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Abslract--A theory is developed for nonstationary network synthesis 
via state-space techniques. The method is based on direct realization 
algorithms from a Hankel matrix (input/output) description of the 
system. Passive, lossless, reciprocal, reversible, and relaxation systems 
are considered. For each of these classes of systems, necessary and suffi- 
cient conditions on the Hankel matrix for the existence of a represen- 
tation which can be synthesized with certain types of network elements 
are derived. In addition, algorithms for computing these representations 
are presented. 

I. INTRODUCTION 

T HE CONCEPTS of linear systems theory provide a 
natural and valuable framework for the study of 

network analysis and synthesis. Consequently, this approach 
has been investigated extensively in the recent literature 
[l]-[lo], [23], [26] ([lo] and [23] provide especially good 
background for this paper). In these papers the approach 
to synthesis consists of first constructing an arbitrary 
minimal state-space realization, and then transforming this 
representation into one which is synthesizable by a particular 
type of network. This paper provides, for some particular 
classes of systems, algorithms for the construction of the 
desired minimal realization directly from the associated 
Hankel matrix. Thus we eliminate the necessity of solving 
a matrix equation and performing the associated coordinate 
basis change; in addition, we extend the theory to cover 
time-varying lossless systems and stationary reversible and 
relaxation systems. 

II. LINEAR SYSTEMS AND REALIZATION THEORY 

The purpose of this section is to review some basic facts 
from linear system theory [ll], [14]. We include these 
primarily for ease of reference and notation. We will consider 
the finite dimensional linear system 

i(t) = A(t)x(t) + B(t)u(t) (1) 

y(t) = cw(t> + WtM) (2) 

where x, the state, is an n-vector valued function; u, the 
input, is an m-vector valued function; and y, the output, 
is a p-vector valued function. We will always consider 
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systems with m = p. We assume moreover that the .system 
is defined for all -co < t < co, and that A(t), B(t), 
C(t), and D(t) are matrices of dimension compatible with 
(1) and (2), and that they are at least continuous as functions 
of t. We will denote the dynamical system defined by (1) 
and (2) by (A(t),B(t),C(t),D(t)). The state transitionfunction 
and the read-out function of this system are given by the 
well-known formulas [ 11 ‘J 

s 

f 
x(t) = ~(%,Xo,~) = @(t,toh + <P(t,z)B(T)u(z) dz (3) 

Gl 

y(t) = C(t>x(t> + Wt>u(t> (4) 

where x0 = x(t,) and cD(t,t,) is the transition matrix defined 
by &(&to) = A(t)@(t,t,) and @(t,,t,) = I. The system (1) 
and (2) is said to be stationary (or time-inuariant) if A(t), 
B(t), C(t), and D(t) are constant matrices. 

If A(t), B(t), and C(t) are sufficiectly differentiable, we 
define the j-controllability and j-observability matrices 
c131, Cl41 

Q,(t) = [PO(t) f’l(t) . . * Pj-l(t)I 
R,‘(t) = [So’(t) S,‘(t) * - . S;-,(t)] 

where 

Pk+l(t) = --A(tP,(t) + hm? PO(t) = B(t) (5) 

&c+1(0 = fwMt) + m So(t) = C(t) (6) 

(here prime denotes the transpose). The system (A(t),B(t), 
C(t),D(t)) is said to be of constant rank and order n if there 
exist positive integers u, /?, qc, and q. such that A(t), B(t), 
and C(t) are max (cr,fi) - 1, max (a$), and max (a$) 
iimes continuously differentiable, respectively, and such 
that 

rank Q,(t) = rank Q,+,(t) = qc 4 n, for all t (7) 

rank R,(t) = rank R,+,(t) = q. I n, for all t. (8) 

For stationary systems, we define the stationary j-con- 
trollability and j-observability matrices by 

Qj = [B AB . - - A’- IB] 

Rj’ = [C’ A’C’ . . . (A’)‘-‘C’]. 

