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F e e d b a c k  S t a b i l i z a b i l i t y  f o r  S t o c h a s t i c  S y s t e m s  w i t h  S t a t e  a n d  C o n t r o l  

D e p e n d e n t  N o i s e *  

J A C Q U E S  L.  W I L L E M S I "  a n d  J A N  C.  W I L L E M S *  

Summary--This paper deals with linear stochastic systems 
with state and control dependent noise. Conditions are 
derived for which there exists a state feedback control such 
that the closed loop system is stable in the mean square 
sense. Particular attention is paid to the case in which there is 
only state dependent noise or only control dependent noise 
and to cases in which the noise intensities are arbitrarily 
large. 

Nomenclature 

x state 
u input 

~,, ~/i noises 
or,, ~ noise intensities 

A system matrix 
B control input matrix 

F,, Gj noise input matrices 
K feedback control gain 
P solution of Riccati equation 
Po limiting solution of (9) for/3 -*0 

P* limiting solution of 09) for ,, -+0 
V Lyapunov function 
L differential generator (in Section 1) 
L linear operator iin Section 2) 
E expectation operator 
N null space 
R range space 

R" Euclidean space 
det determinant 

g(s) transfer function 
ft subspace defined in Section 2 

D = (d/dr) = derivative 
s complex variable 
T transposition 

dim dimension (of a subspace) 

Introduction 
THE CLASS of systems considered in this paper may he 
described by the It6 differential equation 

k ! 

dx =(Ax + Bu)d t  + ~ or~F~x d~  + ~. l~G# dyv (I) 

In here x E R" denotes the state, u E R "  denotes the 
control input, while ~ (i = 1, 2 . . . . .  k) and yj 0 = 1, 2 . . . . .  I) 
denote the disturbances. These are assumed to be zero mean 
uncorrelated stationary normalized Wiener processes. Thus 
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E{d/~}=0, E{dyj}=0, E { d ~ = d t ,  E{dyj2}=dt, 

E{d~j, d~d = 0(i,$j2), E{dTj, dy~ = 0{j, # J2), 

and 

E{d~ dy,} = 0 

for i, it, i2 = 1, 2 . . . . .  k and j, j,, j2 = 1, 2 . . . . .  1. The factors 
or, and pj indicate the intensities of the disturbances. The 
constant system matrices A, B, F, and Gj are of dimension 
(n x n), in x m), in x n), and in x m), respectively. Thus the 
first term of the fight hand side of (1) denotes the drift term, 
the second term denotes the control term, the third term 
denotes the diffusion term due to the state dependent noise, 
and the last term denotes the diffusion term due to the control 
dependent noise. It is easy to see that the independence and 
zero mean assumptions on the processes ~ and on the 
processes y~ entail no loss of generality. Thus the model 
under consideration describes a general linear dynamical 
system with white noise coefficients and for which the state 
dependent noise and the control dependent noise terms are 
independent. 

The analysis of systems with multiplicative stochastic 
disturbances has attracted a good deal of attraction in recent 
years, motivated, at least partly, by various areas of 
application, for example, to system with human operators, 
economic system which model some of the uncertainties as 
stochastically varying lags, mechanical systems subject to 
random vibrations (e.g. earthquakes), etc, Thus there has 
been research on control[I-3], least squares faltering[l-4], 
and the stability analysis of stochastic it6 systems[4-6]. The 
problem which we will consider in this paper is to derive 
conditions on the parameters (A, B, E,  G,, or, and ~ )  for 
which there exists a feedback control law of the form 

u -- Kx (2) 

such that the closed loop system, i.e. the system described by 
the It6 equations 

/t ! 

dx = (A + BK)x dt + ~ o4F, x d~, + ~ p~3,Kx dyl 
i - !  J - I  

(3) 

is stable in the mean square sense. In here K is a constant 
(m + n) matrix which may be chosen arbitrarily. In fact, it is 
easily seen from the optimal control interpretation which will 
be given later that this stabilizability will not he enhanced if 
we were to allow more complex feedback control strategies 
for example by admitting control laws which are nonlinear 
and/or time-varying andlor control laws with memory. 
Stabilization of stochastic systems has frequently been 
studied, mainly in America[l-3, 14], in the USSR[15-17], and 
Japan[4, 18]. The main contribution of the present paper is 
the derivation of explicit criteria for the stabilizability of 
system (1). 

