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Absrrucr-The problem that is solved in this paper can be formulated 
as: given an observation of an image against the background of additive 
noise and given the statistics of the image and the noise, find an optimal 
estimate of the image such that the computer-time and storage require- 
ments of the estimator are modest for images of, say 250x250 points or 
more. A discrete-time vector-scanning model is derived that describes the 
statistics of a large class of images. The optimal linear smoother-with 
regard to the least-squares criterion-is formulated in a recursive manner 
as a combination of two Kalman filters. It is observed that in the model the 
covarlance matrices are Toeplitz matrices. It is shown that the z transform 
defines a one-to-one relation between Toeplitz matrices and functions of a 
complex variable. Tbis reduces the Riccati equation to a scalar equation in 
the z domain. It is further shown that multiplication by a Toeplitz matrix 
can be performed recursively by two linear dynamical systems. This leads 
to an algorithm which is not only recursive in the “time” parameter of the 
state space model but also in the index of the elements of the state vector. 
This so-called hierarchic recursive method has modest computational re- 
quirements. 

I. INTRODUCTION 

I MAGE ENHANCEMENT is a process for improving a 
degraded image. The degradation may be due to reflec- 

tions from spurious objects, inaccuracies in the sensing 
mechanism, or imperfect transmission. When the degrada- 
tion cannot be avoided or the. object cannot be observed 
again, image enhancement has proved to be very useful 
[l]. Fields of application include astronomy, electron- 
microscopy, and X-ray photography. 

Image processing deals with data which are two dimen- 
sional in nature. A monochromatic image may be repre- 
sented by its brightness p (t,s) at every point (t,s). The 
coordinates t and s may be continuous, discrete, or a 
combination of the two. In this paper P(t,s) is considered 
as a sample of a two-dimensional random process. Char- 
acteristic features of the image are then described by its 
first- and second-order statistics [2]. Images are thus di- 
vided into classes characterized by their mean E { j? (t,s)} 
and their covariance E { p (t,s) j3 (t’,s’)}, where E { - } 
stands for expected value. In many cases the disturbances 
may also be described by a random (noise) process with 
known statistics. 

Image enhancement thus becomes a statistical estima- 
tion problem where one attempts to separate the observa- 
tions from the noise. The most powerful and computation- 
ally efficient ,procedure currently available for making this 
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estimation is the recursive Kalman-filtering technique. In 
the Kalman filter, however, the observation must be writ- 
ten as the output of a linear dynamical system with one 
independent variable (the time). Application of this tech- 
nique (in image enhancement) thus requires the design of 
a model and a filter which are adopted to the special 
two-dimensional structure of an image, where a great deal 
of attention must be paid to the computer-time and 
storage requirements. Since images with, say, 250X250 
points (or more) must be processed, the computational 
requirements tend to become unmanageably large. 

Several procedures have been proposed to convert the 
two-dimensional information into a form with only one 
variable. 

Nahi and Assefi [2] consider a sort of TV scanning of 
an image. The periodic nature of the scanning procedure 
results in an output which will be a nonstationary ‘random 
process. This introduces complexities in the design of a 
model and approximations are needed even before a 
model can be constructed. 

Powell and Silvermann [3] found an exact, but not 
strictly linear, model of the TV signal. The linear ap- 
proximation of the model, however, needs a further ap- 
proximation as the dimensions of the image grow larger 
than, say, 50 X 50 as is usually the case. 

Nahi and Franc0 [4] describe a continuous vector pro- 
cess in which a column of intensities is taken as the state 
vector of the model. But straightforward implementation 
of the Kalman filter for this model, even in the steady- 
state case, overloads most computers when images are 
larger than about 50 x 50. 

Habibi [5] derives a two-dimensional Kalman filter 
which is scalar, in the sense that the dimension of the state 
of the filter is one. Unfortunately, the assumption that the 
optimal estimate can be expressed as the combination of 
two optimal estimates, based on partially overlapping data 
sets, is unfounded and thus the estimator derived will not 
be optimal. 

Jain and Angel [6] also derive a scalar filter. However, 
before filtering the image has to be transformed and 
afterwards it has to be retransformed. This makes their 
method equivalent to frequency-domain filtering with 
0 (N* log N) operations, where N is the image dimension. 

In this paper, a new approach to image enhancement is 
proposed wherein an exact representation of the statistics 
of the image is given by a discrete linear vector model. An 
image enhancer is described which is hierarchical and 
recursive in the two indices of the image. The first index 
locates the state vector of the model which is estimated by 
the recursive Kalman technique, while along the vector 
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itself the elements are estimated by a recursive subsystem. 
The computations in the subsystem involve an approxima- 
tion, which, however, by selecting the dimension of the 
subsystem may be made as accurate as desired. In practi- 
cal cases this dimension need not be larger than three for 
an accuracy of about 0.5 percent. The number of opera- 
tions is O(N2) and the computer storage requirements are 
also considerably lower than the previously mentioned 
methods. 

Following the descriptions of the statistical assumptions 
and the mathematical formulation of the problem given in 
Section II, the recursive vector scanning model is pre- 
sented in Section III. In the next section, the Kalman 
filter is given for the resulting model, which is used twice 
--one sweep from left to right and one reversed. The two 
estimates are combined to find the optimal smoothed 
estimate. The efficient implementation of the smoother is 
due to a number of interesting properties of Toeplitz 
matrices and their relations with the z transform and 
linear dynamical systems, which are investigated in Sec- 
tion V. The resulting algorithm and a numerical example 
are given in Section VI. Finally, an application is dis- 
cussed in Section VII. 