(Notice, however, that Qj and Rj are not equal to Q,(t) 
and R,(t) which in this case will be independent of t, since 
there are some differences in sign. This somewhat confusing 
notation is in keeping with the standard nomenclature.) 

The system (Al(t),Bl(t),C,(t),QI(t)) is said to be 
algebraically equivalent [14] to (Az(t),B2(t),Cz(t),Dz(t)) if 
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there exists a continuously differentiable matrix T(t) with 
det T(t) # 0 for all t such that 

(Az(t),Bz(t),C,(t),D,(t)) 
= (T(t)A,(t)Y-l(t) -I- F(t)P(t), 

uo4(wl(o~- ‘w4t)). 

Two common representations of the response function 
from the input to the output of (1) and (2) are by its weight- 
ing pattern W(t,z) = C(t)@(t,z)B(z) (defined for all 
-co < t, r < co), together with D(t), or by its impulse 
response K(t,z). = W(t,z) -I- D(t)s(t - r) for t 2 r and 
= 0 for t < r, where 6( *) denotes the Dirac delta function. 
The output is thus given in terms of the input (if n(to) = 0) 
by 

s 

t 
YW = W(t,z)u(z) dz + D(t)u(t). (9) 

f0 

An alternate input/output description involves D(t) and the 
Hankel matrix [14] defined by 

where 

ak a1 
&(t,4 = - - w(t,z). atk art 

If we let rlj(t) = Sij(t,t), then it is easy to verify that 

rij(t) = Ri(t)Qj(t)- 
For stationary systems we will write W(t) for W(t - Z, 0). 

The Hankel matrix of a stationary system is defined by 

Ho OH, .‘. Hj-l (10) 
where the sequence (Hi} is defined by Hi = (d ‘/dt ‘) W(0) 
(we have used the standard definition of the stationary 
Hankel matrix; it is not equal to I’,(t) which in this case is 
independent of t, since there are some differences in sign). 
Stationary systems may also be described by their transfer 
function G(s) = C(Zs - A)-‘B f D. The Hankel matrix 
coefficients {Hi} are related to G(s) by the Laurent expansion 
around s = 03 

G(S) = ~ Hi-lS-i. 
Ii= 1 

It is well known that the system (1) and (2) is not uniquely 
determined by its input/‘output descriptions. In fact, 
algebraically equivalent systems induce the same input/ 
output descriptions [14]. The problem of representing an 
input/output description of a system by means of the form 
(1) and (2) is called the problem of realization. Thus 
(A(t),B(t),C(t),D(t)) is said to be a realization (or rep- 

resentation) of (W(t,t),D(t)) if W(t,r) = C(t)@(t,z)B(z). 
It is said to be a minimal realization if every other realiza- 
tion of the form (Al(t),Bl(t),C,(t),D,(t)) of (W(t,z),D(t)) 
has a state space of greater or equal dimension. Notice 
that D(t) is an input/output quantity; in fact, it is the 
coefficient of s(t - r) in the impulse response (or D = 
G(co) in the stationary case). Thus any realization (A,(t), 
B,(t),C,(t),D,(t)) of (W(t,z),D(t)) will have Dl(t) = D(t), 
so we need only consider the realization problem for 
wt,+ 

For stationary systems (i.e., W(t,z) = W(t - 7)) the 
fundamental condition for the existence of a representation 
of the form of (1) and (2) [14] is that there should exist 
nonnegative integers 01, /I, and n such that 

rank rs,+ = rank r8+1,0r+j = n, j = 1,2;**. (11) 

If (11) is satisfied, then n is the dimension of the state 
space of any minimal realization. Various algorithms for 
the construction of a stationary minimal realization from 
the Hankel matrix are presented in [2], [ 141, [ 151; however, 
for our purposes, an appropriate algorithm for both 
stationary and nonstationary systems is based on Silverman 
and Meadows’ [ 131 realization of nonstationary systems, as 
described in the following lemma. 

