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Brief Paper 

Lyapunov Functions for Diagonally Dominant Systems* 

J.  C.  W I L L E M S ?  

Smmmary--This paper deals with the construction of 
Lyapunov functions for the finite dimensional linear system 

= Ax when the entries of the generating matrix A satisfy 
various conditions requiring dominance of its diagonal 
elements and nonnagativity of its off-dingoual elements. The 
particular case in which the system defines a Markov chain is 
given special attention and it is shown that the results then 
imply certain inequalities which have an intuitively appealing 
information theoretic significance. 

1. Introduction 
CONSIDER the autonomous linear system: 

]£: ~ = A x  

with x =col(x,,xa . . . . .  x.) E R" (n-dimensioual Euclidean 
space) and A =(a~)  (i , j  = 1,2 . . . . .  n)  a real (n x n )  matrix 
called the £enerator of E. This system is said to be stable if 
all its solutions are bounded on [0, ®) and asymptotically 
stable if all its solutions approach 0 as t --, 0o. 

One way of verifying the stability of ][ is by constructing a 
Lyapunov function for it, i.e. by examining the derivative of 
the real valued function V(x) along ~. Thus it is well-known 
that for any matrix C such that (A, C) is observable [1, p. 86] 
(i.e. such that Rank [CT]CTAT[... [CT(AT) "-j] = n, where T 
denotes transposition) there exists a positive definite 
symmetric solution Q to the Lyapunov equation 

A TQ + QA = -C'rC 

iff Re A < 0  for A E or(A) (Re denotes real part and or(A) 
denotes the set of eigenvalues of A). Thus if ~ is 
asymptotically stable this yields a method for constructing 
quadratic Lyapunov functions V(x)=~xTQx for ~ on R'. 
Other classes of systems for which efficient methods for 
constructing Lyapunov functions are known are Popov-like 
systems [2, 3] and the generalization of this methodology to 
more general "dissipative" systems[4]. 

Of course the construction of Lyapunov functions is not 
only of interest in order to study the stability of a system. 
(For the system ~ under consideration there exist indeed 
much more effective tests than those provided by solving for 
Q in order to verify stability. For the special classes of 
systems E considered in this paper stability is also essentially 
obvious). However, the fact that a particular class of 
functions V:R" --* I[ are Lyapunov functions may provide a 
great deal of useful insight in the qualitative behavior of 
(see, e.g. the results of Section 6), or it may give a candidate 
for examining the stability of a nonlinear perturbation or 
analogue of~-. 
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This paper considers the construction of Lyapunov 
functions for systems '~ in which the entries of the generating 
matrix A satisfy certain diagonal dominance and/or positivity 
conditions. System E which satisfy such conditions naturally 
occur in at least two fields: firstly, in economics[5] and 
secondly in the analysis of Markov chains (see Section 6) 
where the probabilistic interpretation of  the state vector 
yields the required conditions on A. However, systems as 
those studied in the paper enter also frequently in engineering 
applications as well, for example in RC or RL ladder 
networks, in transistor circuit analysis[6], or in lumped- 
models of distillation columns[7, 8]. 

A word about notation. Capital letters usually denote 
matrices or functions on i1" whereas lower case letters 
usually denote vectors or functions on R. For an (n x n )  
matrix A, IAI (not to be confused with determinant) denotes 

the (n x n)  matrix IA[ *= (latl) (['[ denotes absolute value). An 

analogous notation holds for vectors. Further, Ad,. denotes 

the diagonal matrix ding (a l )  and A~*- -A-A~ ,~ .  

Finally, p(A) denotes the spectral radius of the (n x n )  
matrix A, i.e. max IA ] for A E (r(A). Whenever a condition is 
assumed to hold for all i, j or or, say, then the "for all" 
predicate will for simplicity be deleted. 

2. Dominant, nonnegative, and M-matrices 
In this section several special classes of matrices are 

introduced. 
De]inition !. The real (n × n) matrix A = (au) is said to be 

row dominant if latin" E loci, column dominant if [aul > 
Issd 

la~[. and doubly dominant if it is both row and column 

dominant. If the inequalities are strict then one calls such 
matrices strictly (row, column or doubly) dominant. 

