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I 
c 

Parametrizations of Linear Dynamical Systems: 
Canonical Forms and Identifiability 

Abstract-We consider the problem of what parametrizations of 
linear dynamical systems are appropriate for identification (i.e., so 
that  the identitication problem has a unique solution, and all systems 
of a  particular class  can  be represented). Canonical forms  for con- 
trollable  linear systems  under similarity transformation are con- 
sidered  and  it  is shown that  their  use in identification may  cause 
numerical difliculties, and an alternate approach is proposed which 
avoids these  dBculties.  Then it is assumed  that  the system matrices 
are parametrized by some unknown parameters  from apriori system 
knowledge. The identiability of such an arbitrary parametrization is 
then considered in several  situations. Assuming that  the system 
transfer function can be   idenaed  asymptotically, conditions are 
derived for local and global identifiability. Finally, conditions for 
identifiability from the  output spectral  density are given for a  system 
driven by unobserved  white noise. 

I. IIYTRODUCTION 
COKSIDER the  standard linear dynamical  systems 
L 4  

d* = A x ( t )  + Bu(t),y(t)  = Cx(t> + DU(t)  (1) 
dt 

or 
x ( k  + 1) = Ax@)  + Bu(k),y(k) = C x ( k )  + Du(k),  (2) 

where x E an, u E am, y E ap. 
A parametrizat,ion of t,he system  matrices (A,B,C,D) is 

then a c’ (i.e., continuously differentiable on Q) function 
(A,B,C,D)(a): D c @q + an(n+m+p)+mp. That.  is  the sys- 
tem  matrices  are  parametrized  by  the unknown  parameters 
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(Y. In the context. of identifying  such  dynamical syst.ems 
t.he following two  properties of a  parametrization  are 
desirable. 

Propel ty  1: The  parametrization  should  be identiflable 
in  some sense. 

Property 2: All systems in an appropriate class can  be 
represented  by t.he parametrization. 

Canonical  forms are one  approach to t.his parametriza- 
t,ion problem and have  been  suggested  by  several authors 
(e.g., N a p e  [9], Weinert  and  Anton [lj]). In Section I1 
we  will give some  general  comments  on  using  canonical 
forms. 

Canonical  parametrizations  are useful (and  necessary) 
when there is very litt.le a p r i m i  system  knowledge  except, 
perhaps,  the syst.em order. An alternative  approach can 
be  used  when there is sufficient. a priori information  from, 
for  example, physical considerations, to writ,e down the 
system  matrices as funct.ions of relatively few unknown 
parameters, a, as (-4,B,C,D)(a). The  advantages of such 
models are  that  the prior knowledge is conveniently  sum- 
marized and  the  resulting  state  variables  and  parameters 
have  a physical interpretation.  Propert,y 2 above is then 
automat.ically sat,isfied since the prior  knowledge deter- 
mines the class of systems of int.erest,  and  hence  all sys- 
tems of order n. need  not be  represented  as is the case  for 
canonical  forms.  Therefore for these  parametrizations 
identifiability is the prime  concern  and conditions for 
identifiability are given in Sect,ion 111. 

In Section IFT t.he identifiability of parametrizations of 
systems  driven  by  unobserved  white noise is considered. 

11. REMARKS ON CSING CAXONCAL FORMS IN 
IDEKTIFICATIOK 

The canonical  forms  normally  considered for identifica- 
tion  are  those of the  triple (A,B,C) of given  dimension, 
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under a simila,rit.y transformation, (A,B,C) f (TATM1, 
TB,CT-l), with the assumption of controllability. Simi- 
larity  t,ransformations  are considered since for  minimal 
systems  all input,-output  equivalent systems are related 
by a similarity  transformation. This problem has  been 
considered by  Popov [ E ] ,  Mayne [9], and  others including 
Denham [3], t o  which the reader is referred to  for defini- 
tions and properties of canonical form,  invariants, com- 
pleteness, and independence. 

