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ABSTRACT: This expoeitory paper describes the mu& reauh and applications of the theory 

of realization of linear stationary dynamical 8ystem.8 in the case that there are certain 

internal conetrainte on the parameters of the state space realization. The internal con- 

atrainta considered here are those derived from passivity and aymnzetry requiremente. 

Application8 to stability theory, electrical network 8ynthe8i8, and other areas are outlined. 

I. Introduction 

The purpose of the present paper is to give an expository survey of the 
main concepts, results and applications related to the problem of obtaining 
certain special realizations of linear stationary dynamical systems. These 
realizations are constrained in the sense that the internal parameters of the 
state space representation are required to reflect some of the qualitative 
properties of the input/output system which they represent. The properties 
which will be considered here are those of passivity and symmetry. These 
questions thus lead to the problem of finding state space representations 
with internal constraints which adds an interesting theoretical twist to the 
usual realization problem. The results have some interesting applications. 
The main ones may be found in the areas of feedback stability and electrical 
network synthesis. However, there are also some less expected areas, par- 
ticularly in physics, where these results are of relevance. Some indication 
of such applications will be given here. Since questions of representation 
have always been of very much importance in physics we believe that with 
the increased understanding of the representation of dynamical phenomena 
as exemplified by abstract realization theory there is a possibility that some 
progress could be made toward a more global conceptualization and solution 
of some such problems. However, this will almost certainly require a non- 
trivial extension of some of the results to nonlinear and/or stochastic systems. 
These applications constitute, in our opinion, one of the more promising and 
challenging areas where realization theory ideas could be applied and 
extended. 

Since this paper is expository in nature it draws on a historical development 
to which many authors have contributed and there seems to be little point 
in trying here to do justice to all. The main fiber in this development started 
with the work in the area of feedback stability (l-3) which used in an essential 
way the so-called Kalman-Yacubovich-Popov lemma (sometimes called the 
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Positive Real lemma). This work was further developed by Anderson (a), 
Brockett and Lee (5) and many others. The applicability of these ideas to 
network synthesis was soon realized by Kalman (6) and further developed 
by Youla and Tissi (7), who also brought in the question of internally 
symmetric realization. However, the question of existence of realizations 
which are simultaneously internally passive and symmetric was left open 
until it was resolved first by Vongpanitlerd and Anderson (8) and later, 
independently, by the author (9). 

We use the following notation: R(R+) denotes the (nonnegative) real 
numbers, R* denotes n-dimensional Euclidean space, RmXp denotes the real 
(m x p) matrices, r denotes transposition, a dot or a superscript in parentheses 
denotes differentiation and > 0 ( > 0) means that a symmetric matrix is 
nonnegative (positive) definite. Other notation will be introduced as it is 
needed. 

This paper is concerned with stationary linear dynamical systems with a 
finite number of inputs, outputs and internal degrees of freedom (i.e. states). 
From an input-output point of view the response of such systems may be 
described by 

&lo : !I@) = Kl w + 
s-m 

’ W(t-7)U(T)dT, 

where u( *) : R+ R” denotes the input, y( *) : R-t Rp denotes the output, 

W,8(.)+ W(v): R++RPxm 

denotes the impulse response (6( - ) denotes the Dirac delta function). We will 
assume throughout that u( *) (and thus y( - )) is a locally square integrable 
function with bounded support on the left. Corresponding to the assumption 
that CIlo has a finite number of internal degrees of freedom we will also 
assume that W(t) is a Bohl function, i.e. that every entry is a finite sum of 
products of a polynomial, an exponential and a sine or a cosine. The system 
ZII/o may equivalently be described by its transferfunction G(s) p W, + (9 W( * )) 
(64 denotes Laplace transform) or by its Hankel matrix, H $ [W(i+i--$)(0)] 
(i,j = 1,2, . ..). together with the feedthrough component W,. It is well known 
that the system Cl/o admits the internal description: 

C: 2 = Ax+Bu; y = Cx+Du, 

where XE Rn denotes the state of the system and the matrices {A, B, C, D} 
define the state space parameter matrices of 2;. We call Z a state space 
realization of ZZfo provided Z induces the same input-output map as E1io, 
i.e. provided D = W, and CeAt B = W(t) for t > 0, or, equivalently, provided 
D + C(ls - A)-1 B = G(s). It is well known that there exist many realizations 
I: of a given E1~o. Those which have the additional property that the 
corresponding vector space dimension of the state space is as small as possible 
(this corresponds to n = rank H) are called minimal. We make frequent use 
of the following basic result, called the state space isomorphism theorem (10) : 
All minimal realizations X of C1jo may be recovered from one minimal 
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realization with parameter matrices {A, B, C, D} by the action of the trans- 

formation group {A, B, C, D> & {SAS-‘, SB, CB-I, D] with S an arbitrary 

invertible element of Rnxn ( 1.1 denotes determinant). Moreover, the matrix S 
which thus associates one minimal realization to another is unique. 

