturbance decoupling problem, tracking, 
regulation, the synthesis of noninteracting controllers, etc. 

In a recent paper [ 11 we have introduced a new concept 
which fits very  nicely into this geometric  circle of ideas. 
The concept is that of “almost”  A(modB)-invariant sub- 
spaces  which in a sense  (see Section IV) is the high gain 
feedback generalization of an A(modB)-invariant sub- 
space.  Here we will call  these subspaces almost  controlled 
invariant  subspaces. In [l] the basic definition of these 
subspaces has been  given together with an explicit  feed- 
back representation for them. In the present paper further 
properties of these subspaces will be studied together with 
some extensions of these ideas and explicit applications to 
a number of control theoretic synthesis problems. In Part 
I1  of the paper we will treat the duals, i.e., almost  condi- 
tional&  incariant  subspaces or, as one may  like to call 
them, almost Alker C-invariant subspaces. In there the 
synthesis problems will  be mainly  concerned  with ob- 
servers. We finally  mention a recent manuscript [4]  where 
a more restricted but somewhat  analogous idea called 
asymptotic holdability has been introduced. However, 
since all asymptotically holdable subspaces as introduced 
there need to be subspaces of B: = im B, these constitute a 
small  subset of our  almost controlled invariant subspaces. 

We  will denote  throughout vectors by  lower case italic 
letters, time functions and distributions by boldface italic 
lower  case letters, matrices (linear operators) by italic 
capitals, and subspaces by sans serif capitals. As usual, R 
will denote the real line, R + : = [0, co), R - : =( - co, 01, C 
denotes the complex plane, and,  for a positive integer n, 
A:= { 1,2,. . , n } .  The spectrum (i.e.,  the set of eigenval- 
ues, counting multiplicity) of the square matrix M will be 
denoted by a( M ) .  Re a ( M )  < K means that all points of 
a ( M )  have  real part less than K .  

We  will  sometimes  use the notation L1 c L to indicate 
that L, is a linear subspace of L when its linear structure is 
apparent from the context. We  will often consider families 
of subspaces of a given vector space. These  will  be  de- 
noted by underlined sans serif capitals. Let l= be  such a 
family of subspaces of X. We  will  say that is  closed 
under addition if {Ll,Lz E_L}*{L, + L z  El-}. We  will de- 
note by L*: = supLEL L the smallest subspace of X such 
that 1) L* II L V L E  LI Thus L* is defined by  1) and 2): 
{ L 1 > L  VLE_L}*{GCL,}. It is  easily  seen that this 
uniquely  defines the subspace L*. Of course, L* may or 
may not belong to _L. It obviously  does if _L is  closed  under 
addition. In fact, L* =ELELL. This trivial fact is rather 
important to  us:  we record it as follows. 

Lemma 0: If _L is  closed under addition, then supLELL 

IfL,,_L2 are families of subspaces of  X, then +L2:= 
{LCXIL=L1 +L2, L1 ELI, Lz  EL2}. A sequence of sub- 
spaces  {L,}, iEn ,  will be called a chain in L if L 2 L 1 3  
L2 3.. * - >L,. If L is a subspace of X then  X(modL)  is the 
vector space { x +  Llx  EX}. In a suitable basis  this corre- 
sponds to ignoring  some of the coordinates of x .  

=:L*EL. - 

Let  EX, L c X ,  with X a normed  vector  space.  Then 
d( x ,  L): = inf,.El 1 1  x - x’ll. Let I :  R+X be  measurable then 
we  will say that I E  Cp if /I 111 cp < 00 where 111 11 is defined 
by 

forp=co. 

This notation will  also  be  used for functions defined on 
an interval. The codomain will  always  be  obvious  from 
the context. We  will  use the notation 1€Cw if 1 is in- 
finitely differentiable, and 1EC:” if 1 restricted to any 
finite interval belongs to C,. The abbreviation a.c. stands 
for ‘absolutely continuous’ and a.e. stands for ‘almost 
everywhere’ and is here always  used  in  connection  with 
Lebesgue  measure. 

Most of the paper deals with the system Z: I=Ax+ Bu 
with xEX:= R“, uEU:=  R” and ( A ,  B )  matrices of ap- 
propriate dimensions.  We  will  use as  standard notation 
B:=im B and A,:=A + B E  Thus i = A , x  is the flow 
obtained by using the feedback  law u= Fx on 2. Finally, 
( A l e )  denotes the reachable subspace of Z given  by 
B + A B + .  . - +A”-’B, i.e., the smallest A-invariant sub- 
space containing B. 

11. ALMOST CONTROLLED INVARZANT SUSSPACES 

In this section we  will introduce the “almost”  versions 
of controlled invariant subspaces. In Part I1  we  will dual- 
ize the ideas to almost conditionally invariant subspaces. 
However,  since the present paper deals with controlled 
invariant subspaces we will most of the  time delete the 
adjective “controlled.” 

We  will take as a starting point that an almost invariant 
subspace is a  subspace of the state space of a linear 
system to which one can  stay arbitrarily close  by  choosing 
the input properly.  However,  we  will  see that there exist a 
number of appealing equivalent defining properties. 
Among others, they are those subspaces inside which one 
can  remain by  using  impulsive type controls or those 
subspaces which can be  approximated arbitrarily closely 
by ordinary controlled invariant subspaces. 

Section I1  of the paper  is  mainly a reexposition, without 
proofs, of the results in [l]. 

A. Basic  De3nitions 

Consider the linear system 

-1 
We will denote by Z, (A ,  B )  all possible state trajectories 
generated by E. Formally, Z , ( A ,  B ) : =  {x: R+XIx is a.c. 
and 3u: R+U such that x ( t ) = A x ( t ) + B u ( t )  a.e.}.  Equiv- 
alently, Z,( A ,  B )  = {x: R+XI x is  a.c. and x( t )  -Ax(  t )  E 6 
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Fig. 1. (a) A controlled invariant subspace. (b) An almost controlled 
invariant subspace. (c) A controllability  subspace. (d) An almost 
controllability  subspace. 

a.e.}.  If there is no chance for confusion we  will denote 
E,( A ,  B )  by E,. Furthermore, since E,( A ,  B )  depends 
only on A and B, we will of ten denote it by E,( A , B). 

Definition I :  A subspace V CX is  said  to be a (con- 
trolled) invariant subspace if Vx,   EV,  3xEE, such that 
x(O)=x, and x ( t ) E V ,   V t .  A subspace Vu CX is  said to be 
an almost (controlled) invariant subspace if Vx, EV, and 
e>O, ~ x E Z ,  such that x(0)=xo and d(x(t) ,V,)<e, V t .  

In the  controllability  version of these  notions one actu- 
ally  requires  to  steer  between any two given points of the 
subspace  while  staying in or arbitrarily close to it. Form- 
ally, we have  the  following. 

Definition 2: A subspace R CX is said to be a controlla- 
bility subspace if Vx,, x, ER, 3T> 0 and xEZ, such that 
x(0)=xo, x ( T ) = x , ,  and x ( t ) E R ,   V t .  A subspace R, C X  
is  said to be an almost controllability subspace if Vx,,  x1 E 
R a y  3T>O such that VE>O, 3xEZ, with  the  properties 
that x(O)=x,, x ( T ) = x I ,  and d ( x ( t ) , R ) < e ,  Vt. 

These  notions are visualized in Fig. 1. 
Let y, e, y,, 5, denote the sets of all invariant, etc. 

subspaces, and _V(K), FI(K),  _V,(K), and FI,(K) those  con- 
tained in a given  subspace K of X. Note that Ec_Vc_V, 
and FER, cy,. 

The following property, essentially  trivial, is crucial in 
applications. 

Theorem I :  y, E, y,, and E, are closed under  subspace 
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addition (i.e.,  V,,V2 €!*VI +V2 E?, etc.). Consequently, 

sup_V(K)=:Vg E!, supR(K)=:R*, - €5, 
sup_V,(K)=:V:, E!,, and supE,(K)=:R*,,. E!,. 

Proof: The first part of the theorem  is an easy  conse- 
quence of the fact that Z, is a linear  subspace  of the space 
of all  a.c.  maps from R! into X. Indeed, let x, EV, = Va, + 
Vu,,. Hence, it may be written as x ,  = a I  +a2 with ai €Vu, ,.. 
Consequently,  given any E > 0, 3xi  E E, such that x,(O) = ai 
and d ( x , ( t ) , V , , i ) < ~ / 2 .  Now, x:=xl +x, EX, and satis- 
fies x(0) = x o  and 

d(x( t ) ,Va)  <d(x, ( t>,vu)+d(x, ( t ) ,V, )  

<d(xI(t)YVu,l)+d(x,(t),VU,2) Q E -  

The same sort of proof applies to _V, 5, and E,. For the 
last two it is  convenient to proceed  by  first  showing that  it 
suffices to consider  only  the situation with x, or x1 equal 
0. This in order to be able to choose the T appearing in 
the definition of 5, the same for the two trajectories. The 
second part of the  theorem  follows from the closure  under 
addition and Lemma 0 of the introduction. 

B. Feedback Characterizations 

The following “feedback” characterizations of invariant 
and controllability subspaces  are well  known and are 
often  taken as the  definitions [2]. 

Proposition I :  
1) { V E _ V ) H { ~ F  such that A , V c V } - { A V c V + B } .  

(This last characterization justifies the “A(mod 6)- 
invariant” nomenclature.) 

2) {RER}@{3Fand B ,  C B  such that R = ( A , I B I ) } .  
Analogous  feedback characterizations may be found for 

Theorem 2: 
1) =_V+l3,, i.e., {Vu E_V,}~{3VE_VandR, Ef3,such 

that Vu =V+R,}; 
2)  {R, ER,}*{3F and a chain { B i }  in B such that 

R, =B1 +A,B2 + +A;-’B,} 
The  above  theorem  is  the main result of [l]: conse- 

quently, it need not be  reproven  here. Note  that  it follows 
immediately  from the above  theorem that for scalar input 
systems  there  are a finite number of almost controllability 
subspaces  given  by R,:=B+AB+ - - - +A’-%; i En. It 
also follows  from this theorem that {V, E_V, and Vu n B = 

almost invariant and almost controllability subspaces. 

- 

{ O > > ~ { V a  €9. 
C. Almost Controllability Subspace Algorithm 

In applications it is very important  to have  algorithms 
for computing V,*, V z K ,  RZ, R*,,.. It turns out,  however, 
that very  little  new needs to be done in order to set  these 
up. Indeed, such  algorithms may be obtained by suitably 
combining  the invariant subspace algorithm  (ISA) [2, p. 
911 and the almost controllability subspace algorithm 
(ACSA) [2, p.  1081. (In [2] this algorithm is called  the 
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controllability subspace algorithm (CSA); in  view of the 
theorem which  follows, we propose the more appropriate 
name (ACSA).) 

Proposition 2: Consider the algorithms 

I V,k+l=KnA-l(V,"+B); V$=X I (ISA) 

I Rft+l=Kn(ARFf+B); RE={O} I (ACSA) 

Then V," is monotone  nonincreasing;  moreover, 

Similarly R ft is monotone nondecreasing; moreover, 

In terms of these  algorithmic  definitions we obtain the 

Theorem 3: 

V I P K +  ' -VF:=lim,,,V,k, - and {V,""  =V,"}*{V," =VF}. 

