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Fig. 2. Theorem 5 applied 10 Example 2. With 4- 0, we obtain - l / k  < 
min(-0.105,-0.11).Thisgiveskc9. 
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Synthesis of State Feedback Control Laws with a 
Specified Gain and Phase Margin 

PER MOLANDER AND JAN C.  WILLEMS 

I. INTRODUCTION 

In a  seminal  paper, Kalman [l] demonstrated that linearquadratic 
regulators  satisfy  a certain frequency domain inequality  which  yields  a 
degree of robustness for these control laws. In terms of classical  control 
concepts, Kalman's inequality  implies that these  controllers possess a 
60" phase margin, infinite gain margin, and 50 percent gain reduction 
tolerance. In terms of feedback stability concepts [2], [3], it implies that 
the closed-loop  system will remain stable if an arbitrary nonlinear system 
contained in the  sector (1/2,00) is introduced in the loop. This result 
holds  under  the  sole assumption that the integrand in the  performance 
criterion  is the usual sum of a  positive definite term in the control and a 
nonnegative definite term in the state. 

In the last few years, there has been  renewed interest in this sort of 
results (see, e.g., [4]-[6D, motivated  principally by robustness questions. 
Indeed,  where  classical control synthesis  techniques  were very directly 
concerned  with  robustness  considerations, it appeared that modem con- 
trol theory had somewhat  neglected to formulate robustness questions as 
such. In particular, the  question has recently  been  raised  whether one 
can design  a state feedback control law  such that the  closed-loop  system 
has a  specified gain and phase margin. In this paper it will be shown  how 
this can be achieved. 
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Fig. 1. An illustration of the seclor condition. 

II. PROBL~M FORMULATION 

Consider the bear time-invariant finitedimensional system 

i = A x + B u  (1) 

with XER" and u € R m .  It will be assumed throughout that ( A ,   B )  is a 
controllable pair, although this is sometimes irrelevant and s tabhbi l i ty  
often  suffices.  Assume that the desired input is given  by the linear 
time-invariant control law 

u= -LTx (2) 

and that it is neceSSary to choose L such that the closed-loop  system is 
stable when the actual input is a perturbation of (2). Specifically, (2) will 
be called  a robust control law with robustness sector ( K , ,  K 2 )  (- 00 < K ,  < 
1 < K2 < 00) if the  closed-loop  system is globally  asymptotically stable 
when the actual input is given  by 

u= - f (LTx,  r )  (3) 

withf: W""R+BPm any nonlinear function satisfying 

or, equivalently, 

where I - 1 denotes the  Euclidean norm on R'". The sector condition is 
illustrated in Fig.  1 for the singleinput case. 

Moreover, the feedback  system 

i = A x + B u + G o ,   y = L T x ,  z=CTx ( 5 )  

with u(.) determined fromy(-) by a nonlinear input/output system  with 
nonanticipating system function F: y ( * ) + -  u ( * )  satisfying 

should be h(0,co) input/output stable as a system  from u(*) to .z(*). 
When K2= co, (4) and (6) should be interpreted as holding for some 
K 2 i  00, and a similar modification is required when KI = - 00. 

The robustness  requirements  also  allow for an interpretation in terms 
of gain and phase margin and gain reduction tolerance. To be precise, 
the control law  (2) has a gain margin g (g > 1) if the closed-loop  system is 
globally  asymptotically stable for all control laws 

u= - A L ~  (7) 

with A any symmetric math with  eigenvalues  1 G X, <g. It is said to 
have p h e  muwh + (0 6 + < T )  if it is globally  asymptotically stable for 
all control laws 0 with A any unitary matrix ( A*A = A A* = I )  possess- 
ing eigenvalues h,=exp(j.&) with I+,J<g. It is said to have gain 
reduction rolerance p in percent if it is globally  asymptotically stable for 
all control laws (7) with A any symmetric matrix with  eigenvalues 
1-p/100<Xi<1.(p>O,andusuallyp<100,butp>100isalsopossible 
and corresponds to gain reversal.) These are straightforward  generaliza- 
tions of the classical  single-input concepts. 

From (4) the following  proposition  follows  (the  proof is given in the 
Appendix). 