Canonical  forms  for  multivariable syst.ems necessarily 
consist of several separate  parametrizations  each one 
determined  by  a  set of indices (e.g., the Kronecker in- 
variants, minimal indices). In  all t,he  available  canonical 
forms  there is one parametrization which has the maxi- 
mum  number of free  paramet.ers, and will be generic in 
that almost. all  controllable  systems of order n can  be 
represented using this paramet,rization. However to  
represent the boundary of this first  parametrization  many 
more  parametriza.tions  may  be  required,  each  containing 
fewer degrees of freedom (see Denham [3]). Identifying a 
syst,em from noisy data  to be  in the nongeneric form  is 
generally not a st.atist.ically well-posed problem,  since it 
will require  estimat.ing a determinant to  be exactly 0. 
Further, numerical difficulties are likely t,o occur when 
representing  systems  near the bounda.ry of one  para- 
metrizat.ion. 

Example 

To justify  these  general  remarks  for a particular canon- 
ical  form we now give details of canonical  form given im- 
plicitly in [12], and illust,rat,e how the above phenomenon 
may  occur. 

D e h e  the controllability  matrix, 

W(A,B)  [B,AB,* - *,A"-IB], 

let 

K = (nl,%,- . 

< and define, 
P(A,B,K) A [bl,Abl; . . ,Anl-'bl,. . .,bm,Abm, * * . ,Anm-'bm]. 

Then K is ca.lled the  set of Kronecker  invariants if the 
columns of P(A,B,K) are  t,he first columns of W(A,B),  
beginning a t  t$he  left, to  form a basis for &in. 

A canonical form  for  t.he  controllable  triple (A,B,C) 
with  rank B = m, is now given by a  family of para- 
metrizations,  one  for  each set of Kronecker  invariant.s, K ,  

such that n.l + n2 + . . . + nm = n and ni > 0 for i = 

8: completely free. In  here, 

for j = i, 

for j # i, 

k = min(nf,nj - l), 
f o r j  < 1, 

12 = min(n,,n,) - 1, 
for j > i, 

ni # 0, 

ni # 0. 

Furthermore,  given any triple (A,B,C) the transforma- 
tion  taking it t.o canonical form is given by T = 
P - ~ ( A , B , K ) .  

The parametrization  for the case when  t,he first n 
columns of W(A,B)  are independent is in  fact generic. 
If t,he  Kronecker  invariants  for this case are  denoted 
R = (fi1,&, . . -,&) then, 

where 

To show that this pa.ramet,rization is generic it is suffi- 
cient to  show that  the set, X;, of triples (A,B,C) which 
can  be  represented  by t,his parametrization  forms an open 
dense  subset of the  set of cont,rollable triples (A,B,C).  
S; is open since it is the inverse  image of an open set  under 
a  cont,inuous  function  given  by 

To show that S; is  dense consider any  triple (A,B,C) 
g 8 2 ,  add E (A,i?,e) where (A,B,C) E 82, then it is 
straightfor-mrd to  show that ( A  + e A,B + E B,C + e e) E S,- for a.11 e > 0 and sufficiently small. Hence 
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t.he  triple (A,B,C) can  be  approached  arbit,rarily closely 
by an element of 8;. Note however that,  as E ---f 0 the 
matrix T-I = P(A,B, t )  approaches singularit,?-, there- 
fore, the representation of (.4 + E A,B + E B?C + 
E 0 in the ca.nonica1 form, given by 

(T(A + €A)T-l ,T(B + € B),(C + E C)T-1) 

mill generally have some elements in the A matrix  tend to  
infinity as E -  0. Hence, the representation d l  become 
numerically  very sensit.ive a.s E +. 0 in  that, some entxies 
of the A matrix will become a.rbit,rarily la.rge cancelled by 
some in the C matrix becoming very small. 

The problem  with using a true canonical form is due  to 
the requirement that no syst,em has  more than one repre- 
sentative  in  the canonical  form.  Therefore  no  two  para- 
metrizations  map  “overlap”  and  hence the boundary 
beheen  two  parametrizations will necessarily give 
problem. 