II. MATHEMATICALPROBLEMFORMULATION 

A monochromatic picture can be represented by a Definition: Let &,, wk,,, Q, represent the brightness, 
matrix of intensities B of dimension K x L, with elements observation noise, and observation at a point k, I of the 
&,(~,Z)ESA (1;--,K}X{l;..,L}. The characteristic image, respectively. The corresponding vectors b,, w,, and 

Kronecker 6: 

s,= ; 
L 

if p#O 
if p=O. 

Since we can always subtract the average of the noise 
intensity from the observations, we may assume, without 
loss of generality, that 

E{~k,,} =a (2.2d) 

We can now formulate the problem solved in this paper. 
Problem: Let the matrix of intensities Y with elements 

qk,, represent the observed image of an original B = ( &,) 
with additive noise W= (We,,). Thus Y= B + W. Let the 
mean and the covariances of &, , and y,+ be given by (2.1) 
and (2.2). We want to find an efficient algorithm to 
compute the optimal linear least-squares estimation g of 
B based on the observation Y,, i.e., a linear map L in 
i==(Y) such that E{X,,,,,(&,-&,)2} is minimized, 
and an efficient way to compute L and L(Y). 

III. THE VECTOR-SCANNING MODEL 

To make use of a vector-scanning model we now need 
to consider the statistics in terms of the vectors defined 
below. 

features of an image will be expressed, here, by the first- Y, are defined by 
and second-order statistics of the (stationary) random 
variable &,. Without any loss of generality, the reference 
level and the brightness scale may be chosen such that 

qPk,,}=o 
E{ P&)=1 

(2.la) 

(2.lb) 
b,A ; 

where (k,l) E S. We will assume that the covariance is 
exponentially decaying in both directions. Thus 

VI,/ 

: . (3.1) 

TK, I 

E { &JP~+~,,+~ } = PP’P~‘; (k,Z),(k+p,Z+q)ES 

(2. lc) 

with 0 < p, < 1 and 0 < p2 < 1. A large number of “real- 
world” images can indeed be approximated by this type of 
autocorrelation function [ l]-[4]. The observed image, rep- 
resented by Q,, is supposed to be the original image &, 
contaminated by additive noise wk.,; i.e., 

lk,,=Pk,I+~k,l- (2.2a) 

Assuming the noise ok,, to be white and uncorrelated with 
the intensity; 

E { Pk,Pk+p,l+q} =o, V(k,Z),(k+p,Z+q)ES (2.2b) 

E{~k,,~k+p,,+ql =@$Ap V(k,Z),(k+p,z+q)ES 

(2.2c) 

where 8 > 0 is the intensity of the noise and 6 denotes the 

The vectors are columns in the matrices representing the 
image. For the sake of simplicity, we take in the following 
p, = p2 =p(O < p < 1) in (2.1~). It is a straightforward 
matter to extend the results to the case p,#p,. 

Property: When the means and (co)variances of &, 
and Wk,l are given by (2.1) and (2.2) then the vectors b,, w,, 
and y, of the preceding definition have the following first- 
and second-order statistics: the mean is 

E{b,}=E{w,}=E{y,}=O (3.2) 

the variance is 

E{b,b;}= R& 
: . 
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9 0 

E{w,w;}=& I I . . 

0 .o 

E{y&}= R+O 

and the covariance is 

(3.3) 

E {b,b;+,} =p’+? 

E{v4+,) =o 

E { Y,Y;+,} =P”‘R. (3.4) 

For all I and Z+qE{l;.*,L}, q#O. 
Remark: The variance matrix R has a special structure 

in that each (sub- and super-) diagonal has identical 
entries. These matrices are finite Toeplitz matrices and 
this special structure is fully exploited later. 

We now want to design a discrete dynamical system the 
output of which is a vector process {y,} with the parame- 
ters chosen such that the statistics of the process { yr} are 
the same as those assumed for the successive columns of 
the observation matrix Y. The observed image can then be 
interpreted as the output of a discrete dynamic system to 
which Kalman filtering can be applied. 

Problem: Given R and 0 as defined in (3.3) and taking 
the discrete dynamical system to be 

x,+,=Ax,+Dv, 

y, = Cx, -I- Ew, 

we wish to determine the dimension of x,, the parameters 
A, D, C, and E, the mean and variances of { vI} and {w,}, 
and the correlation between {v,}, {w,}, and {x1}, such 
that the statistics of {y,} are as given in (3.2)-(3.4), where 
it is understood that the dimension of y, is K and that {v,} 
and {w,} are white noise processes. The problem is a 
special case of the inverse problem of stationary covari- 
ante generation (Anderson [7] and Anderson and Moore 
[S]). It has more than one solution, a convenient one is 
given in the following proposition. The proof, which con- 
sists of straightforward calculation, is omitted. 

Proposition: A solution to the problem stated above is 
given by the system 

x/+,=px,+ 7 l-p R’/2v,, I=O;**,L-1 

y,=x,+w,, I=l;*:,L 

x,=0 (3.5) 

where v, and wI (I= 1;. . , L) are uncorrelated zero-mean 
random vectors with variances 

E{v,v;}=Z 

E{w,w;}=O. (3.6) 

The matrix R ‘I2 is well defined because R = R’ > 0. 
Remark: The state vector x1 in the model (3.5) is identi- 

cal to the vector b, as defined in (3.1) and thus x, repre- 
sents the intensities of a column of the image. For later 

convenience, we present here a second solution to the 
problem. 