Propasition I :  Assume that (2) has robustness sector (Kl,  K2).  Then it 
has 

gain margin g= K2 

phase  margin + with cos( 9) = - K,K2+1 
4 +K2 

gainreduction tolerancep=(l-Kl).lOO. 0 

Consequently, in order to design  a  feedback law (2) with gain margin g 
and phase margin 9 it suffices to take for robustness sector (Kl, K 2 )  
with 

and 

K 2  =g. 

Notice that if cos(+) 6 1 /g, then X ,  G 0 G 1 < K 2  and hence A will have 
to be asymptotically stable in order for this design to be possible. 

The circle criterion inequalities will be used to design control laws 
with a given  robustness  sector. Of course, there may be other techniques 
which  yield a prescribed gain and phase margin., but such results do not 
seem to be part of the linearquadratic ideas on which, after all, also the 
nonlinear feedback stability results  (Propositions  2 and 3) are based. The 
main facts from stability theory to be used are given in the following 
section. 

111. PRELIMINARlEs 

Let { A ,   B ,  C )  denote the system 

Z: i = A x + B u ,  y=CTx.  

TheminimalsystemXissaidtobeinridefhesector[a,~](-m<a<~< 
/?< 03) if A is asymptotically stable and if, with x(O)=O, and for all 
u( * )  E L2(0, a), the  response y(.)satisfies 

(Y( . ) -au( , ) .Y( . ) - -BU( . )IL2(0 ,m)~0.  

It is said to be outside the sector [a,/?] (O<a <D< 03) if A+/?-'BCT is 
asymptotically stable and 

(Y(.)-au(.),r(.)-BU(.)ILI(O,m,)>O. 

(If /?- 00, the first inequality should read 

< r ( . ) - a u ( . ) ,  U(.))L*(O,OD)>O, 

with  a similar modification for a= - 00.) 
The  following  results  follow from standard calculations [2], [3] and the 

Kalman-Yacubovich-Popv l e m m a  or its  extensions [q-[9]. 
Prqwsition 2; Let Z = { A , B , C )  be minimal and G(s)=CT(sZ- 

A)-'B be its transfer function. Then the following conditions are equiva- 
lent. 

i) Z is inside the sector [a, 81. 
ii) A is asymptotically stable and  for all w,  

Re<G(jw)-a,G(jw)-/3) <O. 

i i i i  There exists a P=PT>O such that 
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or, equivalently, if a/?#O, 

A T P + P A + C C T - ( P B - T C  )iB( - P B - - c )  a+B 2 Go. 

Similarly, the following conditions are equivalent. 
i) Z is outside  the sector [a , /? ] .  
ii) A+/?-’BCT is asymptotically stable and for all w 

R e ( G ( j w ) - a , G ( j w ) - / l > > O .  

iii) There exists  a P = P T > O  such that 

or,  equivalently, if aj?#O, 

A = P + P A - C C ~ +  P B + - c  - PB+-c G O .  ( ) a i (  a;B 

Obvious  modifications are necessary for a= - ca or /?= 00. 0 
The following proposition gives the basic stability  result in which 

much of the work on feedback stability has culminated. 
Proposition 3: Assume that ( A ,   B ,  L )  i s  minimal. Then the control 

law (2)  has robustness sector ( K , ,  K 2 )  if either 
i) O <  K ,  < K2 and ( A ,  B,  L )  is outside the sector [ - l / K , ,  - I/K2J 

or 
ii) K ,  G O <  K ,  and { A ,   B ,  L )  is  inside the sector [ - 1 / K 2 ,  - 1 / K , ] .  0 

In fact, xTpx with P as in the above proposition will be a Lyapunov 
function for the control law (3). 
Various conditions (conicity, etc.)  equivalent to those of the above 

theorems or specific cases in which the conditions hold  may  be found in 
the literature [2], [3], [IO], [ 1 I ] .  

lV. ROBU~INESS SYNTHESIS 

Theorem I :  Asswne 0 < K ,  < K 2 <  00. Then  the following procedure 

I )  Pick any ( n  X m )  matrix D such that ( A ,   D )  is an obsercuble pair and 

2) Solw the  algebraic Riccati equation 

yields a feedback law (2) with robustness  sector ( K , ,   K 2 ) .  

any ( n x n )  matrix Q = Q ~ > o .  

for its (unique) solution P =  PT’>Q. (This solution automatical& exists 
when K ,  > 0 and iff A is asynptotical& stable when K ,  = 0). 