For identification  it is not  essential  t.hat  every  system 
have a  unique  representation,  rat.her  it is sufficient that. 
the free  parameters in any of the  separate parametriza- 
tions  are identifiable, a.nd that, every syst.em can be repre- 
sented by at least one parametrization. For example both 
these  requirements  are satisfied in the Luenberger tvpe I 
pseudocanonical form IS], which is the same as  the above 
canonical  form  except that, for K = (kl,k??. . -,X-,), cy i jk  is 
defined for k = 0,l; . - , k j  - 1, and  the  set K is any set, such 
that.  det (P(A,B,K))  # 0. This set of parametrizations is 
not  truly canonical since in general  a  particular  system 
could be  represented  by severa.1 different, parametriza- 
t.ions. However  within any single parametrization  a  system 
will not  have more than one represent.ation. In  fact  every 
pa.ramet.rization will be generic. Therefore  it is just neces- 
sary  to find a set of integers K,  such  that,  det [P(A ,B ,K) ]  is 
sufficiently large and  then  the corresponding  parametriza- 
tion will represent  all  systems of order n ,  in a large neigh- 
borhood of (B,B,C). This is  now statistically  and numeri- 
cally well posed and a  procedure for this is given in Glover 

It is therefore concluded that in ident.ification. the use of 
canonical forms (which hare often been derived for other 
purposes) may  not, be advisable due  to numerical and 
statistical problems. It is instead recommended that sets 
of parametrizat.ions be used that  are individually  identi- 
fiable and generic, and such that  any system of order n 
can be represented by  a t  least  one of the parametrizations. 

~41. 

111. IDEKTIFIABILITY FROM THE TRAKSFER FUXCTIOX 
1dent.ifiabilit.y of a  set of parameters  roughly  means that 

parameter  estimates  can  be  determined  t.hat. are asymp- 
tot.ically  exact.  Identifiability mill t,hen  depend  on the  data 
available, and in this section we assume that t,here is 
sufficiently good data  to asymptotically  identify the 
t.ransfer funct.ion of the syst.em but  t.hat no more in- 
format,ion  can  be  obtained (e.g., t.he response t.0 a. known 
initial  condition is not  available). There  are  many  situ- 
ations  where  t.he  above is a  valid  assumption,  and in such 
cases the nat.ura.1 definition of local identifiability is t.he 

Definition. 1: Let (A,B,C,D)(a): D c C R C  ---f aN (AT = 

follom-ing. 

n(n. + m + p )  + m p ) ,  be a. paramet,rizat.ion of the  system 
matrices (d,B,C,D) of a  linear  dynamical  system  such 
as (1) or ( 2 ) .  This  parametrization is said to  be ZocaUy 
identijable from the transfer functim at  the point (Y E D if 
there exists E > 0 such that,, 

1) I l a :  - 611 < E ,  1’9 - 611 < E ,  (Y, E D, 

and 

2) C((Y)(IS - A((Y))-’B((Y)  + D( 4 
= CCP>(IS - A<@>)-lB(@, + W9) 

for all s E 4!(S f W(Q) ) ,W(@) ) )  

together  imply (Y = @. 
In  other words, jn  a neighborhood of di, there  are no  two 

systems  with  distinct  parameters, whch have the same 
transfer  function.  This  definition is similar to  the definition 
of “nondegeneracy” as given  by  Kalman [i 1. Definition 1 
is equivalent t o  requiring tha.t. the map  from the param- 
eters, a, into  the  Markov  parameters is locally one-to-one. 
The following lemma gives a  sta.ndard  result  on  injective 
maps  and is a  direct consequence of the rank  t.heorem 
(Narasimhan [lo]). 