Proposition: Another solution is given by the anticausal 
system 

x,- , = px, + dm R ‘/2v,, z=L+1;..,2 

y,=x,+w,, l=L;..,l 

XL+1 =o (3.7) 

where v, and w, (I = L, * * * , 1) are uncorrelated zero-mean 
random vectors with variances given by (3.6). 

IV. RECURSIVE FILTER AND SMOOTHER 

A. The Recursive Filter 

The Kalman filter of the model described in Section III 
is given by the following proposition [9]. 

Proposition: Let ,?,+ denote the optimal linear least- 
squares estimate of the state R, of the system (3.5) based 
on observation y,,y2; . . ,y ,-,, y,. Then 2: is recursively 
given by 

J$;,=pa: + M,,, (Y,+,-Pi.:) 

i,=o (4.la) 

with 

A4 I+1 =e,+,(e,+,+o)-’ 

2 ,+,=P~~:,,+(~-P~)R 

%,=(Z-MI+* )%+,=W;,@ 

Z$= R. (4. lb) 

The matrices Z,? and 2, are the variance matrices of the 
error of the filter estimate (xl- a:) and the one-step 
predictor estimate (x,+ i - p&+), respectively. Furthermore, 
it can be shown that the steady state M= lim,,,{ M,} 
exists and is the (unique) symmetric positive-definite solu- 
tion of the Riccati equation: 

p2M2@+(1-p’)M(R+@)-(1-p’)R=O. (4.2) 

The steady-state value Z+ =lim,,,Z: is similarly given 
by 

Z+=M*O. (4.3) 

Solution for L+oo: To implement the filter in the form 
given by (4.1) the number of operations in each step is 
proportional to K4, where K is the dimension of the state. 
This is due to (4.lb) where a K X K matrix is inverted. A 
considerable reduction is obtained if we take for M,, i the 
steady-state value M. In practical applications (p-0.9) M, 
reaches the steady-state value in about 30 iterations, while 
L is usually 100 or larger. The approximations result in a 
slight degradation of the performance of the filter at the 
left border of the image where I is small. 



70 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, FEBRUARY 1977 

The filter equations then become 

~,~,=P~,++M(Y,+,-Px:), IEZ (4.4) 

with M as the solution of (4.2). For later convenience, we 
define the innovations vector y,+ , =y,+ , - p?, and rewrite 
(4.4) as 

z~~,=p&++M+,+,. (4.5) 

B. The Recursive Smoother 

As stated in the problem formulation, we want to find 
an estimate of the original matrix X = [x,, * * * , xL] based 
on observations Y = [ y ,, . . . ,yL]. Thus we are, in effect, 
dealing with a so-called fixed-interval smoothing problem. 
There are two main approaches to the linear-recursive 
fixed-interval smoothing problem. In one approach, the 
correction for the estimate of the Kalman filter is calcu- 
lated, see, e.g., Meditch [lo]. In the other, the smoothed 
estimate is given by a properly weighted combination of 
two filtered estimates--one based on observations prior to 
the estimated point and the other based on observations 
after that point, according to Fraser and Potter [ 1 I]. 

Using the idea of the two-filter approach, we developed 
a special formulation for which we need the following 
lemma and definition. 

Lemma: Let x and Y have a joint distribution with the 

given mean q and covariance zxx xV and suppose [ 1 z z I 1 YX YY 
that Z,, is nonsingular. Then thepe always exists a linear 
model 

y=Lx+v (4.6) 

where v is a random vector uncorrelated with x, such that 
x and y have the given mean and covariance. 

Proof: The proof follows from a direct evaluation by 
taking 

L = ~Y,,z,’ 

mO = mu - ~Y,,Z;x’mx 

2, = x:, - ~yxz,‘z,. (4.7) 

Definition: Let x, y,, y, have a joint distribution with 
the given mean and covariance, then y,, y, are called 
independent observations of x if, in the underlying linear 
models, 

y, = L,x + v, 

y2 = L,x + v2. 

The observation noise vectors are uncorrelated, i.e., cov 
{u,,uJ =o. 

Theorem 4.1: Let 2, and z2 be two linear least-squares 
estimates of a random vector x, based on independent 
observations y,, y2 with error covariances Z, = E ((2, - 
x)(2, - x)‘} and Z, = E {( x2 - x)(x2 - x)‘}, respectively. 
Let x have mean m,, and covariance Z,. Then the linear 

least-squares estimate of x based on y, and y, is given by 

(4.8) 
where Z = (2; ’ + Z; ’ - Z;‘)- ’ is the error covariance. 

Proof: The linear least-squares estimate of x based 
on y, when the underlying linear model is y = Lx + v, is 
given by 

2 = Z,( LZ,‘y + Z,‘m,) (4.9) 

where Z,=(L’Z;‘L+Z;.‘)-, is the error covariance (c.f., 
Schweppe [12, ch. 51). By applying (4.9) three times, 
namely, with y =y,, y=y2, and y = ;i [ 1 the result (4.8) 

follows by straightforward manipulation. 

The steady-state Kalman filter gives the linear least- 
squares estimate of x,, denoted by g/+, based on observa- 
tions . . . , y,- ,,y,. The smoother gives the linear least- 
squares estimate of x,, denoted by &, by combining a,+ 
with &-, where the latter is the linear least-squares esti- 
mate of x, based on observations yI+ ,,Y*+~, * * * , according 
to Theorem 4.1. 

Remark: We cannot use Z/L, based on y,,y,+ ,, * * + , 
although this would give a nice symmetry, because the 
two estimates .-?I’ and &i would then no longer be inde- 
pendent, both being partially based on y,. We want to find 
a recursive formulation for i,-. We therefore consider the 
anticausal system, which also generates the statistics of 
the image as we found in Section III. 