ZZ. Passivity 

In this section we consider the concept of passivity. Intuitively speaking 
a system is called passive (from an external point of view) if at all times the 
net flow of energy is into the system. Consistent with the input-output point 
of view, we will assume that the instantaneous power is a function of the 
instantaneous input and output and, consistent with the linearity, we will 
assume this function to be a quadratic one. Although it would take us very 
little additional effort to consider a general quadratic form in u and y we 
will take the instantaneous power to be given by u* y (thus m = p) since this 
is the most frequent case encountered in applications. We thus arrive at the 
following definition : 

Definition 1. IZI,o is said to be passive if $t, u*(r) Y(T) dr > 0 for all inputs 
u(e) and t>O. 

The passivity of Cl/o may be expressed in terms of its transfer function. 
This leads to the following class of complex valued functions: 

Definition 2. Let P(s) be a rational (m x m) matrix valued function of the 
complex variable s. Then P(s) is said to be positive real if F(s) is real for s real 
and if P(u +jw) + F*(a -ju) B 0 (for all o E Rf, w E R, 0 +ja~ # singularities 
of F). 

Positive real functions are extensively studied in classical electrical 
network synthesis. Various other characterizations and a proof of the 
following proposition may be found in (11). 

Proposition 1 

&lo is passive if and only if G(s) is positive real. 
It is also possible to give a time-domain condition for passivity. This leads 

to the following proposition which is, essentially, the content of the Kalman- 
Yacubovich-Popov lemma : 

Proposition 2 

Let Z be a minimal realization of C1lo. Then X1/o is passive if and only if 
there exists a solution Q = QT > 0 to the matrix inequality 

[ 

AT&+&A i &B-C* 
__..___..___ . . ..___.__.... . . . . _..._-__ ____.--____. 

BTQ-C ; -D-DT I 

< 0. (LMI) 

Moreover, the set of solutions Q to this inequality is convex, compact and 
attains its maximum and its minimum (in the positive definite sense). 
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Proof: (i) Let Q = QT > 0 be a solution of (LMI). Then (d/dt) axT Qx < uT y 
along solutions of Z. Thus &T(to)Q~(tO) +J~u~(T) Y(T) d7 >, &T(tl)Q~(tl) 
for all t, > t, and thus St_ ~~(7) Y(T) d7 2 &xT(t) &x(t) > 0, which shows passivity 
as claimed. 

(ii) Conversely, assume that CI,o is passive. Let 

both computed for solutions of 22 with x(-T) = 0 and x(0) = x0. Now, S, 
and S, exist (by reachability and the fact that 

s T 
- ~~(7) Y(T) cb a 

0 

are quadratic functions of x0 (since we are taking the supremum and the 
inflmum of quadratic functionals subject to linear constraints) and positive 
whenever x0 # 0 (since S, 2 S, and since the feedback control law 
u(m) = -Icy(*), i.e. u(e) = -(I+kD)-l&(q), with Ic>O such that I+lcD is 
invertible, shows, by observability, that S,(x,) #O for x0 #O). It remains to 
be shown that Q+ and Q-, defined by X,(x,) = 8x0” Q-x0 and X,(x,) = &XT Q+ x0, 
satisfy also (LMI). This matrix inequality is equivalent to d/dt $x’Qx < uT y 
or &xT(to)Qx(to) +J$uT (7) y(r) d7 2 JxT(tl) Qx(tJ for all t, > to. However, this 
last inequality is obvious when applied with Q = Q- or Q+ since it simply 
states the sub-optimality of an arbitrary input on the internal [to, tJ. 

(iii) That the solution set Q is convex and closed is obvious and that it 
satisfies Q- <Q <Q+ follows immediately from using the definition of S, and 
S, on the inequality &rT(to) Qx(to) -+ J$u~(T) Y(T) d7 > $xT(tJQx(tl). q 

It is now easy to turn Proposition 2 into a claim about a state space 
realization of X1/o. We therefore introduce the following definition : 

DeJinition 3. Z is said to be internally passive if 

~..~....~...f[ + _____________~ __.... _.__... [ -,” j --J’- > 0 

(i.e. if djdt $xT x < uT y). 
We thus arrive at the following result: 

Theorem I 

The following conditions are equivalent : 
(i) C,/, is passive ; 

(ii) G(s) is positive real; 
(iii) for any minimal realization C of Crlo there exists a Q = QT > 0 such 

that (LMI) is satisfied ; and 
(iv) C1,o admits an internally passive (minimal) realization, 

Proof: (i), (ii) and (iii) h ave been proven in Propositions 1 and 2. To prove 
(iv), assume that Q satisfies (LMI). Factoring Q into STS with 1 S 1 #O and 
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transforming the minimal realization {A, B, C, D) into {S%!F, SB, CS-l, D} 
leads to the desired internally passive realization. That (iv) in turn implies 
(iii) is obvious. •I 

Remarks. 1. As could be expected from the definition of Q+ and Q-, the 
matrix inequality (LMI) has close connections with the Riccati equation 
(see (9) for details). 