Lemma 1: Let Q be an open set  in (51” and f :  8 --f am be a 
c“l map  with k 2 1. Then if (t+f(x)!dx) has  constant 
rank I’ in a neighborhood of i! f is locally injective at. f if 
and only if r = n, 

The condition of Lemma 1 could  be  applied t.o the  map 
from the unknown  parameters, a, to  the Markov  param- 
eters, D(Q)  and C(Q)A’((Y)B(Q) X- = 0:1,.. ., to give 
conditions  for local idcntifia.bility. This is similar to  
sensitivity  analysis  and is given in Glover [A] (see also 
Cruz [“I).  A more elegant condition  can  be  obtained if it, is 
known that,  the system is of minimal  order in which case 
we know that all  equivalent  systems are  related  by 
sinlilarity  transformations.  Theorem 1 now gives condi- 
tions for local identifiability of minimal systenx. 

Theorem 1:  Let (S ,B ,C,D)(a) :Q c 6 i q  - (1vit.h D 
an open subset of aQ) be  a c’ (Le., continuously M e r -  
entiable  on D) parametrizat.ion of the system  ma.trices 
(A?B,C,D) and suppose (A,B,C,D)(&) is minimal. Then 

1) (d.B?C,D)(a) is locally identifiable  from the 
transfer  function at  Q = Q if and only if F:GL(n)  X Q + 

/ 

k locall>- injective at  T = 1 and Q = 6: where 

F(T,lr) A (TS(a)T-’,TB((Y),C(a)T-‘,D((Y)).  

2 )  If rank dF(I,a)/d(T,ct) = r for all (Y in some neigh- 
borhood of &, then (AJ?,C,D)(a) is locally identifiable 
from the transfer  function at  (Y = if and only if T = 
112 + 9, or, equivalently if and only if det.[X‘(;)X(&)] # 0, 
where 

L 
F is a  reordering of F defined by 



and 

TA(a)T-'  Therefore since T E GL(n) t,he  rank of the  Jacobian of 
F at (T,a) is equal t.0 t,he  rank of X ( a ) ,  hence  the assump- 

F(T,a:) = tion  that  rank X ( a )  = T for all a E NE(&)  implies t ,ht  
rank (a&T,a))/(a(T,a)) = 'r for  all (T,a) in some  neigh- 
borhood of (I,&). Therefore the assumptions of Corollary 1 
are  valid  and  the result. follows immediately. 

Theorem 1 gives a comparatively  simple  test for local 
identifia,bility which is s i d c a n t l y  simpler than  the 
methods  based  on the information  matrix (e.g., Rothen- 
berg [13], Tse [14]). The informat,ion mat.rix is a  quite 

. genera.1 approa.ch and indeed also gives approximations to 
t,he  covariance of the  parameter  estimates, however  for 
t,he  problem  considered  here it gives computationally 
difEicult tests.  The condition of Theorem 1 is comple- 
mentary to other a.pproaches in that it examines the 

checked before the  inputs  and  observations  are considered. 

- 1  
C(a)  T - 1  

aa identsability of the parametrization  alone  and  should  be 
In here if x' = [X1X2' ' -X721 E am, then ' is the As sta,t,ed, Theorem 1 requires the evalua,t,ion of the 

@ determinant of a sparse mat,rk of size n2 + q, however nm x vector given by 8' = [X1'>X2', ' * . ,X72'1' 
denotes  Kronecker  product (see Pease [I1 I). this  can  be  reduced if (A,B,C,D)(a) is t.ransformed int.0 

some standard form  such  as the Luenberger  type I form 

but  then some  simple  operations will reduce the problem 

Proof: 
'1 The necessitJ' is and sufficiencS is [8]. The matrix -41 also have to be  t,ransformed, 

proved as follows. 
First note't'hat' since (A,B,C,D)(a)  is there to finding the ra,nk of an (n,(m + p )  + mp) x ma,t,rix 

a neighborhood ' Of such that (L4,B,C,D)(a) that is essentially the smallest possible for  this problem. 
is also minimal for a.11 a: E W .  (Since minimal system 
form an open  set  in  pammeter  space  and  the  paramet,riza- 