The problem under consideration is formally described in 
the following definition: 

Delinition I. The system (3) is said to he stable in the mean 
square sense if all initial states x(0) yield 

!ira E ix ( t )x ( t )~  = O. 
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System (1) is said to be stabilizable in the mean square sense 
if there exists a matrix K such that (3) is stable in the mean 
square sense. We use the concept of stability here as what 
would in other contexts usually be called asymptotic stability. 
Note that stability in the mean square sense impfies stability 

of the mean (i.e. ]im E{x( t ) }  = 0 for all x(0)) and almost sure 

stability (i.e. Jim x ( t ) - - 0  almost surely). In particular, this 

implies that stabilizability of the deterministic system: 

:~ = A x  + Bu (4) 

is a necessary condition for mean square stabilizability of (1). 
(This condition is satisfied if (4) is, say, controllable [8].) The 
stabilizabflity of (4) is not sufficient, however, for stabilizabfl- 
ity of (!), and, as we shall see later, it is not always poss~le to 
stabilize (1) for large noise intensities, even if (4) is 
stabilizable. 

The problem considered here is of interest in its own right, 
but it also enters in a natural way in stochastic control as a 
necessary condition for the existence of an optimal state 
feedback policy for the problem of minimizing the usual 
quadratic criterion 

E { f o ' ( u T R u  + x ' O x ) d t }  

for the linear stochastic system (1)[1-3]. Two important 
particular cases of the problem under discussion are the case 
in which there is only state dependent noise 

dx = (Ax + Bu )  dt + ~ cr, F,x d~  (5) 

and the case in which there is only control dependent noise 

t 

dx = (Ax  + Bu )  + ~ I~G~x d% (6) 
l - I  

Moreover, since in many applications one cannot  a priori be 
sure of the intensity of the noises, we will pay particular 
attention to the problem of determining which systems are 
stabilizahie for all noise intensities tr, and t~. Note also that in 
the case that (1) is to be considered in the sense of 
Stratonovich, then esseutially tim same theory goes through, 
(after introducing the necessary correction terms, in the case 
that there is only state dependent noise), but it requires 
essential modifications in the case that there is also control 
dependent noise, although, presumably, the methodology to 
treat this case would not need to be very much different. 

The paper is structured as follows: in Section I a general, 
but not very explicit, criterion for stabilizability is given. In 
Section 2 this criterion is applied in the case of only state 
dependent noise and explicit conditions are derived for 
stabilizability for all noise intensities together with some 
criteria which give the maximum admissible noise intensity 
for mean square stabilizability. Section 3 deals with systems 
in which there is only control dependent noise. Finally, 
Section 4 contains some results for systems with both control 
and state dependent noise elements. 

1. Fundamental  theorem 
In this Section we will derive a theorem which gives a 

necessary and sufficient condition for the mean square 
stabilizability of (l). It is stated in terms of the nonlinear 
matrix equation 

S A  + A TS -- + TS 

k 

+ ~ ,  ~ , ~ ' S F ,  = - Q (7) 
J - !  

in the symmetric matrix S for given symmetric Q and R, of 
dimension n x n, n x n, and m x m respectively. 

Theorem 1. A sufficient condition for mean square stabil- 
izability of (1) is that there exists positive definite matrices Q 
and R for which (7) has a positive definite solution S. A 
necessary condition for mean square stabilizability of (1) is that 
(7) has a positive definite solution S for any given positive 
definite matrices Q and R. 

Proof. To prove the sufficiency part of the theorem, 
consider the feedback control law u = K x  with 

The claim is that this control law will stabilize (1). This will be 
proven by means of a Lyapunov argument, see, for example, 
[7]. Consider therefore the Lyapunov function V ( x ) =  xTSx  
and let L denote the differential generator['/] associated with 
(3) and with K chosen as above. It is easily calculated that 
L V ( x ) = x T M x  where M = - Q - K T R K .  Since S > 0  and 
M < 0  this shows the mean square stabiliTability of (1). 

To prove the necessity part of the theorem, we consider the 
problem of minimizing the performance criterion 

over all feedback control policies u = Kx. Because the 
system is assumed to be mean square stabilizable, a 
minimizing K exists. By the results of [1-3] this implies that 
(7) then has a positive definite solution S which yields the 
optimum K given by 

- (R + l~t pj2GTSGj) - 'B TS. 

Since the condition derived in Theorem 1 involves the 
solution of a nonlinear matrix equation it is not particularly 
useful in applications. The theorem will be used in the 
remainder of the paper to derive explicit criteria for a number 
of interesting special cases. 

2. Sys tems  with state dependent noise only 
In this Section we will consider systems described by the 

It6 equation (5). The matrix equation involved in the 
application of Theorem 1 correspondingly becomes 

k 

S A  + A T S  - S B R - ' B T S  + ~'~ ¢r,2FTSF~ = - Q. (8) 

Consider also the algebraic matrix Riccati equation: 

P A  + A Tp _ ~  P B B T P  = _ Q (9) 

with/3 > 0  and Q = QT>--0. It is well known[8] that if the 
linear system (4) is stabifizable then there exists a unique 
symmetric solution P* to (9) which has the property that 
A - ( I / [ J ) B B T P  ~ is a Hurwitz matrix, i.e. its eigenvalues 
have negative real parts. 