2. All passive realizations may be obtained by transforming a given 
minimal realization {A, B, C,D) into {SAS1, SB, C’S_1, D} with STS a 
solution of (LMI). 

ZZZ. Symmetry 

In this section we discuss another qualitative assumption of systems. 
This assumption is the one of symmetry (or, as it is often called, reciprocity). 
We believe that this condition is at this point in time only very vaguely 
understood but that it is one of the deeper and more important properties of 
large classes of physical systems. It seems to be tied up with variational 
principles, time reversal and the existence of potential functions. We will 
discuss here these concepts in the context of stationary linear dynamical 
systems but we would like to emphasize that it seems far from clear how one 
should generalize these ideas to nonlinear and, if it should prove applicable, 
to time-varying systems. 

DeJinition 4. Let C, be a signature matrix (i.e. a diagonal matrix with 
diagonal entries + 1 or - 1). Then X1lo is said to be (externally) symmetric 
with (external) signature C, if the inputs with respective components 
&(t) = ski v(t) and G&(t) = Skj v(t) (6 denotes the Kronecker delta) yields the 
following relationship among the components of the corresponding compo- 
nents g(t) and g(t) : y!&(t) = ai&(t) ( w h ere ak denotes the kth element on the 
diagonal of C,). 

Various equivalent statements of Definition 4 may be found in (II). An 
interesting interpretation of reciprocity in terms of time reversal is discussed 
in (12). 

PTOpOSitiO?Z 3 

I?&, is symmetric with signature Xc, if and only if E’, G(s) = GT(s) &. 

The proof of Proposition 3, which is straightforward, is deleted. One can 
also give a time-domain condition for symmetry: 

Proposition 4 

Let II be a minimal realization of C,io. Then &lo is symmetric with 
signature E:e if and only if there exists a nonsingular symmetric matrix T 
such that A = T-l AT T, B = T-1 CT LX,, and D = C, DT &. Moreover, T is 
unique. 
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Proof: The “if” part follows from a simple computation. To show the “only 
if” part assume thus the symmetry. Then by Proposition 3, G(s) = C, GT(s) I;, 
which shows that if {A,B, C,D} is a minimal realization, then so is 
{AT, CT I;,, C, BT, D’}. H ence there exists a unique nonsingular matrix S such 
that AT = SAS-1, CT I& = SB, C, BT = CS-1, D = I;, DT C,. It is easily 
verified that ST also satisfies these relations. Uniqueness thus yields S = ST 
and the result follows with T = S. That T is unique follows from uniqueness 
OfS. 0 

Next, as was done with passivity, we turn external symmetry into a 
representation question. This leads to the following definition : 

DeJinition 5. C is said to be internally symmetric with internal signature 

Xi and external signature C, if the matrix 

symmetric. 
This leads to the following result: 

Theorem II 

The following conditions are equivalent : 
(i) ZIio is symmetric with external signature C, ; 

(ii) &G(s) = GT(s) Xc,; 
(iii) for any minimal realization 22 of &lo there exists a (unique) non- 

singular symmetric matrix T such that A = T-l AT T, B = T-1 CT E, 
and D = C, DT IZe; and 

(iv) &lo admits an internally symmetric (minimal) realization with 
external signature C,. 

Proof: (i), (ii) and ( iii are proven in Propositions 3 and 4. To prove (iv) ) 
it suffices to factor T into -ST&S and, again, apply the transformation 
{A, B, C, D}+ {SAS-l, SB, CB-1, D} to obtain an internally symmetric 
representation. That (iv) implies (iii) is obvious. o 

Remarks. 3. All minimal internally symmetric realizations of X1/o may 
thus be obtained from one minimal realization (A, B, C, D} by factoring the 
matrix T of Proposition 4 into T = -ST Xi S and applying the basis trans- 
formation induced by S. Thus, in particular, the internal signature Xi is an 
invariant modulo permutation of its diagonal elements. 