If a  parametrization is locally identifiable, this  ensures 
that.  any consist,ent algorithm  which  minimizes  some cost 

stricted t.0 W all equivalent,  systems  are  relat,ed  by  a unique solut,ion in neighborhood of t,he nominal 
simila.rity transformation.  Therefore t,he parametrization values. Furthernlore, if a parametrization is locally is locally identifiable if F is injective  when  restricted to identifiable for all values of a E then an algorithm will 

tion is assumed to be Therefore re- function Over the parameters \$-ill be mTell  posed a,nd have a 

GL(n) X "'7 Where I/' '' is 'Pen set containing '* a,lnrays be lvell  posed but may  converge  t,o  one of several 
In  order to  Prove the result we Will prove the contra- solutions depending on the  initial paranleter estimt,es and 

positive. Assume t.herefore t,hat. t.he. parametrization is the act,ual clat,a received. This is the problem of global not, locally identifiable, t,hen for all e > 0 there exists identifiability which  no^$- be discussed. T,,X, E GL(n), a:, # 8, E Ne(;)  c W such  that, 
F(T,, a,) = F(X,, B e ) .  Therefore we have that GLoba.1 Ideniijiability 

S,-'T, = W(&)W'(a:,) [W(a,)W'(a:,)]-' Disadvantages of the concept of local identifiability are 
that, t.he nominal values, 6, must be known and  the size 

r of the neighborhood of i is in general not, easily found. where 
W(a)  = [B(a) ,A(a:)B(a) , .  . .,A"-'(a)B(a)]. It is thus desirable to  attempt.  to generalize the result of 

S,-'T, is therefore  a  continuous funct,ion of (aE,PJ the  theorem  to global identifiability. 
since W ( a )  has  full  rank for all a: E W by  the reachabilit,y DeJinition 2: Let (A,B,C,D)(a) :D C 6 i 4  + ( R f l , , n ( n + m f P ) + m p  

assumption.  Therefore lSei-1Tc - 111 can  be  made  arbi- be  a. parametrizat,ion of the syst.em matrices (A,B,C,D). 
trarily small by  taking 6 sufficient.ly small and F(S,-'T,, This parametrization is said to be globalLy iclentiJiable f r m ~  
a,) = F(I,&).  Hence t.here does not. exist a. neighborhood the  tra?zsfer  .fu.nctiu?z. if, 
of (1,a) in which F is injective,  and  thus F is not locally 1) C(a:)(Is - A(a:))-'B(a:) + D(a)  = C(@)(Is  - 
inject.ive. A<e>>-lB<e> + Dee) for  all s E a: (8 # w ( a ) ) , w ( e , > > ,  

2) To prove this we use  part (1) and Lemma 1. 
The  Jacobian  matrix of F can  readily  be  computed as, 

and 
2) (A,B,C,D)(a) is minimal, 

together  imply  that. a: = 6. W 
Condition (2) could  be  deleted  in the  above definition 

but.  then  the defi&ion would be  very  restrictive since 
most useful paramet.rizations  admit,  multiple  representa- 
tions of nonminimal syst,ems. 

The following proposition gives a sufficient condit,ion 
for global identhbili ty,  when the pa.rametriza.tion is 
affine,  (i.e:, a linear  map plus an  offset). 

Proposition 1: An affine parametrization (A,B,C,D) 
(a):Q c +. (Rn(n+m+p)+np is globally identifiable .if 
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det[Y‘(a,@)Y(a,@)] # 0 for  all a,@ E 0, where Dejnitimz 3: Let. (A,B,C,D)(a):Q c @* + @n(n+m+p)+mp 

be  a paramet.rizat.ion of the  system  matrices (A,B,C,D).  
This pa.rametrization is said to be locally iclentz:fiable from 
i t s  output spectral densily at  the point & E 9 if there exists 
an E > 0 such that 

and M is defined as given in Theorem 1. 