K K - h ~ k + ~ R f t ,  and {Ri+'=Rft}*{Rft=RF}.  ~ d h K  =Rm:- 

following. 

v,* =vg,  

R+n,K = RE, 
Vz,-K = VF + Rg , and 
R*,=VFnRg=V;!=RF,. 

These  results are proven  in [l]  and we refer to there for 
the proof. 

The above algorithms are basically conceptual ones and 
it would be naive to suggest that they can simply be 
implemented on a digital computer, even though they 
involve, in principle,  solving  only linear equations. There 
are issues of numerical stability and the robustness against 
the "soft"  values in the matrices A and B. In [5]  some of 
the difficulties and considerations which enter into the 
numerical computation of V,* and RZ are discussed. The 
algorithms  proposed there are not a direct implementation 
of those in Theorem 3 but involve generalized 
eigenvalue/eigenvector computations and, hence,  leave 
the realm of finite arithmetic. 

We note that the intermediate steps V," and Rft in (ISA) 
and (ACSA) have  some  sigmficance of their own (see [l]). 
Finally, the  symmetry that is apparent from comparing 
(ISA) and (ACSA) may be viewed  in  terms of time  rever- 
sal in discrete-time  systems  where, if Z ( A ,  B )  describes 
the forward  time  evolution, then Z ( A  A -'B) describes 
the backward  time  evolution. This shows that (ACSA) 
becomes (ISA) under time  reversal. Unfortunately, be- 
cause of space limitations we cannot elaborate these points 
further at this time. 

111. SYSTEMS WITH DISTRIEWIIONS AS INPUTS 

In this section we will prove the equivalence of almost 
invariant or controllability subspaces with  what  would be 
"ordinary" invariant or controllable subspaces when 
distributions are also allowed as inputs. However natural 
this point of  view may  be, it is a bit awkward to set up a 
completely satisfactary mathematical framework to treat 
this. We will take a somewhat pragmatic approach and 

comment later on some of the mathematical difficulties 
involved. 

We will denote the space of (finite dimensional valued) 
distributions by D', by D'+ those  with support on R +, and 
by D;. those  with support on [0, TI (the dimension of the 
vector space involved  will  always be clear  from the con- 
text); &(- ') denotes the Heaviside step, & Dirac's  delta, 
its ith (distributional) derivative,  etc. 

Take again the systems f = A x  + Bu, but now  with u E D', 
and consider  the state "trajectories" then obtained. Form- 
ally, Z,:={x~D'13uED'such that i = A x + B u }  with  de- 
rivatives, of course, to be understood in the sense of 
distributions. In trying to generalize  the concept of in- 
variant subspaces to the situation at  hand we need to give 
a meaning to the condition x(0) = x o  which  is not possible 
as such in the context of distributions. We therefore have 
to introduce the  following  subclasses of E,: 

1) Z,+:={x~Z, Ix=f-+x+ with x + € D +  a n d f -  a 
map R+X with support on R - and a.c. there}; and 

2) for T >  0, ZE:= { x E Z , l x = f -  +f' with 
ED; and f -, f + maps R-tX with support on Iw - 

and [T, 00) respectively, and a s .  there}. 
For elements of 2; we may  now define x(0 -):= 

l imt t0x( t )  while for elements of 2; we may also define 
x(T+):=l imtLTx( t ) .  Thus, in effect, an element of E,+ is 
generated by an input which is a regular function for t < 0 
and a distribution for t 20, while  elements of 2; have 
inputs which are in addtion also regular functions for 
t > T.  For elements of and we can speak about 
their  restrictions to R +  and [0, TI, respectively, as the 
distributions x + and appearing in their definitions. 
We will denote these restrictions accordingly. 

Let L be a subspace of X. We d l  say that an X-valued 
distribution f lies in L if, for all scalar test functions +, 
j -+z+( t ) f ( t )d t  = :(+, f) EL. This allows us, using the 
notation introduced above, to define distributionally in- 
variant and controllability subspaces: 

Definition 3: A subspace V, C X  is  said to be a distribu- 
tionall,, invariant subspace if Vx, EV, there  exists ~ € 2 :  
such that x(0 -)=xo and x + lies  in V,. A subspace R c X 
is said to be a distributionall,, controllability subspace if in 
addition Vx,, x1 € RD there exists T 2 0 and x E Zg such 
that x(O-)=xo, x ( T + ) = x , ,  and lies in R,. 

Let !,,Eo denote the sets of all distributionally in- 
variant and controllability subspaces, and _V,(K), ED(K) 
those contained in K. 

The following  theorem  is an immediate consequence of 
the definitions. 

Theorem 4: _V, and E, are closed under subspace addi- 
tion. Consequently 

sup_V,(K)=:V;,, E_V, 

and 

supFID(K)=:R*,,K €ED. 

Note also that Ft, CY,. (This may  be  seen  by taking 
x l  = O  on the definition of dstributionally controllability 
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subspaces.)  Our  goal is to prove that _V, =_V, and ED = Eu. 
In order to do this it is convenient  to introduce a special 
class of distributions. 

Definition 4: A distribution f E D'+ is  said  to  be of Bohi 
type if there  exists  vectors A and matrices F, G ,  and H 
such that f=ZE0J8(') +f- with f- 1: twHeF'G. Equiva- 
lently, iff the  Laplace transform off is rational. 

Bohl type distributions have an important property. 
Indeed, while  the scalar distributions in D'+ form a con- 
volution  algebra  without  zero  divisors,  they do not form a 
field.  However,  the subalgebra of Bohl  type distributions 
in 9: does  form a field. This is easily  seen  by  considering 
Laplace  transforms:  the  inverse of a nonzero scalar ra- 
tional function exists and is rational. This field  is  actually 
isomorphic  to  the  field of rational functions over R. It is 
easily  seen that Bohl type inputs have  the  special property 
in linear  systems that they lead to Bohl  type state trajecto- 
ries  when  restricted to R +. What may be  more  surprising, 
however, is that for motions in distributionally invariant 
subspaces  it  suffices  to  consider  this  special  class of in- 
puts. 

Lemma 1: Assume V ,  E!, and x0 EV,. Then for all 
x. EV, there  exists an "input" uE D+ of  Bohl type u= 
ZE0ui8(') + u - I such that the  corresponding x €2: with 
x(0 -) = x o  has restriction x+  which  lies in V, and is Bohl. 
In fact, X + = Z ~ ~ Z ~ = ~ A ' - ~ B U ~ ~ ( ~ - ~ ) + X - ~  with ~ - ~ = r  

ZEoAiBui,  h: t E R + H e A ' B ,  and * denotes convolution. 
Proofi Let C be a matrix  such that V ,  = ker C. Since 

V,  E_V,, there  exists u E  D'+ such that 

+ h * u - ,  where r: t E 88 'beA'x(0  +), x(0 +) =x(O -) + 

f+g*u=O 

where8 t E R + H C e A ' x o ,  g: t€BB+HCeA'B, and * de- 
notes convolution.  Consider  now this equation as a vec- 
tor-matrix equation in  the  convolution  algebra D'+ of 
scalar distributions with f, g known (respectively,  vector 
and matrix-valued) and u the unknown (vector  valued). 
This equation may  be  viewed as a finite  system of linear 
equations. These equations are by assumption  solvable for 
u in  the  algebra D'+ and we  wish to demonstrate its 
solvability  in  the  class of  Bohl type  elements of D'+ . Now, 
since the elements off  and g are obviously  Bohl and since 
the equation is solvable  over the algebra D'+ , it is actually 
solvable  over  the  field of Bohl distributions in D'+, which 
yields  the  first part of the lemma. The expression for x + 

may be found  in  most  books on distribution theory  (see, 

The  above  lemma  provides one of the  key  steps in the 

Theorem 5: yD =!, and E = E u. 

1) We will first  prove that 5, 3 BU. Assume that R, = 
B 1  +A,B, + - +A$-.-'B, with { B i }  a chain in B:  by 
Theorem 2 every R, €Eu can be  written this way.  Since 
X,(A,, B)=Z,(A,  B)  we may as well think F=O. Hence, 
using  the  result of Theorem 4, it suffices  to  show that  for 
any B r = : b E B  and j E n ,  Ri:=span{b,Ab,...,A~-'b} 

e.& F1). 0 

following. 

Proofi 

belongs  to ED. Let xo,  x I  ERi.  Hence, x1 - x o  may be 
written  as ZjZiqA'b. Apply  now the "input" Zj&r8(i). 
Then, with T=O, we obtain ~ ( O + ) = x ( o - ) + Z ~ ~ ~ ~ ~ l l i A ' B r .  
Hence,  with x(0 -) =xo7 x(0 +) equals xl. Moreover,  the 
restriction is  given  by Z/:;Zi= laiA'-kBrc3(k-1), 
which clearly  lies in R,. 

2) Next, we prove that _V, >Yu. This is easy. Indeed, by 
Theorem 2, _V, =!+E, which,  since and Ea c!, c 
yD, establishes  the  desired  inclusion. 

3) We  will now show  the  inclusion _V, >yD. Here we  use 
Lemma 1 in a crucial way. Let V ,  E!, and x. EV,. We 
need to show that x. EVGD + R*,,vn, since  this  implies 
V, =V2vD E_V,. By Lemma 1 there exists a Bohl type 
distribution u E D'+ such that  the corresponding solution x 
with x(0 -) = x o  has a restriction x+, as given  in  Lemma  1, 
which  lies in V,. This implies that x(0 +) EV$D and  it 
suffices to show' that x(0 +) - x(0 -) E R&. Since x + and 
x(O +) -x(O -) lie in V, it  follows that 

N 
2 A'-~Bu,Ev, ,  v k - o , ~ , . . . ,  N ( e )  

i = k  

We will show that this implies that Z E k A ' - k B ~ i  ER*,,, 
and hence that Z ~ o A i B u j = x ( O + ) - x ( O - ) E R * , , v D .  The 
proof  goes  by induction. For k = N ,  (*  ) implies BuN E 
V ,  n B s:R&, as defined by  (ACSA).  Assume  now that 
Z i N _ k A i - k B ~ j  E Rtn-"+'. Then, Z E k - l A i - k + l B u i  = 
A ( Z L k A i - k B ~ i ) + B ~ k - I  EV, n(AR~n-k+1+B)=:R~D-k+2 
which  yields  the  inductive step  and finally, ZL0A'Bui E 
R&, as  desired. 

This conclusion  could also have  been obtained by ap- 
proximating the distribution u by  smooth functions, but 
the  above  proof  requires  less  analysis. 

4) A slight adaptation of the proof of 3). (Take VFD = 
{ 0)); this  yields E II - R , . 0 

Comments 

1) It is a consequence of Lemma 1 and the  proof of the 
above  theorem that in a controllability subspace it is 
possible  to  transfer x. at 0-  to x1 at T +  for any T>O 
with an input that is  the  sum of a Bohl distribution plus 
the translate to T of a Bohl distribution. 