4. The quantity +xT:TSx associated with an internally symmetric realiza- 
tion of CIjo is called the Lagrangian. It is an invariant of the representation 
in the sense that it depends on the input but not on the actual realization 
(provided, of course, that it is internally symmetric). In terms of a (not 
necessarily internally symmetric) realization the Lagrangian equals &xT TX, 
with T as in Proposition 4. 
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IV. Simultaneous Passivity and Symmetry 

In this section we solve a problem which was until recently an open 
problem. As we have seen in Theorem I, a system which is externally passive 
always admits an internally passive realization ; similarly, as we have seen 
in Theorem II, a system which is externally symmetric always admits an 
internally symmetric realization. An important question which, as demon- 
strated in Section VI, has many applications is whether a system which is 
simultaneously externally symmetric and passive always admits a realization 
which is internally also simultaneously symmetric and passive. The following 
lemma reduces this question to one about the solutions of (LMI). 

Lemma 1 

Let Q = QT > 0 and T = TT with 1 T 1 #O. Then there exists a nonsingular 
matrix 8 such that Q = SrS and T = - ST&i3 with Xi a signature matrix if 
and only if Q = T&-l T. 

Proof: The “only if” part is obvious. The “if” is proven in (9), p. 372. q 

We now prove the following proposition which shows the existence of a 
matrix Q as required in Lemma 1: 

Proposition 6 

Assume that X,/o is passive and symmetric with signature &, and let 
E be a minimal realization of X,/o. Let T be as in Proposition 4. Then there 
exists a solution Q = QT > 0 of (LMI) such that Q = T&-l 27. 

Proof: Assume that Q satisfies (LMI). Then since A = T-1 ATT and 
B = T-1 CT & it follows that 

TAT-’ Q + QT-’ AT T f &T-l CT xe _ TJj-& 
_i;CT-;&--Z;~;F‘__.f .___.___ ____ ~~~~~~~~~~~__. 1 Q 0. 

Post-multiplication of this matrix by 
[ 

Q-IT 1 0 
,_ . . . . . o _._._.. I___.._. ~_. 1 and pre_m&,ipE_ ; - e 

cation by [ 
T&-l 1 0 

.--------------~----------- 
0 i-Ze 1 shows that T&-l T also satisfies (LMI). Now the 

mapping Q + T&-l T is continuous and well-defined on the solution set of 
(LMI) since there Q a&-> 0. Since this set is, as shown in Proposition 2, 

convex and compact it follows from Brouwer’s fixed point theorem that 
this mapping has a fixed point, i.e. there exists, as claimed, a solution 
Q = QT > 0 of (LMI) such that Q = T&-l T. q 

We thus arrive at the following result: 

Theorem III 
The following conditions are equivalent : 

(i) X;I/o is passive and symmetric with external signature C,; 
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(ii) G(s) is positive real and C, G(s) = CT(s) &; 
(iii) for any minimal realization E of El/o there exists a (unique) non- 

singular symmetric matrix T such that A = T-l ATT, B = T-l CT & 
and D = C, DT Se, and a matrix Q = QT > 0 which satisfies (LMI) and 
Q = T&-IT; and 

(iv) Z&o admits a (minimal) realization which is internally passive and 
symmetric and which has external signature &. 

Proof: (i), (ii) and (iii) h ave been proven in Theorems I, II and Proposition 
5. To prove (iv) use the Q of (iii) in Lemma 1 to obtain a 8 which through the 

usual transformation (A, B, C, D} & {SAiF, SB, CB-I, D} will yield the 

desired realization. That (iv) implies (iii) is obvious. q 

Remark. 5. The proof of Proposition 5 has the disadvantage of not being 
constructive. However, it is also possible to give formulas for the desired 
matrix Q (8,9). 

V. Relaxation Systems, Lossless Systems, etc. 

In this section we will discuss briefly some other classes of systems. The 
first one we have called relaxation systems. These correspond to physical 
systems which have only one “type” of energy storage possibility, e.g. only 
potential energy or only kinetic energy, but not both, or only electric 
energy or only magnetic energy, but not both. Typical examples of relaxation 
systems are thus RC or RL electrical networks, viscoelastic materials 
(inertia is usually irrelevant for the description of the behaviour of such 
systems) and chemical reactions. The characteristic feature of such systems 
is that their response function indicates the complete absence of oscillatory 
tendencies. This is expressed in the following definition: 

Definition 6. Cl10 is said to be a rezaxation system if its impulse response 
satisfies : 

%=W,T20 and (-I)“?>0 fort>0 and n = 0,1,2,... 

(i.e. if the impulse response is a completely monotonic function). 

The corresponding internal characterization is defined as follows : 

DeJinition 7. C is said to be internally of the relaxation type if 

A=AT<O, B=CT and D=DT. 