systems global identifiabi1it.y is implied if the equations 
T A ( a )  = A ( @ ) T ,   T B ( a )  = B(@),  C ( a )  = C(@)T,   D(a)  = t,ogether  imply (Y = $ where 
D@),  have  a  unique  solution  for a.11 a,B E D and T E 
GLCn). Let q1 and q2 be the  vectors formed by listing 

2) G(s,a)G‘(-~,a) = G(s,@)G’(-s,@) 
Proof: Since we a.re only concerned with minima.1 for all s E 0, s f ~ ( ~ 4 ( a ) ) , ~ ( ~ 4 ( 3 ) ) ,  

G(s,a) = C(a)( Is  - A(a))-’B(a)  + D(a).  

respectively t.he elements of (T  - I )  and (T-I - I )  by 
rows. Then  it is easily verified that the above  equations 
are equivalent. t o  [ql’,q?‘,uf - @‘]Y‘(a,Q) = 0, since 
(A,B!C,D)(a) is affine. Therefore since det (I-’(a,@) 
Y(a,Q)) # 0 the nullspace of Y(a,?)  = X ( Y ( a , $ ) )  = { O l  
and. the result is thus verified. 

Remarks 
1) A  somewhat  more  restrictive sufficient condition 

for global identifiability  is that N(Z(a ,$ ) , :V)  = (01 for all 
a,@ E 0. R e  remark that t.his condition is in  fact satisfied 
by t.he canonical forms given in [9] and [12]. 

2) Xote  the sinlilarit;r- between the condition  in Re- 
mark 1 and  the condition of Theorem 1. However local 
ident,Sability for all a E il does not, in general  imply 
global identifiability. An  open  conjecture is that local 
identifiability for all a E &in(m+p) implies global identi- 
fiability when  t,he  parametrization is affine, and D = 0. 

Determining  a  transfer  function. G(s)? from @(s) = 

G(s)G’(-s) is called the  spectral  factorization problem 
(Toula [17]), or the inverse problem of stationary co- 
variance  generation  (Anderson (1 3 ) .  In order to comider 
identifiability we need to characterize all equivalent solu- 
tions to  the  spectral  factorization problem. Sow if t,he 
transfer  function satisfies the additional  “minimum phase’’ 
condition that t.he rank G(s) = n z  for all, s such t.hat, 
Re(s) > 0 then  from Youla’s  results  all sptenls equivalent 
to (S:B,CID) are given  by (T~~T-’ ,TBC?CT-l ,DI; )  
where T E GL(-,?) and L’ is orthogonal, = I .  In  
this case the identifiability  question is very similar to  that 
for the  transfer  function case. However if the  system is not. 
known to be minimum  phase the characterization of 
equivalent  systems is more difficult as  given  by the 
follon-ing lemma. 

Lmnma. 2: If (Al,BI,Cl;Dl) and (A&,C2,D2) arc glob- 
ally minimal  systems then 

IV. IDENTIFIABILITY FROM THE OETPGT SPECTRAL G‘l(s)Gl’(-s) = G~(S)G~’(-S) 
DENSITY (where G,(s) = C,(ls - Ai)-’Bi  + D j ,  i = 1,3) if and only 

In  this section we will consider the identifiability of a if there exists T E GL(n) and Q = Q’ such that 
continuous  time linear stationary  system  under  the 
following assumptions. 

Assumption 1:  The  input, u(t) is not observed  directly, 
but is assumed to be  a  white noise process n7it.h E(u(t) 
u’(T>) = IF(t - T ) .  

Assu:nzption. 2: The mat,rix A is asymptotically  stable, 
(i.e., the eigenvalues of d are  strictly in the left half- 
plane). 

Asszmzptiun 3: The  system  has rea.ched steady  state 
when the  observations begin (i.e., the  output process y(t) 
is a  st,ationary process). 