Moreover, P ÷ is at least positive semi-definite. If Q = C C  T 
and if (A, C) is observable, then P* is actually positive 
definite and is moreover the unique positive definite solution 
of (9). Finally P* is monotone nonincreasing with decreasing 
0 [9, 10]. Thus 

po a l i~  p*  

is well-defined for all fixed Q and is positive semi-definite. 
Straightforward numerical techniques exist to compote P÷, 
since it is the solution of a steady state Riccati equation[S]. 
Po can then be obtained by repeating the computation for 
decreasing ~. The direct computation of Pe is 
discussed by Kwakemaak and Sivan[9]; more s t r a i ~ o r -  
ward procedures for determining this limig have been 
developed by Nakamizo[19] and Friediand[20]. 

Let f l  denote the subspace of R" spanned by the columns 

of the matrices FT, i =  1, 2 . . . .  k, i.e., ft-*{x 
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R ' [ x  J . N ( E )  for all i}, where N denotes the null space. 
Application of Theorem 1 to the case under consideration 
leads to the following criterion for stabilizability: 

Theorem 2. System (5) is mean square stabilizable if and 
only if 

(i) System (4) is stabilizabie (in the deterministic sense): 
and 

(ii) there exists a matrix Q* = Q.T with Q* >-0 but Q* > 0 
on fl  such that 

It 

G A=~Or?F, TPoF, ~ Q *  but G < Q * o n f l .  
J - i  

Outline o f  the proof. The necessity of the condition is 
obvious. To prove the sufficiency, consider the solution P of 
(9) with Q = Q* + eQi where • > 0 and Q~ a positive defmite 
symmetric matrix. Then, for • and g3 sufficiently small, 

Or?F, TPF, < Q*. But P also satisfies 
I - !  

P A  + A Tp -- P B B T P  + ' ~  or?N'rPF, -- - eQ, 
| - I  

which is an equation of the type (8) with R, Q > 0. 
2.1 StabilizabiUty for  arbitrary noise intensities. In this 

Section we will derive conditions on the parameter matrices 
A, B, and F, (i = I, 2 . . . . .  k) of system (5) such that for all 
values of the noise intensities or? there exists a stabilizing 
feedback gain matrix. This feedback gain matrix is however 
allowed to be a function of or?. In the next section we will 
consider the case in which this feedback gain matrix need not 
be a function of the noise intensities. Thus the idea is that or, 
is first measured and then the feedback gain matrix K which 
stabilizes is chosen. 

The following result is an immediate consequence of 
Theorem 2: 

Theorem 3. System (5) is mean square stabilizable for all 
noise intensities or? if (4) is stabilizable and ff there exists a 
symmetric matrix Q with Q :,-0 but >0  on [1 such that 
F, TPoF, = 0 (i = 1, 2 . . . . .  k ). Necessary conditions for (5) to 
be mean square stabilizable for all o~ 2 are that (4) is 
stabilizable and that F, TPoF, = 0  (i = 1, 2 . . . . .  k) for some 
semi-definite matrix Q. Note that Theorem 3 gives a 
necessary and sufftcient condition if f l  is one-dimensional. 

Conditions for Pe to he zero have been derived by 
Kwaker~_aak_ and Sivan[9]. Using a condition from their 
paper the following corollary is obtained: 

Corollary 3.1. Assume that m = dim {~, R ( F, )} < 

dim{R(B)} and let C be an ( m × n )  matrix such that 
R ( C )  = Y~ R(F,). Then system (4) is mean square stabilizabie 

e 
for all noise intensities or? if there exists an (n × m) matrix B, 
such that R ( B , ) C  R ( B )  and such that the polynomial 
det [C(ls  - A ) - ' B , ]  det [Is - A ]  has no zeroes with positive 
real part. 

However, theorem 3 does not require Po to vanish; it only 
requires that PoE is zero. Hence Po must be singular, which 
is always true, and the columns of the matrices F, must 
belong to the null space of Po. To check this, the following 
equivalence property is very useful: The condition Pexo = 0 is 
equivalent to the existence of vector u (s) whose components 
are rational functions of s without poles in R e ( s ) > 0 ,  such 
that 

C ( l s  - A ) - ' B u ( s )  + C ( l s  - A )-'xo 

vanishes identically, where Q = CTC. From this statement, 
or from the consideration of (9) for # --,0, one readily sees 

i i m B T P ÷ B  =0.  This leads to the following interesting 
D-*O 

corollary which shows that systems in which the control 
enters the system "at  mote points" than the disturbance are 
always stabilizable. 

Com//m-y 3,2. System (5) is mean square stabilizable for all 
noise intensities or2 if (4) is stabilizable, in the deterministic 
sense, and if R ( B )  :3 R (F , )  for all i, where R denotes range 
space. 