De~nition 2. A is said to be nonnegative if a e -  0 and 
positive if au > 0. A special class of nonnep t ive  matrices are 
the stochastic (resp. substochastic) matrices for which 

Y~b,= I (resp. <1) and the doubly stochastic (reap. 
J 

substochastic) matrices for which Y-be = I (resp. -<1) and 
J 

~ b, = I (resp. <1). A particular class of doubly stochastic 

(reap. substochastic) matrices are the permutation (resp. 
subpermutation) matrices for which every row and column 
contains exactly (resp. at most) one element which equals I, 
and the remaining elements are 0. 

It is well-known[9] that the class of doubly stochastic 
(reap. substochastic) matrices is the convex hull of the 
permutation (reap. subpermutation) matrices. This basic fact 
will be used in Section 3. In Section 4 it will be shown that the 
matrices introduced in Definition 2 are the matrix exponen- 
tials of the following class of matrices: 

Definition 3. A is said to be a generator of nonnegative 
type if a~ > 0 (i ~ J), it is said to have zero (reap. nonpositive) 

column excess if ~ ae =0 ,  zero (resp. nonpositive) row 
I - I  

excess if ~ a u = O, and zero (resp. nonpositive) excess if 

both its row and column excess are zero (resp. nonpositive). 
One last general class of matrices to be introduced are the 
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so-called M-matrices. They have been studied very exten- 
sively in economics[5], numerical analysis[10], electrical 
network analysis[6], and there have also been a number of 
applications to stability analysis in the control literature as 
well [7, 8, 11-14]. 

Del~nition 4. A is said to be an M-matr ix  (resp. semi 
M-mat r i x )  if a, < 0 (i # j )  and if all its principal minors are 
positive (resp. nonnegative). 

There is a very extensive literature on the properties of 
M-matrices. A good account of these may be found in [5, 15]. 
Some of their basic properties which will be relevant to this 
article are: 
(I) Let ~ < 0  ( i # j ) .  Then the following conditions are 
equivalent: 

(i) A is an M-matrix; 
60 - A  is Hurwitz (i.e. Re A > 0  for A ~ or(A)); 

(iii) The leading principal minors of A are positive; 
(iv) There exists a diagonal matrix A = diag (A~) with A, > 0 

such that A A (resp. AA) is strictly row (resp. column) 
dominant. 

Note that condition (iii) is particularly interesting since it 
gives a test (analogous to the Sylvester test for symmetric 
matrices) for checking whether or not a matrix with 
nonnngative off-dingonal elements is Hurwitz. Conditions 
analogous to the above exist for semi M-matrix. However, 
for the purposes of the present paper one is more interested 
in a slightly more restricted class, namely those for which 
Y~ + A x  = 0 is stable (if A is a semi M-matrix then one can 
only guarantee that Re A > 0 for A ~ ~r(A ) which is just a bit 
short of stability). 

Definition 5. A is said to be iadecomposable if there does 
not exist a non-empty subset J of {1,2 . . . . .  n} such that 
a, =O (i ~ J , j  ~ J). 

The conditions analogous to (I) are: 
(II) Let A be indecomposable with a~ < 0  ( i #  j). Then the 
following conditions are equivalent: 

(i) ° A is a semi M-matrix; 
(ii)' ~ + A x  = 0 is stable; 
(iv)' There exists a diagonal matrix A f d i a g  (X,) with 

A, > 0  such that A A (resp. AA) is row (resp. column) 
dominant. 

Note that (iv) and (iv)' imply a connection between 
dominant and M-matrices obtained by taking A = I. 

There is a close connection between M-matrices and 
nonnegative matrices. Thus is is well known that a 
nonnegative matrix A has its spectral radius p ( A ) <  I (resp. 
-<1) iff I - A is an M-matrix (resp. semi M-matrix). A further 
connection involving matrix exponentials will be stated in 
Section 4. 