3) Take L = 2 / ( K , + K 2 ) ( P B + D ) .  
Proof: By Proposition 3, one must show that P is  well-defined in 2 

and that ( A ,   B ,  15) satisfies condition iii) of Propnsition 2 with a = - l/Kl 
and /?= - l / K 2 .  Part 1 )  follows from the standard linear-quadratic 
results  since the constant term of the Riccati equation equals 

and the  required  controllability and observability conditions are satis- 
fied. To see part 2). solve for D in the algorithm  getting D = ( K ,  + 
K2)L/2  - PB. Inserting this into the Riati equation yields the inequal- 
ity in iii) of Proposition 2, modulo  a factor K 1 K 2 .  0 

Theorem 2: Assume - 00 < K ,  < 0 < K 2  < ca. Then  the foilow*ng proce- 
dure yielak a feedback law (2) with robusmess sector ( K , ,   K 2 ) .  

I )  Pick any ( n x m )  matrix D andm ( n x n )  matrix Q = Q T > O  such 
that ( A ,   D )  is obseroable and the algebraic Riccati equation 

A ~ P  + PA - 4 K , K 2  ( P B + D ) ( P B + D ) T + D D T + Q = O  
(K, +K2),  

has a rymmetric solution (such D and Q will exist iff A is arynptotically 
stable). 

2) Pick any ymmetric solution of this Riccati equation (which will 
aomatical!y be > 0). 

3) Take L =   2 / (  K ,  + K2)( PB+  D).  
Proof: The  properties of the Riccati equation follow  from the results 

in [9] and the  claimed  robustness from the fact that ( A ,  B,  L )  satisfies 
condition iii) of Proposition 2 with a= - 1 / K 2  and /?= - l / K , .  0 

Remurk: The above procedure collapses if K ,  + K, =O. For a treat- 
ment of this singular  case, see [12]. 0 

The case K ,  = ca is treated in the  following  theorem  which is proved in 
a similar fashion. 

Theorem 3: The following procedure yields a feedback law (2) with 
robustness sector ( K , ,  00). 

Case I-K, > 0: 
I )  Pickany(nXn)matrixQ=QT>Osuchthat(A,Q)isobseroable.  
2) Solw the  algebraic  Riccnti  equation 

ATP+PA-2K,PBBTP+Q=0 

for its (unique) solution P=  PT> 0 (this solution automatically exists when 
K ,  >O and iff A is arymptoticd!y stable when K,=O in  which  case this 
equation  becomes a L y q m  equation). 

3) Take L = PB. 

I )  Pick nny ( n x n )  matrix Q=Q’>Osuch that ( A , Q )  is obserwble 
Case 2-K, 6 0: 

and the  algebraic Riccati equation 

ATP+PA-2K,PBBTP+Q=0 

has a ymmetric solution (such a Q will exist #A is arynptoticcz& stable). 
2) Pick any rymmetric solution of this Riccati equation (which will 

atuomatically be > 0). 
3) Take L= PB. 

V. DISCUSSION 

1) The robustness  problem  considered here is not well-posed. If A is 
asymptotically  stable, L= 0 will give a  robustness sector (- w,m) , and 
if A is not, then  a  robustness  sector (c, 00) (c >0) is obtainable from the 
linearquadratic theory of 1 by  using 1/2e times the optimal  gain for L. 
Nevertheless,  the  theorems  serve to yield  techniques for generating other 
control laws. In these  theorems  one may regard  the  choices of D and Q 
as in  some sense equivalent  (albeit  much  less  intuitively interpretable) to 
choosing  the  performance  criterion of a linear-quadratic design. 

2) If K ,  > 0, the robustness  design is always  possible and one is  free in 
choosing D and Q in the procedure of Theorems 1 and 3. In case 
K ,  < O< K , ,  A must be asymptotically  stable. In this case, the matrices 
D and Q of Theorems 2 and 3 should be chosen  such that the Riccati 
equation has a  solution. In fact,  they  should be such that for 

i = A x + B u ,  y = D T x  

with x(O)=O and for all u ( - ) ,  one has 

in Theorem 2, and 

in Theorem 3. 
3) Theorem 3 with K ,  = 1/2  yields  Kalman’s  original  result. In fact, 

the other cases of Theorem 3 with K, > O  may  also be interpreted from 
this result  since  the  procedure used actually corresponds to taking an 
ordinary linearquadratic optimal design, thus obtaining the  robustness 
sector ( l / 2 ,  a), and then  using 2 K ,  times the optimal gain to obtain the 
robustness  sector (K,, 03). 
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Fig. 2. Deduction of the phase-margin equation in the singlainput case. 