Lemma I : W(t,z) has a constant rank realization if there 
exist positive integers u, fl, and n such that W(t,z) is a,/? 
times continuously differentiable with respect to t,z and 

a) rank Xp,.(t,z) = rank ~F~+~,~+~(t,z) = n, 

forall t,z (12) 

b) r,,.(t) can be factored in the form 

r,,,(t) = wwt) (13) 

where iV and M are continuously differentiable, N(t) is 
(m/I x n) with rank n for all t, and M(t) is (n x ma) with 
rank it for all t. 

The proof (i.e., the realization algorithm) proceeds by 
performing the factorization (see [12, p. 1911) 

rs,a+ ,(t) = w)fiw (14) 

where N(t) is (m/I? x n) and fi(t) is (n x m(a + 1)) 
(both have rank n). The matrices N(t) and i@(t) are the 
/I-observability and (a + I)-controllability matrices for the 
minimal realization to be constructed. Let M,(t) denote the 
first m columns of a(t), N,(t) the first m rows of N(t), 

M,(t) the first ma columns of i@(t), and M,+,(t) the last 
ma columns of a(t). Then 

= 
([ 

-M,+,(t) + $ M,(t) M.t(Wf~WJWf)) (15) 1 
(where Mat = M,‘(M,M,‘)- ’ is a right inverse for M,) 
defines a minimal constant-rank realization of W(t,T) 
(see [13]). 

For stationary weighting patterns W(t) the algorithm 
proceeds as follows. 
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1) Perform the factorization 

r B,a+l = NM 

where N is (mfi x n) and M is (n x m(a + 1)) (both have 
rank n). 

2) Construct the minimal realization 

W&C) = (Ma+ JKt,M1,N,) 

where Ma, M,+ 1, M,, and N, are defined as in Lemma 1. 

III. SOME SPECIAL CLASSES OF LINEAR SYSTEMS 

In certain problems in the analysis and synthesis of linear 
systems and networks one is led to consider models which, 
in input/output or in state-space form, exhibit special 
properties. The purpose of this section is to provide theorems 
regarding the compatibility of external and internal prop- 
erties of a number of important systems of this kind. 

We will consider linear systems via the state-space 
representation (A(t),B(t),C(t),D(t)) or the input/output 
representation (W(t,z),D(t)). We will assume throughout 
that (A(t),B(t),C(t),D(t)) is a minimal constant rank 
representation and that (W(t,z),D(t)) satisfies the realiz- 
ability condition (11) in the stationary case or (12) and (13) 
in the nonstationary case. 

A. Passive and Lossless Systems 

Definition I (cf. [16], [23]): Let w(t) = u’(t)y(t) where 
y(t) is given by (9). Then .( W(t,z),D(t)) is said to be exter- 
nally passiue if & W(T) dT 2 0 for all inputs and t 2 t,. It 
is said to be externally lossless if it is externally passive and 
if J:; w(r) dz = 0 whenever u is such that y(t) = 0 for all 
t 2 t1 2 to.1 The representation (A(t),B(t),C(t),D(t)) is 
said to be internally passive if 

A(t) + A’(t) B(t) - c’(t) 
B’(t) - C(t) I 

< 0 
-D(t) - D’(t) - ’ for all t (16) 

(i.e., (d/dt)($x’(t)x(t)) < u’(t)y(t) along solutions of (1) 
and (2)). It is said to be internqlly lossless if (16) holds with 
equality. 

The above definitions become natural if one identifies 
w(t) = u’(t)y(t) with the power supplied to the system 
and $d(t)x(t) with the stored energy in the system. Passive 
systems may be viewed as a special case of dissipative 
systems [16]. The following lemma relating external 
passivity to internal properties of the system is proved in 
D71. 

