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Fig. 2. Theorem 5 applied to Example 2. With ¢=0, we obtain —1/k<

min{ —0.105, —0.11). This gives k< 9.
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: Input-Ouitput Properties. New

Synthesis of State Feedback Control Laws with a
Specified Gain and Phase Margin

PER MOLANDER AnD JAN C. WILLEMS

Abstract—1It is shown how one may use a “circle criterion” philosophy
to design a state feedback control law which yields a closed-loop system
with specified robustness characteristics. This robustness is most im-
mediately given in terms of preservation of stability when a cone-bounded
nonlinearity is introduced in the loop, but may also be interpreted in terms
of gain and phase margin and gain reduction tolerance.

1. INTRODUCTION

In a seminal paper, Kalman [1] demonstrated that linear-quadratic
regulators satisfy a certain frequency domain inequality which yields a
degree of robustness for these control laws. In terms of classical control
concepts, Kalman’s inequality implies that these controllers possess a
60° phase margin, infinite gain margin, and 50 percent gain reduction
tolerance. In terms of feedback stability concepts [2], {3}, it implies that
the closed-loop system will remain stable if an arbitrary nonlinear system
contained in the sector (1/2, ) is introduced in the loop. This result
holds under the sole assumption that the integrand in the performance
criterion is the usual sum of a positive definite term in the control and a
nonnegative definite term in the state.

In the last few years, there has been renewed interest in this sort of
results (see, e.g., [4]-[6]), motivated principally by robustness questions.
Indeed, where classical control synthesis techniques were very directly
concerned with robustness considerations, it appeared that modern con-
trol theory had somewhat neglected to formulate robustness questions as
such. In particular, the question has recently been raised whether one
can design a state feedback control law such that the closed-loop system
has a specified gain and phase margin. In this paper it will be shown how
this can be achieved.
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Fig. 1. An illustration of the sector condition.

II. ProBLEM FORMULATION
Consider the linear time-invariant finite-dimensional system
x=Ax+Bu 1)

with xER" and ¥cR™. It will be assumed throughout that (4, B) is a
controllable pair, although this is sometimes irrelevant and stabilizability
often suffices. Assume that the desired input is given by the linear
time-invariant control law ’

u=—L%x )]

and that it is necessary to choose L such that the closed-loop system is
stable when the actual input is a perturbation of (2). Specifically, (2) will
be called a robust control law with robustness sector (K, K,;) (—oo < K; <
1< K, < o) if the closed-loop system is globally asymptotically stable
when the actual input is given by

= —f(L7%,1) ©)
with f: R™X R->R™ any nonlinear function satisfying
sup(f(0,1) = K10)" (f(0,1) = K70) <0 )

or, equivalently,

|fos )= 3(Ki+ K)ol
<7 (Ky—Ky)

@

sup
0,1 L

where |-| denotes the Euclidean norm on R”™. The sector condition is
illustrated in Fig. 1 for the single-input case.
Moreover, the feedback system

x=Ax+Bu+Gp, y=LTx, z=C7x *)
with u(-) determined from y(-) by a nonlinear input/output system with
nonanticipating system function F: y(-)——u(-) satisfying

1
()= (K + KOl 0 )
sup <5(K,—K{) (6)
»(-)EL3(0, x0) ly(')le(O,eo) 2272 !

should be L,(0, c0) input/ocutput stable as a system from o(:) to z(-).
When K,=c0, (4) and (6) should be interpreted as holding for some
K, < w0, and a similar modification is required when K= — 0.

The robustness requirements also allow for an interpretation in terms
of gain and phase margin and gain reduction tolerance. To be precise,
the control law (2) has a gain margin g (g > 1) if the closed-loop system is
globally asymptotically stable for all control laws

u=—-ALTx (@)
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with A any symmetric matrix with eigenvalues 1<, <g. It is said to
have phase margin ¢ (0< ¢ <) if it is globally asymptotically stable for
all control laws (7) with A any unitary matrix (A*A=AA*=17) possess-
ing eigenvalues A,=exp(j-¢;) with |¢,]<¢. It is said to have gain
reduction tolerance p in percent if it is globally asymptotically stable for
all control laws (7) with A any symmetric matrix with eigenvalues
1—p/100< ;< 1. (p> 0, and usually p < 100, but p > 100 is also possible
and corresponds to gain reversal.) These are straightforward generaliza-
tions of the classical single-input concepts. :

From (4) the following proposition follows (the proof is given in the
Appendix).

