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Parametrizations of Linear Dynamical Systems:
Canonical Forms and Identifiability

KEITH GLOVER, MmeMBER, 1EEE, aAND JAN C. WILLEMS, MEMBER, IEEE

Abstract—We consider the problem of what parametrizations of
linear dynamical systems are appropriate for identification (i.e., so
that the identification problem has a unique solution, and all systems
of a particular class can be represented). Canonical forms for con-
trollable linear systems under similarity transformation are con-
sidered and it is shown that their use in identification may cause
numerical difficulties, and an alternate approach is proposed which
avoids these difficulties. Then it is assumed that the system matrices
are parametrized by some unknown parameters from a priori system
knowledge. The identiability of such an arbitrary parametrization is
then considered in several situations. Assuming that the system
transfer function can be identified asymptotically, conditions are
derived for local and global identifiability. Fimally, conditions for
identifiability from the output spectral density are given for a system
driven by unobserved white noise.

I. INTRODUCTION
CONSIDER the standard linear dynamical systems:

dx()

P Ax(t) + Bu@®)y@®) = Cx() + Du@®) (1)

or
x(k + 1) = Ax(k) + Bu(k),y(k) = Cx(k) + Du(k), (2)

where x € ®", u € R™, y & R”.

A parametrization of the system matrices (4,B,C,D) is
then a ¢’ (i.e., continuously differentiable on @) function
(A,B,C,D)(e):  C ®R! — RMntm+P+m2 That is the sys-
tem matrices are parametrized by the unknown parameters
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a. In the context of identifying such dynamical systems
the following two properties of a parametrization are
desirable.

Property 1: The parametrization should be identifiable
in some sense,

Property 2: All systems in an appropriate class can be
represented by the parametrization.

Canonical forms are one approach to this parametriza-
tion problem and have been suggested by several authors
(e.g., Mayne [9], Weinert and Anton [15]). In Section II
we will give some general comments on using canonical
forms.

Canonical parametrizations are useful (and necessary)
when there is very little a prior? system knowledge except,
perhaps, the system order. An alternative approach can
be used when there is sufficient g priori information from,
for example, physical considerations, to write down the
system matrices as functions of relatively few unknown
parameters, e, as (4,B,C,D) (). The advantages of such
models are that the prior knowledge is conveniently sum-
marized and the resulting state variables and parameters
have a physical interpretation. Property 2 above is then
automatically satisfied sinece the prior knowledge deter-
mines the class of systems of interest, and hence all sys-
tems of order n need not be represented as is the case for
canonical forms. Therefore for these parametrizations
identifiability is the prime concern and conditions for
identifiability are given in Section III.

In Section IV the identifiability of parametrizations of
systems driven by unobserved white noise is considered.

II. REvarks oN Using CanoNIcAL Forus IN
IDENTIFICATION

The canonical forms normally considered for identifica-
tion are those of the triple (4,B,C) of given dimension,
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under a similarity transformation, (4,B,C) = (rAT-,
TB,CT-Y, with the assumption of controllability. Simi-
larity transformations are considered since for minimal
systems all input—output equivalent systems are related
by a similarity transformation. This problem has been
considered by Popov [12], Mayne [9], and others including
Denham [3], to which the reader is referred to for defini-
tions and properties of canonieal forms, invariants, com-
pleteness, and independence.
- Canonical forms for multivariable systems necessarily
consist of several separate parametrizations each one
determined by a set of indices (e.g., the Kronecker in-
variants, minimal indices). In all the available canonical
forms there is one parametrization which has the maxi-
mum number of free parameters, and will be generic in
that almost all controllable systems of order = can be
represented using this parametrization. However to
represent the boundary of this first parametrization many
more parametrizations may be required, each containing
fewer degrees of freedom (see Denham [3]). Identifying a
system from noisy data to be in the nongeneric form is
generally not a statistically well-posed problem, since it
will require estimating a determinant to be exactly 0.
Further, numerical difficulties are likely to occur when
representing systems near the boundary of one para-
metrization.

Ezample

To justify these general remarks for a particular eanon-
ical form we now give details of canonical form given im-
plicitly in [12], and illustrate how the above phenomenon
may occur.

Define the controllability matrix,

W(AJB) £ [B7AB; ° ,’An—lB],
let

K = (nl;'n%' . )nm)
and define,

P(A:B:K) £ [bI;Ably' T 1Aﬂl—lb1; t ':bm;Abm; te 7An'"_lbm]-

Then « is called the set of Kronecker invariants if the
columns of P(A,B,x) are the first columns of W(A,B),
beginning at the left, to form a basis for ®&".