Various equivalent characterizations of relaxation systems are given in 
the following theorem. Its proof, which would take us too far, may be found 
in (9) or (13). 
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Theorem IV 

The 

(!i’, 

(iii) 

(iv) 

(v) 

(vi) 

following conditions are equivalent : 
Cllo is a relaxation system ; 
G(s) may be written as: 

N Gk G(s)=G,+C---- 
kc,++& 

with G, = Gz>O, G, = Gr>O and 0 =h,<A,<...<)(,; 
W, = W,T 2 0 and its Hankel matrix satisfies H = LIT z 0 and 
uH = aHT < 0 (uH denotes the shifted Hankel matrix, i.e. the Hankel 
matrix H with the first block row and column deleted or, equivalently, 
the Hankel matrix associated with m(t)) ; 
for any minimal realization Z, of X110 there exists a matrix T = TT > 0 
such that A = T-l AT T, B = TCT and D = DT; 
&lo admits a (minimal) realization which is internally of the relaxation 

type ; 
&lo admits an internally symmetric (minimal) realization with 
external signature I and internal signature -I (or vice versa). 

Note that (as follows immediately from condition (v) and Theorem I(iii)) 
relaxation systems are automatically passive. Another special class of passive 
systems which we will consider now are the lossless systems. These are 
systems which are passive but for which the energy which has been supplied 
to them is always recoverable: 

Dejinition 8. E1lo is said to be lossless if it is passive and if to every input 
u1 there corresponds and input u, such that 

Y(T) dr = 0, 

where 

u(t) = ( ul(t) for t < 0, 

u&t) for t > 0 

and y( - ) is the output corresponding to this input u( * ). 

The corresponding internal characterization is defined as follows : 

DeJinition 9. ZZ is said to be internally lossless if 

A+AT=O, B=CT and D+DT=O. 

The following theorem gives some equivalent conditions for losslessness. 
For a proof, we refer the reader again to (9) or (13). 

Theorem V. 

The following conditions are equivalent : 
(i) X1jo is lossless ; 

(ii) G(s) is positive real with G&J) +GT( -jw) = 0 for all w real, w # 
singularities of G; 

Vol. 301, No. 6, June 1976 613 



Jan C. Willems 

(iii) G(S) may be written as 

(iv) 

(v) 

withG,+G~=0,Gk=G~20andO=w,<o,<...<w,; 
for any minimal realization C of &o there exists a Q = Qr > 0 such 
that AT&+&A = 0, QB = CT and D+DT = 0; 
&lo admits an internally lossless (minimal) realization. 

There are various meaningful other such classes of systems. Most of them 
will have applications particularly in electrical network analysis and 
synthesis or in stability theory. We simply list here a few which are exten- 
sions, specializations and recombinations of the classes of systems considered 
earlier. 

We present here only the most illustrative characterization: 

(1) 

(2) 

(3) 

(4) 

(5) 

&eu&-passive systems which are systems for which G(jw) + GT( - jo) z 0 
for all WEB or equivalently for which there exists any symmetric 
matrix Q such that (LMI) is satisfied. 
Pseudo-lossless system-s which are systems for which 

G(jw)+GT(-jw) = 0 for all WEB. 

Completely symmetric systems which are systems which admit a 
realization for which A = AT, B = CT and D = DT. 
Reversible systems (9, 13) which are systems which are simultaneously 
lossless and symmetric. 
As a variant of (4) one could also consider systems with 

Ze G(s) = GT( -a) I;, 

which are systems which exhibit an invariance under time reversal. 

Remark 6. An interesting point which has implications in several appli- 
cations is the classification of all solutions Q to the inequality (LMI) subject 
to the various constraints as they come up (for example in the symmetric 
case one also requires, as shown in Proposition 5, Q = T&-l T). The functions 
ixTQz correspond indeed to the internal energy storage or to Lyapunov 
functions, and in any case they determine those matrices X which bring the 
state space parameters {A, B, C, D} into “canonical” form. In general, the 
set of Q’s is convex and compact (this holds also for case (1) above) and it is 
unique for relaxation systems, for lossless systems, and in cases (2) and (4) 
above. 