2) The definitions  of _V, and E, are formulated in 
terms of elements of Z, whose  restrictions to R +  or [0, TI 
were  only  to  lie in a given  subspace. This may  seem 
awkward, but it is not  possible, at least as far as we see 
things  now,  to  reformulate this condition in  terms of 
elements of 2,  which  lie  in  the  subspaces on all of R. For 
example,  consider the almost controllability subspace B.  
For  an initial state x. EB, the obvious candidate for a 
trajectory x which  lies  totally in B would be x ( t )  = 0 for 
t # O  and x(0) =xo. However,  even in the  sense of distribu- 
tions,  this  is  equivalent  to the zero  trajectory and the 
condition x(0) = x o  does  not mean anything. What we 
need  is to be able to distinguish  between  8-functions at 
t = O +  and t=O-  such that the input u=(9+-9- )xo 
would  be  admissible and unequal to  zero.  However, a 
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theory of distributions which  achieves this distinction does 
not seem to be available at present. 

3) It is  possible in principle to generate the distribu- 
tional inputs which  hold x(0 -) in a subspace VD EyD by a 
feedback  law. In order to see this, consider  the  system X: 
1= A x  + Bu with the feedback  law u: XWFX + ZEoi3(i)&x. 
Intuitively, one should interpret this expression as stating 
that if the  system  is in state x .  then the input "value" 
Fxo + Z~oi3( i ) l ; ;xo  should be applied, whatever be the 
instant of time at which this occurs (hence, a(') does not 
sigmfy a distribution at t=O since it is assumed that this 
feedback acts always).  Pluggtng this feedback  law into the 
system equations yields the autonomous (it contains no 
external inputs) time-invariant (the right-hand side does 
not depend explicitly on t )  linear system: 1 = ( A F  + 
X~oBl ' ; ,Sc i ) )x  with x(O)=a. What would we mean by  the 
solution of this? One possible approach is to identify the 
solution with that of the system i = A , X + Z ~ ~ B F , G " ) ~ ,  
x(0 -) =a, with distributional inputs: we know  how to 
solve  this. In particular, this leads to x(O +) = ( I +  
Z z 0  AkBI.;)a=: La (it is  logical to require L2 = L in this 
setting; otherwise the distributional input should act again 
at t = O + ,  etc.), and  x(t)=eAFrLa for r > O .  

Applying  now  these ideas to the situation at hand, 
assume that V D   = V @ B 1 @ -  - @A",-'B,, = V @ R ,  with V E  
- V (as is easily  seen, V ,  may  always be written as such a 
direct  sum).  Because of the  assumed independence F can 
be chosen  such that A F V c V .  Consider now the feedback 
law X H ( F + E Y L ~ B & ~ ( ~ ) ) X  where the 4 ' s  are such that 
imBE=Bi,  B F o + A F B F , + . - -   + A ~ - . - ' B F , , - , - - I o n R , ,  
and 4 = 0 on V @ L where L is any complement of V,. The 
closed-loop system  is then defined by 1 = ( A F  + 
ZY:,,'BF,G('))x, which  yields, as explained above ( L 2  = L 
in this  case), a well-defined solution process x having the 
property {x(O-) €VD}*{x+ lies  in VD and x(O+)=x(O-) 
+XY:JA$?F,x(O-)EV}. Hence, x(t)=eAF'x(O+)EV for 
t >o. 

From a mathematical point of view this procedure 
works  fine.  However,  what one would We to set up is 
some  type of convergence  when the F,6(i)'s are approxi- 
mated  by  high gain feedback  elements. This remains to  be 
worked out. 

The mathematical problems addressed in Comments 2) 
and 3) are, in our opinion, worthwhile questions and 
relevant to the understanding of high  gain feedback de- 
sign  problems. Just as we have a theory of modeling 
distribution like  time functions as distributions, we need a 
theory  in  which  high  gain feedback signals could be 
modeled as distribution-valued feedback. 

IV. ALMOST INVARIANT SU~SPACES AS LIMITS OF 
INVARIANT SUBSPACES 

In this section we will prove that arbitrarily close to any 
almost invariant subspace there exists an ordinary in- 
variant subspace. In fact, the feedback gain which  makes 

this invariant subspace a closed-loop invariant subspace 
goes to infinity in this approximation process.  Hence, the 
direct connection with  high gain feedback.  Conversely, we 
will show that if a given subspace can be approximated 
arbitrarily closely  by an invariant subspace, then it is 
actually an almost invariant subspace. Before stating the 
relevant  theorem,  let us recall the topological structure 
which one usually puts on the space of subspaces of a 
finite dimensional  vector  space. Let (3l(lW) denote, as 
usual, the set of all q-dimensional  subspaces of R". It is 
possible to provide Gl(lW) with a topology  by taking the 

€-neighborhood of the element P = Im [ i] to be 

{ im [ 21 1 1 1  2 1 1  < E} (by suitably choosing  the  basis, any 
element P E C ~ ~ ( R )  may thus be expressed). Hence, P, + P 

in G,"(R) sigrufies that if P = span [ r,, * * * , rq] then there 
exist  vectors r:,. iEq ,  such that PC = span[r;; * - , r,E] and 
r; + q. This way G; actually becomes a q(n - 4)- 
dimensional analytic manifold called a Grassmnniun. 

The primary purpose of this section  is to prove the 

Theorem 6: Vu =_vC'Osute. Explicitly, {V, E_Vu}-s{3VC E 
- V such that V,-+ Vu}, where this convergence should be 
understood in the Grassmannian sense. 

Before  proving the theorem we note that, in general, 

Proo$ (+): We need to construct V, E_V such that 
V, + Vu. Sincey, =!+Eu and since  every REE, may be 
written as Ru=B1  +A,B,  + +AF-'B,, with { B i }  a 
chain in B, it suffices to construct such a sequence for a 
subspace of the form b+AFb+ . . +A';-'b with b CB 
one-dimensional. This reduces the problem to the scalar 
input case and we  may further obviously restrict our 
attention to reachable systems.  Now,  using feedback in- 
variance of _V we may as well assume that the scalar input 
system  consists of a bank of integrators and is in control 
canonical form.  We thus have to show that R,:= 
span[e,,-,+,,- a ,  e,,],  with ej thejth standard basis  vector, 
may be approximated by invariant subspaces of 1, = 
x 2 ; - - , x n - , = x , , ,   x , = u .  

Every one-  dimensional  subspace of the  form 
span[ 1, X; ' , is an invariant subspace; we will 
now  show that by letting X,, - ' , X, 4 a0 in a suitable way 
Li:=span{[l, A , , - .  - ,  k E i }  approaches R i .  

We proceed  recursively.  Obviously, for i=  1 and A+m, 
L, =span[h-"+l; e - ,  A-', 1 I T  + R,. Assume  now that 

€+O 

€4 

following. 

€-to 

E (I # ~ C ' O S W .  

E-& 

L k - , + R k - l .  Hence, 
h-m 

with IIZk-,11+0. Now, for h k 4 c a ,  
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Ik-1- 

- -  

'k - 

Here Z i -  denotes  the  first  row of 2,- 1 .  Now,  since 
Zk-l+O, it is clearly  possible to let h k + a  such that this 
subspace approaches 

r -I 

I ! O I  

which  yields  the  inductive  step. 
(e=): Assume V, + L, V, E!. We  wish to  show that 

LE!,. It is  convenient to proceed  via  the  following. 
Lemma 2: Assume V, + L, V, E_V and Ln B =  (0). 

Then L E V. 
Proof= Let x E  L. We need  to  show that there exists 

u E U such that Ax + Bu EL. Now, there exist x ,  EV, such 
that lim,,x, = x  and u, such that A x ,  + Bu, EV,. As- 
sume,  without  loss of generality, that B is injective.  Now, 
B injective, x,+x, V, +L, Ax,  + Bu, EV,, Bn L = (0) may 
be  seen  to  imply that there exists E such that I I t c , . I I  is 
bounded for 0 < E' Q E .  Hence, u, has a condensation point 
u for E-0. This yields Ax,  + Bu,+Ax+  Buy which,  since 
Ax,  + Bu, E V, and V, +V implies A x  + Bu E V, as desired. 

0 
In order to  complete  the  proof of the theorem we need 

c-2.0 

€40 

to develop a considerable  machinery  which we have  de- 
legated to the  Appendix. 

With  these  results we  now proceed  with the proof of 
(*) of Theorem 6. Assume that V, + L. Consider  now 
RE, and ~ , ( ~ o d R + , , , ) .  By Theorem A ,  Z,(modR*,, L) is 
of the form Z,(A', B')  with B'= (AR*,,, + B)(modR*,,,). 
Moreover,  by  the algorithm (ACSA) of Proposition 2 

€4 ,.. 

B'n (L(modR*,, ,)) 

=((AR*,,,+B)(modR*,,,))n(L(modR*,,,)) 
=((AR*,,,+B)nL)(modR*,,,)=(O} 

aqd  hence by the  above  lemma L(mod R*,,,) E 

claimed. 0 
- V"(mOd%. L) = V%modR:,~) which  implies that L E! - 

V. DECOMPOSITION AND BEHAVIOR UNDER 
APPROXIMATION OF 

ALMOST INVARIANT %JBSPACES 

In this  section we will show that every  almost invariant 
subspace can be  written as the sum of 1) a controllability 
subspace; the  closed-loop  eigenvalues  corresponding to 
eigenvectors in this subspace are arbitrarily assignable; 2) 
a controlled invariant subspace in which the control is 
uniquely defined by the requirement that the trajectory 
should lie in that subspace (we  call  such  subspaces coast- 
ing subspaces); the closed-loop  eigenvalues corresponding 
to  eigenvectors in this subspace are fixed; and 3) an 
almost invariant subspace which can be arbitrarily ap- 
proximated  by an invariant subspace but which contains 
no trajectories other than the null-trajectory (we will call 
such  subspaces sliding subspaces). All trajectories in that 
subspace must be generated  by  singularity inputs.. In 
approximating  such  subspaces by invariant subspaces,  the 
closed-loop  eigenvalues of the eigenvectors of this ap- 
proximating invariant subspace will have to go to infinity 
but may be chosen to be arbitrarily stable. 

Definition 5: A subspace C E! is said to be a coasting 
sub.spaceifxl, x2 EZ,,  xl(0)=xz(O), andx,(t), x , ( t ) E C V t  
imply x, =x2, i.e., if R*, = (0). A subspace S E!, is said  to 
be a sliding subspace if x E Z, and x( t ) E S V t  imply x( t ) = 
OVt, i.e., if Vz = (0). 

The  family  of  all  coasting,  respectively, sliding, sub- 
spaces are denoted by s and 3. Note that See,. The 
following easy theorem gives the decomposition  which we 
are after. 

Theorem 7: Let V, E!,. Then there exist C E C and S E S 
such that Rcm@C = V& and VGn@S = R*,,va. Thk yieidr 
decomposition V, = RCa@C@S. 