A canonical form for the controllable triple (4,B,C)
with rank B = m, is now given by a family of para-
metrizations, one for each set of Kronecker invariants, «,
such that ny +n, + -+ +n, = nandn, > 0for¢ =
1,2, m.

All A12' : 'Alm Bll Bl2' * ',Blm ]
A21 B21

Z = ) E .= )
Agr--- A L_Bml' . B
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C: completely free. In here,

3 01”-—1 iz
i 24731
In,-—l i fOI‘j = Z.J
_ 5: Xiing—1 ]
% Q0
on forj = 1,
Aji = 1’ :'.

(n; X ny) On;ns-a |+ k = min(n,n, — 1),
- forj <1,
fam
0
k = min(n,ny) — 1,
e forj > <,

i o
0.1 j#F 1 n; #0,
1
0
Bji = . j =7 n; = 0.
(n; X 1)
0

Furthermore, given any triple (4,B,C) the transforma-
tion taking it to canonical form is given by T =
P-1(A,Bx).

The parametrization for the case when the first n
columns of W(A,B) are independent is in fact generic.
If the Kronecker invariants for this case are denoted
£ = (fig,fig,- - - ,fim) then,

I-Z‘,_l i=12,
_ m

ny = n
[—]—1 j=l+1,---m,

m

<= (f2]-)

To show that this parametrization is generic it is suffi-
cient to show that the set, S;, of triples (4,B,C) which
can be represented by this parametrization forms an open
dense subset of the set of controllable triples (4,B,C).
S is open since it is the inverse image of an open set under
a continuous function given by

Sy = {(A,B,C)Idet [W(A, B) [(I) ]] % 0}-

To show that S; is dense consider any triple (4,8,C) .
& Sz add e (4,B,0) where (4,B,0) ¢ S, then it is
straightforward to show that (4 + ¢ A,B + ¢ B,C
4+ € C) € Sp for all e > 0 and sufficiently small. Hence

where
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the triple (4,B,C) can be approached arbitrarily closely
by an element of S;. Note however that as ¢ — 0 the
matrix T-! = P(A,B, &) approaches singularity, there-
fore, the representation of (4 + ¢ A,B 4+ ¢ B,C +
¢ ) in the canonical form, given by

(T(A + e )T, T(B + ¢ B),(C + « O)T-Y)

will generally have some elements in the A matrix tend to
infinity as e— 0. Hence, the representation will become
numerically very sensitive as e— 0 in that some entries
of the A matrix will become arbitrarily large cancelled by
some in the € matrix becoming very small. |

The problem with using a true canonical form is due to
the requirement that no system has more than one repre-
sentative in the canonical form. Therefore no two para-
metrizations may “overlap” and hence the boundary
between two parametrizations will necessarily give
problems.

For identification it is not essential that every system
have a unique representation, rather it is sufficient that
the free parameters in any of the separate parametriza-
tions are identifiable, and that every system can be repre-
sented by at least one parametrization. For example both
these requirements are satisfied in the Luenberger type |
pseudocanonical form [8], which is the same as the above
canonical form except that for « = (ky,ks, - - -, kn), aig 1S
defined for k = 0,1, - - ,k; — 1, and the set « is any set such
that det (P(4,B,«k)) £ 0. This set of parametrizations is
not truly canonical since in general a particular svstem
could be represented by several different parametriza-
tions. However within any single parametrization a system
will not have more than one representation. In fact every
parametrization will be generie. Therefore it is just neces-
sary to find a set of integers , such that det{P(4,B,)] is
sufficiently large and then the corresponding parametriza-
tion will represent all systems of order », in a large neigh-
borhood of (A,B,C). This is now statistically and numeri-
cally well posed and a procedure for this is given in Glover
[4].

It is therefore concluded that in identification, the use of
canonical forms (which have often been derived for other
purposes) may not. be advisable due to numerical and
statistical problems. It is instead recommended that sets
of parametrizations be used that are individually identi-
fiable and generic, and such that any system of order n
can be represented by at least one of the parametrizations.

II1. IDENTIFIABILITY FROM THE TRANSFER FUNCTION

Identifiability of a set of parameters roughly means that
parameter estimates can be determined that are asymp-
totically exact. Identifiability will then depend on the data
available, and in this section we assume that there is
sufficiently good data to asymptotically identify the
transfer funection of the system but that no more in-
formation can be obtained (e.g., the response to a known
initial condition is not available). There are many situ-
ations where the above is a valid assumption, and in such
cases the natural definition of local identifiability is the
following.