VI. Applications 

In this section we will outline some of the applications of the above 
theory. 
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(1) stfdizity 

Consider the system described by the implicit equation 

y(t) = 
s-- 

’ ~(t-T)(~(T)-f(y(7),T))~T 

which is the equation of a feedback system with I;,/, in the forward loop and 
the time-varying nonlinearity with characteristic f ( -, t) in the feedback loop. 
Its zero input behaviour leads to the autonomous system & described by 
the differential equation : 

TZa : i = Ax - Rf(Cx, t), 

where {A, II, c) is a minimal realization of the impulse response W(t). 
We will derive conditions under which Z, shows a stable behaviour. Rather 

than introducing formal definitions to this effect, assume that we are looking 
for conditions under which there exists a M< 00 such that every solution 
x(t) of EC, satisfies s&p 11 x(t) 11 GM /x(t,,) 11 for all t, E R. The type of “non- 

explosiveness” implies stability in the sense of Lyapunov and boundedness, 
and, with a little bit more, also leads to asymptotic stability in the large. 
It essentially also implies L,-inputoutput stability for 1 <p < co. (These 
various implications have been extensively treated in the literature; see (14) 
for details and other references.) It is easily seen that the above inequality will 
be satisfied if there exists a matrix Q = QT > 0 such that, with V(z) = &T&X, 

[ I $v(x,t) ~~p~(r)(Ar-Bf(C~,t))~O- 

It is clear that the stability property does not depend on which minimal 
realization of W(t) we are using, since it is obviously invariant under the 

transformation x & , 8, ho Xx. Thus we may choose this realization to suit our 

convenience. 
Now, if the system &lo admits a passive realization, then 

$&zTx = zTAx-xTRf(BTx,t) 

which shows, by Theorem I, that EC, will satisfy the stability condition 
introduced earlier provided : 

(i) CT(s) is positive real, and 
(ii) $‘f(u, t) L 0 for all UE Rm and t E R. 
If we now assume f to be linear and thus that we are considering the 

autonomous system : 

Et: k = Ax-BK(t)Cx 

then one may retie these results by exploiting the external symmetry of 
Z 1lo. Thus one obtains a series of interesting average value criteria for the 
stability of Et. For details, see (13). One such result is: 
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where V,, I; E Rnl and V,, la E RF The ports 1,2, . . . , ni are the voltage-controlled 
ports and the ports n, + 1, n, + 2, . . . , n, + ns = m are the current controlled 
ports (V, is the voltage across the ith port and li is the current flowing in and 
out of the ith port. These are oriented in such a way that I$ I. represents the 
instantaneous power into the network). Such a representation is called a 
hybrid representation. It specializes to an impedance representation if ns = 0 
and to an admittance representation if n, = 0. It is possible to show that a 
linear passive electrical n-port always admits a hybrid representation and 
thus the form E1lo represents no loss of generality. Furthermore, if the network 
is at all synthesizable using a finite number of R, L, C, T and G’s, then the 
assumption regarding the finite number of degrees of freedom is also satisfied 
and we may thus represent &lo by a system of the type Z. 

We will show here how one may use the results of the previous sections in 
order to eliminate the dynamic component out of the problem, i.e. in reducing 
the dynamic question to a static one. The static synthesis question is easily 
solvable directly and it is possible to show that every port specification of 
the form: 

(i) V, = N?$; 1. = -NT& is synthesizable using transformers; 

(ii) [ _+__] = ~[._!$I is synthesizable using transformers and gyrators 

protided M = ?-MT ; 
(iii) using resistors and transformers provided M + MT > 0 and 

EN+MTX = 0 
where 

z = 
[ 0 I -,,]; 
.._!,!..!......Y! . . . . . . 

(iv) using resistors, transformers and gyrators provided M + MT 2 0. 
Assume now that we are asked to synthesise &lo. If XI/o is passive then 

there exists, by Theorem 1, an internally passive realization. It follows then 
from (iv) that the (n + n, + n,) port behaviour defmed by 

may be realized using resistors, transformers and gyrators. Terminating now 
the first n ports by unit capacitors yields a synthesis of the terminal behaviour 
of &lo. Since passivity of E1lo is easily shown to be a necessary condition of 
realizability this shows that Cl/o is synthesizable using R, L, C, T and G’s 
if and only if G(s) is positive real and, if so, it gives a procedure for going 
about it. 

If X1/o is passive and symmetric with external signature 
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then it admits, by Theorem III, an internally passive and symmetric 
representation. It follows then from (iii) that the (n, +n_ +n, +n,) port 
behaviour defined by 

I+ 
____I.___ 

V- [I .__._..._, 

4 _._-._... 
v, 

v, -_______ _ 
I- [I _.._.._.. 
v, ’ -_..._.._ 
4 

may be realized using R, L, C and T’s. Terminating now the first n, ports 
by unit capacitors and the next n_ ports by unit inductors yields a synthesis 
of the terminal behaviour of X1~o. Since external symmetry and passivity 

of &lo is easily shown to be also a necessary condition for realizability this 
shows that &lo is synthesizable using R, L, C and T’s if and only if 
I;, G(s) = GT(e) & and, if so, it gives a procedure for going about it. 