Proposition 1: Assume that (2) has robustness sector ( K}, K,). Then it
has

gain margin g=K,
K K,+1

phase margin ¢ with cos(¢)= K +K,

gain reduction tolerance p=(1—K;)-100. O

Consequently, in order to design a feedback law (2) with gain margin g
and phase margin ¢ it suffices to take for robustness sector (X, K,)
with

_ gcos(¢)—1

K
17 g—cos($)

and

K,=g.

Notice that if cos(¢) < 1/g, then K, <0< 1< X, and hence 4 will have
to be asymptotically stable in order for this design to be possible.

The circle criterion inequalities will be used to design control laws
with a given robustness sector. Of course, there may be other techniques
which yield a prescribed gain and phase margin, but such resuits do not
seem to be part of the linear-quadratic ideas on which, after all, also the
nonlinear feedback stability results (Propositions 2 and 3) are based. The
main facts from stability theory to be used are given in the following
section,

III. PRELIMINARIES
Let {4, B,C} denote the system
3:%=Ax+Bu, y=CTx.

The minimal system 2 is said to be inside the sector [a, B] (— 0 <a<0<
B< ) if A4 is asymptotically stable and if, with x(0)=0, and for all
u(+) € L,(0, o0), the response y(-)satisfies

y()—au(:), y(-)=Bu(-)>1,0,0) <0

It is said to be outside the sector [, B] (0<a<B< ) if A+87'BCT is
asymptotically stable and

()—au(), y(-)—Bu(-)>r,0,0 > 0

(If B= oo, the first inequality should read
<y()—au(-), "(’)>L,(o,w)>0a

with a similar modification for a= —o0.)

The following results follow from standard calculations 2], [3] and the
Kalman-Yacubovich—Popov lemma or its extensions [7]-[9).

Proposition 2: Let 2={4, B,C} be minimal and G(s)=C7(s/—
A)~1B be its transfer function, Then the following conditions are equiva-
lent.

) Z is inside the sector [a, B].

ii) A is asymptotically stable and for all w,

Re{G(jw)—a,G(jw)—B) <0.

iif) There exists a P=PT>0 such that
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ATP+PA+CCT  PB- “’;Bc
<0
T
(PB— "“;Bc) B

or, equivalently, if a0,

T
ATP+PA+CCT—(PB— “—wc)l(m— “+BC) <0.

2 o 2

Similarly, the following conditions are equivalent.
i) = is outside the sector [a, 8]
i) A+ B8 1BCT is asymptotically stable and for all w

Re{G(jw)—a,G(jw)—B> >0.
iii) There exists a P=P7>0 such that

a+B
2

(PB+MC)T af

ATP+PA~CCT PB+ C

<0
2
or, equivalently, if af+<0,

at+B
2

ATP+PA—CCT+(PB+ atp c)l(PB+
2 af
Obvious modifications are necessary for a= — oo or §=cc. O

The following proposition gives the basic stability result in which
much of the work on feedback stability has culminated.

Proposition 3: Assume that {4, B, L} is minimal. Then the control
law (2) has robustness sector (K, K,) if either

i) 0< K, <K, and {4, B, L} is outside the sector [-1/K,, —1/K,],
or

i) K, <0< K, and {4, B, L} is inside the sector [—1/K,, —1/K;]. O
In fact, x"Px with P as in the above proposition will be a Lyapunov
function for the control law (3).

Various conditions (conicity, etc.) equivalent to those of the above
theorems or specific cases in which the conditions hold may be fouand in
the literature [2), [3], [10], [11].

T
C) <0.

IV, ROBUSINESS SYNTHESIS

Theorem 1: Assume 0< K, <Ky;< 0. Then the following procedure
yields a feedback law (2) with robustness sector (K, K,).
1) Pick any (nXm) matrix D such that (A, D) is an observable pair and
any (nXn) matrix Q=07 >0.
2) Solve the algebraic Riccati equation
ATP4+PA—- J{%(PMDXPMD)%DD% 0=0
18

for its (unique) solution P=PT>0. (This solution automatically exists
when K, >0 and iff A is asympiotically stable when K =0).
3) Take L=2/(K,+ K, PB+D).