3. Basic inequalities 
In this section certain inequalities are proven involving the 

matrices introduced in the previous section and certain 
classes of convex functions: 

Definition 6. Let V: i t "  ~ R .  Then V is said to be convex 
on D (a convex subset of R") if V ( a x t + ( l - a ) x = )  < - 
a V ( x , )  + (I - a ) V ( x , ) ,  0 < a < I, x, ,  x= ~ D;  it is said to be 
invariant under coordinate permutat ions i f  V ( Px ) = V ( x ) for 
any permutation matrix P, and int~riant  under sign reversal 
o f  coordinates if V ( S x )  = V ( x )  for any signature matrix S 
(i.e. any diagonal matrix $ with $== I). 

if V is sufficiently differentiabie, then its convexity is most 
easily verified from examining its second derivative matrix. If 
D in Definition 6 is all of It" then V will simply be called 
convex. Finally, recall then any norm is convex. 

The foiowiog [n'opmition gives the basic inequalities which 
will be used for constructing Lyapunov functions in Section 
5: 

Proposition I. (i) V ( A x ) <  V ( x )  whenever V is convex, 
invariant under coordinate permutations,  and invariant under 

sign reversal o f  the coordinates i~  ~ [a~ I < I and ~ [a~l <- ! : 
1 

(ii) V (Ax  ) < V (x ) whenever V is convex, invariant under 
coordinate permutations,  and  V (O)< V(x  ) i~  A is nonnega- 

tire, Y~ ao ~ 1, and Y~ a. ~; !; 
J 

(iii) V ( A x ) s  V(x)  whenever V is convex and invariant 
under coordinate permutat ions i H A  is doubly stochastic.  

Proo f  (if): only case (i) is proven explicitly; the proofs of 
60  and (iii) are completely analogous. Clearly [A[ is 
substochastic by assumption. Hence there exist subpermuta- 
tion matrices P, and ~,, >0 ,  with Zy ,  = I, such that 

k 

IA I = ~ ~'*P*. The following string of inequalities then proves 

the claim 

V ( A x )  = V(IAxl) < V(IAIIxl) 

---~ ~,V(Ixl)= V(Ixl)= V(x). 

(only //): again only case (i) is considered. Clearly 

Ilxll, = ~ Ix, ]and tlxlL = max Ix, I are admissible V-functions. It 

is well-known[16] that the corresponding induced norms 

flail, = n~x ~ la~l and IIAI[- = ~ ~ la~l, which proves the 

claim. 

The classes of functions V considered in Proposition I 
only depend on the matrix A is a very global way. This is, 
however, not the case for the next proposition since the 
coefficients A, and /~ of the V functions will in general be 
different for every A. 

Proposition 2. Assume  that  A~ >-- O, ~ > O, f :  R --~ R, and 

V ( x )  = ~: Xdr(p~x,). Then V(AX)  < V(x )  whenever 
i 

(i) f is convex and f(cr) = f ( - c r )  i~  ~ Ao~lau[ ~ Xjl~l and 

zl-~<±; 
(ii) f is convex and f(cr) > riO) i t  A is also nonnegative ; 

(iii) f is convex iV A is nonnegative, ~ &l~a~ = A~j, and 

y~=l__. 
j I~j tz, 

Proof. for the sake of brevity, only the "if" part of 6) is 
considered; the "if"  parts of (ii) and (ill) are analogous, and 
the "only if" part of the proposition may be proven as in 
Proposition !. Now, 

< ~ X~f(~,s]xsl) = ~ X,f(~,x,). 
I J 

Remarks.  I. Proposition I leaves the question whether or 
not the A, and ~ exist unanswered. This may however be 
resolved. Indeed: 

(i) p(lA I) < I ~ I - IAI is an M-matrix C~ there exist X,. 
> 0 satisfying the conditions of case 6) with strict 

inequality. 
(ii) if A is indecomposable then p(IA D "= I ¢~ I - [A I is a 

semi M-matrix c:~ there exist A,,/~, > 0 satisfying the 
conditions of case 6); 

(iii) iff IA I is substocbastic one may take ~ = 1 and iff IA t 
is doubly substochastic one may t ake /~  = A, = 1; 

(iv) if A is indecomposable and nonnegative then p(A ) =  
I c ~  I - A is a siogular semi M.matrix C~ there exist 
A,,/~, > 0 satisfying the conditions of case (iii). 