Lemma 2: A sufficient condition for the external passivity 
(losslessness) of (W(t,r),D(t)) is that for every minimal 
representation (A(t),B(t),C(t),D(t)), there exists a solution 
Q(t) = Q’(t) 2 0 to the matrix inequality (equality) 

(i(t) + A’WQW + QWW QWW - C’(t) 
B’(t)Q(t> - C(t) -D(t) - D’(t) 1 I ,, 

* 

(17) 

’ We note that this definition is not the only one used in the literature. 
For example, one common definition [23] invdlves taking t1 = co, 
with u and y both square integrable. 
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If D(t) + D’(t) > 0 for all t, then (W(t,z),D(t)) is ex- 
ternally passive, and this condition is also necessary for 
external passivity. Every solution Q(t) of (17) satisfies 
Q(t) > 0 and obeys the dissipation inequality (d/dt) * 
(+x’(t)Q(t)x(t)) I u’(t)y(t) along solutions of (1) and (2). 

If D(t) + D’(t) is singular, it is necessary that there 
exist a solution Q(t) = Q’(t) 2 0 to the Stieltjes integral 
inequality (equality) 

[ dQ(t> + (A’(t>Q(t) + Q(t)A(t>> dt 
W(t>Q(t) - C(t)> dt 

(Q(tMt) - C’(t)> dt 
(-D(t) - D’(t)) dt I[ 1 x(t) < o u(t) 

for all continuous x( *) and u(a) and all t, and t,. 
The Stieltjes integral arises in the necessary condition 

when D(t) + D’(t) is singular;because it is then not possible 
to prove the differentiability of Q(*). Anderson and Moylan 
[17] present an algorithm for the computation of Q(e) 
in this case, but it involves ad hoc conditions throughout the 
algorithm to ensure differentiability; these conditions 
cannot be checked a priori. 

Lemma 2 and the following lemma establish the com- 
patibility of external and internal passivity and losslessness. 
The proof of Lemma 3 is analogous to the stationary case 
[16]-[20]. 

Lemma 3: A sufficient condition for the external pas- 
sivity (losslessness) of (W(t,z),D(t)) is that there exist a 
minimal realization which is internally passive (lossless). 
If D(t) -I- D’(t) > 0, then (W(t,z),D(t)) is externally 
passive, and this condition is also necessary for external 
passivity. 

In the stationary case, the conditions in Lemmas 2 and 
3 are necessary and sufficient without the restriction 
D + D’ > 0 (see [16]-[20]). 

B. Reciprocal Systems 

Since no adequate definition of time-varying reciprocal 
systems is presently known (see [6], [21], [27], [31]),-we 
will restrict our discussion in this section to stationary 
systems. 

Dejinition 2: The transfer function G(s) is said to be 
externally reciprocal with external signature matrix Xe if 
&G(s) = G’(s)&,, where & is a diagonal matrix with entries 
either + 1 or - 1. The stationary representation (A,B,C,D) 
is said to be internally reciprocal with internal signature 
matrix Xi and external signature matrix EC, if 

The following well-known lemma ([2], [16], [23]) shows 
the compatibility of external and internal reciprocity. 

Lemma 4: The transfer function G(s) is externally 
reciprocal with external signature Xc, if and only if there 
exists an internal signature Xi such that G(s) admits a 
stationary minimal realization which is internally reciprocal 
(and thus satisfies (18)). 
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C. Reversible Systems 2) Construct the internally lossless minimal realization 
Definition 3: The transfer function G(s) is said to be 

externally reversible with external signature matrix X:, 
[16] if &G(s) = -G(-s)& 

Lemma 5: G(s) is externally passive and externally 
reversible with signature 7&, if and only if there exists an 
internal signature Xi such that G(s) admits a stationary 
minimal realization which is internally lossless and in- 
ternally reciprocal (and thus, satisfies (18)). 

D. Relaxation Systems 

Dejinition 4: The stationary system (W(t),D) is a relaxa- 
tion system ([16], [28]) if a) D = D’ 2’ 0; b) W(t) = 
W’(t) for all t 2 t,; c) (- l)“(dR/dt”) W(t) 2 0 for all 
t 2 to, n = 0,1,2; * *. 