Assunzption 4: The  system to be identified is globally 
minimal, Le., the dimension of t.he state is less than or 
equa.1 to  that of any  other  system  having  the same output 
spectral  densky when  driven  by  white noise for example 
there  are no “all-pass” factors (see Anderson [I 3 ) .  

Under  these  assumptions the most information that 
may be  obtained from the  out,put  observations is the 
output.  spectral  density, @(s) = G(s)G’(-s), where 
G(s) = C(1s - A)-’B + D. This motivat.es the following 
definition. 

A1 = TA%T-’, C1 = CsT-’ 
&A,‘ + -4,Q = -B1B1’ + TB&’T‘ 

QC1’ = -BID,’ -/- TB?D?‘, DID’‘ = D1D?’. 1 

Further if DIDl’ is nonsingular the above is equivalent 
to  there being  a  similarity  transformation  between  the 
Kalman  filters of the  two  systems,  or  equivalently of their 
innovations  representations.  (Icailath  and Geese>- [.?ill [SI.) 

m 
This lemma is a  straightforward consequence of Lemma 

2 in -1nderson 111, and  standard filtering arguments (see 
also Willems [16]). 

The local identifiability  question is now equivalent to 
there being  a locally unique solution to (3) with (91,BI, 

C1,D1) = (d?B?C,D)(a)  ‘and (A%,B?,C?,  Dy) = (-4?B,C?D)(?) 
(i.e.l a = 5, Q = 0, T = I ) .  The following theorem 
gives conditions for local identifiability and  can  be  proven 
in an analogous  manner to Theorem 1. 

Theorem 2: Let (A.B?C,D)(a):Q c a4 + C K ~ ( ~ ~ ~ + ~ ) + ~ ~  

(with Q an open  set  in CKq) be a cr  parametrization of 
the system  matrices (A,B,C,D) of the continuous t,ime 
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system (1) satisfying Assumpt,ions 1-4. Then this param- 
etrization is  loca.lly ident.ifiable from its out-put  spectral 
density at (Y E 0, if the following  1inea.r equations  in 
(S~,SB,SD,SQ), have  a  unique  solution (i.e., zero) : 

SQ = SQ‘, 
(A@ + SBB’ - &TI%’) + (ASQ + SBB’ 
- STBB’)’ = 0, 

SQC‘ = -SBd’ - SSD’ -+ 6TBB’, 
SDfi‘ + BSD’ = 0, 

where M ( ( Y )  is defined in  Theorem 1, and (A,B,C,B) = 

In  general  fewer  parameters  can  be identified than when 
input observations are also a.llowed and t,hus G(s) rather 
t,han %(s) = G(s)G’(-s) is observed. In  fact if nz = p t,he 
number of identifiable  parameters is bounded  by 2.np + 
$ p ( p  + 1) which is t p ( p  - 1) less than when input 
observat,ions are allowed. 

Simplified conditions could be  obtained if t,here are  the 
minimum  number of whit,e noise inputs,  in which case 
Q = 0 (locally) is implied without  restrictions  on B(3) and 
T (assuming the minimal polynomial of t,he  inverse syst.em 
matrix ( A  - B D - T )  equals its  characteristic polynomial 
-see Willems [IS]). 

Analogous resu1t.s for all the above  results for discret,e 
time  systems  can be  found in [4]. 

(A,B,C,D)(G). rn 

V. COKCLUSIONS 
This  paper  has considered some of t,he problems asso- 

ciated wit.h paramet.erizing  linear  dynamical syst.ems for 
identification. The discussion in  Section I1 on canonica.1 
forms  illustrates that  the requirement,  t,hat,  no  system  have 
more t,han one representation  in t,he canonical form is not, 
necessary  for identifiation  parametrizations  and  in  fact 
can cause numerical difficulties. A modified approach 
using globally ident.ifiable parametrizations is suggested 
which aroids t.hese problems. 