Defingtion 1: Let (A4,B,C,D)(e): @ C R?—> &Y (N =
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n(n + m + p) -+ mp), be a parametrization of the system
matrices (4,5,C,D) of a linear dynamical system such
as (1) or (2). This parametrization is said to be locaily
wdentifiable from the transfer function at the point « € Q if
there exists e > 0 such that,

1) lle — & < ¢

B—él<eeB3EQ,

and

2) C(e)(Is — A(e))~'B(a) + D(a)
= C(@)(Is — A@)'B(@) + DB
for all s € ¢(s = MA()),MAB))

together imply o« = §. ]

In other words, in a neighborhood of &, there are no two
systems with distinet parameters, which have the same
transfer function. This definition is similar to the definition
of “nondegeneracy” as given by Kalman [7]. Definition 1
is equivalent to requiring that the map from the param-
eters, ¢, into the Markov parameters is locally one-to-one.
The following lemma gives a standard result on injective
maps and is a direct consequence of the rank theorem
(Narasimhan [10]).

Lemma 1: Let Q be an openset in ®”and f:Q — @™ be g
¢ map with £ > 1. Then if (9f(x)/9x) has constant
rank » in a neighborhood of %, f is locally injective at % if
and only if r = n,

The condition of Lemma 1 could be applied to the map
from the unknown parameters, e, to the Markov param-
eters, D(e) and C(e)A*(x)B(a) £ = 0,1,---, to give
conditions for local identifiability. This is similar to
sensitivity analvsis and is given in Glover [4] (see also
Cruz [2]). A more elegant condition can be obtained if it is
known that the svstem is of minimal order in which case
we know that all equivalent systems are related by
similarity transformations. Theorem 1 now gives condi-
tions for local identifiability of minimal systems.

Theorem 1: Let (4,B,C,D)(a):@ C ®R?— ®RY (with @
an open subset of ®% be a ¢’ (i.e., continuously differ-
entiable on Q) parametrization of the system matrices
(4,B,C,D) and suppose (4,B,C,D)(&) is minimal. Then

1) (A,B,C,D)(@) is locally identifiable from the
transfer function at @ = « if and only if F:GL(n) X @ —
®% is locally injective at 7 = [ and « = &, where

F(T,e) 2 (TA(e)T,TB(e),C(e)T!,D(c)).

2) I rank oF(l,e)/d(T,«) = r for all ¢ in some neigh-
borhood of &, then (A4,B,C,D)(a) is locally identifiable
from the transfer function at &« = « if and only if r =
n? -+ ¢, or, equivalently if and only if det[X'(&) X (a)] # 0,
where

Ela oF
| o7 ,a); P (1,01)]
(I,l ® A'(e) — Ale) ® I,

_ I, ® B'(w) (e

I

X(e)

- Cle) @I,
Onpme

F is a reordering of F defined by
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TA (a)T“l-!
TB(w)
Cle)T™
D(e)

F(T,a) =

and
F'g -7
ou
i
o

(@)

()
M(a) =
()

(@)

In here if X' = [x1%y - - x,] with x;, € ®™, then X is the
nm X 1 vector given by X' = [x/, %2, -,x,’]. Also ®
denotes Kronecker product (see Pease [11]).

Proof:

1) The necessity is straightforward and sufficiency is
proved as follows.

First note*that since (A4,B,C,D){a) is minimal there
exists a neighborhood W < Q of such that (4,B,C,D){(«)
is also minimal for all « € W. (Since minimal systems
form an open set in parameter space and the parametriza-
tion is assumed to be continuous.) Therefore when re-
stricted to W all equivalent systems are related by a
similarity transformation. Therefore the parametrization
is locally identifiable if F is injective when restricted to
GL(n) X V,where V C W is any open set containing a.

In order o prove the result we will prove the contra-
positive. Assume therefore that the parametrization is
not locally identifiable, then for all € > 0 there exists
T,8,. € GL(n), e, = 8. & N (a) € W such that
F(T,a) = F(8, B.). Therefore we have that

ST = WEBIW' () [W(ed W' (a)]?

IS 2

where
W(e) = [B(e),A(®)B(e), - -, A" (&) B(e) ].

8,~!T, is therefore a continuous function of («.B.)
since W («) has full rank for all « & W by the reachability
assumption. Therefore |S|='T, — I|| can be made arbi-
trarily small by taking e sufficiently small and F(S.7T,
e,) = F(I,8.). Hence there does not exist a neighborhood
of (I,&) in which F is injective, and thus F is not locally
injective.