Proposition: The optimal-estimate ?,-, based on 
Y1+ ,,Y/+2,’ * * 9 state vector of the system (3.7) is recur- 
sively given by the anticausal Kalman reconstructor: 

21: , = pq + pM ( y, - z,- ) (4.10) 

with error covariance Z- = (I- M)-‘Z+, where the 
steady-state matrices M and Z+ are given by (4.2) and 
(4.3), respectively. 

Remark: It is not difficult to verify that the Kalman 
jilter of the anticausal system has the same M and Z as 
the filter of the causal system. Equation (4.10) results from 
the fact that the Kalman predictor propagates the esti- 
mate of the filter. The reconstructor of the preceding 
proposition is simply a predictor backwards in time. We 
can now give the results for the optimal smoothed esti- 
mate 2,. 

Proposition: The smoothed estimate of the vector x, 
based on observations . . . , y,- ,,yl,yl+ ,; . . , with statistics 
as in (3.2)-(3.4), is given by 

4=[2Z+M(OR-‘-I)]-‘(z,++(Z-M).?-) (4.11a) 

where i,+ and .$- are obtained from 

$ , = pm,+ + M (Y/+ l - Pg: ) (4.1 lb) 

21: , = pi/- + pM (y1- ir- ) (4.1 lc) 

where 1 EZ and M is given by (4.2). 



SCHOUTE et a/. : HIERARCHIC RECURSIVE IMAGE ENHANCEMENT 71 

Remark: In the preceding proposition the steady-state 
formulations of the filter and reconstructor are given. 
Since in any practical algorithm I will run over a finite 
range {l,, f. ,L}, a slight suboptimality is introduced at 
the borders (i.e., at ZRC 1 where the filter is suboptimal and 
at I-L where the reconstructor is suboptimal). 

Solution for K+oo : In practice K and L are large 
(> 100). Straightforward implementation of the filter and 
especially the smoother, as given in the preceding proposi- 
tion, then becomes impossible because difficulties arise in 

1) The (efficient) solution of the quadratic matrix equa- 
tion (4.2); 

2) the (efficient) implementation of the matrix-vector 
products in (4.11) occuring at each of the L steps of 
the filter, the reconstructor, and the weighting. 

By letting K+cc the finite Toeplitz matrices R and 0 (c.f., 
(3.5)) become infinite Toeplitz matrices. By using a num- 
ber of special properties of such matrices the two prob- 
lems have elegant solutions. 

V. TOEPLITZ MATRICES 

where x, y are two-sided infinite vectors of which succes- 
sive elements form the sequences {&}, {Q}, respectively, 
and 

(5.2) 
where { (yk} is defined by CX; = (Y-~ Qk E Z and * denotes 
convolution. 

Definition: The Toeplitz function a : U+C of a Toe- 
plitz matrix A with defining sequence { cyL} is defined by 

00 

a(z)= x akzTk, QZEU 
k=-cc 

such that the sequence converges, i.e., a( -) = 2 ({ cxk}), is 
the z transform of the defining sequence of A. 

Theorem 5.1: Let A be a Toeplitz matrix with defining 
sequence { ak} and let a(-) be the Toeplitz function of A; 
then 

II-4 II = ess sup IA (91 
ZEU 

P-3) 

here 

A. Unique Representation in the z Domain 

The general form of a Toeplitz matrix is given by 
and 

\ \ \ \ \ 
A= “ii-, 

\ “p “t” 
I 
t “zeroth row” 

\ \ \ 

= defining sequence. 
i.e., IIA)I is the I2 induced operator norm. 

A is characterized by (A)U= CY-~. Thus on each diagonal 
Proofi See Ter Horst and Schoute [ 131. An im- 

the entries are identical and so, once its “zeroth row” {LYE} 
mediate consequence of (5.3) is the following theorem. 

is known, the Toeplitz matrix A is defined. The sequence 
Theorem 5.2: Let A be a Toeplitz matrix; { ak}, its 

d e ming sequence; a(*) its Toeplitz function: then A is a f’ 
{ CX~} is called the defining sequence. 

The matrices R and 0 occurring as coefficient matrices 
bounded linear operator from l2 in I2 if, and only if, a(.) 

in the recurrence equation (4.1 b) for the gain matrix of the 
is essentially bounded on V, i,e., A E C(Z2,12)wa E 

Kalman filter and in the Ricatti equation (4.2) that gives 
L~(u) 

the steady-state gain are of the Toeplitz type. The gain 
Notaiion: @ is the {set of Toeplitz operators} n C(12, Z2) 

matrix is also of the Toeplitz type. This will be shown by 
and 9 = Lm(U). Using this notation, Theorem 5.2 can be 

first establishing a one-to-one correspondence between a 
stated as A E &&a( *) E %?I, where a( .) is the Toeplitz 

class of Toeplitz matrices and a class of functions defined 
f unction of A. The correspondence between 6? and 91 is 

on the unit circle U in the complex plane (the z domain). 
bijective; namely, given an element of @, the z transform 

Definition: The Toeplitz operator A : {5;c}+{ qk} in- 
of its defining sequence exists, is unique, and is, by 

duced by the Toeplitz matrix A is defined by 
definition, the corresponding Toeplitz function. On the 
other hand, given an element of 91, its inverse z transform 

vk= 5 Oii-k$ 

exists, is unique, and is the defining sequence of a Toeplitz 
P-1) matrix. 