Sect,ions I11 and IV consider the identifiability of arbi- 
trary parametrizat.iom that would be obt,ained from the 
a priori information  on  t.he syst.em. It is recommended 
that. t.he  resulting  conditions for local (and global) identi- 
fiability are  tested prior to  t,he  application of any identifi- 
cation  algorit.hm to  ensure that.  the pa.rametrizat.ion is 
well chosen. 

Finally it is remarked  t,hat.  extensions of these  results 
t o  partial identifia.bilit,y and identification in khe presence 
of feedback  can  be  found  in [4]. 
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Canonical Forms for the Identification of 
Multivariable Linear  Systems 

MICHAEL J. DEKHAbI, STUDENT KELIBER, IEEE 

Abstract-The advantage of using a unique parameterization in a 
numerical procedure for the  identzcation of a system from operating 
records has  been well established. In this paper several  sets of 
canpica1 forms are described for  state space models of deterministic 
multivariable linear  systems;  the  members of these  sets having 
therefore  the required uniqueness property within the equivalence 
classes of minimal  realizations of the  system. In the identification 
of a  stochastic system,  it  is shown how the problem depends also 
upon determining a unique factorization of the spectral  density  ma- 
trix .of the  system,  and  the  sets of canonical forms  obtained for the 
deterministic  system  are  extended  to  this case. 

A 
I. IKTRODUCTION 

BASIC  requirement, of any successful identification 
algorit.hm is that,  it should lead to  consistent  esti- 

mates of the parameters of the unknoxm system.  However? 
systems which have n-eighting functions that  are close in 
some sense can  have xyidel- differing state space represen- 
tations,  with  the result that, in  general, the maximum 
likelihood estimates of t.he  parameters of the  state space 
model are  not consistent. This is even txue when there is 
only a single output,  but  in  that, ca.se, if the  state dimen- 
sion is known,  a  unique canonical form  can  be specified 
and consistency  can  be  established. This paper is  eseen- 
t.ially concerned with  a review of some of the canonical 
forms which can be specified in t.he multivariable case. 

In  Section 11, the necessary definitions for an  accurate 
description of what  is  meant  by a canonical  form are 
given, culminating in  the basic concept of a canonical 
form as the unique  member of an equivalence class of a 
given set.. In  Section 111, these definitions are applied in 
the case of t,he equivalence classes of minimal realizat.ions 
of transfer  functions. In  this  way, \\-e can  determine  what 
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properties the  state space model must  satisfy to  be a 
unique minimal realization of the given input/output 
map. Several  such  canonical  forms are described and  the 
essential properties of completeness and independence of 
the parameters  are established. The implications of deter- 
mining these canonical forms  from the Hankel  matrix 
formed from the system Xarkor matrices (the minimal 
realization problem) are also discussed. 

In Section IV, the particu1a.r problenx raised in the 
identification of stochastic  systems by nonuniqueness of 
the model are resolved. This is done  by  determining  a set 
of canonical forms for the equivalence classes of st.able, 
minimum phase factors of the spectral  density  n~at,rix 
@(z)  for  a  discrete  time  system. 

Finally,  in  Section V! some of the implications of using 
canonical forms in  identification  algorithms arr discussed, 
including the question of consistency of the  estimated 
parameters. 

11. SOTATIOX A S D  GEXERAL DEFIKITIOSS 

Consider any set X. We can define an equivalence rela- 
tion E on X and  denote  the equivalence of tn-o  elements 
x? y E X by xEy. We shall now relate some important 
definitions concerning the set X and  its equivalence rela- 
tion E [I]. 

Definition 1: 4 function f:X - S for some set S is an 
invariant for the equivalence relation E if, for any z,y E 
X, then 

It. is easy to  see therefore that, t.he equiyalence  relation E 
generates, for each x E X, a  disjoint  set of eyuicalen.ce 
classes or orbits in Ji which we  will denote as 

E ( X )  = f y : y ~ x ,  for x,y E X )  

The  set of all  such equivalence classes (i.e.? for all z E X) 
is called a quotient set or orbit space, and is denoted  by X / E .  