Proof: By Proposition 3, one must show that P is well-defined in 2
and that {4, B, L} satisfies condition iii) of Proposition 2 with a= —1/K;
and A= —1/K,. Part 1) follows from the standard linear-quadratic
results since the constant term of the Riccati equation equals

KI_KZ 2 T
(K,+K2) DD +Q>0

and the required controllability and observability conditions are satis-
fied. To see part 2), solve for D in the algorithm getting D=(K,+
K,)L/2— PB. Inserting this into the Riccati equation yields the inequal-
ity in iii) of Proposition 2, modulo a factor K K. (]

Theorem 2: Assume — oo < K; <0< K, < 0. Then the following proce-
dure yields a feedback law (2) with robustness sector ( Ky, K).

1) Pick any (nXm) matrix D and any (nXn) matrix Q= Q7 >0 such
that (A, D) is observable and the algebraic Riccati equation
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4K,K
ATP+PA———]TZ)Z(PB+D)(PB+D)T+DDT+Q=O

K +K;

has a symmetric solution (such D and Q will exist iff A is asymprotically
stable).
2) Pick any symmetric solution of this Riccati egquation (which will
automatically be >0).
3) Take L=2/(K,+K,)PB+D).
Proof: The properties of the Riccati equation follow from the results
in [9] and the claimed robustness from the fact that {4, B, L} satisfies

condition iii) of Proposition 2 with = —1/K, and 8= —1/K|. |
Remark: The above procedure collapses if K,+K,=0. For a treat-
ment of this singular case, see [12]. O

The case K, =00 is treated in the following theorem which is proved in
a similar fashion.
Theorem 3: The following procedure yields a feedback law (2) with
robustness sector (K, »).
Case 1K, > 0:
1) Pick any (nXn) matrix Q= Q7 > 0 such that (A, Q) is observable.
2) Solve the algebraic Riccati equation

ATP+PA~-2K,PBBTP+ Q=0

Jor its (unigue) solution P=P7 > 0 (this solution automatically exists when
K,>0 and iff A is asymptotically stable when K,=0 in which case this
equation becomes a Lyapunov equation).
3) Take L=PB.
Case 2—K,; < 0:
1) Pick any (nxn) matrix Q=07 >0 such thar (4, Q) is observable
and the algebraic Riccati equation

ATP+PA-2K PBBTP+ Q=0

has a symmetric solution (such a Q will exist iffA is asymprotically stable).
2) Pick any symmetric solution of this Riccati equation (which will
awtomatically be > 0).
3} Take L=PB.

V. DISCUSSION

1) The robustness problem considered here is not well-posed. If 4 is
asymptotically stable, L=0 will give a robustness sector {— co0,c0) , and
if A is not, then a robustness sector (¢, o) (€>>0) is obtainable from the
linear-quadratic theory of 1 by using 1/2¢ times the optimal gain for L.
Nevertheless, the theorems serve to yield techniques for generating other
control laws. In these theorems one may regard the choices of D and Q
as in some sense equivalent (albeit much less intuitively interpretable) to
choosing the performance criterion of a linear-quadratic design.

2) If K, >0, the robustness design is always possible and one is free in
choosing D and Q in the procedure of Theorems 1 and 3. In case
K, <0< K,, 4 must be asymptotically stable. In this case, the matrices
D and Q of Theorems 2 and 3 should be chosen such that the Riccati
equation has a solution. In fact, they should be such that for

x=Ax+Bu, y=D"x

with x(0)=0 and for all u(-), one has
2) 12 2 ® T
(X,—K,) ,ule(D,co)+4K1K2(Iu+y!L2(0,oo)+_l; x Qxdt)>0

in Theorem 2, and
-]
|u|iz(0,°°)+K,j; xTOxdt>0

in Theorem 3.