The relationship between the external and internal 
structure of relaxation systems is proved [16]. 

Lemma 6: The system (W(t),D) is a relaxation system 
if and only if it admits a stationary minimal realization 
which is internally passive and reciprocal with C, = I,,, 
and Xc, = -I, (where Z,, is the n-dimensional identity 
matrix). 

= ([--My(t) + ‘ciy- dOlM,t- l(t>,M~(t>,Ml’(t>,D(t)) (20) 
where M, denotes the first m columns of M(t), M,-,(t) 
the first m(y - 1) columns of M(t), and M, the last 
m(r - 1) columns of M(t). 

Proof: 
Necessity: If (A(t),B(t),C(t),D(t)) is internally lossless, 

it may be shown by induction that P,(t) = Si’(t) (cf. 
(5), (6)). Thus Qk(t) = Rk’(t) and 

r,,(t) = R,WQ,W = Q,‘<t)Q,(t> 2 0. 
Suficiency: Since r,,(t) = r,,,‘(t) 2 0, and (i2) and (13) 

is satisfied, it may be factored in the form (19) (see [25]). 
Considering (20), it is obvious that B(t) and C(t) satisfy 
(16) with equality; using the fact that My-l(t) and M&,(t) 
satisfy (5) and (6), it may be shown that A(t) + A’(t) = 0. 

Q.E.D.’ 
In the case of stationary lossless systems, certain modifica- 

tions of previous definitions’ must be made. Define the 
mod$ed j-observability matrix by 

IV. REALIZATION ALGORITHMS FOR SYSTEMS WITH INTERNAL 
CONljTRAINTS 

iijf = [C’ (- 1)‘A’C’ (- l)Z(A’)% * * * 

In the previous section various classes of linear systems 
(- l)j-l(A~)j-lcq. 

with internal or external constraints were introduced, and 
it was shown that the external and internal formulations 

In addition, let the modl@ied Hankel matrix rij be defined by 

of such systems were equivalent in a well-defined sense. go1 **. ECl,j-1 

The proofs of the lemmas stating that a system with a HI, *** Hl,j-1 
particular external property admits a realization with the 
analogous internal property are, in fact, constructive. : I 8,-l,, -** B,_;.,_l 
However, the procedure followed is that of first constructing 
an arbitrary minimal representation (as in Lemma 1, or [2], 
[13]-[15]), and then transforming to an algebraically 
equivalent representation with the desired constraints. In 
this section it is shown how,, in many cases, one may bypass 
the intermediate realization. and proceed directly from the 

where H,, ,,, = (- l)‘H1+, (see (10)). The modified Hankel 
matrix f;ij differs from rij only in the respect that every 
odd-numbered “block row” is multiplied by - 1. With these 
preliminaries, we state the following theorem, which is 
proved analogously to Theorem 1 [21] 

Hankel matrix to the desired realization. We will first Theorem I(a) . , 
translate the external constraints into conditions on the 
Hankel matrix, and then u.sing these special properties of The transfer function G(s) is externally lossless if and only 

the Hankel matrix we w:ill specialize the algorithm of 
if r = TYY’ 2 0 and D + D’ = 0 (where y = max (a -I- 1, 

Lemma 1 to construct a realization with the required b ;‘l) and a and /I are defined in (11)). In this case, the 

constraints. We will implicitly use Lemmas 2 to 6 through- following algorithm yields an internally lossless stationary 

out this section. 
minimal realization 

1) Perform the factorization (by means of a congruence 
Theorem I 

The system (W(t,z),D(t)) is internally lossless if and only 
if r,,(t) = r,,‘(t) 2 0 an.d D(t) + D’(t) = 0 for all t 
(where y = max (a + 1, p + 1) and c1 and j3 are defined 
in Lemma 1). In this case, the following algorithm yields an 
internally lossless minimal :realization. 