Proof: We need to  show  only  two  decompositions. 1) 
for V E_V there  exists C E S  such that V = R$@C; and 2) 
for R, €Ea there  exists S E S  such that R u  =R*,.@S. Fact 
1) is  well known and follo&  by  taking an F such that 
A,VcV and o(A,IRt)na((A,IV)(modR+,))=0 and ex- 
amining a spectral decomposition of V. To see 2) consider 
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COASTING 

CONTROLLABLE 

CONTROLLABLE 

Fig. 2. Decomposition of V,. 

the representation R, = Bl@A,B2@.  . @A",-'B,. We 
may  obviously  choose this F such that R;, = ( A ,  lB n R ,  ) . 
Letting now B:. be a chain in B such that Bn R,@B: = Bi  
yields R, = R*,a@(B',@A,B2@ * @A;-IB',) as desired. 

0 
The lattice diagram  suggested  by the above  theorem  is 

shown in Fig. 2. 
Note  that V:e(mod RCo) = V,(mod R+,,,J and 

V,(modV$a)=  R*,,va(mod RQ. 
The  next results concern the behavior of the approxima- 

tions of almost invariant subspaces by invariant sub- 
spaces.  According to Theorem 6, given  any Vu €_Vu there 
exists V, E_V and a feedback gain F, such that ACV, cV, 
and V, + Vu. Denote  by u,:=u(AC IV,). An interesting 
question concerns the behavior of F,, u,, A,, and its 
invariant subspaces as €40. In the next  theorem we will 
prove an expected  result in this direction: it illustrates the 
high gain behavior of F, as e+O. A complete theory of this 
limit behavior is not yet available. In particular, if V, = R 
@C@S with S = B , @ A , B 2 @ - .  . $A;-'B, then the limit 
behavior of 4, u, and A ,  is  surely related to this decom- 
position. Undoubtly  this  limit behavior is also closely 
related to singular perturbations, infinite zeros, and the 
like.  However, the situation appears to be rather involved, 
and we  limit  ourselves to the following  two  theorems. 

Theorem 8: Assume Vu E y,, V, E y, V, + V,, and 
ACV, CV,. Then (4  + F}*{V,EV andAFV,~V,} and 

c-0 

c-0 

€-to 
{vaeYl*{e + co}. 

c+o 
ProoJ The first part is proven as follows.  Let { x i }  be 

a basis for V, and { x : }  for V,, such that x: + xi .  Then 
A x i  + AFxI', hence, A,x' €Vu, and thus Vu E!, as 
claimed.  Consider  now the second part of the theorem. If 
4 tr co, then it has a convergent  subsequence  which,  by 
the first part of the theorem, implies V, E_V and yields the 
desired contradiction. 0 

The  following  theorem illustrates the behavior of the 
spectrum a, under a particular choice of the V,'s. 

Theorem 9: Let V, E!, be giuen. Write Vu = R:a03C @ S 
with C €c and S E 3. Then there exist S ,  E such  that 
S, + S .  Moreover, one may choose  the S,'s such  that 

us, ,: = u( A ,  IS,) is real and max us, , + - 00. In any case, 

€+O 

L c 4  

€+O 

C - t O  

6-0 

minXEBS,c I X I = : min I us, , I + 00. Corresponding&,  there ex- 
ists V, + Vu with V, =Rto@C@S, and u, =uR,, UU, UU,,, 

with uR, , arbitray  for all e (modulo, of course, the symmetry 
with respect to the real axis), uc = u(A,  IC) with F any 
matrix such that A,C c C (it Ls well known  that uc is then 
fixed by Vu itself and is giuen by u((AF)V$a)(modRcm))- 
these eigenvalues are, in  one possible definition of zeros, the 
zeros of f = Ax + Bu, y = x(mod K)), and us, , as above. 

ProoJ The desired subspaces S, have  been con- 
structed in the proof of Theorem 6;  this construction 
shows as a side result the claim about the  spectrum us,€ as 
e+O. We  only  need to prove that min I us,, I + 00 always 
holds. In order to see this, assume the contrary. Then 
there exists a subsequence E' and X,. Eo,,,. such that 
X,. 4 X. Let u,, be a (unit magnitude)  eigenvector  corre- 
sponding to X,,. The u,.'s have an accumulation point 
u # 0. We  claim that  span u E! which,  since  obviously also 
u E_S, will  yield the desired contradiction. T o  see  this, 
observe that Au,. - X , m c ,  E B .  Taking limits along the ac- 
cumulation  subsequence  yields AG -Xu E B,  hence  span u 

Note finally that the construction in the proof of Theo- 
rem 6 actually shows that  one may  let us,, go to infinity 
along any a priori given asymptotic root locus directions 
(but  not  at arbitrary independent  rates). 

€-0 

€4 

E+O 

€,-0 

€!. 0 

VI. T H E  E-DISTANCE TO A SUBSPACE AND 
L, -ALMOST INVARIANT SUBSPACES 

We  have  seen  how the system E :  f =Ax + Bu defines a 
family of trajectories X,. This family of trajectories pro- 
vides in a natural way a notion of distance from a point to 
a subspace  by defining this to be  the smallest (integrated) 
pointwise distance to the subspace  while traveling along a 
trajectory through the point. This is illustrated in the Fig. 
3. This natural and appealing concept will turn out to 
provide a very direct approach to the almost disturbance 
decoupling problem  which will be treated in Section VIII. 
This notion does not define a distance function in the 
mathematical  sense of the term. It is not unlike the 
traveling distance between two points in a city taking into 
consideration permitted traffic patterns as one-way  streets. 
Moreover,  since there are many  ways to measure  (in- 
tegrated) trajectories, we arrive at a number of such 
measures. 

Definition 6: The E-distance in  the fp -sense from a point 
x. E X  to a subspace K C X  is defined by 

d,(x, ,K):= inf Ild(x,K)ll%, 1 < p <  00, 
XEZ, 

x(0) = x g  

where 

I l d ( x , K ) l ~ E p : = ( ~ t m d P ( x ( t ) , K ) d t ) l ' p ,  --m for 1 < p < m  

and 
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Fig. 3. The Zdistance from x. to K. 

Note that in  principle  the norm on X will influence dp. 
However,  since all norms on X are equivalent, the specific 
norm chosen  will  not influence the  fact that x. is  zero 
distance away  from K. Those points play a special  role  in 
the  sequel. 

Definition 7: Vp*,,:={xO EXld,(x,,K)=O} willbecalled 
the supremal  !?,,-almost  invariant  subspace  "contained" in K 
and 

will be  called  the  supremal CP-almost  controllability  sub- 
space  "contained" in K. Note (see  Theorem 10) that 
Vz,K C K  but that Vp*,K C K  need not be  the  case ifp< ca! 

It is  easily  seen from the linearity of 2, that Vp*,K is a 
linear  subspace. Also, Rf,K admits the interpretation that 
it is the  subspace of X with  the property that one can 
travel  between any two points of that subspace  while 
remaining arbitrarily close  (in the !?,,-sense) to K. 

Whereas  the  X-distance  will  in  general  be hard  to 
compute,  it  turns  out that evaluation of zero distance 
conditions is feasible  in  terms of almost invariant sub- 
spaces. We record this below. 

Theorem 10: 
1) R*,,K=Rz,K andVz,K=V&; and 
2) for 1<p<a0: Rf,K=AR*,,K+B and V;,K=R;,K+ 

Notation: This result justifies introducing the notation 
V,* =AV& +B+V:K. 

R;,K:=AR*,,K + B  

and 

Vz,K:=R;,K +V: =AVzK +B+Vz,K =AVz, +B+V,*. 

We  will  prove Theorem 10 later. Theorems 3 and 10 
provide,  via  @A) and (ACSA),  algorithms for computing 
Rf,  and VT, K. A more direct algorithm may  be  based on 
the following. 

Proposition 3: Consider  the  algorithm 

1 =B+A(KnSk) ;  Sc{Od (ACSA)' 

Then S i  is monotone  nondecreasing;  moreover, 
Sd'mK+l= 

K SF:= limkym Sk, and {S$+' = Sk}+{Sf; = 

Proof: This follows  immediately  from  Lemma 3. 
Lemma 3; Let RE be as defined in (ACSA) (see Pro- 

Proof:  The equality obviously  holds for k =O.  As- 
position 2). Then SI;+' = AR: + B. 

sume  now that it holds for 0, 1, - - - , k. Then 

S i f 2  =SL+'+A(KnSk+l) 

= A R k + B + A ( K n ( A R k + B ) )  

= A R k + B + A R k + ' + B  

which  yields  the  inductive  step. 0 
Theorem 10 and the above proposition result in the 

Theorem 11: Consider (ACSA)'. Then R*b,K =S$ and 
V*,, = S$ + V z  (as defined in (ACSA) in  Proposition 2). 

Consequently, R*,, K,  R;, and Vz K,  Vz, are well-defined 
subspaces which are in principle computable through  lin- 
ear algorithms, and they  deliver Rf, and Vp, for 1 <p < 
co. We  now return to the proof. 

following. 

Proof of Theorem IO: 
1) This claim is an immediate consequence of the defi- 

nitions:  almost invariance and zero !?,,-distance are iden- 
tical. 

2) We  now consider the case 1 Qp < co. We will first 
prove that  {xo EV*p,K =AR*,,, +B+V,*}+{dp(xo,K)= 
O } .  To see  this  observe that by the linearity of V;,K and 
the  reasoning  used in the  proof of Theorem 6 it suffices to 
show for the  single input system 1 =Ax+ Buy that {xo E 
Ri+I}~{dp(xo,Ri)=O}, where Ro={O},  R,:=B+AB 
+ - - - +A'-'B =AR,- + B. By feedback invariance we 
may  as  well  assume that the  system  consists of a bank of 
integrators and  that it is in control canonical form. The 
question  then  reduces to showing dp(xo, R,)=O for x. = 
e,-,,  where  {e,}, iEn, denotes the standard basis for X: 
this will immediately  imply the same for x. =e,  with 

j > n - i ,  since dp(xo,Ri)=O+dp(xo,Rj)=O for j>i .  Let 
~ = [ a , , a , ; - . , a , ] ~ E X ,  with x(0)=xo  and  x(t)=O for 
t > 1. A simple calculation shows that 

tH[ a-n+i+lal(at) , -  - ,a 'an-,-l(at), - 

a,-,(at) ,  aa,-,,l(at), 

is also a trajectory through xo. By taking a sufficiently 
large this yields dp(xo, R,)=O as desired. 