2) To prove this we use part (1) and Lemma 1.
The Jacobian matrix of F can readily be computed as,

ELEEaar]

TT™ @ | R L N
0 TI 0 P00
B LY N
0 0 0 I®rI

.[7_’_:‘__@_{__.5_9_}
0 I,
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Therefore since T & GL(n) the rank of the Jacobian of
F at (T,e) is equal to the rank of X («), hence the assump-
tion that rank X(e) = r for all « &€ N.(&) implies that
rank (9F(T,e))/(8(T,e)) = r for all (T,w) in some neigh-
borhood of (Z,&). Therefore the assumptions of Corollary 1
are valid and the result follows immediately.

Theorem 1 gives a comparatively simple test for local
identifiability which is significantly simpler than the
methods based on the information matrix (e.g., Rothen-
berg [13], Tse [14]). The information matrix is a quite
general approach and indeed also gives approximations to
the covariance of the parameter estimates, however for
the problem considered here it gives computationally
difficult tests. The condition of Theorem 1 is comple-
mentary to other approaches in that it examines the
identifiability of the parametrization alone and should be
checked before the inputs and observations are considered.

As stated, Theorem 1 requires the evaluation of the
determinant of a sparse matrix of size n?2 + ¢, however
this can be reduced if (4,B,C,D)(«) is transformed into
some standard form such as the Luenberger type I form
[8]. The matrix M (e) will also have to be transformed,
but then some simple operations will reduce the problem
to finding the rank of an (n(m + p) + mp) X ¢ matrix
that is essentially the smallest possible for this problem.

If a parametrization is locally identifiable, this ensures
that any consistent algorithm which minimizes some cost
function over the parameters will be well posed and have a
unique solution in some neighborhood of the nominal
values. Furthermore, if a parametrization is locally
identifiable for all values of « € @ then an algorithm will
always be well posed but may converge to one of several
solutions depending on the initial parameter estimates and
the actual data received. This is the problem of global
identifiability which will now be discussed.

Global Identifiability

Disadvantages of the concept of local identifiability are
that the nominal values, & must be known and the size
of the neighborhood of & is in general not easily found.
It is thus desirable to attempt to generalize the result of
the theorem to global identifiability.

Definition 2: Let (4,B,C,D)(w): C ®? — @rnim+p) +mp
be a parametrization of the system matrices (4,B,C,D).
This parametrization is said to be globally identifiable from
the transfer function if,

1) Cle)yIs — A(w))"'B(a) + D{a) = CB)UIs —
A(B)B(B) + D) for all s € ¢ (s = MA(e)),M4A(B))),
and ‘

2) (4,B,C,D)(e) is minimal,
together imply that « = §. ||

Condition (2) could be deleted in the above definition
but then the definition would be very restrictive since
most useful parametrizations admit multiple representa-
tions of nonminimal systems.

The following proposition gives a sufficient condition
for global identifiability, when the parametrization is
affine, (i.e., a linear map plus an offset).

Proposition 1: An affine parametrization (4,B,C,D)
(0):2 C RT ~ @"+mim+mr ig globally identifiable -if
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det[Y"(e,8)Y(e,8)] # 0 for all e, € @, where

Z(e,8) O M
ved = |07 sgw i)
[T ® A'(e) — AQ) @1
_ I® B(e)
0

and M is defined as given in Theorem 1.

Proof: Since we are only concerned with minimal
systems global identifiability is implied if the equations
TA(e) = AB)T, TB(a) = B(@), C(e) = C(®)T, D(e) =
D(B), have a unique solution for all ,3 EQ and T &
GL(»n). Let ¢ and ¢, be the vectors formed by listing
respectively the elements of (T — I) and (T—! — I) by
rows. Then it is easily verified that the above equations
are equivalent to [g:',¢2',¢' — B'1Y’(e,3) = O, since
(4,B,C,D)(e) is affine. Therefore since det (¥Y'(«,B)
Y(e,3)) s 0 the nullspace of ¥(e,3) = N(¥(,3)) = {0}
and the result is thus verified. [ ]

Remarks

1) A somewhat more restrictive sufficient condition
for global identifiability is that N (Z(e,3),4{) = {0} for all
o,8 € Q. We remark that this condition is in fact satisfied
by the canonical forms given in [9] and [12].