Consider now as a special case of (5) the following system 
with a single input, a single noise term, and a matrix F, of 
rank one: 

dx = ( A x  + b u ) d t  + b ,c ,x  d E (10) 

where b and b, are column vectors, c, is a row vector, ~ is a 
(zero mean) Wiener process, and or is a scalar which indicates 
the intensity of the disturbance. Then we have: 

Corollary 3.3. Assume that the system :~ = Az  ; y = cx is 
detectable[8]. Then system (10) is stabilizable for all noise 
intensities or2 if and only if 

(i) ~ = Ax + bu is stabilizable, in the deterministic sense: 
and 

(ii) the rational function 

c,(Is - A )- 'b,  
c,(Is - A )- 'b  

has no poles whose real part is positive, after cancellation of 
common factors. 

This corollary follows from the fact that, as shown in[9] 
there exists an input u( t )  (t >0 )  which does not increase 
exponentially and for which .g 'y2( t )dt  =0 ,  with y and u 
related by ~ = Ax + bu, y = clx, and x(O) = b,. Note that the 
detectability assumption in Corollary 3.3 entails no real loss 
of generality since by (i) there always exists a feedback gain 
which will induce detectability. 

Note that the conditions of Corollaries 3.1 and 3.3 may be 
systematically verified by simple algebraic manipulations 
which involve the division algorithm to cancel common 
factors and the Routh-Hurwitz test [11] to check that no roots 
of the part of the denominator polynomial that is relatively 
prime with the numerator has positive real part. Note also 
that the conditions of Corollary 3.3 are obviously feedback 
invariant in the sense that they remain unchanged if A is 
replaced by A + bk, for any row vector k. 

2.2 StabUizability for  arbitrary noise intensity with the same 
feedback. In this Section we will derive conditions on the 
parameter matrices A, B, and F, (i = 1, 2 . . . . .  k) of system 
(5) for which there exists a feedback gain matrix K such that 
the closed loop system described by the It6 equation 

k 

dx = (A  + B K ) x  dt + ~ or, F,x d~,. (11) 
| - I  

is mean square stable for all noise intensities or; we start with 
a lemma which appears to be of interest in its own right. 
Consider therefore the system described by the It6 equation 

k 

dx = Ax  dt  + ~ cr, F,x d~8,. (12) 
* - t  

Let the matrix F defined by F ~ [F, IF~J... [Fk]. Consider 

now the pair (.A, F). In [general this pair will not be 
controllable. It is weN-known that there then exists a change 
of basis on R" such that with respect to this basis, the 
matrices A and F, take the form 

Let 

and 

=fA,,  0 0 ,--X=:: 

F,, -'-- [F,.=IF,=I.. .  IV,~]. 

Thus we may take (A=, [Fn[F~]) to be controllable. If F2~ ~ 0 
and if the pair (A~, F~2) is not controllable, then we may 
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repeat the above procedure. It thus follows that after a 
number of steps the matrices A and F, will be brought into 
the form 

A = 

A2, A22 0 . .  

F, = 

F,~, 0 . - .  0 

0 . . .  0 0 

F ~ - I )  

where F, .  ~= [F,., ,IFz.,I . . . .  IFL,,] is either zero or is such 
that (A,,, F , , )  is controllable. This reduction alllorithm leads 
to the following expficit necessary and suff)cient conditions 
for (12) to the mean square stable for all cr1: 

/..emma I. System (12) is mean square stable for all noise 
intensities ot 2 if and only if A is a Hurwitz matrix and the 
matrix F~, defined above is zero. 

Outline o f  the proof.  The  fact these conditions are sufficient 
is relatively easy to prove and is therefore deleted. That g 
must be Hurwitz is also obvious. To show that also F, ,  = 0 is 
a necessary condition it follows from the above reduction 
algorithm that it is enough to prove that (12) cannot he stable 
for all ~,2 if (~,, F )  is controllable. Mean square stability 
implies that there exists a positive definite symmetric solution 
P to the linear equation 

k 

PA + .~Tp + ~., o r j 2 F t T p R  = =  - -  L 

The existence of a positive definite solution to this equation is 
equivalent to the existence of a positive definite solution to 
the related equation: 

M - L ( M )  -- I 

where L ( M )  denotes the linear operator defined by 

fo ) L ( M )  ~= cr/F, T e~T'M e ~' F, dt. 

Since we need staffdizability for all ~?, L needs to have all its 
eigenvaiue zero. Moreover since L maps the cone of positive 
semidefinite symmetric matrices into itself, it has an 
eigenvector in this cone with associated eigenvaiue, of 
course, zero. However, M : M T > 0  and L ( M )  = 0 imply,  by 
controllability of (A, F) ,  that M equals 0. Thus (A, F)  
controllable implies that (12) cannot be mean square stable 
for all (r, 2, as claimed. 