j--CO An important property of the z transform is the follow- 

where {(Ye} is the defining sequence of A and {ck}, { CX~} ing. Let a(-) = Z ({(Ye}), b(-) = Z({ Pk}), then 

are two-sided infinite sequences. In this definition the Z({OI~}*{ pk})= a(*)*b(-), where . denotes pointwise 

operator and the matrix are denoted by the same letter A, multiplication and * denotes convolution. 

but no confusion arises if we identify (as is usual) the We know that Toeplitz operators are convolution oper- 

matrix and the operator defined by the matrix. We can ators (c.f., [26]) and it follows that, for A, B E@ with 

write, equivalently, defining sequences {a,}, { bk} and corresponding Toep- 
litz functions a(-), b(e); AB has a defining sequence 

{~k}=A{~k) and y=Ax {LYE}*{ pk} and thus a corresponding Toeplitz function 
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a( .).b( e). If we define multiplication in &? as matrix 
multiplication, then it is clear that @ is an algebra. It is 
also easy to verify that 3 is an algebra under pointwise 
multiplication. Since the z transform is linear and because 
of the property just mentioned, it defines an isomorphism 
of &? onto 9. This isomorphism is isometric according to 
Theorem 5.1. For the sake of completeness, we mention 
that $i3 = L”(U) is a complete normed space (Banach 
space), because of the isometry the same applies to @. 
More details are given by, for example, Luenberger [14] 
and Yoshida [ 151. The above can be summarized as 
follows. 

Theorem 5.3: @ and G!?I are Banach algebras. The z 
transform defines an isometric isomorphism from @ onto 
93. 

Corollary 5.1: Let A E @. Define the spectrum of 
A : a(A) by {Xj(A -AZ) is not invertable}. We then have, 
with Theorem 5.1, 

b(a)=(xle~Es;p[(a(z)-~)m’l=m) gessrange {a(*)}. 

Again a( a) is the Toeplitz function corresponding to the 
Toeplitz matrix A (see also Widom [ 16, p. 1861). 

B. The Riccati Equation in the z domain 

In Section IV, we found that the gain of the steady-state 
Kalman filter was the positive root of the algebraic 
Riccati equation in M: 

p2M2@+(1-p’)M(R+@)-(l-p2)R=0 (5.4) 

(cf. (4.2)). Here the matrices are of dimension 00 x co and 
the coefficient matrices R and 0 are Toeplitz matrices 
with defining sequences { . . . , p2, p, 1, p, p2,. . . } and 
{ * * - ) 0, 0, e, 0, 0, * * * }, respectively. The corresponding 
Toeplitz function for R is given by - 

(1-P’) 

r(z)= (1 -pz-‘)(l -pz) ’ zE u (5.5) 

and for 0 it is the constant function, equal to 0. These 
functions are clearly bounded and have bounded inverses 
for B#O, O<p< 1. It follows that (5.4) is an equation with 
coefficients in the algebra 8 of bounded Toeplitz opera- 
tors and has a solution in that algebra. Making use of the 
isomorphism between 8 and the algebra %I of bounded 
functions on U we can write the corresponding equation 
with coefficients in ?i3 ; namely, 

p28m2(z)+(l-p’)(r(z)+B)m(z)-(l-p2)r(z)=0, 

ZE U (5.6) 

which has as a solution 

m(z)= 
-(1-p2)(Q+r(z))+$G 

2ep2 
.(5.7) 

where 

w(~)=(l-p~)~(0+r(z))~+4(1 -p’)Op’r(z), z E u. 

We have taken the positive root of the quadratic equation 
since we know that M > 0 (see Section IV-A). Hence, the 
spectrum o(M) > 0, which implies by Corollary 5.1 that 
m(z)>0 QZE U. 

Remark: It can be verified that for 0 >0 and 0< p < 1 
the function w(e) cannot be written as w(z)=v2(z) QZE 
U, where v(e) is a rational function in z. Hence, the 
function m(e) is an irrational function in z. 

C. Recursive Realization of Toeplitz Operators 

In Section V-A, we saw that the action of a Toeplitz 
operator can be written as a convolution (c.f., (5.3)). On 
the other hand we know, from linear system theory, that 
the output sequence of a discrete dynamical system is the 
convolution of the input sequence with the impulse re- 
sponse of that system. Here these two facts are combined 
to give a recursive realization of a Toeplitz operator. 

Theorem 5.4: Let A be a Toeplitz matrix with defining 
sequence {(Ye} = {. . . ~x-~,(Y~,,~~,,,(Y,,(Y~,~ *. } and suppose 
that the causal dynamical system 

s . +. sk+,=F+sk+G+vk 
Sk = H +sk + J +vk 

and the anticausal dynamical system 

S-Z 
sk-,=F-sk+G-vk 
Sk = H -sk + J -vk 

(5.8a) 

(5.8b) 

have impulse responses 

{q}+A . . . ( ,0,0,$xo,a4,a~2,- I (5.9a) 

and 

{ai}- A . . . . a2,a,,+x0,0,0 )... ) (5.9b) 

respectively. Then the product A { vk} is given by { lk} + + 
{lk}-? where {lk’k> + is the output sequence of S + when 
the input sequence is {vk} and { lk} - is the output 
sequence of S - when the input sequence is also { qk}. 

Proof: The output of a discrete dynamical system is 
the convolution of the input sequence with the impulse 
response, thus 

where by definition (YL = (Y-~. 
We will now consider the particular case where Mj has 

to be computed, M being the gain of the steady-state 
Kalman filter andy’ the innovations vector. 