3) Theorem 3 with K;=1/2 yields Kalman’s original result. In fact,
the other cases of Theorem 3 with K; >0 may also be interpreted from
this result since the procedure used actually corresponds to taking an
ordinary linear-quadratic optimal design, thus obtaining the robustness
sector (1/2,00), and then using 2 K, times the optimal gain to obtain the
robustness sector (K, o).
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Fig. 2. Deduction of the phase-margin equation in the single-input case.

An interesting special case of Theorem 3 is K;=0, in which situation
one obtains the robustness sector [0, c0) by picking (A4, Q) observable
and solving

ATP+P4A=—-0.

L =PB then yields an infinite gain margin, a 90° phase margin, and 100
percent gain reduction tolerance. These are so-called Lyapunov designs.
It is possible to show that all the L’s thus obtained are also linear-
quadratic optimal designs, but by considering them as such, it would not
be possible to guarantee this robustness sector.

4) All of the results of Theorems 1 to 3 admit an optimal control
interpretation. It is easily verified using the by now standard frequency
domain manipulations, which yield the results of [1} and its multivariable
extensions, that using

J= f (|%|2+267CTx+xTMx) dt

on x=Ax+ Bu with C and M such that
|#)?4+2u7CTx + xTMx > v2|u|2(Jy|< 1)

will yield a robustness sector (1/(1+|y[),1/(1—|v|)). Similarly, if
Ju|2+2uTCTx+xTMx < y2|u|2(Jy| > 1),

and if the optimal control problem has a solution, which is then not
guaranteed, one obtains a robustness sector (1/(1—[v]),1/(1+]v]). By
multiplying the optimal gain by an appropriate factor, it is possible to
obtain an arbitrary preassigned robustness sector. Theorems 1 to 3 are
easily interpreted in this vein. The performance criterion is

fo°°(|u|2+£—)(2 TDTx+| DT |2+xTQx))dt
1

and the gain used is (K, +K,)/2K, K, times the optimal gain.

The idea of including a cross-product term 2uTCTx in the cost
functional deserves in our opinion some attention in the linear-quadratic
theory, where often only the case (uTRu+x7Mx) with R=R7>0 and
M=MT >0 is treated. This extra flexibility makes it possible to generate
optimal control laws that may be superior from the sensitivity or accu-
racy point of view. For a treatment of such optimal control problems,
see [9].

5) The theory is easily generalized to the case that X and K, become
arbitrary diagonal matrices. This admits robustness design with unequal
gain and phase margin requirements in the different loops.

APPENDIX

Proof of Proposition 1: Consider first the single-input case. The gain-
margin and gain reduction tolerance assertions are immediate from the
definitions. To deduce the phase-margin result, consider Fig. 2, whict
has been drawn for the case K| <0< K.
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It follows from the circle criterion that the condition on the Nyquist
locus of G(s)=L¥(sI—A)~'B pertaining to condition (4) is that it be
contained in a circle through (—1/K,,0) and (—1/K,,0), symmetric
with respect to the real axis. This implies that the Nyquist locus inter-
sects the unit circle at an angle at least ¢ degrees away from the negative
real axis. Inserting the coordinates (— cos(¢), —sin(¢)) into the equation
of the circle bounding the Nyquist locus yields

2 -1/K,+1/K,\?
(—cos(¢)———‘—l/xl;1/K2) +(—sin (¢))2=(_‘—_/ 12+ 4 2)
whence
K\ K,+1
cos(9)= Bk

The multivariable case may be reduced to the above situation by using
the fact that a unitary matrix is unitarily equivalent to a diagonal one. [
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Connections Between Finite-Gain and Asymptotic
Stability

DAVID J. HILL anp PETER J. MOYLAN

Abstract—The relationship between input-output and Lyapunov stabil-
ity properties for nonlinear systems is studied. Well-known definitions for
the input-output properties of finite-gain and passivity, even with quite
reasonable minimality assumptions on a state-space representation, do not
necessarily imply any form of stability for the state. Attention is given to
the precise versions of input-output and observability properties which
guarantee asymptotic stability. Particular emphasis is given to the possibil-
ity of multiple equilibria for the dynamical system.

I. INTRODUCTION

For causal linear time-invariant systems, there are well-known strong
equivalences among a variety of definitions of stability [1]. In particular,
£, finite-gain stability implies, under minimality assumptions, global
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