2) Note the similarity between the condition in Re-
mark 1 and the condition of Theorem 1. However local
identifiability for all ¢ € € does not in general imply
global identifiability. An open conjecture is that local
identifiability for all « € ®*™+? implies global identi-
fiability when the parametrization is affine, and D = 0.

IV. IpENTIFIABILITY FROM THE QUTPUT SPECTRAL
DexsiTY

In this section we will consider the identifiability of a
continuous time linear stationary system under the
following assumptions.

Assumption 1: The input u(?) is not observed directly,
but is assumed to be a white noise process with E(u(f)
u'(T)) =18¢ — T).

Assumption 2: The matrix A is asymptotically stable,
(i.e., the eigenvalues of A are strictly in the left hali-
plane).

Assumption 3: The system has reached steady state
when the observations begin (i.e., the output process y(f)
is a stationary process).

Assumption 4: The system to be identified is globally
minimal, i.e., the dimension of the state is less than or
equal to that of any other system having the same output
spectral density when driven by white noise for example
there are no ‘“‘all-pass” factors (see Anderson [1]).

Under these assumptions the most information that
may be obtained from the output observations is the
output spectral density, ®(s) = G(s)G’(—s), where
G(s) = C{Is — A)~'B 4+ D. This motivates the following
definition.
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Definition 3: Let (4,B,C,D)(x):Q C R — ®rn+m+p)+mp
be a parametrization of the system matrices (4,8,C,D).
This parametrization is said to be locally identifiable from
its output spectral density at the point & & Q if there exists
an e > 0 such that

1) le —dll<ellt - al<gepeq,
and
2) G(s,0)G' (—se) = G(s,8)G'(—s,B)
forall s € €, s = A4 (@), MAB)),
together imply a = 3, where

G(s,a) = Cle)(Is — A(a))~'B(e) + D(e). |

Determining a transfer function, G(s), from &(s) =
G(s)G'(—s) is called the spectral factorization problem
(Youla [17]), or the inverse problem of stationary co-
variance generation (Anderson [1]). In order to consider
identifiability we need to characterize all equivalent solu-
tions to the spectral factorization problem. Now if the
transfer function satisfies the additional “minimum phase’
condition that the rank G(s) = m for all s such that
Re(s) > 0 then from Youla’s results all systems equivalent
to (4,B,C,D) are given by (TAT-\TBU,CT-',DU)
where T & GL(n) and U is orthogonal, CU’ = I. In

this case the identifiability question is very similar to that

equivalent systems is more difficult as given by the

ally minimal systems then

if there exists T & GL(n) and @ = @’ such that

.
QC = —B\D\' 4+ TB.D.', D\DDi' = D:Dy’.

Kalman filters of the two systems, or equivalently of their
This lemma is a straightforward consequence of Lemma
The local identifiability question is now equivalent to

(e, « = 3, Q@ = 0, T = I). The following theorem
Theorem 2: Let (4,B,C,D)(e):@ C ®R? — ®r*Tmip)tme

for the transfer function case. However if the system is not
known to be minimum phase the characterization of
following lemma.

Lemma 2: If (4:,B1,C1,D,) and (44,B:,Cs.Ds) are glob-

G1(8)GL'(—s) = Ga(s)Go'(—s)
(where G,(s) = C;(Is — A))7'B; + D,, 7 = 1,2) if and only
4"‘11 = TA.zT_l, C]_ = 027‘—1
QA 4+ AQ = —B\By 4+ TByB,T’

Further if D,D,’ is nonsingular the above is equivalent
to there being a similarity transformation between the
innovations representations. (IXailath and Geesey [3], [6].)

|
2 in Anderson [1], and standard filtering arguments (see
also Willems [16]).
there being a locally unique solution to (3) with (44,B;,
C12D1) = (‘4SB:C)D) (11) .and (‘427‘8?:02; DZ) = (A-,'B!C,-D) (.3)
gives conditions for local identifiability and can be proven
in an analogous manner to Theorem 1. ’
(with Q an open set in ®% be a ¢ parametrization of
the system matrices (4,B,C,D) of the continuous time
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system (1) satisfving Assumptions 1-4. Then this param-
etrization is locally identifiable from its output spectral
density at « € Q, if the following linear eguations in
(83,6B,56D,8Q), have a unigue solution (i.e., zero):

1) 6Q = 8@,

2) (AsQ + 8BB’ — sTBB') + (45Q + sBB’
— sTBR") =0,

3) 8QC' = —sBD' — BsD' + sTBD,

4) DD’ + DsD’ = 0,

PTA — fiaq
3B
5 —_— = 17![ i 5
Y| (@98
D

where M (a) is defined in Theorem 1, and (4,B8,0,D) =
(4,B,C,D)(w).