1) Perform the factorization (by means of a congruence 
reduction [21], [25, pp. 209-2161) 

r,,(t) = M’(t)M(t) (1% 

where M(t) is an (n x ym:) matrix with rank n for all t. 

reduction [21], [25, pp. 209-2161) 

T,, = M’M 

where M is an (n x my) matrix of rank n. 
2) Construct the desired realization 

WKD) = W,M;- 1 M, ,M, ‘9) 

’ As suggested by a reviewer, an alternative realization procedure is 
provided by noting that the weighting pattern matrix for an internally 
lossless system can always be written in the form W(~,T) = &f’(t)M(~), 
from which the internally lossless minimal realization (O,M(r),M’(r)) 
is immediate. 
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where M,, M,- r, and My are defined as in Theorem 1. 
The next theorem, which was proved for the case X, = Z”, 

in [2], [22] deals with reciprocal systems. 

Theorem 2 

The transfer function G(s) is externally reciprocal with 
external signature Xc, if and only if Z:,D = D’?Z, and the 
(my x my) matrix Frr* a (EC, i * * * -i- &,)Fyu is symmetric 
(where y = max (a + 1, /I + l), a and /I are defined in 
(ll), and -i- denotes a block diagonal matrix). In this case, 
the following algorithm yields an internally reciprocal 
stationary minimal realization. 

1) Perform the factorization (by means of a congruence 
reduction ([21], [25, pp. 209-2161) 

rry* = M’(-&)M 

where M is an (n x my) matrix of rank n. 
2) Construct the required realization 

(21) 

(A,B,C,D) = (~iM,M,t-l~i,-~iM,,~:,M,‘,D) (22) 

where Ml, My- i, and M, are defined as in Theorem 1. 
Proof: 

N&es&y: This condition is obvious [2], [21], [22]. 
Su#iciency: The factorization (21) is valid because (11) 

is satisfied and Fry* is symmetric [25]. It is easy to see that 
B and C of (22) satisfy (18). Notice that 

M,‘EiMy - 1 = M:- l~iM,. (23) 

Premultiplying (23) by &(M,- ,M;- ,)-lM,,- 1 and post- 
multiplying by the transpose of this expression yields 
A’& = &A. Q.E.D. 

For systems which are simultaneously externally passive 
and reciprocal, the algorithm of Theorem 2 significantly 
improves the procedures of Yarlagadda [lo]. Instead of 
first constructing an arbitrary realization and then perform- 
ing two equivalence transformations, one may construct an 
internally reciprocal realization directly from the Hankel 
matrix and then apply the transformation of [lo] (Method 2) 
to construct an internally passive and reciprocal realization. 

For the study of reversible systems, it is assumed without 
loss of generality that Xi = [Z,,, i (-Z,,)] and X, = 
[I,,,, -j- (-Z,,)], where n, + n2 = n and m, -!- mz = m. 
Then internal losslessness and reciprocity imply. [16] that 

(24) 
where O,,s denotes the (r x s) zero matrix. 

De$nition 5: The matrix Fyr* is said to be in reversible 
form if 

V r*= .2 
YY I : 

(25) 

where, for i = 1; * *, y - 1, Vi is a (2m x 2m) matrix of 
the form 

Also, we define the (m x m) matrices 

and the @my x *my) matrices 

With these preliminaries, the major result on the realiza- 
tion of passive and reversible systems will now be proved. 
In order to simplify the proof, it will be assumed in the proof 
that y = max (a + 1, /I + 1) is an even integer; the proof 
may easily be modified to cover the case that y is odd. 

Theorem 3 

The transfer function G(s) is externally passive and 
reversible with external signature X, if and only if 

a) I-n’ * is in reversible form, 
b) $,* = ($,*>’ 2 0, 
c) ryy* = (ryy*)’ 52 0, 
d) D = -&DE, = -D’. 

In this case, the following algorithm yields a stationary 
minimal realization which is internally lossless and 
reciprocal. 

1) Perform the factorizations 

f,,* = ii?rz,,A 

r YY * = I@‘( -Z,,)M., 

2) Partition fi and i%i according to 

rii = [A, ia -** iii,] 

iiT = [iv, iiT2 *** iv),] 
A . 