Returning now to the problem introduced in the beginning 
of this section, we see that the reduction algorithm associates 
with every K a matrix Fpo,)p(x,. Thus l.,emma 1 leads to the 
following theorem: 

Theorem 4. System (5) is mean square stabilizable with the 
same feedback gain matrix for all noise intensities ~r, 2 if and 
only if there exists a matrix K such that the conditions of 
Lemma 1 are satisfied with A = A + B K .  

Of course, Theorem 4 as it presently stands is a very 
unsatisfactory result, since one would like to reduce the 
problem of the existence of K to a condition about A, B and 
the F, 's. Except for some results given below we have not 
been able to reduce the conditions much further. The 

problem discussed in this section is closely related to the 
stable disturbance isolation problem discussed by Wonham in 
[12]. The problem considered there is to find conditions on A. 
B, C, D such that the control law u = Kx for the system 

Y: = A x  + Bu + Dz ; y --- Cx (13) 

has the property that 
(i) A + B K  is a Hurwitz matrix; and 
(ii) the transfer function from z to y, 

C(Is  - A - B K ) - t D  

is zero. This problem is completely solved in [12]. 
Corollary 4.1• Consider system (5) and let 

factorizable as 
F, be 

F~=I~C for i = 1 , 2  . . . . .  k. 

Then this system is mean square stabilizable with the same 
feedback gain for all noise intensities or, z if the stable 
disturbance isolation problem for system (13) with 

D = [O,ID~l. •. ID~] 

and 

C =  ~ l  

is solvable. 
The above corollary is quite easy to prove directly. The 

condition is however not necessary, not even in the case that 
there is only one noise texm (i.e. k = 1), unless, as is shown in 
the next corollary, the noise matrix F is of rank one. 
Consider therefore the system 

dx = (Ax + Bu)  dt + obt¢, d/3 (14) 

where b, is a column vector, c, is a row vector, g is a scalar 
(zero mean) Wiener process, and ~ is a scalar which indicates 
the intensity of the disturbance. Associated with this system 
we have the deterministic system 

Y t = A x + B u + b , z ;  y = c l x .  (15) 

For this system we may then prove the foilowing result: 
Corollary 4.2. System (14) is stab'dizable with the same 

feedback ~ for all noise intensities (r 2 if and rally if the 
stable disturbance isolation problem for (15) is solvable. 

P r o o J .  The  easiest way for proving this corollary is to 
consider the operator L introduced in the proof of theorem 4. 
Here 

I: L ( M )  = c,Tc, b ,Te~T'M • I ' '  b, dr. 

Thus L has an eigenv~lue .~ w~(t) dr, where w(t) = c, e ~' b,. 
Thus all eigenvalues being zero implies that w(t)  = 0 for all t 
which yields the desired result. The above corollary may in 
fact he generalized to the situation in which all the F, have 
rank one. 

2.3 Computa t ion  o f  the m a x i m u m  admissible noise inten- 
sity. In this Section we will discuss the computation of the 
maximum admissible noise intensity which allows mean 
square stab'tlizability for system (10). For the notation see the 
introduction to Section 2. From Theorem 2 it follows that, if 
b~TPob, # O, mean  square stabll/zabffity follows if and only if 
system (4) is stabilizable, in the deterministic sense, and 

or 2 < (b,TPob,) - '  

where Po = ~ P and P is the unique symmetric solution of 
B>-O 
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A rP  + P A  - ~  P b b r P  : c,~c, 

which is such that A - ( l l lJ)bbTP is a Hurwitz matrix. Much 
information on the computation of biTPob) may he found in [9]. 
Thus 

PA + A T p  - -  P B M - ' B : P  = - a T  (19) 

with M • Mr  >0 ,  T= T T > 0  and a >0.  If (4) is s ~ l e  
in the deterministic sense then there exists a unique positive 
definite symmetric solution P+ to (19) which is monotone 
decreasing with a [10]. Thus 

b,Tpob, = i Q f f : y 2 ( t ) d t  

subject to the conditions ~ = Ax + bu, x ( O ) :  b,,  x ( ~ ) : 0 ,  
and u : kx. An alternative, more explicit expression is given 
in the case that (A, b) is in standard controllable form[D] by 
the path integral 

(16) 

where q ( s )  = c , ( ls  - A ) - ' b .  det (/s - A) and q*(s)  is derived 
from q ( s )  replacing its zeros in the right half plane by their 
mirror imases with respect to the ima~nary axis. The above 
integral is a path integral in the sense that it only depends on 
the values of z ( t )  and its derivatives at the end points t = t, 
and t = h,  but that it is otherwise independent of the 
particular path which joins these points. In (16) these end 
points are given by 

z (h ) ,dz (h )  d"-'z(h)'~ 
dt . . . . .  dr" -'--'~ ] : 0 

for t : t, and this vector equals ba r for t : h. Expression (16) 
offers an extremely convenient method for computing 
b,TPob,  and thus the maximal admissible noise intensity. 
particularly if q(S) has few zeroes in the right half plane. For 
a discussion of these path integrals, see [11] or [13]. 