We still need to show that  {dp(xo, K)=O}+{x, E 
AV: + V: + B}. Consider,  therefore, Z,(modV: K) = 
&(A', B) as introduced in the Appendix.  Define x;: = 
x,(modV:,) and K'=K(modV:,). Clearly  d,(x;,K)=O 
and K' n B = (0). Hence, it suffices  to  show that 
(d,(x,,K)=O, BnK={O}, and V i  ={O}}~{x,  EB}. Use 
feedbacktowritei=Ax+Buintheformi=At+Bb,d=u 
with X=Z+B and ZIK. Since dp(xo, K)=O there exists a 
trajectory (2, 6) through x. =(zo, bo) -with 11 b 11 e, arbi- 
trarily  small.  Now  since 

z(t)=eA"zo + eA'('-7)B'b(7)d7 I' 
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this implies eA"z0 E K  for t sufficiently  small and hence 
zo EV,* = {0}, and x. E B, as claimed. The expression for 
R;,K follows  immediately from its definition and the 
expression of V;, which  we have just calculated. 0 

Theorem 10 was concerned with open-loop control laws 
in order to generate dp(xo, K) = 0. In analogy  with  the 
analysis in Section IV, this may  also be stated in feedback 
form. In the  next theorem we formulate such a result and 
we  will phrase it in a form which  will  make it immediately 
applicable to the disturbance decoupling problem  which 
will be discussed in Section VIII. 

Theorem 12: Assume that in addition to Z: i =Ax + Bu 
there are matrices H and G given.  Consider  the  closed-loop 
impulse  response W t E  R++HeAF'G. Denote K: =ker H .  
Then 

1) {Vc>03F such  that IIWIIe,<E)~{imGcV~,.}; and 
2) ( V E  > 0 ,  M E  R , 3 F  such that ~ ~ W ~ ~ f ,  < E  and 

In  fact, 1) and 2)  hold  uniform&  in p in  the  sense that 
{ V E > O ~ F  such that ~ ~ F V ~ ~ e p < ~ ,   l < p < c o } w { i m G c  

{Vc>O, l<po<co,  3Fsuch that ~ ~ W ~ ~ e p < c ,  l<p<po} 

Rea(A,)>M)w{imGCR,*,, andz is controllable} 

v:K}; and 

w{imGcV$,K}. 
Similar refinements  hold for 2). 

Proof: 
1) (a) In a suitable norm, there holds 11 Hxll =d(x,K) 

and we may-as well assume this to  be the  case. Consider- 
ing now  the solution of i =Ax + BFx  with x(0) EimG, it is 
seen that there  exists a feedback-and thus an open-loop 
control for Z such that 1 1  Hxll e,(o,m, < E .  The same obvi- 
ously  holds  for t < 0 which  yields  the  mclusion im G c V;, K.  

2) (e) is  the  most  involved  proof of the paper. In this 
part we are required to construct a feedback control law. 
Consider the case 1 < p  < m. Now V?, =AR*,, + B + V,*. 
This may  be written, for some F and some chain { B;} in 
B, as V K $ B @ A F B I @  - - with B1@ 
A,B,$. . . @A;-'Bn-, c K .  Using this direct sum decom- 
position and feedback invariance of 2, it  follows that it 
suffices to consider the scalar  input case i, = 
x 2 ,  - - , in- =xn, in = u where we are, in  effect required 
to show that for all E > 0 there exists F such that 

L 'il 

has $(O, co) norm less than E. The proof of this fact is 
rather indirect: we will first  show that the claim  is  valid 
for i =  1. This obviously also yields the result for n = 1.  We 
will then proceed  by induction on n. 

Consider  the  case i= 1. We then need to show that for 
the scalar input controllable system i = Ax+ Bu there 
exists, VE >0, F such that the Ep-norm of t E W+weAFrB is 
less than E. By [2, Lemma 3.51 there exists V€_V and F 
with A,VcV such that V@B=X and Rea(A,IV)<O. 
Now,  with ( A ,  B )  in control canonical form 

v,: =im[ X-+,, X--n+2,- - * , X-,, 11 %_V 
for all A Z O .  

Hence,  with X sufficiently large, B may be written as 

vl, + 0. Let FA be such that FA IV = F IV and AFAu=Av,. 
B=u,+u', with c,EV, and ul,EV. Also, t', + B and 

A-aJ 

T h k T  

eAFx'B=eAF'V;  +eAFAtv), =eAF*ci +ehrv,. 

Now letting A+co and estimating the $-norms in  this 
decomposition  yields the desired  result, including the uni- 

We  now return to the  case of arbitrary n and i .  In terms 
of higher order differential equations, we start with  the 
system y(" )  = u and 1 < i < n given, and the problem is to 
show that Ve>O there exist ai's (defining  the  feedback 
control law) such that the differential equation y (")  + 
a,y("-') + . * +any  = O  has the property that the solution 
with a fixed initial condition satisfying y(k)(O) = O  for 
k <  n- i, is  such that 11 t p ( O ,  00) < E  for k < n- i. We 
proceed  by induction on n. We have already shown that 
the claim is true for n= 1. Assume that the  claim  is true up 
to n - 1. In the  previous paragraph we have  proven the 
case i= 1 for all n. Assume now i>  1, define z :  = 

ferential equation z('- ') + p1z('-2) + . - +pi- 1z = 0. To- 
gether  these differential equations define one of the form 
y ( n ) + a l y ( n - l ) + - - -  +a,y=O. 

We will consider the first of these differential equations 
as a system  with input z and output y ,  3,. . . , y("-'). Its 
initial conditions are AO), j(0); . . , ycnPi)(0). We will 
show that the b,'s may be chosen in such a way that this 
system  has an impulse  response  with arbitrarily s m a l l  
E,-norm and an initial condition response  with arbitrarily 
small $-norm. This claim actually follows  from the case 
i =  1, because  for the initial condition only y("-')(O)#O 
and the impulse  response also corresponds to such an 
initial condition response. 

Consider now the differential equation governing z .  Its 
initial conditions ~('-~)(0), - - . , z(0) are computable from 
y("-l)(0),. - , y(0) in terms of the hi's. Now,  by the induc- 
tion  hypothesis (applied for n' = i' = i - l), one may  choose, 
once one has  the hi's, the pi's such that the E,-norm of z 
is arbitrarily small. 

Together this yields the claim. Indeed, assume that we 
want the fp-norm of y ,  3,.  - - , y("-') to be < E. Choose the 
bi's such that for the first differential equation the initial 
condition response is < ~ / 2  in $-norm, and the impulse 
response is < ~ / 2  in e,-norm. Adjust now the pi's such 
that z has ;norm < 1. Together this yields an E, -norm 
y, 9, - - - , y("-') which is < E ,  as desired. 

This ends the proof for 1 <p< 03. The case p=  co is 
entirely  analogous. To prove  2) it suffices to keep also 
Theorem 9 in mind  while repeating the above arguments. 

0 
Comment 4: It is perhaps worthwhile to point out that 

the problem treated in Theorem 12 promised to be a great 
deal harder in the "almost"  case than we knew it to be 
true in the "exact"  case. Indeed that {VZerH 3 imG}w 
{ 3F: HeAFrG= 0, t E R} is a direct consequence of the 

formity inp. 

Y ( n - i + l )  + b, y("-') + . - +bn-'+ , y and consider the dif- 
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definitions.  However, if imGcV&,,, then we know that 
3V, in the neighborhood of V&& and F, such that 
AeV, cV,. Hence imG is almost contained in the A,; 
invariant subspace V, which, in turn, is almost contained 
in kerH. However, this does not yet guarantee that HeAFc'G 
will be small  because of the unboundedness of F, as E+O! 
The above theorem thus makes sure that things can be set 
up in such a way that HeAFz'G remains indeed small. 

As demonstrated in Theorem 10 there are only two 
types of $-almost invariant subspaces, i.e., those with 
p=ao and those  with  1 Q p < m .  We think of V,, as almost 
invariant subspaces of the first kind, i.e., in the fm-sense 

subspaces of the  second kind, i.e., in the e,-sense. 
As  we  will  see in Section VIII, Theorem 12 has an 

immediate application in control theoretic terms  in the 
sense of making the 12p-norm of a closed-loop  impulse 
response arbitrarily small. Of course, there are other mea- 
sures for the "size" of an impulse response which are of 
interest in  applications. One such result  which is relevant 
in this context is the following. 

Theorem 13: Assume that in adlition  to E: i = A x +  Bu 
there are matrices H, and G given. Consider the closed-loop 
transfer function W(s): = H( IS + AF)- 'G. Denote K: = 
kerH. Then 

1) { VE > 03 F such that +(s) has all its poles in Re s < 0 
and ~ ~ ~ ? ( i w ) l l  < E V ~ E R } - { ~ ~ G C V ; , . } ;  and 

2) {Ve>O, M E R , 3 F  such that R e a ( A , ) < M  and 
II6'(iw)ll < E ,  V U E R } H { ~ ~ G C R * , , K } .  

Proof: We will only outline the proof of 1); 2)  is 
proven  analogously. To see  1)(*) notice that, since W(s) 
=J,,YV(t)e -" dt (with W as defined in Theorem 12), 
there exists, VE>O, an F such tkat IIWIILiQ E,  whence 6' 
is analytic in Res 2 0 and )I W(io)l l< 11 W(t)ll dt < E. 
The proof of 1)(=.)  may be transformed, by an argument 
identical to the analogous step in the proof of Theorem 
12, from a  closed-loop to  an open-loop question, which 
requires  showing that if for a  given x .  there exists, VE > 0, 
x €  E, such that its Fourier 2 ( i w )  satisfies 11 Hi( iw) l l<  E, 

Vw E R, then x. E V ~ ,  K. By a reasoning analogous to the 
last part of the  proof of Theorem 10, it suffices to show 
this for the case V: = (0) and K n  B = {0} for which we 
need to prove that this implies x. EB. Using the same 
notation as in the relevant part of the proof of Theorem 
10, we obtain 

and Of Rb =AR, + B and v b  Rb +v as ahlost hVaIiaIlt 

with Ild(iw)ll<e, VwElw. This obviously  implies (Ziw- 
A') -'zo E V,* = {0}, hence zo = 0 and x. E B, which  yields 
the result. 0 

interesting interpretation of their own. Indeed, R*,,kerH 
consists  precisely of those points x(0 -) in kerH which can 
be driven to 0 by distributional inputs while  remaining  in 
kerH. For all  such x(0 -) one can make  sure that x(0 ') = 0, 
but in any case one needs to have x(0 +) E RgerH. The 
points in REerH are precisely  those for which one can 

COmWEnf 5: The Spaces R*,,kerH and R:,ke+jy have aIl 

achieve  this  with smooth inputs. The subspace RX,kerH on 
the other hand consists of those points in X (not neces- 
sarily in kerH!) which can be  driven to 0 by distributional 
inputs while remaining in kerH. (Do not let the fact  that 
this may be possible  with x ( O - )  65 kerH worry you; an 
impulse will generate the "solution" x=O for t>O for 
i = u, x(0 -) = - 1 and shows, for example, that B c RZ, (o)). 

Comment 6: There is another possible and particularly 
instructive approach to many of the issues  discussed  in 
our paper, i.e., what  most people would  call the "frequency 
domain" approach. Consider the system i = Ax + Bu; y = 
Hx, and assume that we  ask  ourselves  whether all initial 
conditions in i m G  can be held in kerH by  choosing  the 
control properly. Taking Laplace transforms yields the 
equation 

H(z~-A>-'Bu(~)=H(zs-A)-'G ( *  * )  

which one should  solve for U(s). 
In the class of transfonns of functions with exponential 

growth, this equation is  solvable iff imGcVzerH in which 
case it is  always  solvable  in the class of strictly proper 
rational functions of McMillan degree < codimV*ke,H. 