In general fewer parameters can be identified than when
input observations are also allowed and thus G(s) rather
than &(s) = G(s)G'(—s) is observed. In fact if m = p the
number of identifiable parameters is bounded by 2np +
ip(p + 1) which is Ip(p — 1) less than when input
observations are allowed.

Simplified conditions could be obtained if there are the
‘minimum number of white noise inputs, in which case
@ = 0 (locally) is implied without restrictions on B(3) and
T (assuming the minimal polynomial of the inverse system
matrix (4 — BD™IC) equals its characteristic polynomial
—see Willems [16]).

Analogous results for all the above results for discrete
time systems can be found in [4].

V. CoxcLusions

This paper has considered some of the problems asso-
ciated with parameterizing linear dynamical systems for
identification. The discussion in Section II on canonical
forms illustrates that the requirement that no system have
more than one representation in the canonical form is not
necessary for identification parametrizations and in fact
can cause numerical difficulties. A modified approach
using globally identifiable parametrizations is suggested
which avoids these problems.

Sections ITI and IV consider the identifiability of arbi-
trary parametrizations that would be obtained from the
e priort information on the system. It is recommended
that the resulting conditions for local (and global) identi-
fiability are tested prior to the application of any identifi-
cation algorithm to ensure that the parametrization is
well chosen.

Finally it is remarked that extensions of these results
to partial identifiability and identification in the presence
of feedback can be found in [4].
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Canonical Forms for the Identification of

Multivariable Linear Systems

MICHAEL J. DENHAM, sSTUDENT MEMBER, IEEE

Abstract—The advantage of using a unique parameterization in a
numerical procedure for the ideatification of a system from operating
records has been well established. In this paper several sets of
canonical forms are described for state space models of deterministic
multivariable linear systems; the members of these sets having
therefore the required uniqueness property within the equivalence
classes of minimal realizations of the system. In the identification
of a stochastic system, it is shown how the problem depends also
upon determining a unique factorization of the spectral density ma-
trix of the system, and the sets of canonical forms obtained for the
deterministic system are extended to this case.

I. INTRODUCTION

BASIC requirement. of any successful identification
algorithm is that it should lead to consistent esti-
mates of the parameters of the unknown system. However,
systems which have weighting functions that are close in
some sense can have widely differing state space represen-
tations, with the result that, in general, the maximum
likelihood estimates of the parameters of the state space
model are not consistent. This is even true when there is
only a single output, but in that case, if the state dimen-
sion is known, a unique canonieal form can be specified
and consistency can be established. This paper is essen-
tially concerned with a review of some of the canonical
forms which can be specified in the multivariable case.

In Section II, the necessary definitions for an accurate
description of what is meant by a canonical form are
given, culminating in the basic concept of a canonical
form as the unique member of an equivalence class of a
given set. In Section III, these definitions are applied in
the case of the equivalence classes of minimal realizations
of transfer functions. In this way, we can determine what
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properties the state space model must satisfy to be a
unique minimal realization of the given input/output
map. Several such canonical forms are deseribed and the
essential properties of completeness and independence of
the parameters are established. The implications of deter-
mining these canonical forms from the Hankel matrix
formed from the syvstem Markov matrices (the minimal
realization problem) are also discussed.

In Section IV, the particular problems raised in the
identification of stochastic systems by nonuniqueness of
the model are resolved. This is done by determining a set
of canonical forms for the equivalence classes of stable,
minimum phase factors of the spectral density matrix
®(z) for a discrete time system.

Finally, in Section V, some of the implications of using
canonical forms in identification algorithms are discussed,
including the question of consistency of the estimated
parameters.

I1. NotaTiox axp GENERAL DEFINITIONS

Consider any set X. We can define an equivalence rela-
tion F on X and denote the equivalence of two elements
z, y € X by xEy. We shall now relate some important
definitions concerning the set X and its equivalence rela-
tion E [1].

Definition 1: A function f: X — S for some set S is an
invariant for the equivalence relation E if, for any r,y €
X, then

rEy =) f(x) = f(y).

It is easy to see therefore that the equivalence relation B
generates, for each x € X, a disjoint set of equivalence
classes or orbits in X which we will denote as

E(zy = {y:yEx, for zy & X}

The set of all such equivalence classes (i.e., forall 2 € X)
is called a quotient set or orbit space, and is denoted by X/E.