2.4 An  example. Consider the second order stochastic 
system: 

dx, : x2 dt + a~(3,x, + ~Ix2) d# 

dx2 : - ax= dt + a dt + ~Sto-(3"x, + 8x2) d/3 

(17) 

This is a particular case of (10) with 

c,( is  _ A )_lb = 8s + */ 
s(s + a) 

c,(Is - A)-'b, = (a7 + ~)s + oa 7 + P7 
s(s + a ) 

The results of Sections 2.1, 2.2 and 2.3 yield the following 
(i) System (17) is mean square stabilizable for all ~2 

provided either a vanishes or "y and 8 do not have opposite 
signs. 

(ii) If (i) is not satisfied, then system (17) is mean square 
stabilizable provided 

cr 2 < 1 
2a23'5" 

(iii) System (17) is mean square stabifizable with the same 
feedback p i n  for all noise intensities cr 2 provided 3' and 8 
have the same sign and a3" + / ~  = 0. A suitable feedback 
control law is then u = - k ,x ,  - k~x2, where kj > 0  is arbitrary 
and 

k2 : - a + k~82 + 7= va 

3. Systems with control dependent noise only 
In this Section we will consider systems described by the 

It6 equation (6). The matrix equation involved in the 
application of Theorem I correspondingly becomes 

SA  + A r S - S B  R + g~2GfSG) BTS  : - Q .  (18) 

Consider also the algebraic matrix Riccati equation 

P* ~ l i~ P ÷ 

is well-defined for all fixed M, T > 0  and at least positive 
semi-defmite. Application of Theorem ! to the case under 
consideration leads to the following criterion for 
stabilizability: 

Theorem 5. System (6) is mean square stabilizable if and 
only if 

(i) System (4) is stabilizable (in the deterministic sense): 
and 

(ii) there exists a matrix M -- M r > 0 such that 

t 

~. ~2G~P*Gj < M. 
j - t  

The matrix P* depends on M (but not on T). If Theorem 5 is 
used as a sufficient condition for mean square stabilizability, 
then the result obtained will depend on the choice of M. 
Hence there remains an unresolved possibility of optimizing 
the choice of M. 

The matrix P* admits a simple optimal control interpreta- 
tion. Indeed 

x J P * x o  = i~. f: uT(t)MU(t) dt 

subject to 

Yc = Ax + Bu;  x(O)= x o a n d ! i m x ( O  =0. 

For the special case that there is only one control, i.e. for the 
system 

! 

dx = (Ax  + bu) dt + ~ OJglu d3'l (20) 
J - !  

with b and gj ( j  = 1, 2 . . . . .  I) column vectors, then one can 
carry the computation further. Let P~ --- l i~  P where P is the 

e > 4 )  

unique positive definite solution of the algebraic Riccati 
equation: 

P A  + A T P  - PbbTP -'- - a T  

with T = T T > 0. 
Corollary 5.1. System (20) is mean square stabilizable ff 

and only if 
(i) System (4) is stabilizable (in the deterministic sense); 

and 
(ii) 

t 

#-i 

The computation of P, may he carried out by the path 
integral method if (A, b) is in standard controllable form. 
Then 

(21) 

with p(s)--det (Is -A) and p*(s) is derived from p(s) by 
replacing its zeroes in the right half plane by their mirror 
images with respect to the imaginary axis. The end points in 
( 2 1 )  are 

... dz( t )  d'-'z(t)\ _ 
ztzI, dt ..... d t ' - '  )=u for t = t ,  

and this vector equals xe r for t - t=. 
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3.1 Stabilizability for  arbitrary noise intensities. A complete 
solution of the problem of finding conditions on the parameter 
matrices A, B, and G~ (j = 1, 2 . . . . .  l )ofsys tem(6)suchthat  for 
all values of the noise intensities pj2 there exists a stabilizing 
control has been given in [14]. We will not repeat these results 
here but present some interesting special cases which may be 
derived from Theorem 5. 

Corollary 5.2. System (20) is mean square stabilizable for 
all noise intensities ~2 if and only if 

(i) System (4) is stabilizable, in the deterministic sense; 
and 

(ii) the vectors gj, 0 = 1, 2 . . . . .  k) belong to the invariant 
subspace of A spanned by its (generalized) eigenvectors 
corresponding to eigenvalues with nonpositive real parts. 