One can also consider this equation in the class of 
Laplace transformable distributions. In this case (*  *) is 
solvable iff i m G  cv;,kaH, which actually implies  solvabil- 
ity in the class of rational functions. The reason why 
V*b,kerH and not VZkerH is relevant here is connected with 
what has been mentioned in the last sentence on Com- 
ment 5. The condition i m G 3  Va*,kerH is the solvability 
condition for ( *  * )&HG= 0 simultaneously. The point is 
that the solvability of (* *) implies approximate solvabil- 
ity (in  the  time domain) only in the e,-nom, while 
( * * )&HG = 0 implies approximate solvability of ( * *) in 
the fm-sense as well. 

It is also interesting to remark that solvability of (* *)  
with  regular inputs leads to an equation over the ring of 
strictly proper rational functions while the solvability of 
( *   * )  with distributional inputs leads to an equation over 
the field of rational functions. From a pure mathematical 
point of view, the latter should be  easier to treat but, as 
we have  seen,  this  was certainly not the case in the time 
domain. 

VII. SUPREMAL ALMOST INVARIANT SUBSPACES 

Most applications of the ideas of our paper involve at 
one stage or another the computation of the supremal 
elements contained in a  given  subspace. (ISA), (ACSA) 
and (ACSA)' provide (see Theorems 4 and 11) conceptual 
algorithms that compute for a given  subspace K cX ,  V,*, 
R*K, V~*,K and % , K ,  V$,K. 

In the present  section we will give  some additional 
related results. In particular we study the  generic case and 
the situation dim B 2 codim K where  some  very nice results 
may be obtained which avoid these computations. 

The concept of genericity  which we  will use is given 
next. 
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Definition 8: A subset S c R N  is said to be generic if 
there exists S’ CS with S’ open, dense, and measure 
exhausting (i.e., p((S’)comP’) =O with p Lebesgue  measure). 
A subset Z c  RN is said to be an aIgebruic variezy (or a 
“Zariski  closed” set) if there exist polynomials 
p , ,  p2, - - , pg  in N indeterminates such that 

z = { ( s , , s ~ , ~ ~ ~ , s ~ ) ~ E [ w ~ ~ ~ ~ ( s , , s ~ , - ~ ~ , s ~ ) = o , ~ ~ E ~ } .  

If, for at least one i ,  pi ZO, then Z is said to be nontriuiul. 
Our genericity proofs are based on the following  well- 

known [2,0.16] lemma. 
Lemma 4: If S -  Zcompl with Z a nontrivial algebraic 

variety, then S is  generic. 
We denote equalities with a subscript ( g )  if they hold 

for a generic set.  We think of a generic equality as a 
strong formalization of the intuitive concept of “almost 
certainly true” or “essentially  always  true.” 

Consider Z : f = A x + B u  with u E U = R ” ,  x E X = W ,  
and let H be an ( I X  n)-matrix. Then ( A ,  B, H) may  be 
considered as an element of Rn2+nm+’n . It is in this setting 
that the genericity statements in  the following  theorem 
should be understood. 

Theorem 14: Let K: =kerH. 
1) If m >  I ,  then RC = RE,, = V,+ = VzK = K and 

( g )  ( g )  ( g )  (g) 
R$,K = V$,K = X; 

( g )  (g) 
2 )  If m = I ,  t h e n  R: = RZ., = { 0 } ,  

This immediately  yields 1) since V2K, R z , K  contain R;. 
Using  these  inclusions it suffices to show in 2) that 
Rz, = (0). Since m = I implies,  by  Lemma 4, that 
B n  K = {0}, we immediately obtain the result  by the 

algorithm in Theorem 4. In 3) we only  need  to  show that 
Vz = (0). This, however,  follows  since V,+ = { 0) and 

(g) 

( g )  

The  above  theorem is disappointing in the sense that it 
shows that generically nothing is gained by the “almost” 
qualification in the extremely restricted genericity setting 
considered here  where  all the parameters of ( A ,  B, H )  are 
considered “random.” It may  be expected that in more 
realistic situations, e.g., starting from  system  parameters 
belonging to an algebraic variety, there will be  many 
situations where the “almost”  solvability conditions hold 
generically,  while the “exact” conditions would  generi- 
cally  be unachievable. 

If  we ask for exact conditions then we are able to show 
the following  very concrete result. 

Theorem 15: Assume dim B > codim K ( I t  is assumed that 
effectiwly there are at least as many inputs as outputs in the 
system f = Ax + Bu, z = H x  with K = kerH). Then 

1) V&=K; and 
2) V$,,=AK+K+B. 

Pro08 It suffices to prove 1). This is, in fact, an easy 
consequence of Theorem 6. Indeed, if dim6 > codimK, 
then vng&K will be  dense in G k K  since {LE~&.IL 
+B=X} is  obviously  dense in G k K .  Hence KEG_&. = 
(V n c& K )  closure c V, , as claimed. 0 

We  mention the following corollary which  is inspired by 
a similar  result in [7] where it is proven in a much  less 
direct way. 

Corollaty I :  Assume that dim B > codim K and R; = (0) 
(the system f = A x  + Bu, z = Hx with x(0) = 0 is then invert- 
ible in the  sense that corresponding to any output trajectoty y 
there is exactly one x €  Z, and hence, if B is injectiue, 
exactly one  input trajectoly; it is the case, e.g., if K n B= 
{ 0)). Then V$, = X. 

Proof: By Theorem 15, it suffices to show that AK+ 
K+B=X.LetV,besuchthatVZ@V,=K.ThendimAV,= 
dimV, (since {xEV,,  Ax=O}*{xEV,+}). Furthermore, 
AV,n(B+V,+)={O} (since {x€V,,  Ax€B+V,*)+{x€ 
V;}). Finally {RE = {O}}e{V,* n B= (0)). Hence AV,,  B, 
and VZ are  independent, and dim(AK + K + B) > 
dim(AV,@VK@B) = dimV,+dimV,++dimB = d i m K +  
dim B > n. Conclusion: dim( AK + K + B) 2 n, hence, AK+ 
K+B=X. 0 

Note  that the proof of the above corollary also shows 
that if dim B > codim K, then RE # { 0} which  is of interest 
in its own right.  Moreover, the same  method of proof 
shows that {dimB-dim(BnV,*)>codlmK}*{Vz,K =X} 
which,  since it has no interpretations in terms of system 
invertibility, we leave for what it is  worth. 

VIII. APPLICATIONS 

In this section  we  will illustrate the use  of the concepts 
of almost invariant subspaces in a number of control 
synthesis applications. 

A. Disturbance D e c q l i n g  

Consider the signal  flow graph diagram  shown in Fig. 4, 
where the plant Z is controlled by the feedback  processor 
Z, which  yields a closed loop system 2,‘ with the dis- 
turbances as inputs and the controlled variables as out- 
puts. One of the most  easily  motivated control synthesis 
questions is the problem of designing a feedback  processor 
such that in the closed-loop system the controlled varia- 
bles are insensitive to the disturbances. 

Here, we will assume that all the states are measured 
and hence that we  may  use state feedback (output feed- 
back will  be considered in Part I1 of this paper). The plant 
is  assumed to be a linear time-invariant finite dimensional 
system  given  by 2:  f = A x + B u + G d ,   z = H x  with x E X =  
R”, U E U = R ” ,   d E D = R g ,  and zEZ=R’. The feedback 
processor  is taken to be linear time-invariant and mem- 
oryless (it may be  shown that in the disturbance decou- 
pling problems considered here and in [ 1, Ch. 4 and 51, 
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Fig. 4. Disturbance decoupling. 

this constitutes no loss of generality) and is given in terms 
of the gain matrix F by Xj: u= Fx. The closed-loop sys- 
tem is then described  by 1 =A,x+ Gd, z = Hx. 

The question of when there exists F such that in the 
closed-loop  system the disturbances do not influence the 
controlled variables at all, i.e., such that H(Is-A,)-’G=O 
has been  studied  by  many authors (see e.g.  [2]) and 
requires imGcV,*,,. It is called the disturbance decou- 
pling  problem (DDP). If in addition one requires  pole 
placement of A ,  then we arrive at the disturbance decou- 
pling problem with  pole placement (DDPPP) for which 
the condition becomes imG c REerH and controllability of 

Recently  the disturbance decoupling problem  with  mea- 
surement feedback and pole  placement has been solved 
(see [8] where other relevant  references  may be found). 
Here we will consider an interesting variation on this 
question,  namely  whether disturbance decoupling is “al- 
most”  possible. An early paper where approximate dis- 
turbance decoupling has been studied, but which did not 
give  definitive  results,  is [9]. Of course,  there are a number 
of ways to quantify this almost disturbance decoupling. 
The most  logical approach is to work  in  terms of induced 
norms. 

Definition 9: (ADDP),, 1 < p  < m (the almost dis- 
turbance  &coupling problem in the E, -sense) is said to be 
solvable if VE>O there exists F such that in  with 
~(0) =O, there holds llz II e?(?, Q E II d II ep(o, hother ,  
possibly  somewhat more artificial version  is (ADDP)’ (the 
almost disturbance  decoupling problem in the E- - Eq -sense) 
which  is  said to be  solvable if ‘de> 0 there exists F such 
that llz l leq(o, Q E Ild 1 1  oo) for all  1 < p  < 4 Q m. A par- 
ticularly interesting case is to take p = 1 or 4= 00. (Actu- 
ally the solvability condition for this  special  case is exactly 

( A ,  B) .  

( p ,  q)  with  1 < p  < 4 < 00 .) If in either of the above prob- 
lems one adds the condition that for any given M one 
should have in addition Re a(A,) < M ,  then we speak 
about (ADDPSS), and (ADDPSS)’ (almost disturbance 
decoupiing with strong stabilization). 

We have the following. 
Theorem 16: 
1) Let 1 < p  Q m. Then {(ADDP), is soivabie}@{imGc 

Vz,,kerH}, and {(ADDPSS), is  soiuabie}-s{imGcRX,,,, 
and ( A ,  B )  is controilable}; 

2) {(ADDP)’ is soluabie} w {imG c v(l*,kerH}, and 
{(ADDPSS)‘ is soiuable}-s{imGcR*,,k,, and ( A ,  B )  is 
controliable} . 

Proot Let W t E R+HHeAF‘G and @(s): = H( Is- 
A,)-’G. In order to show  1)(+) it suffices to observe that 
the E, -induced norm of a convolution operator is bounded 
by  the E,-norm of its kernel, in our case IIWllel. Now 
apply Theorem 12. To show  1)(+) we consider only the 
most  interesting  cases p = 1,2,00 (the other cases require a 
slight  modification of Theorem 12 or 13). For p = 1,m, 
observe that 11 W 11 e, is exactly the E,-induced norm, while 
for p = 2  the  E,-induced norm is supwER II@(iw)ll pro- 
vided 11 W 1 1  e,(o, m) < m. The result then follows from Theo- 
rems  12 and 13, respectively. 2)(+): by Theorem 12, there 
exists, k > O ,  F such that 11 W l l e l ,  ~ ~ W ~ ~ e m  <E. Now by  a 
standard inequality for convolution operators (the so- 
called  Young’s  inequality-see [lo, p. l50l) it  follows that 

result. To show  2)(+) observe that the i?,+Ew induced 
norm is exactly 11 Wllem. The conclusion  follows from 
Theorem 12. Finally, it should be clear how Theorem 12 
or 13 also  give  the strong stability conclusion. 0 

Using  Theorems 14- 16 we obtain the following  useful 
corollary. 