(27) 

(28) 

(29) 
where Mzi IS (nz x m2), M,,+l is (n, x m,), Eli is 
(n, x m&and ~~i+l is (nl x mz). 

3) Form the matrix 

. - ; MY 
! %*m -km2 * 1 

4) Construct the required realization 

(A,B,C,D) = (&M,M,t- Ji, -~IM,,&M,‘,D). (30) 
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Proof: 
Necessity: If (A,B,C,D) satisfies (24), then 

?2 CA2’B = 
(- l)‘B,‘(A,‘A,)‘B, 

e 0 m,m1 (- l)“>;‘&A1’)B2 1 
(- ~)‘+lB~~,miAl’A,)i& 

(- l)‘+‘B1’A,‘(A,‘A1)‘B2 
0 m2.m 

Hence, rrr* is in reversible form. Also Fir?* and f,,* may 
be expressed as in (27)-(29), where 

&2i = (- l)‘A,‘(A,A,‘)‘-‘B, 

iiizi+l = (- l)‘(A,‘A,)‘B, 

ii;ii = (-l)“‘A,(A,‘A1)‘-‘B, 

M2i+l = (- 1)i(AlAI’)iB2. 

Thus f,,* 2 0 and I?,,* I 0. 
Suficiency : If a)-c) are assumed, then the factorizations 

(27), (28) are valid [25]. It (can be easily verified that 

ryy* = M’[(-I,,) .i- Zn,]M = M’(-E,)M. 

Thus Theorem 2 implies that (30) defines a minimal in- 
ternally reciprocal realization. Some simple calculations 
will show that the realization defined in (30) also satisfies (24). 

The following result on relaxation systems is also dis- 
cussed in [28]. 

Theorem 4 

The system (W(t),D) ( or, equivalently, G(s)) is a relax- 
ation system if and only if 

a) D = D’ 2 0, 
b) rrr = rrr' 2 0, 
4 or,, = (a,,)’ I 0, 

where 

is the “shifted” Hankel matrix [29, p. 2891. 
In this case, the algorithm of Theorem 2 yields a minimal 

stationary realization which is internally passive and 
internally reciprocal (with X, = Z,, Xi = -I.). 

Proof: 
Necessity: If (A,B,C,D) is internally passive and reciprocal 

with Ze = I,,,, Xi = -I,,, then A = A’ I 0, B = C’, and 
D = D’. It is clear from the results on reciprocal systems 
that this implies r,,? = rYY’ 2 0 and rrryY = (ar,,)‘. Also, 

or,, = QY’AQ, (31) 

so A I 0 implies OIYrv I (Il. 
Suflciency: The algorithm of Theorem 2 ((21), (22)) 

yields the internally reciprocal realization (A,B,C,D) = 

(M,M;- l,Ml,Ml’,D). Now consider the expression (31) 
for ar,,. Postmultiplying (31) by Qy’(QyQr’)-’ and pre- 
multiplying by the transpose of this expression shows 
that c) implies A I 0. Hence, the representation is also 
internally passive. The application of Lemma 6 completes 
the proof. 

Remark: The apparent similarity between the conditions 
on the Hankel matrices in Theorems 1 and 4 is due to the 
sign difference in the definitions of stationary and non- 
stationary Hankel matrices. 

V. APPLICATIONS TO ELECTRICAL NETWORK SYNTHESIS 

In this section we will outline how the results of the 
previous sections may be used in the synthesis of electrical 
networks. The method employed is based on the concept of 
reactance extraction [2], [6], [7], [23]. In this approach, a 
linear time-varying network is analyzed by first extracting 
all the inductors, capacitors, and independent sources 
thereby leaving a purely memoryless network. The state 
equations are then determined in terms of the port des- 
cription of this remaining memoryless network, in which 
the state variables are the inductor currents and capacitor 
voltages. For synthesis purposes, we will assume without 
loss of generality [30] that all inductors and capacitors are 
time invariant; hence, all time-varying elements are memory- 
less (resistors, transformers, and gyrators). 