Since M has a symmetric defining sequence { pk}, we 
will have the same matrices F, G, H, J in the system S + 
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(c.f., (5.8a)) as in the system S -. We then need to de- 
termine F, G, H, and J such that the impulse response of, 
say, S+ is {pk}+ A {...,~,O,~CL~,EL,,~~,...}. This prob- 
lem is solved in realization theory (see, for example, 
Kalman, Falb, and Arbib [17, sec. 10.61). Unfortunately 
the sequence { pk} does not have a finite dimensional 
realization. If it had a finite dimensional realization, this 
would imply that the z transform of its impulse response 
and thus also m( .) is rational in z which would contradict 
the remark made in Section V-B. Consequently, in order 
to work with a finite dimensional system, some approxi- 
mation Gy has to be realized instead of My. A convenient 
approximation to make is that of partial realization, i.e., 
the matrices F, G, H, and J are determined such that the 
first 2n + 1 elements of the impulse response of the ap- 
proximating system are {f p,,,~,, . . . ,pLZn} and the impulse 
response is not specified further. A relatively simple recipe 
for determining F (dimension n X n), G, H, and J is given 
in the next proposition. 

Proposition: Suppose the impulse response { pk} + has 
no finite dimensional realization, then a partial realization 
of the first 2n + 1 terms { ;~a,. . . ,p2,,} is found as follows. 

a) Form the (n + 1) x n Hankel matrix W: 

PI P2 ;‘. K 

P2l4 ,’ /‘Pn+l 

’ / ,’ 
’ / 

’ / ,’ ’ 
1 / 

P”’ 1’ PLZn-I 

Pn+< ... P2n 

b) By LR decomposition find the matrices P and Q 
satisfying 

W= PQ 

where P has the lower triangular form 

1, \ 
*. ‘\ 

p= ; ‘..\ 
* . . . 

* . . . 

0 

\ 
‘* ’ 

c) Form t.he n X n submatrices P,, n consisting of the 
first n rows of P and P,*,, consisting of the last n 
rows of P. 

d) Let 

F=p-‘p* R,rl n,n 
G = first column of Q 

H= [ 1,O;. . ,O] 

J= ;pO. [ 1 
Now the impulse response of the system S + (c.f., (5.8a)) is 
{. . . o,o, $)~Pl&2’. . . ,P2n>*P*P’ . * >. 

For a more detailed treatment see, for example, 
Rissanen [ 181. The dimension of the system n is called the 
order of the approximation. As a measure of the “good- 
ness of fit” of the approximation we have the following 
definition. 

Definition: Let G be the Toeplitz operator that is re- 
alized by the approximating system for M. Then the 
relative approximation error is defined as 

ELM IIM-till 
IIMII 

where II I] is the I2 induced operator norm. Using (5.3) 
E,,, can easily be computed from 

sup lm(z) - fi(z)I 
reu 

Q,f= 

sup Im(z)l ZEU 
(5.10) 

where #r( .) is the Toeplitz function corresponding to G. 

VI. THE HIERARCHIC RECURSIVE SMOOTHER 

A. The Algorithm 

The steady-state recursive smoother of Section IV-B 
and the recursive realization of Toeplitz operators de- 
scribed in Section V-C assume L = cc and K = CO, respec- 
tively, i.e., the image is infinitely large horizontally and 
vertically. For a practical algorithm we have to assume the 
finite image to be extended with zeros on all four sides. 

The algorithm presented here is hierarchic recursive; 
i.e., the smoother consists of a filter and a reconstructor 
that are recursive in 1. For fixed I there is the recursive (in 
k) realization of the multiplication of a Toeplitz matrix 
with a vector. 

The initial conditions follow from the assumption of 
extension by zeros. The global structure of the smoother is 
given in Fig. 1. 

The smoothing is executed in three stages. 
I) Filter: 

i; =o 

&:,=p:,++M(y,+,-pi,+), I=O, 1;. . , L- 1. (6.1) 

2) Reconstructor: 
^_ 

XL+’ =o 

T+:, = pa; + pM (y, - a,- ), I=L+l,L;..,2. (6.2) 

3) Weigh ter: 

&=[2Z+M(@R-‘-I)]-‘(g,+t-t,--Mg,-), 

1= 1,2;. . ,L. (6.3) 

At each stage we have to perform a multiplication with 
a Toeplitz matrix. As pointed out in the preceding section 
this multiplication is a convolution and can be realized by 
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SMOOTHER FILTER 

SUB-SYSTEMS 

2. ESTIMATE ic 

Fig. 1. The global structure of the smoother. The Ith column of the 
estimate of the image i, is a weighted combination of i,+ and i,-, 
where z&+ is the estimate based on the observations yt,ya; . . ,y, 
i,- is the estimate based on the observations y,+ ,,Y,+~; . . ,yN. 

and 

two discrete dynamic systems--one being causal and the 
other, anticausal. These subsystems appear in the filter, 
reconstructor, and weighter. 

We will now take a look inside the filter. The recon- 
structor and weighter are not treated explicitly, but they 
can be realized in an analogous manner. 

The structure of the filter is given in Fig. 2. Within the 
filter, for each 1 there are three substages, recursive in k, 
to compute Myl+ i. The result is added to the predicted 
value of x,, , : p&. 