Analogous results may be obtained for RLT, RCT, LCT and LCTG 
synthesis. These involve the various classes of systems discussed in Section V. 

(3) Mechunics 

The well-known Onsager-Casimir relations from mechanics and thermo- 
dynamics may be formulated in such a way that they emerge out of the 
previous development. These relations may be stated as follows: Given the 
system &lo then there exists a choice of the state such that the stored 

energy is ixTx and the force j = .-? and the flux f = -.-I-?- 
[ 1 [ -1 are related 

U Y 
by the linear transformation f = Lj such that 

(i) <f,j) = fTj = the dissipation rate = uT y - (d/dt) gxTx; and 
(ii) L is signature symmetric, i.e. there exists a signature matrix C such 

that LZ = (LZ)T. 
[A somewhat more general but in the end equivalent formulation of these 
relations may be found in (IS)]. 

Since 

L = .___.____._._i____.._...___ 
[Yl_R] 

it is easily seen that these relations claim the existence of a realization which 
is simultaneously internally passive and internally symmetric. Thus by 
Theorem III these relations are satisfied if and only if &lo is externally 
passive and symmetric. The case that CIlo is of the relaxation type and 
thus all external and internal variables are of the same parity corresponds 
to the case in which Onsager’s relations are satisfied. 

(4) Covariance generation 

Let y!(w) (t E R; YE RP) be a zero mean stationary Gaussian random 
vector process defined on a probability space {Q,&,P}. The correlation 
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function is defined by R(T) ~c?{y~+~ y?) (T E R) and obviously satisfies 
R(T) = RT( -T). Furthermore, asis easily derived from its definition, R( .) is 
positive dejinite in the sense that Jt~J~vT(u) R(T - a) V(T) dada 2 0 for all 
RP-valued functions v( * ) for which this integral exists. 

The stochastic realization theory question is the problem of finding a 
Markov representation of the process yf(w). (Since we are concerned here with 
Gaussian processes, we will only consider linear realizations.) There are 
two possible interpretations of what one would mean by such a realization. 
(This distinction is by and large not recognized in the literature). The first 
interpretation is : 

(1) Find a zero mean stationary Gaussian vector process z~(:I(w) (t E R; z E Rn) 
defined on (Q ~2, P), and a (p x n) matrix C, such that: 
(ii) Z~ is Markov ; and 

(ii) y! = C~J~ almost surely (V t ER). 
The second interpretation is : 

(2) Find a zero mean stationary Gaussian vector process Qw) (t E R, x E Rn) 
-- 

defined on a probability space p, &-‘, P}, and a (p x n) matrix C, such 
that : 
(i) xt is Markov ; and 

(ii) &fp Cx# has the same statistics as yi, i.e. 8&_, $1 = R(r). 
The first approach is probabilistic in nature, the second is statistical. 
Although the first approach would appear to be more natural and relevant, 
it is particularly the second approach which has received attention in the 
literature (17-19). A recent paper by Picci (ZO), however, considers the 
first approach. A derived question is the representation (this may again 
be understood in both senses) of a Markov process by a stochastic differential 
equation. In our context this requires finding a (n x n)-matrix A, a (n x m) 
matrix B and an initial zero mean Gaussian random vector x~(w) such that 
xi(w) (for t 2 to) is represented by 

tit(o) = Aq(o) dt + B dw,(w) 

with w, a normalized p-valued Wiener process defined for t > to and inde- 
pendent of xfo. 

We will consider here briefly the second approach. We are thus looking for 
matrices {A, II, (7) and a covariance matrix P such that 

dxJw) = -4x@) dt +Bdw,(w), &f(w) = CX~(O) 

with x,,(w) zero mean Gaussian with covariance P and independent of w1 
(defined for t B 0), yields a stationary random variable x~(w) such that 

&%+X1 = R(7) (t, 7 2 0). 

This requires, as is easily verified by direct calculation, that 

PAT+AP = -RBT and R(T) = Ce “IPCT 

which is indeed possible provided R(t), t > 0, is the impulse response of a 
system of the form &/o which admits a realization {A, PCT,C} with 
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with P = PT > 0 and PAT + AP < 0. Such a realization indeed exists (by 
Theorem I with P = Q-l) since the positivity of R( -) implies the passivity 
of the system X1/o with impulse response R(t), t 2 0. 

VIZ. Conclusions 

We have tried to give in this paper a brief survey of the main concepts 
and results concerning the representation of stationary linear systems which 
satisfy certain qualitative conditions on their input-output behaviour. This 
leads to a theory which has some interesting applications, particularly in 
physics oriented problems. Much work remains to be done in this area. 
Particularly the treatment of nonlinear phenomena and the incorporation 
of at least the theory of Hamiltonian and Lagrangian systems seems to be 
very promising indeed. 