CoroIIaly 2: 
1) {(ADDP), is generically s o l u a b l e } ~ { m  > 1 } ,  and 

{(ADDPSS), is generically soluable}@{m > I > ;  
2) i f  dim B > codim ker H then { (ADDP), is solvable}@ 

{ imG c A ker H + ker H + B}, and { (ADDP)’ is soiuabie}-s 
{imGckerH}; 

3) if im G c B (a frequently occurring situation in tech- 
nological applications: the disturbances enter the system 
through the  same input channels as the control) and 
( A ,  B )  is controllable then (ADDPSS) is solvable; 

4) if dim B > codim  ker H and R+kerH = {0} then 
(ADDP), is solvable. 

Comment 7: In the above results, as in many other 
places in our paper, it is  of interest to add to almost 
disturbance decoupling stability requirements of the type 
a(A,) c @, c @. This is easy to do: the subspace Vg in 
VzK or Vz, needs to be replaced by VL with VzK: = 
sup{VE_V(K)I3F such that A,VcV and a(A,)cC,}. The 
relevant subspaces are then 

I l r l p  IIWll~~--l/qllWIIE;t-I/q--~, I (  d I I which  yields the 

V/,K:=R*,,K+Vz and  Vf,K:=R$,K+V,*. 

Comment 8: The almost disturbance decoupling results 
the same as the one for the general case  involving all imply the quenching of the disturbances in a number of 

-~ 
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Fig. 5. Robust  controller synthesis. 

other norms than those considered here. In particular, it 
implies that if  lim,,l/TJ: 1 1  d 11 dt < 00, then 
lim,,l/TJ~Ilr112dt<Elim,,l/TJ~IId112dt, of obvi- 
ous interest in the context of stochastic disturbances. 

Comment 9: Note  that when (DDP) is not solvable, but 
(ADDP) is, then by  the  results of Theorem 8 the feedback 
gain F + ~ o  as e+O. The design  requires then a high gain 
feedback  synthesis approach. 

B. Robustness' 

Consider  the feedback system  shown  in  Fig. 5, where 
the plant Z: i=Ax+Bu+Gd, z =  Hx is as in Section 
VIII-A and is influenced by an uncertain loop Z, which 
we model as an unknown ep-input/output stable system 
with bounded gain operator M with known gain. Form- 
ally, z E %(O, 00)*d= Mz E L ? p ( O , ~ )  and 3 K < 00 such that 
Ildllep-<KIIz/IG. Let M k  denote all such  systems. The 
plant 1s controlled  by the control loop 2, which is to be 
designed. For Zf we take u, = Fx  and with u = u, + o we 
then obtain a closed-loop  system X,, mappinguwx. The 
idea is to choose F such that Z,, with x(0) =O is ep- 
input/output stable for all 2, EM,. 

Definition IO: Let 1 < p  4 co. Then (RRP) (the robust 
regulator problem) is  said to  be solvable if, V K ,  3 F  such 
that E,, is Ep-input/output stable for all Z, EM, in the 
sense that { o € f ? p } ~ { x € C p }  (and hence z ,  d, u,, u€gp).  

Note that the feedback F is  allowed to depend on K. If 
one would  need an F which  works for all K ,  then the 
question requires disturbance decoupling from d to z and 
may  hence  be  solved  by the results in [2]. 

Robustness design questions as those in Definition 10 
occur for example in situations where,  due to failures in a 
system (the uncertain system E,), it is necessary to intro- 
duce an override control ( Zf) whch will maintain stabil- 
ity. A very  tight, high gain type of control could very  well 
be desired in such situations. 

From standard results on $-input/output stability the- 

'These  results  were  presented at the ONR/MIT-LIDS Workshop on 
Recent  Robustness  Theory of Multivariable  Systems, April 25-27, 1979, 
MIT, Cambridge, MA. Very  much  related  results  have been obtained 
independently by Molander [7l in his thesis. His results,  however,  give 
only the  sufficiency parts and are obtained from an entirely  different 
point of view. 

ory (see, e.g., [ 11,121) it is easy to see that (RRP) will be 
solvable iff it is possible to choose the  Cp-gain of the 
internal controlled loop h z ,  i.e.,  of f =A,x + Gd, z = Hx,  
smaller than 1/K. This leads to the  following. 

Theorem I 7: { (RRP) is soluable} -{ imG c V&er c} .  
The proof of this  theorem is identical to that of The- 

orem 16. The relevant parts of Corollary 2 and the above 
comments (e.g., regarding stability) apply  here also. 

C. Stabilization of @stem with  Noisy  Parameters 

In this section we will consider an application of the 
ideas in this paper when it is the C2-norm of an impulse 
response that needs to be made arbitrarily small. Consider 
the system  described  by the It6 equation dx = (Ax + Bu) dt 
+G(dK)Hx, with x(0) a random vector  with finite sec- 
ond moments and K and independent (matrix valued) 
Wiener  process on t 2 0. Let 

E { ! S j ( t , ) 5 ? A t 2 ) }  =u;rsmi4t,9 t 2 )  

and Z: = (u&). The problem is to decide  whether there 
exists for any given M <  co a feedback matrix F such that 
u = Fx stabilizes in the mean square sense  (i.e., such that 
dx=AFxdt+G(dK)Hx yields lim,,,E{IIx(t)l12}=0) for 
all 11 Z 1 1  < M. We call this problem the stabilizarion for 
arbitraly noise intensities. This problem has been studied 
before (see  [7],[ 131, [14]). It may  be  shown  [15] that the 
solvability  of  this  problem is equivalent to the existence 
for all E > 0 of an F such that  Re a( A,) < 0 and 

imllGeAP'H112dt<E. 

Applying  Theorem 12, suitably modified as indicated in 
Comment 4, yields the following  theorem. 

Theorem 18: Assume (A, B) stabilizable. Then  the sta- 
bilization problem  with  arbitraly noise  intensities is solvable 
i f f  

imGCVb*,kerh': =RX,kerH +v,*,ff 
where 

V&,=sup{V~_V(kerH)13F:  A,VcVandRea(A,)<O}. 

D. Cheap  Control 

Our last application is concerned with linear quadratic 
control. Consider the stabilizable system i=Ax+Bu with 
x(0) = x. and the cost criterion 10°C puTRlr + xTQx) dt with 
R = RT > 0 and Q = QT > 0. We will study the behavior for 
pJ0. Let J, (xo)  be  the optimal performance. Clearly 
.f(xo):  =lim,40Jp(xo) exists and is  given  by a quadratic 
form in xo,  J(xo) = : x:Pxa with P= P T  > 0. We say that 
cheap  control is possible if J(xo) =0, i.e., if x. E ker P. It is 
of interest  to evaluate the chew control set kerP without 
having to carry out the defining limiting  process. (Particu- 
larly  interesting are the situations with Ĵ = 0.) 
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Theorem 19: Assume ( A ,  B )  stabilizabie. Then TABLE I 

with V&Q as defined in Theorem 18. 
Proof: (e) By Theorem 12, suitably modified as indi- 

cated in Comment 4, there exists, for any given E > O  an F 
such that, for f=Ax+Bu, u= Fx, x(0)=xo, we have 
/FxTQx dt < E and A, asymptotically  stable. Hence 
bwuTRu dt < 00. Letting pL0 yields  a  cost < E and hence 

(*) If j(xo) = O  there exists F (the optimal feedback 
control law for p sufficiently  small) such that  Re a( AF) < 0 
and /;xTQxdt arbitrarily small. This implies  by Theorem 
12, suitably  modified as indicated in Comment 4, that 
x. EV$,kerQ as claimed. 0 

Necessary and sufficient conditions for cheap control 
have been derived before (see,  e.g., [7],  [16], [ 17D but  it 
would  seem that the natural interpretation of the cheap 
control set  in  terms of almost invariant subspaces given in 
Theorem 19 yields  more  insight and may  very  well pro- 
vide an excellent starting point for studying more general 
singular control type situations. Note in particular that the 
above theorem  involves Vb+kerQ instead of V;,kerQ. This 
brings a "minimum phase" condition into the picture: 
indeed, the cheap control set will be all of X if, e.g., 
dim B > codim  ker Q, REerQ = {0}, and the system  is 
minimum  phase in the sense that u(AFIVzerQ)  is  in the 
left-half plane for F such that AFVza CVzerQ. 

J(xo) = 0. 

IX. EXAMPLE 

The following  example aims to illustrate several  points, 
among them the evaluation of the supremal almost in- 
variant subspace in the kernel of some output map and 
the conditions for almost disturbance decoupling for scalar 
systems. 

Let R[s] denote the polynomials  with real coefficients, 
and Ri[s]  those of degree < i. ForfE F4s],  we  will denote 
by I f 1  its degree. 

Consider  the  system described by  the  higher order 
scalar differential equation 

P( $)y=q(  $)u+r(  $ ) d  

wherep(s)ER,[s] is monk  and q(s), r(s)ER,-,[s]. We 
will assume for simplicity that p and q are relatively 
prime,  which translates into minimality of the state space 
models  which  will be used. This system  may be written in 
state space form, for example  by  taking  the standard 
observable realization  with X = R" and 

0 1 ... A = [  0 

0 0 ... 1 
-Po -P1 P n -  1 

... - 

1 -  - * Solvable @ * 

with the pi's defined  by p(s)=s" +pn-lsn-l  + - - +PO 
and the bi's and the gi's by the Laurent series expansions 

However, for the purposes at hand, it is convenient to 
identify SE. with Rn- l[s] with  typical  element x(s) = 
X , , - ~ S " - ~  + e  - - +xo and define the  realization by A: x(s )  
~sx(s)-x,- ,p(s),  B=q(s )  (more precisely B: awq(s)a), 
G =  d ( s ) ,  and H X(S)HX,- 1. (Actually, if one coordi- 
natizes X by x(s)=[al, a2;-  - , aJT with the ai's defined 
by the Laurent series expansion 

then this  realization  becomes  precisely the standard ob- 
servable  realization.) 