I) Causal Subsystem: 

SO 
+=o 

$+, = Fsk+ + c71,p k=O,l;..,K-1 

s;;’ = Hs,‘ + Jvk, k= 1,2;. . ,K. (6.4) 

2). Anticausal Subsystem: 
- 

‘K+l =o 

sk-- , = Fsk- + Gqk, k= K+ 1,K;. . ,2 

Sk- = H+ + JQ, k=K,K-l;..,l. (6.5) 

3) Adder: 

Sl=L++s;;> k=1,2;..,K. (6.6) 

The dimension of the subsystem n is chosen such that 
the relative approximation error eM is satisfactorily low. 
(Generally for n = 3 ‘a very good approximation is already 
obtained.) The matrices F, G, H, and J can be computed 
off line according to the proposition in Section V-C. They 
satisfy the following equations: 

1 po=J 

CL/, = HFk-‘G, k=1;..,2n (6.7) 

where { pk} is the defining sequence of the Toeplitz matrix 
M. 

ADDER 

L-------------z-------------- 

Fig. 2. The filter and its internal subsystems. Inside the filter the 
multiplication A$,,, , is realized by two subsystems that both have as 
an input sequence the successive elements of the vector &+, (but in 
reverse order for the second system). The output sequences form the 
vectors {,z t 
s/:1+sr;I~ 

and 1,; ,, respectively, and, by addition, we get Mi,, , = 

It can be seen in (6.1), (6.2), and (6.3) that we have 
three places where the product with M needs to be com- 
puted. Of course the corresponding F, G, H, and J need 
to be computed only once. Furthermore, in (6.3) we have 
the multiplication with the Toeplitz matrix P=[2Z+ 
M(OR -’ - Z)]- ‘. The inverse is computed in the z 
domain (c.f., Section V-B). The inverse z transform then 
gives the defining sequence {7rk} of P. The causal and 
anticausal parts { rk} + and { ni;} -, respectively, are then 
partially realized, in the same way as { pk} + and { pk} -. 

As a rough estimate of the computational effort we 
consider the number of multiplications needed for 
processing one image with the hierarchic recursive 
smoother. Let the dimension of the image be N x N, and 
let n be the dimension of the subsystem. Then in each 
point of the image for each multiplication with a Toeplitz 
matrix for one subsystem we have in(n + 1)+2 multi- 
plications (this is the number of elements that differ from 
0 or 1 in F, G, H, and J). Since we have a Toeplitz matrix 
multiplication at four places, this gives the number of 
multiplications as 

(4n2 +4n + 16)N’. 

Usually n will be 2 or 3. 

(6.8) 

We can compare this to smoothing, using a two-dimen- 
sional fast Fourier transform (FFT). For one transform 
we have 2N2 log, N complex multiplications (Cochman et 
al. [19] or Cooley [20]). Next we have the pointwise 
multiplication of the smoother with the transfer function 
and then the inverse transformation. If we count one 
complex multiplication as three real multiplications we 
have as the number of multiplications 

(12.log, N+ 1)N2. (6.9) 
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I , 
i0 20 30 

k 

-.-- 
0.00 0.20 0.40 0.80 0.80 1.00 

t 

Fig. 3. The solution of the quadratic equation in the I domain for 
p=O.9 and 8= 1. The values that m(z) takes on the unit circle CJ’ are 
plotted against t with domain (0,l) according to M(t)= m(ezTi’)= 
m(Z). 

For example if n=2 and N=512 we have 40 N2- 
10 000 000 multiplications for the hierarchic recursive 
smoother and 109 N2=38 000 000 multiplications for the 
FFT smoother. 

Furthermore, the hierarchic recursive smoother works 
columnwise so that the image can be held in the backing 
store and one column at a time can be brought to the 
central memory. 

Remark: The above computational considerations are 
provisional and do not take into account all kinds of 
optimizations that may be made. However, they do give 
some idea of the on-line computational requirements. 

B. Numerical Example 

In this section, some results are presented from the 
computation of the parameters of the smoother and the 
impulse response of the smoother is given. This is done for 
the case p = 0.9 and 19 = 1, i.e., where the covariance of two 
points tk,/ and &+,,,+, is E{&,,&+,,,+,} =0.9p+q and the 
intensity of the noise is E {a,‘,, } = 1, which implies a 
signal-to-noise ratio of one. 

The Toeplitz matrix M occurs in the filter (6.1) the 
reconstructor (6.2) and the weighter (6.3). It has defining 
sequence { pk} and the corresponding Toeplitz function 
m( .) is the z transform of this sequence. The (real) func- 
tion values m(z) were computed, according to (5.7) with 
r(z) given by (5.5) for 256 equidistant points on the unit 
circle U in the complex plane. They are plotted on the 
interval (0,l) in Fig. 3. The defining sequence { pk} can be 
obtained very efficiently from m(z) by using an FFT 
algorithm. Although this only gives a defining sequence of 
finite length, it is accurate enough for our purposes since 
we always deal with Toeplitz matrices which have defi- 
ning sequences that rapidly go to zero. The computed 

Fig. 4. The defining sequence ( ~~4k) of the gain matrix M (Toeplitz) of 
the Kalman-Bucy filter. This is calculated by applying the inverse z 
transform to m( .). (See Fig. 3.) 

sequence { pk} is shown in Fig. 4. Once the defining 
sequence of the Toeplitz matrix M has been calculated, 
the dimension n of the subsystem that approximately 
realizes the product My” has to be chosen. The relative 
approximation error Q,, for the case p = 0.9, 8 = 1, accord- 
ing to the definition in Section V-C, is plotted in Fig. 5. 

Finally, for the case n = 3, the parameters F, G, H, and 
J of the subsystem were computed according to the pro- 
position presented in Section V-C and are given below; 
the impulse response to be realized { pLk}+, the actual 
impulse response { fik}+ and their difference are also 
shown. 