In the multivariable case however this condition is only 
sufficient, but not necessary: 

Corollary 5.3. System (6) is mean square stabilizable for all 
noise intensities pj2 if 

(i) System (4) is stabilizable, in the deterministic sense; 
and 

(ii) The columns of G~ (j = 1, 2 . . . . .  I) belong to the 
invariant subspace of A spanned by its (generalized) 
eigenvectors corresponding to eigenvalues with nonpositive 
real parts. 

3.2 An example. Consider the second order stochastic 
system 

dx, = x2 dt + pau d'f 
(22) 

dx2 = xt dt + u dt +pfiu dT. 

The results of Section 3 yield the following: 
(i) System (22) is mean square stabilizable for all p~ 

provided a + 0 - 0 .  The vector [ a B ]  T is then indeed an 
eigenvector of A corresponding to the eigenvalue -1 .  

(ii) If a +/3 # 0, then the system is mean square stabiliza- 
ble provided 

1 p 2 <  
,u,6 + ~)2- 

4. Systems with state and control dependent noise 
For the case in which one wants to obtain stabilizability 

criteria for system (1) with both the third and the fourth term 
present, it is necessary to study the full nonlinear matrix 
equation (7). It is again possible to state the results in terms of 
the algebraic Riccati equation 

SA + A TS - S B R - ' B T S  = - Q. (23) 

Recall that for the case in which there was only state 
dependent noise we were led to study the limiting solution to 
this equation for R --,0, and that for the case in which there 
was only control dependent noise we were led to study the 
limiting solution to this equation for Q-*0.  For the case in 
which both state and control dependent noise are present we 
will have to consider the solution to equation (23) for 
non-zero R and Q. 

Ths discussion of this Section will be limited to some 
particular cases for which we have been able to obtain some 
rather explicit criteria. Consider therefore the stochastic 
system 

t 

dx =(Ax +bu)dt +erb,c,x dfl + ~'~ pj&u d1'l (24) 
J-I 

with b, b,, and gj (j = 1, 2 . . . . .  I) row vectors and c, a column 
vector. Together with this system we will consider the 
associated algebraic Riccati equation 

SA + A T S - I  SbbT S ffi _ c  Tc ' (25) 

with a > 0  a parameter. H {A, b, c,) is minimal[13] (i.e. if (A, 
b) is controllable and (A, c,) is observable) then, as is 
well-known, there exists for each a > 0 a unique symmetric 
positive definite solution to (25), which we will denote by 
S(a) .  A sufficient condition for mean square stabilizability of 

(24) is that there exists an a > 0 such that: 

I 

o,ZbtTS(a)b, < 1 and ~ pj2g~S(a)gj < ~. 
i - I  

These conditions are conflicting since S (6 )  will increase with 
increasing a, but less than linearly, i.e. (S(a) /a)  will decrease 
with increasing m Thus we will consider that particular a for 
which the first inequality is satisfied with equality and verify 
whether the second inequality is satisfied for that a. This 
leads to the following theorem: 

Theorem 6. let {A, b, c;} be minimal. Then system (24) is 
mean square stabilizable if and only if 

(i) There exists a solution a*  > 0 to the equation 

o.~b,TS(a*)b, = I; (26) 

(ii) the inequality: 

~ pj2g~S(6*)gj < a*  (27) 
- I  

hold for this a*. 
Note that if (26) does not have a solution, then the system 

is not stabilizable even if only the state dependent noise were 
present. 

If b, is proportional to b, it is possible to verify (26) directly 
in terms of the system parameters since then 

I f ®  bTS(a)b ] ~  log (1 + 61g (jeo )l 2) doJ + 

where g ( s ) =  c,(Is - A  ) - 'b  and ~ is a constant, independent 
of a, which equals twice the sum of the absolute values of the 
real parts of the eigenvalues of A in the right half plane. The 
criterion may still further be simplified if there is only one g 
which is moreover proportional to b. This situation occurs for 
example if (24) is derived from a higher order differential 
equation with white noise stochastic coefficients which has an 
input through a coefficient which is itself independent white 
noise. 

Finally, note that it is clear from Theorem 6 that mean 
square stabilizability of (24) for all noise intensities 0,~ and pl 2 
will require at least that {A, b, c~} is not minimal or, 
equivalently, that the rational function c j ( l s - A ) - ~ b  has 
common factors in its numerator and its denominator. 

4.1 An example. Consider the second order stochastic 
system 

dx, = x2 dt + o.x, dfl + apu dy (28) 
dx2 = u dt + bpu dy 

The relevant Riccati equation has the solution: 

I S(a)  
L ~ - )  I V(2)'V(a')J 

Consequently, a*  = (1/40.'). Theorem 5 yields: 
(i) System (28) is mean square stabilizable provided: 

20-2p2(20.'a 2 + 2o.~ab + b 2) < I 

This shows that: 
(ii) if p = 0 (only state dependent noise), then system (28) 

is mean square stabilizable for all intensities ~2 of the state 
dependent noise; and 

(iii) if o. = 0 (only control dependent noise), then system 
(28) is mean square stabflizable for all intensities p2 of the 
control dependent noise. This result is of course obvious 
since there are no eigenvahies of A in the (open) right half 
plane. 