2. Let [I'll denote an arbitrary norm on It ' .  Then Proposi- 
tion I shows that for every norm which satisfies ~ - ~Px~ = 

IlSxll for all permutation matrices P and signature matrices S, 
the induced norm ~A~-~! ff ~ ] a e ] < l  and ~ [ a ~ l < l .  If 

~ = ~ P x ~ f o r a l l p m m u t a f i o n m a i r i ~ P  then ~A~:s 1 f fA is 
nonnegative and satisfies these inequalities. 
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3. Proposition 2 and Remark 1 show that if I - [A [ is an 
M-matrix or if A is indecomposable and I -  IA] is a semi 
M-matrix then there exist, for each I < p ~ ~, constants 
o~ > 0 such that the norm induced by the t~-type norm 

I[xll--" ~lx,  I ° satisfies f l A ~  1. 
t 

4. Proposition 2 and Remark 1 provide useful generaliza- 
tions of the known result stating that p(IA I) < 1 ¢:~ I - [AI is 
an M-matrix ¢:~ there exist a, > 0 such that [[A it < 1 with 

~x]ffi~, a,[x,[ ¢~ there exist ~, > 0  such that ~A~< 1 with 
" - F  

I lxl l -  max ~,lx, I. 

4. Matrix exponentials 
In this section the various classes of matrices are related 

through their matrix exponentials. The first result is known: 
Proposition 3. (i) ~ [(e ~')U I < 1 (resp. < 1) for all t > 0 i l  A 

is (resp. strictly) row dominant and as < 0 ;  

(ii) ~[(eA')~J< 1 ( r e s p . < l )  for all t > 0  i H A  is (resp. 
J 

strictly) column dominant and as ~ O. 
Proof. (ii) follows from (i) by transposition. The " i f"  part 

of (i) is well-known (see e.g. [16, p. 21]) and the "only if" part 
follows readily by examining e ~' for t sufficiently small. 

The next proposition considers positive matrices. The 
results are again either well-known [1, p. 25] or easy to derive 
from there: 

Proposition 4. A defmes a generator o f  nonnegative type iH 
• A' is nonnegative for all t > 0; it defines a generator o f  
nonnegative type and has zero (resp. nonpositive ) row excess 
i~ • A' is stochastic (resp. substochastic) for all t > 0 ;  it 
defines a generator of  nonnegatipe type and has zero (resp. 
nonposi t i~)  excess iff e ~ is doubly stochastic (resp. 
substochastic ) for all t >0 .  

Turning now to M-matrices one obtains the following 
characterization of their matrix exponentials. The proof is an 
immediate consequence of Proposition 4 and property (ii) of 
M-matrices quoted in Section 2: 

Proposition 5. e ~' is a nonnegative matrix with p(eA*)< 1 
( r e s p . < l )  for t > 0  i~ - A  is an M-matrix (resp. semi 
M-matrix).  
The last proposition of this section is similar to Proposition 3 
but considers rite absolute values of the matrix entries: 

Proposition 6. p( [e~ ' [ )<l  ( resp. '<l)  for t > 0  i~ 
- A ~ - I A , a  [ is an M-matrix (resp. semi M-matrix). 

Proof. (if) by property (iv) of M-matrices quoted in 
Section 2 there exists A, > 0 and • > 0 such that []xl[ = V(x)  : 

A, lx,] satisfies V ( x ) < - e V ( x )  along solutions of i = Ax. 
i 

Thus ~e"ll < 1 for t > 0 and since for this norm lie A'[[ = Ilte "~ III, 
the result follows. The case for semi M-matrices may be 
proven by considering it as the limit of M-matrices. 