We thus define it and vL, the vectors of inductor current 
and voltage; i, and v,, the capacitor currents and voltages; 
i, and vl, the currents and voltages of the voltage sources, 
and i2 and v2, the currents and voltages of the current 
sources. We assume that the memoryless network which 
interconnects the inductors, capacitors, and sources has a 
hybrid description of the form (explicit time dependent 
notation will be omitted) 

[i] =[;;-$] [;I. ', (32) 

If C and L are diagonal nonsingular matrices with entries 
equal to the various reactances, the reactive elements may 
be described by 

C-$v, = -ic 

,I (33) 
Ls’, = -vt. 
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Substituting (33) into (32) and defining 

yields state equations of the form of (1) and (2), where 

(A(t>,B(t),C(t),D(t)) 

= (- Qpi<OQ, - QPz(W&)QJ’&N (35) 
with 

Q = JC 0 [ 1 -l. 0 JZ 
For the purpose of synthesis, we will also assume without 
loss of generality that the reactive portion of the network 
contains only 1 - H inductors and 1 - F capacitors. This 
is possible because, for example, an 1 - H inductor may be 
replaced by a transformer of turns ratio &: 1 terminated 
in a 1 - H inductor; the normalizing transformer may 
then be incorporated into the memoryless portion of the 
network. 

Thus we have reduced the problem to: given the input/ 
output description ( W(t,r),D(t)), construct the hybrid 
matrix 

[ 
-A(t) -B(t) 

C(t) D(t) 1 
where W(t,z) = C(t)cD(t,z)B(z), and terminate this memory- 
less network in 1 - H inductors and 1 - F capacitors. 
In addition, constraints on (W(t,z),D(t)) may be translated, 
via the lemmas of Section 3, into constraints on (A(t),B(t), 
C(t),D(t)), and consequently on the types of elements 
used in the reactance extraction synthesis. For instance, 
( W(t,z),D(t)) may be synthesized as a passive (time-varying) 
RLCTG network if and only if it is externally passive;3 
furthermore, the realization (,4(t),B(t),C(t),D(t)) must be 
internally passive. A similar relationship holds between 
external (and internal) ‘losslessness and LCTG networks, 
reciprocity and (possibly active) RLCT networks, revers- 
ibility and LCT networks, and relaxation systems and 
passive RCT or RLT networks. 

In Section 4 we have given algorithms for the computation 
of realizations satisfying the appropriate internal con- 
straints for the various types of external constraints; the 
procedure is as follows. Given (W(t,z),D(t)), construct 
(via the algorithms of Section 4), the appropriate realization 
(A(t);B(t),C(t),D(t)). Then synthesize the memoryless 
hybrid matrix 

[ 
-A(t) -B(t) 

C(t) D(t) I 
(see [30]), and terminate this network in 1 - H inductors 
and 1 - F capacitors. The relationships between the 

3 For a discussion of time-varying network elements, including 
gyrators and transformers, see Newcomb [30]. 

TABLE I 

Network 
ElemelltS 

RLCTG 

LCTG 

RLCT 

LCT 

EXtWIlal Internal Realization 
Condition Condition Algorithm 

Passive Passive 
(D3f.l) (Def.l) 

Losalesa Lossless Theorem I 
(Def.l) (Def.l) 

Reciprocal RedpP3Gll Theoren 2 
(Def.2) (Def.2) 

Passive and Lossless and Theorem 3 
Reversible (Def.3) Reciprocal 

RCT Relaxation 
@.LT) System (Def. 4) 

Passive and 
Reciprocal 

(",-&". .&--2,) 

Theorem 4 

various types of networks and their realization algorithms 
are summarized in Table I. 

111 
121 
[31 

141 

[51 

161 

[71 

181 

191 

WI 
PII 
WI 
[I31 
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