(iv) if o, ~ 0 and p ~ 0, than there is a trade-off among the 
parameters of the system but stabilizability becomes more 
likely for o, and p small. 

Conclusions 
In this paper we have presented some results on mean 

square stabilizability of systems which contain white noise 
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coefficients both in their dynamics and their input gains. A 
necessary and sufficient condition for stabilizability in terms 
of a nonlinear matrix equation was presented. For several 
special cases explicit condition for mean square stabilizabil- 
ity were given. Special attention was paid to the problem of 
stabilizability for all noise intensities. The conditions in the 
case of stabilizability for all noise intensities can probably he 
worked out in more detail using the presently available 
geometric theory of multivariable systems. 

References 
[1] W. M. WON~d~: Random differential equations in 

control theory. Probabilistic Methods in Applied 
Mathematics, A. T. Bharucha-Reid, Ed. Chapt. 2. 
Academic Press, New York (1970). 

[2] P. J. McLANE: Optimal stochastic control of linear 
systems with state- and control-dependent disturbances. 
IEEE Trans. Aut. Control. AC-16, 793-798 (1971). 

[3] D. L. ~ A N :  Optimal stationary control of linear 
systems with control-dependent noise. IEEE Trans. 
Aut. Control AC-14(6), 673-677 (1969). 

[4] T. NAKAMIZO and Y. SAWARAOI: Analytical study on 
n-th order linear systems with stochastic coefficients. In 
Stability o] Stochastic Dynamical Systems, R. F. 
CURTAIN, Ed. pp. 173-185, VOl. 294 of Lecture Notes in 
Mathematics, Springer-Verlag, Berlin (1972). 

[5] J. C. WH.LEMS and G. L. BLANKENSHtP: Frequency 
domain criteria for stochastic systems. IEEE Trans. 
Aut. Control AC-16 (4), 292-299 (1971). 

[6] M. V. LEvrr and V. A. JAgUnoWCH: Algebraic criterion 
for stochastic stability of linear systems with parametric 
action of the white noise type. PMM 36 (1) (1971). 

[7] H. J. KUSHNER: Stochastic Stability and Control. 
Academic Press, New York (1967). 

[8] H, K~CAK~NAh, K and R. S i v a :  Linear Optimal Control 
Systems. Wiley-Interscience, New York (1972). 

[9] H. KW^CKERIqAAK and R. SIVAN: The maximally 
achievable accuracy of linear optimal regulators and 
linear optimal filters. IEEE Trans. Aut. Control AC-17 
(I), 79-86 (1972). 

[10] J. C. WILLEMS" Least square optimal control and the 
algebraic Riccati equation. IEEE Trans. Aut. Control 
AC-16 (6), 621-634 (1971). 

[11] J. L. WILLEMS" Stability Theory of Dynamical Systems. 
Nelson, London and Wiley-lnterscience, New York 
(1970). 

[12] W. M. WONH~vI: Algebraic methods in linear multivari- 
able control. In System Structure, A. S. MORSE, Ed. pp. 
89-96. IEEE Control System Society (1971). 

[13] R. W. BROCKEI'r: Finite Dimensional Linear Systems. 
Wiley, New York (1970). 

[14] U. G. HAUSSMANN: Stability of linear systems with 
control dependent noise. SIAM J. Control, 11 (2), 
382-394 (1973). 

[15] E. A. LIDSKII: On the stabilization of stochastic systems. 
PMM 28, (1961). 

[16] I. L. RABO'~IKOV: On the impossibility of stabilizing a 
system in the mean square by random perturbation of its 
parameters PMM 28, 935-940 (1964). 

[17] N. N. ~ v s ~ J l :  Stabilization of systems in which the 
noise is dependent on the value of the control signal. Engng 
Cybernetics 2, 515-528 (1965). 

[ 18] Y. SAW~AoI, T. NAKAMIZO and H. KIKUCm: Mean square 
stability of a class of closed-loop stochastic systems, Bull. 
JSME 13, 1419-1425 (1970). 

[ 19] T. NAKAMIZO and M. OSHmO: Minimal mean square error 
control of linear stochastic systems with noisy observa- 
tion, Proceedings of the IFAC Symposium on Stochastic 
Control, Budapest, pp. 13-20 (1974). 

[20] B. FRIEDLAND: Limiting forms of optimum stochastic 
linear regulators. Proc. JACC, pp. 212-220 (1970). 