0.65345 I .ooooo 0.00000 

F= I 0.02720 0.56095 I .ooooo I -0.00126 0.02853 0.48770 

0.09193 

3i 

I I 

0 .ooooo 

0 .ooooo 

ti= ( 1.00000 0.00000 0.00000) 

J= (0.0775(r), 

% 
k 

-4 
'k 'k 'k-'k 

0 0.07754 0.07754 
I 0.09193 0.09193 
2 0.06007 0.06007 
3 0.04175 0.04175 
4 0.03020 0.03020 
5 0.02245 0.02245 
6 0.01701 0.01701 . 
7 0.01308 0.01308 0 .ooooo 
8 0.01017 0.01017 0 .ooooo 
9 0.00798 0.00798 0 .ooooo 

IO 0.00631 0.00630 0.00001 
II 0.00502 0.00499 0.00003 
12 0.00402 0.00398 0.00004 
13 0.00323 p-00317 0.00006 
14 0.00260 0.00254 0.00006 
15 0.00211 0.00203 0.00008 
I6 0.00171 0.00163 0.00008 
17 0.00139 0.00131 0.00008 
18 0.00114 0.00105 0.00009 
19 0.00093 0.00085 0.00008 
20 0.00076 0.00068 0.00008 
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Fig. 5. The relative approximation error Q, resulting from an n-di- Fig. 6. The impulse response of the smoother. The height of the bar 
mensional realization of the subsystem instead of a w-dimensional indicates the gray level at that point of the grid. The figure shows the 
subsystem (for p = 0.9 and 0 = 1). result when an “image” with one black point in the center of a white 

field is smoothed with p=O.9 and 0= 1. The intensity at the center is 
reduced to 12 percent. 

The impulse response of the smoother is the sequence 
{yk,/} that is obtained by smoothing an “image” which 
has an element 1 in position (0,O) and all further elements 
zero, i.e., the observation {Q/} = S,.S,. This is done 

VII. APPLICATIONS 

numerically for the case p =0.9, B= 1 and the result is The images are processed with a multiplicative system, 
shown in Fig. 6. The order of the subsystem was n = 3 and as recommended in [22]. The densities (the logarithm of 
the impulse response is symmetrical as expected. the light intensities) are used directly as input for the 

The transfer function of the smoother is a function in z, smoother. The conversion to intensities is done after the 
and z2 defined by processing. Using a CDC 6600 computer, the time re- 

G(z,,z2)= $ 5 yk,,z-kk. 
kc-m ,=-00 

In our case this becomes 

G (z,,+) = f4ZZ)ZI 
i 

PC1 - m(z2)) 
2+m(zz)(er-‘(zZ)-l) l-p(l-??Z(zZ))zI + z,-p(lLz(z*)) 

(6.10) 

where m(e) is given by (5.7) and r(.) by (5.5). 
Using methods analogous to Davenport and Root [21], 

we can prove that the transfer function of an infinite-lag 
smoother is given by 

G(zl,z2)= 
signal 

signal + noise * 

In our case, 

~(Zd”~(Z2) 
G(z17z2)= r(zl)v-(z2)+ e 

with r(e) given by (5.5). 
Expressing T(ZJ in terms of m(z2) with 

(6.11) 

(5.7) and I 

quired to process a 128 X 128 image (with n = 3) was 40 s 
central processor time. 

The variance of the noise, 8 was estimated from a 
separate observation with a known signal. The factor p 
was estimated by taking an average of 

r ,‘/P 
~k,i~k+p,I 

Pp= - I I 7 forp=1;..,6 
d,l - 8 

(7-l) 

where vk,! is the observation scaled following (2.1) and the 
bar denotes the average. The signal-to-noise ratio SNR is 
defined as 

in terms of p and z, with (5.5), one may verify that (6.10) 
is indeed equal to (6.11). SNR = 

variance of signal 
variance of noise . (7.2) 
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Fig. 7. Original photograph. Fig. 9. Filter estimate of the hierarchic recursive smoother. 

Fig. 8. Photograph with artificial noise (SNR is l/2). 

In this case, SNR = 19 -’ since the variance of the signal is 
scaled to one. 

To the original picture (Fig. 7 in which p=O.90), artifi- 
cial noise was added (giving Fig. 8) making SNR= 0.5, 
which is a bad ratio in practice. It can be seen that the 
filtered image (Fig. 9) is already very close to the final 
estimate of the smoother (Fig. 10). This is because the 
filter uses the data from the line it is estimating. 

VIII. CONCLUDING REMARKS 

An efficient hierarchic recursive algorithm has been 
developed to enhance a large class of images which are 
degraded by additive noise. 

Only the most simple case, where the covariance of the 
picture brightness is exponentially decreasing in the hori- 
zontal plus vertical distance and where the noise is white, 

Fig. 10. Smoother estimate of the hierarchic recursive smoother. 

is treated explicitly. However, the method can easily be 
extended to cover any covariance .structure in the signal 
and the noise, which can be generated by a linear vector 
model with Toeplitz matrices. In particular, the extension 
to the case where the covariance of the picture brightness 
is of the form 

E { pk,,pk+P,I+ I > = a2*+dq’ 

with O<p< 1 and 

is very simple and requires only the replacement of the 
function r(e) by the z transform of the sequence {$,}. 

The z domain technique of Section V can also be used 
to find the successive elements of the sequence {M,}, the 
gain of the non-steady-state Kalman filter. 
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The algorithm may possibly be extended to multivari- 
able filtering where every element /3,,, is a vector (e.g., 
color pictures). The Toeplitz matrices will become block- 
Toeplitz matrices. 
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