An interesting special case of Theorem 3 is K, = 0, in which situation 
one obtains the robustness sector [O,m) by picking ( A ,  Q) observable 
and solving 

ATP+PA= -Q. 

L = PB then yields an infinite gain margin, a 90" phase margin, and 100 
percent gain reduction tolerance. These are so-called Lyapunov designs. 
It is possible to show that all the L's thus obtained are also linear- 
quadratic optimal designs, but by  considering  them as such, it would not 
be possible to guarantee *his robustness sector. 

4) AU of the results of Theorems  1 to 3 admit an optimal control 
interpretation. It is easily  verified  using  the  by  now standard frequency 
domain manipulations, which  yield the results of [l]  and its multivariable 
extensions, that using 

on i=Ax+Bu with C and M such that 

I u J 2 + 2 u = c = x + x ~ M x ~ y 2 1 u 1 2 ( l y l g  1) 

will yield  a  robustness sector (l/(l+lyl),  l/(l-lyl)). Similarly, if 

lul2+2u=c=x+x=Mx<y2lu(2()yl> I), 

and if the  optimal control problem has a  solution,  which is then not 
guaranteed, one obtains a  robustness sector (1/( 1 - I y I), 1 /( 1 + I y I)). By 
multiplying the optimal gain by an appropriate factor, it is possible to 
obtain an arbitrary preassigned robustness sector. Theorems  1 to 3 are 
easily interpreted in this vein. The performance criterion is 

and the gain used is ( Kl + K2)/2 K, K2 times the optimal gain. 
The idea of including  a  cross-product  term 2uTCTx in the  cost 

functional deserves in our opinion some attention in the linearquadratic 
theory, where often only the case (uTRu+xTMx) with R=RT> 0 and 
M = M T > O  is treated. This extra flexibility  makes it possible to generate 
optimal control laws that may be superior from the  sensitivity or accu- 
racy point of view. For a treatment of such optimal control problems, 
see [9]. 

5) The theory is easily  generalized to the case that Kl and K2 become 
arbitrary diagonal matrices. This admits robustness  design with unequal 
gain and phase margin requirements in the different loops. 

APPENDIX 

Proof of Proposition 1: Consider first the single-input  case. The gain- 
margin and gain reduction tolerance assertions are immediate  from the 
definitions. To deduce the phase-margin  result,  consider Fig. 2, whick 
hasbeendrawnforthecaseKl<O<Kz. 

It follows from the circle criterion that the condition on the Nyquist 
l o c u s  of G(s)=LT(sZ-A)-'B pertaining to condition (4) is that it be 
contained in a circle through (- 1 /K2,0)  and (- l/Kl, 0), symmetric 
with  respect to the real axis. This implies that the Nyquist l o c u s  inter- 
sects the unit circle at an angle at least + degrees  away  from the negative 
real axis. Inserting the coordinates (- cos(+), -sin(+)) into the equation 
of the circle  bounding the Nyquist  locus  yields 

whence 

cos( +) = ~ 

K,K2+l 
K,+K2 

The multivariable case may be reduced to the above situation by  using 
the fact that a unitary matrix is unitarily equivalent to a diagonal one. 0 
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Connections Between Finite-Gain and Asymptotic 
Stability 

DAVID J. HILL AND PETER J. MOYLAN 

Abstrm-The relationship W e e n  inpnt-outpnt and Lyapumv stabii- 
ity properties for nonlinear system is studied. Wd-knom d e f i i  for 
the input- properties of finite-gain and passivity, even with qnite 
reasonable minimality assumptions m a state-spme representation, do not 
necessarily imply any form of stability for the state.  Attention is given to 

guarantee asymptotic stability. Particular emphasii is given to the possibil- 
ity of multiple equilibria for the dynamid system. 

the precise versiopls of input-output and olk3efvabii properties whi& 

I. ~ O D U C X I O N  

For causal linear  time-invariant  systems, there are well-known strong 
equivalences  among  a  variety of definitions of stability [ 11. In particular, 
& finite-gain  stability  implies, under minimality  assumptions,  global 
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