(om/y if): Considering e ~ for small positive t yields 
p( l  + A~,. t  + [Atilt) < ! for t sufficiently small. This implies 
that - A ~ . , t -  IAoe[t is an M-matrix for t > 0  sufficiently 
small. Thus - A ~ . .  - [Am[ must be an M-matrix. The case of 
semi M-metrices is completely analogous. 

Remark finally that there is a close connection between the 
indecomposability of A and e ~'. Indeed it is easy to show that 
if a ,  < 0  for i # ]  then e s'  indecomposahle for some 
t~e0 ~ A indecomposable ~ e s'  indecomposable for all 
t # 0. Also [eS'l indecomposable for all t > 0 ¢~ A indecom- 
posable. 

5. L yanpanov functions 
In this section the results of Sections 3 and 4 will be 

combined to give Lyaponov functions for ~: J[ ffi Ax. The 
concept of a Lyapunov function which will be used here does 
not require V to be ~gn dellnite. This is not entirely standard 
but in keeping with some modern developments is this area. 
Let ~ denote the class of real valued Lipschitz continuous 
functions on It ' .  Thus for any V E .~ and any solution x( t )  
of ~, V(x(t))  is an absolutely continuous function of t. Let 

~'(x)]x denote the time derivative of V(e'~x) at t = 0. If V(x)  
is differentiable at x ~ I;'(x)ffi (Ol~x)V(x) .Ax but in any 
case V(x (t))]x exists almost everywhere along solutions of ~. 
Recall that a convex function is Lipschitz continuous. 

Defmnition 7. A function V E .~ will be called a Lyapunov 
function for ~ on the sul:)sot D of It" if ~ ' (x)k-<0 for all 
x E D where the derivative exists. 

There is of course an obvious analogue of the above 
definition for discrete time systems. Thus V(x)  is a 
Lyapunov function for the discretefime system x, . t  = Ax~ if 
V ( A x ) <  V(x). The results of Section 3 immediately give 
Lyapunov functions for such systems. With the results of 
Section 4, however, it may be seen that these also lend to 
Lyapunov functions for ~. Indeed V is a Lyalmnov function 
for ~ iff V(eA'x)-  < V(x) for all t >0 .  Thus Proposition I, 3 
and 4 immediately imply the following result: 

Theorem I: V is a Lyapunov function for  ~ on R" 
(i) whenever V is convex, invariant under coordinate 

permutations, and invariant under sign re~rsai  i~  A is 
doubly dominant and as ~ 0; or 

(ii) whenever V is convex, invariant under coordinate 
permutations and V(O)~ V(x)  i~  A is a generator o f  
nonnegative type and doubly dominant ; or 

(iii) whenever V is convex and int~riant under coordinate 
permutations i f  A is a generator o f  monnegative type 
and doubly dominant with zero excess. 

The appealing feature of Theorem 1 is that the conditions 
on V for it to be a Lyapunov function are very easily 
recognized and verified. It is clear that one can also obtain an 
analogous theorem derived from Propositions 2, 5 and 6 and 
the remarks following them: 

Theorem 2. Let f :R ~ i t  be convex and V(x)  = Y. AJ(p~,). 
l 

Then there exist la~ A, > 0 such that V is a Lyapunov function 
for ~, on R" 

(i) iff(o ')  -- f ( -c r )  and - A ~ , .  - IAo~l is an M-matix or an 
indecomposable semi M-matrix;  or 

(ii) if f (O)~f(cr)  and - A  is an M-matrix or an 
indecomposable semi M-matrix;  or 

(iii) i f  - A  is an indecomposable singular semi M-matrix. 

Remarks 
I. It is of course possible to statg the above theorem as an 

iff condition. Assume that t~, A~ > 0 and that V is a Lyapunov 

function for some f satisfying lira f ( ¢ )  ffi o0. Then obviously 

= Ax will he stable. If a~ ~ 0 for i # ], - A  will then be a 
semi M-matrix. If V is such that actually asymptotic stability 
is guaranteed then - A  will be an M-matrix. The important 
point is that M-matrices have "diagonal" type of Lyapunov 
functions as shown in Theorem 2. 