Let K: =kerH. Clearly K =  R,_,[s].  By straightforward 
calculations it' is now  possible to compute V,*,V: K, etc. 
We  have  also computed for a  given  symmetric set C + c 
C,V,+:=sup{VE_V(K)13F such that A,VcV & a(A,IV)C 
C'} .  This involves factoring q into q=q+q- with q+ 
having its roots in C+ and 4- having its roots in 
(@ +I comp'ement* 

The results are shown in Table I. 
The above example also illustrates an important point: 

the contrast between setting up a theory such as ours in 
the time  versus the frequency domain. For the scalar 
example at hand, deriving the solvability conditions for 
(DDP), (ADDP),,  etc. are utterly trivial  in  the frequency 
domain (see Comment 6). However, our identification of 
the state space  with R[s] allowed  us to recover this econ- 
omy  also  in the state space realization. Altogether we feel 
that setting up this theory  in  a state space context pro- 
vides  a  more conceptual insight and better potential for 
generalization to nonlinear or infinite dimensional systems 
than a  frequency domain theory, ie., the theory seems to 
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come better to grips  with the essential ideas.  However, 
from the computational point of  view the frequency do- 
main  approach is likely to have  some advantages because 
the relevant algorithms (which for a great deal still need to 
be  set up) start with  systems  which are more parsimoni- 
ously parameterized since they are  not encumbered  with 
the intrinsic freedom of the choice of the state space 
which  every state space model  always  has.  Nevertheless, 
we  feel that it will be  possible  to  develop-as  we have  done 
in the above  example-  dictionary which  allows step for 
step to translate  any  frequency  domain  calculation  into an 
algorithmic  identical  calculation  in  the state space, starting 
from a suitably adapted realization, and hence it will be 
possible to view a frequency domain  theory as a special 
case of a state space theory. 

X. CONCLUSIONS 

We start this conclusions section by lining up the vari- 
ous (equivalent) definitions of (almost) invariant sub- 
spaces which  have  been obtained so far. For ordinary 
invariance we have: 

1) open  loop invariance (Definitionl); 
2) feedback invariance (Proposition 1). (If  it  would not 

sound so awkward, “invariantable” would  be a suitable 
terminology to describe (1) & (2).) 

3) A(mod 6)-invariance: AV c V + B, which  is an appeal- 
ing notion from a linear algebra or a functional analysis 
point of  view. Actually one is led to wonder  whether  this 
concept and its applications in multivariable control the- 
ory may not find some  nice applications outside of control 
theory. 

4) ZIV is a system,  in the sense that 3A’, B‘  such that 
d=A‘v+ B’w generates the elements of Z, contained in 
the subspace V. 

5) Z(modV)  is a system  (Theorem A). 
6 )  Consider the linear foliation {x +VI x E X }  of X. This 

clearly induces a partition of (and hence an equivalence 
relation on) X. We  will  say that “leaves  may  be  followed” 
by trajectories of 2 if for every  leaf L there exists a family 
of trajectories Z’cZ, covering L at t =O (i.e., Z’(O)= L) 
and such that {x;, x; EZ‘}+{x;(t)=x;(t) (mod9  for all 
t, i.e., x;(t) and x;(t) belong to the same  leaf}. In the 
foliation {x+Vlx E X }  leaves  may be followed  iff VE!. 
Equivalent conditions (in the linear case) are {Vx EX,  
and x1 =x(O) (modV),  EIx‘EZ,  with  x’(O)=x, and  x‘(t)= 
x(t) (modV)Vt} or {Vx,, x, EX, x,  =x,(modV), 3x, x’E 
2, with  x(O)=x,, x’(O)=x,, and  x(t)=x’(t) (modV)Vt}. 

7) There  exist F such that in i=A,x+ Bu leaves of this 
foliation are input insensitive,  i.e., {x,(O)=x,(O) (modV)} 
*{x,(t)=xz(t) (modV)Vt and V u }  
For almost invariance we have 

1‘) approximate  open loop invariance (Definitionl); 
2’) approximate  feedback invariance (Theorem 6); 
3’) invariance under distributional inputs (Theorem 5). 
Actually  all of the above other characterizations of 

invariant subspaces may  be  given a distributional analog. 
4 )  Z(modV,)  is a smooth  system  (Theorem  A). 

~ 

5’) The feedback representation of Theorem 2. 
All these characterizations have analogs for (almost) 

controllability subspaces. Other characterizations may  be 
deduced  from  Comment 6.  

The concept of almost  controlled  invariant  subspace pro- 
vides, in our opinion, a very natural  and direct approach 
to many  high  gain  feedback synthesis questions. In many 
ways it would  seem that this notion has been the missing 
link towards a clean geometric approach to such prob- 
lems.  When  all the facts are in, the theory of almost 
invariant subspaces is equally tight and “algebraic” than 
that of ordinary invariant subspaces, but the details of the 
proofs may  be seen to require much harder analysis 
because of the approximations and the limiting  processes 
involved.  Perhaps  some streamlining of the proofs is still 
called for, however. 

We  have concentrated in this paper on developing the 
basic ideas and the theory. In order to  obtain a practical 
design tool from these ideas, it remains to develop algo- 
rithms which are sound  from the numerical analysis point 
of  view, in the spirit of [5], taking into consideration 
numerical stability and robustness and interactive com- 
puter aided design  packages. It should  be  emphasized that 
we are not suggesting that it is possible to separate the 
question of  how useful a theory is from its computational 
feasibility. What we mean to say is the following. In our 
paper we have  posed certain design  problems [e.g., 
(ADDP),] and we have  shown  when a solution to the 
design  specifications  exists  [imGcV&,,]  where for the 
entities entering the conditions [v?,,,,] we have  given 
conceptual algorithms in the form of a finite set of linear 
equations [(ACSA)’]  which  would in principle lead to a 
verification of the solvability  issue. The design  itself  would 
now  involve further computation of approximation of 
some  almost invariant subspace [v&,,] by an invariant 
one [v, +v&aH] and finding suitable feedback gains 
[AF,Ve cV,]. Following the constructions in the proofs of 
our  theorems this can in principle be camed out by 
setting up the familiar decomposition V;,,kerH = V@B,@ 
AFeB2@. - @AFc-’B,. In other words,  where  we  have 
demonstrated the structure of the solution and the feasi- 
bility of the computation (the algorithms are “rational:” 
they  involve linear equations and no algebraic equations 
or finite iterations are required!) the theory stdl needs 
improvement in order to translate ths  into  adequate 
numerical algorithms and to bring this all together into a 
computer-aided  design  tool. 

As already shown  in Section VI11 many  well-known 
control questions may  be interpreted in  terms of almost 
invariant subspaces.  Many aspects of the results and ideas 
developed  here  have  clear connections with other prob- 
lems  which  has  been studied in the control theory litera- 
ture. Among  those we like to mention the root-locus for 
nearly  singular LQ problems  (see, e.g., [2, Ch. 131, [16], 
[17], and [is] and for general feedback  systems [19], [20]); 
the related work on cheap control [ 171, [21] and singular 
perturbations [22],  [23],  [24]; definitions and properties of 
infinite zeros [25]-[28] and, finally, the  work on limit 
behavior and degeneracy of systems  depending on param- 

~- ~ 
~~~ 

~~ 
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eters [29]. Many of the connections with  these  problems 
seem  worthwhile studying in more detail and the fact  that 
the work presented here seems to have so many points of 
contact with other research areas is  obviously one of the 
appealing  aspects of it. 

One  obvious question is what the discrete  time, the 
nonlinear, and the dual analogs are of the concept of 
almost  controlled invariant subspace. The discrete  time 
analog does  not  exist as such  although  these  may be 
connections  with the synthesis of dead-beat controllers 
[30],  [3 11 together  with  some type of time-reversal. Another 
point of contact  is  the  limit  behavior of sampled data 
systems  with fast sampling and dead-beat control action. 
Nonlinear generalizations appear possible  in  principle 
through suitable  generalizations of invariant distributions 
and such  things [32],  [33] and it would  be very nice to 
obtain this way a connection with  sliding  modes as studied 
in [24],  [34]. The dual of the notion of an almost  con- 
trolled invariant subspace is that of an almost condition- 
ally invariant subspace  which will be  the  subject of Part I1 
of this paper. 

APPENDIX 

In this  Appendix we  will discuss  some  auxiliary  results 
which are used  in  text. In the interest of brevity we  will 
only  give  the  main ideas of the proofs of the facts which 
are actually  used. 

We have  had to worry about smoothness issues in 
connection  with  the  concepts introduced in this paper 
more than was  pleasing. That it makes a difference at all 
is  shown  in  Theorem  A. 

Consider Z: i = A x +  Bu and the induced state trajec- 
tory space X,. We  have  assumed that the  elements of Z, 
need  only  be ax. This is certainly a natural starting point 
but we could  also  have assumed more  smoothness,  say, 
infinite  differentiability Cw-smoothness. Denote by e,: = 
Z,nCw, i.e., e , : = { x : U k = X ( x ~ C ~  and i ( t ) - A x ( t ) ~  
BVt}.  We  will call 3 the smooth version of Z. We can 
now consider 3, defined  relative  to 2 in the  same way  as> 
was relative to X. Formally g: ={VcXlVx, E V ~ X E Z ,  
such that x(0) = x. and x( t )  E Wt} ; ga, a, and ea are 
defined  analogously.  Using  some  obvious  smoothness 
arguments,  it is easily  seen that 

Proposition A:  y=y, g, =!,, a=R, and I?, =Ea.  
Let L be a subspace of X and consider  Z,(modL)  (i.e., 

{x‘€X,(modL)}~{3x€Z,Ix’(t)=x(t) (modL)Vt}) and 
E,(mod L), similarly  defined.  Now, Z,(mod L) may or may 
not be a “system,”  i.e.,  there may or may not exist (A’,  B’) 
such that Z,(modL) = X,(A’, 6‘). Similarly there may or 
may not exist (A’, 6‘) such that e,(mod L)= Ex(A’, B‘). 
The conditions under which this is the case are very  nice 
indeed. 

Theorem A: 
1) { 3( A’, 6’) such that Z,( A’, 6’) = Z,(mod L)}*{ L €3 ; 
2) { 3( A’, B’) such  that e,( A’, B’) = e,(mod L)}*{ L E 

This theorem  gives one more  equivalent and interesting 
characterization of A(mod Bbinvariant subspaces. The 
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surprising part is that in this  case the smoothness  required 
of the  trajectories  does  play a role  here. 

Proof of Theorem A (Outline): 1) is  easy io prove. 
The proof of 2)(*) is  deleted:  the result is not used in the 
paper; 2)(+) follows  immediately from 1) and the follow- 
ing. 

Lemma A: Let L=B1 +A&, + - +A:-’B, for some 
F and some  chain {Bi} in B. Then there exists (A’, B‘) 
such that e,( A’, B) = e,(mod L). In fact, B’ = (AL + B) 
(mod L). 

Proof: S e e  the ideas in [l], Proposition 10, and [35], 
part 3) of the  proof of Lemma 7. 0 

A rather iinmediate  consequence of the  above  theorem 
and the representations for R, and y, described in Section 
I1 is the  following. 

Coroilay A: 

{ -  L E V } + { V ” ( ~ ~ ~ ) = V ~ ( ~ ~ ~ L ) ) ,  - - 

{ -  LER}+{R’(modL)=Rx(~odL)} - - 

{ L E E u I * ( E a  S(modL) = R L  - a   mod^)) * 

{ L EY,} + [ V?crnd L, =@(mod L) 1, 

The  superscripts at the right-hand  sides  simply denote 
with  respect to which  system  (almost) invariance or (al- 
most)  controllability has to be taken. 
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