References 

(1) R. E. Kalman, “Lyapunov functions for the problem of Lur’e in automatic 
control”, Proc. n&n. Acad. Sci., U.S.A., Vol. 49, pp. 201-205, 1963. 

(2) V. A. Yacubovich, “Absolute stability of nonlinear control in critical cases, I and 
II”, Automation and Remote Control, Vol. 24, pp. 273-233, 1963 and pp. 655- 
668, 1964. 

(3) V. M. Popov, “Hyperstability and optimality of automatic systems with several 
control functions”, Rev. Roumaine Sci. Tech. Electrotechn. et Energ. Vol. 9, 
pp. 629-630, 1964. See also: V. M. Popov, “Hype&ability of Control Systems”, 
Springer, New York, 1973. 

(4) B. D. 0. Anderson, “A system theory criterion for positive real matrices”, 
SIAM J. Control, Vol. 5, pp. 171-182, 1967. 

(5) R. W. Brockett and H. B. Lee, “Frequency domain instability criteria for time- 
varying and nonlinear systems”, Proc. IEEE, Vol. 55, pp. 604-619, 1967. 

(6) R. E. Kahnan, “On a new characterization of linear passive systems”, Proc. Fir& 
Allerton Conf. on Circuit and System Theory, Monticello, III., pp. 456-470, 1963. 

(7) D. C. Youla and P. Tissi, “N-port synthesis via reactance extraction-Part I”, 
1966 IEEE Int. Conv. Rec., Pt. 7, pp. 183-208, 1966. 

(8) S. Vongpanitlerd and B. D. 0. Anderson, “Scattering matrix synthesis via 
reactance extraction”, IEEE Trans. on Circuit Theory, Vol. CT-17, pp. 511- 
517, 1970. See also: B. D. 0. Anderson and S. Vongpanitlerd, “Network 
Analysis and Synthesis”, Prentice-Hall, Englewood Cliffs, N.J., 1973. 

(9) J. C. Willems, “Dissipative dynamical systems, Part I: General theory, Part II: 
Linear systems with quadratic supply rates”, Archs Rational Mech. and Anal., 
Vol. 45, pp. 321-351 and pp. 352-392, 1972. 

(10) R. E. Kalman, P. L. Falb and M. A. Arbib, “Topics in Mathematitial System 
Theory”, McGraw-Hill, New York, 1969. 

(11) R. W. Newcomb, “Linear Multiport Synthesis”, McGraw-Hill, New York, 1966. 
(12) W. A. Day, “Time-reversal and the symmetry of the relaxation function of the 

linear viscoelastic material”, Arc& Rational Mech. Anal., Vol. 40, pp. 149-159, 
1971. See also: W. A. Day, “The Thermodynamics of Simple Materials with 
Fading Memory”, Springer, New York, 1972. 

(13) S. I. Marcus and J. C. Willems, “Nonstationary network synthesis via state space 
techniques”, IEEE Trans. on Circuits & Syst., Vol. CAS-22, No. 9, pp. 713- 
720, 1975. 

620 Journal of The Franklin Institute 



. Realizqtion of Systems with Internal Passivity and Symmetry Constraints 

(14) J. C. Willems, “Mechanisms for the stability and instability in feedback systems”, 
IEEE PTOC., Vol. 64, No. 1, 1976. 

(15) J. C. Willems and R. W. Brockett, “Average value stability criteria for symmetric 
systems”, Ricer& di Automatica, Vol. 4, Nos. 2-3, pp. 87-108, 1973. 

(16) J. C. Willems, ‘Consequences of a dissipation inequality in the theory of dynamical 
systems”, in “Physical Structure in Systems Theory”, ed. by J. J. van Dixhoorn 
and F. J. Evans, pp. 193-218, Academic Press, New York, 1974. 

(17) R. E. Kalman, “Linear stochastic filtering-reappraisal and outlook”, Symp. 
on System Theow, Polytechnic Institute of Brooklyn, pp. 197-205, 1965. 

(IS) B. D. 0. Anderson, “The inverse problem of stationary covariance generation”, 
J. Stat. Physim, Vol. 1, No. 1, pp. 133-147, 1969. 

(19) P. Fsurre, “RPalisetions Markoviennes de processus stationnaires”, IRIA 
Rapport de Recherche, No. 13, March 1973. 

(20) G. Picci, “Stochastic realization for stochastic processes”, IEEE Proc., Vol. 64, 
No. 1, pp. 112-122, 1976. 

Vol. 301, No. 6, June 19x 621 