2. Theorem I and 2 provide useful generalizations of the 

fact that ?~ Ix,[ is a Lyapunov function iff A is column 
| - I  

dominant with as < 0 and max [x, [ is a Lyapunov function iff 

A is row dominant with as < 0. 

3. max [x,I is a Lyapunov function iff A is row dominant 
| 

with as ~ 0; max (x,, 0) and - w i n  (x, 0) are Lyapunov 

functions iff A is a generator of nonnegative type and row 

dominant; and max x¢ and - m i n  x, are Lyapunov functions iff 

A is a generator of nonnngative type and row dominant with 
zero excess. This shows the di~usive character o f  such 
systems. 

4. An interesting limit case of Theorem 2 is max I ~  [ in 
| 

case (i); max(~xhO)  and -min(t~.x.O) in case (ii); and 
| J 

max ~ and -mi'n ~ in case (iii). 

'5. Theorems 1 and 2 guarantee that under certain 
conditions ~']z-~0. Since ~'(x)h=(oVlaxXx).Ax this 
shows that the results will not be part icularly dependent on 
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the fact that A is a constant matrix and consequently the 
methods lead to stability results for nonfinear and/or 
time-varying systems of the type Y~=A(x,t)x.  A given 
nonlinear system J[ =f(x,  t )  may be written in this form. In 
fact, A(x, t )=~'(Of/OxXax,  t )da  is always one such 
matrix[17]. Thus, for example, if the Jacobian matrix 
(af/Ox)(x, t) is strictly row (or column) dominant and has 
negative diagonal elements with some uniformity in x and t 

then asymptotic stability will follow with max Ixs I or E ]xs J as a 
s i 

Lyapunov function[7,8, 17, 18]. Ref. [17] contains in fact a 
much improved version of this result which requires only that 
the j th  row of A(x, t) be dominated by its diagonal element in 

the region Ix, I = max Ix, I. ~iljak[13] gives a nonlinear version 

of Proposition 2. The difficulty there is that one somehow has 
to guarantee that the ~ or the As are independent of x and t. 
By suitable bounding the elements of A(x,  t) as described in 
[13] one may in fact achieve such a situation. 

6. Another possible avenue of generalization is to state 
analogous Lyapunov functions for unstable systems. One 
such result would he the following: assume that IA~,,I- IAo, I 
is an M-matrix or an indecomposable semi-M matrix. Then 

there will exist As, ~ > 0  such that E(sgn a,)Adf(/z~xs) is a 

Lyapunov function for E on R" for any convex f with 
f(~r)=f(-~r). In here ~ ¢r =~IIG, I for o r#0  and s g n 0 =  0. 
Thus if tA [ ~ -  JA Jm is an M-matrix, ~ will be unstable iff 
au > 0 for some i. 

6. Applications to Markov chains 
It is customary in Markov chains to arrange the 

probabilities as a row vector p = (Ps, P2 . . . . .  p , )  where ps 
equals the probability that the system is in state i. Consider 
thus the system 

.~  : J~ = p A 

Definition 8. J{ is said to define a continuous Markov 
chain if e A' is a stochastic matrix for all t > 0. This Markov 
chain is said to have the eqaipartition property if p = 
/ I ! / \  
~ : ,~-  . . . . .  ~ defines an equilibrium point of J/.  

Thus by Proposition 4 J~ defines a Markov chain if and 
only if A is a generator of positive type with zero row excess. 
Clearly it has the equil~rtition property iff e ~' is doubly 
stochastic for all t > 0, i.e. if and only if A is a generator of 
positive type with zero excess. Let R" denote 
{(p, ,  p2 . . . . .  p,) ,  Ps > 0}. Clearly any Markov chain leaves the 

convex set P ={p E R+'J~p, = I} invariant, and thus the 

solution vector p(t)  has an obvious probabilistic interpreta- 
tion. Moreover there is always at least one equilibrium point 

of .4/ in P. With the equipartition property, "-(/ _1 i ~  
\ n ' n  . . . . .  n /  

defines such a point. Moreover if A is indecomposable then 
there is precisely one asymptotically stable equilibrium state 
~r E P a n d ~ r s > 0 .  
Theorems I and 2 imply the following result: 

Theorem 3. Assume that .4[ defines a Markov chain. Let 
=(~, ,~ . . . . . .  ~,) E P be an equilibrium point of ~ with 

/~s >0 .  l f  f is a convex function on P then V (p ) = ~ P,f  (p, l P, ) 
J - i  

is a Lyapunov function for J~ on P. If Jt has the equipartition 
property, then any convex function V de~ned on P which is 
invariant under coordinate permutations is a Lyapunov 
function for J{ on P. 

These results lead to some special Lyapunov functions 
which have an interesting information theoretic interpreta- 
tion. Consider the following standard definition: 

Definition 9. Let (psU',p2 u' . . . . .  p U,)(j = H , . H O  be two 
probability distributions with psU~>O. Then the average 
weight of evidence in favor of t t ,  against H~ given H, is 
defined by 

(H  t )  
- , - s ,  I^,, ps . W ( H , I H ~ )  = 1.  

i - s v l  ~ p (H2)" 

The divergence hetween the hypotheses H I and/ ' /2  is defined 
a s  

J ( I ,  2) = W(H,IH2) + W(H,/H2). 

The notions of weight of evidence and divergence have 
important applications in statistics and in information theory. 
They have been extensively studied, for example in [19, 20], 
where further references may be found. 

Consider now a continuous Markov chain J¢ which has an 
equilibrium point/~ = (/$,,/~2 . . . . .  16, ) with/~ > 0. Assume an 
initial condition p(0) E P. Let HT denote the hypothesis 
" t  = T"  and let H .  denote the hypothesis " t  = ~",  i.e. 

p~S,~ = p,(T) and p[H.~ = p,. (Note that p need not be lira p(t) 
t ~  

although it could be, and it is convenient to think of it as such). 
Theorem 3 implies an interesting and intuitively appealing 
convergence of the weight of evidence and the divergence 
between HT and H,.  

Theorem 4. The average weight of evidence in favor of Hr 
against H ,  given HT, the average weight of evidence in favor 
of H .  against HT given H. ,  and the divergence between the 
hypotheses Hv and H .  are all nonincreasbW functions of T. 

Proof. Choose in Theorem 3, f(~r)=olngcr, f(or)--= 
- log  or, and f(cr) = (or - 1) log o, 0 ~ a < 1, respectively. • 

The above theorem adds a new information theoretic 
quantity which is nonincreasing during the evolution of a 
Markov chain. It shares this property with the mutual 
information between the input and the output and the 
channel capacity of the channel defined by the Markov chain 
transition from t = 0 (the channel input) to t = T (the channel 
output). 

Remarks. 
1. Theorem 3 is of course also valid for discrete Markov 

chains because the proofs, which are based on Section 3, do 
not exploit the continuous nature of the chain. 

2. The results may be of interest in statistical mechanics 
where they constitute considerable generalizations of known 
results[21, 22] in this area. 

3. For Markov chains which also have the equipartition 
property (and only for those!) the entropy of  the chain at time 
T defined by 

H (T) = - ~ p,(T) log p,(T) 
e - i  

is nondecreasing with T. This follows from Theorem 3. In 
fact, Theorem 3 also implies that the generalized entropy 
functions introduced by Arimoto in [23] are nondecreasing 
with T. 

7. Conclusions 
In this paper it has been shown how one may exploit 

dominance conditions in order to obtain nonq~_a,Jratic 
Lyapunov functions for linear systems. The appealing part of 
the results lies in the fact that the conditions on the systems 
and on the Lyapunov functions turn out to be rather simple 
and easy to verify. It would be interesting to attempt 
generalizations to systems described in input-output form. 
This has the potential of leading to an input-outpat theory of 
diffusion, absorption and other physically interesting qualita- 
tive assumptions. 
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