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THE GENERATION OF LYAPUNOV FUNCTIONS FOR INPUT-OUTPUT

STABLE SYSTEMS*

JAN C. WILLEMS -Abstract. This paper discusses the relationship between properties of input-output descriptions
and state space models for dynamical systems. It is shown that a state space realization of an input-
output stable dynamical system is globally asymptotically stable in the sense of Lyapunov if it is
uniformly observable and if every state is reachable. This result is proved in the context of abstract
dynamical systems and leads to the equivalence of input-output stability and asymptotic stability for
uniformly controllable and uniformly observable linear finite-dimensional systems. The generation of
Lyapunov functions is subsequently considered, and variational techniques for the construction of
Lyapunov functions are presented. Passivity and related energy concepts are particularly exploited
in this context. These results yield the Lyapunov functions used in the proofs of the circle criterion and
the Popov criterion as particular cases. The generality of the approach, however, makes these ideas
applicable to much more general situations. Examples illustrating the results and the unifying point of
view are included.

1. Introduction. "Dynamical systems" as they are studied and defined in
modern system theory distinguish themselves from arbitrary operators in mathe-
matics by one basic property:they are causal, i.e., nonanticipatory future values
of the input do not influence past values of the output. This basic realizability
property of physical systems may be incorporated in the mathematical model in
two ways: either by appropriately restricting the operator defining the input-
output relationship, or by working with a state space description which will then
automatically ensure this causality. This last approach has proved particularly
useful in optimal control theory due to the fact that any deterministic optimal
controller can always be implemented with a memoryless function of the state
in the feedback. It is therefore very advantageous to work with a state space model
from the very start.

This duality in the possible description of systems has reflected itself in other
areas of system theory and is particularly prevalent in stability theory. The input-
output approach leads to the concept of input-output stability and has been
developed mainly in the last decade, especially following the work of Sandberg
[4] and Zames [5]. The state space description leads to concepts such as global
asymptotic stability in the sense of Lyapunov and poses the stability problem in a
setting which does not involve inputs, thus making use of the theory of classical
dynamical systems. Which of the two approaches is to be preferred depends on
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There appears to be no agreement as to the use of the term "dynamical system." For the purpose
of this paper any causal input-output relation will be termed a dynamical system. It will be shown that
this is equivalent to the existence of a state. Zadeh [1] and Balakrishnan [2] appear to reserve the term
for systems in which the state evolution is governed by a differential equation. The dynamical systems
studied in classical mechanics [3] correspond to the state evolution equations in the absence of inputs.
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the particular application. (For a discussion of these issues, see the survey paper
by the author 6.) It has become clear, however, that the input-output approach
leads to more powerful and general results. There are, in fact, a number of interest-
ing stability criteria available which have been obtained in an input-output stability
setting, but for which no proofs using Lyapunov methods exist.

Notwithstanding this success of input-output stability, there are certain
aspects of Lyapunov stability theory which make the study and development of
this "internal" approach to stability theory both useful and important. Not the
least of these advantages is the possibility of obtaining estimates on the domain of
attraction of an equilibrium in the case of nonglobal stability, a concept which has
not even been satisfactorily formulated, let alone developed in the context of input-
output stability. The main stumbling block in applying Lyapunov methods to the
stability analysis particularly of nonlinear systems remains the absence of general
methods for the construction of Lyapunov functions. This paper in part addresses
itself to this problem.

The paper is concerned with the implications of input-output stability to
global stability of dynamical systems, and with the construction of Lyapunov
functions for input-output stable systems. The converse question, i.e., the implica-
tions of global stability to input-output stability, will not be considered, in view
of space limitations and in view of the fact that such implications are much easier
to obtain.

The first part of the paper introduces the concept of a dynamical system,
which is defined as a causal operator between signal spaces, and the concept of a
realization in which state space concepts become relevant. Some important
properties of dynamical systems and realizations are then introduced: they are
those of stability, controllability, observability, reachability, connectedness, and
irreducibility. These notions play an important role in the sequel.

The second part of the paper discusses the generation of Lyapunov functions
for input-output stable systems. Particular emphasis is placed on passive systems
and on concepts such as available energy, required energy, and cyclic energy,
the latter of which is very reminiscent of certain notions in thermodynamics.

The third part of the paper is concerned with feedback systems. Feedback
systems are very important in control, and their stability is, of course, the main
qualification on the performance of a feedback structure as a controller. More-
over, for design purposes, it is extremely desirable that properties of feedback
systems be concluded from considerations of the open-loop elements. This aspect
makes the results of the previous sections not easily applicable to the analysis of
feedback systems, and a somewhat different approach is thus required. The ensuing
Lyapunov functions are defined in terms of variational problems.

The paper ends with a list of examples. They illustrate the viewpoint adopted
here and lead to the Lyapunov functions used to prove the circle criterion and the
Popov criterion.

The work reported here has been directly inspired by a very interesting paper
by Baker and Bergen 7] which appeared recently. They indeed posed the problem
of constructing Lyapunov functions as a variational problem, an approach which
has been fully exploited in the context presented here. Some of these ideas already
appeared in the work of Popov 8], Kalman 9], and Anderson 10], [11]. The
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author obtained a great deal of insight from the work of Brockett on passivity
and stability [12]. It is interesting to note that the ingenious independence of path
argument as exploited by the latter author in his construction of Lyapunov
functions follows here as a rather logical consequence of the variational problems
which lead to the desired Lyapunov functions.

The paper also indicates what may be the basic reason why stability conditions
appear to be easier to obtain using input-output methods than through the con-
struction of suitable Lyapunov functions: both input-output stability and Lya-
punov stability can be posed as variational minimization problems, and whereas
Lyapunov methods need the explicit solution of these variational problems
(thus the boundedness and the value of an infimum), input-output stability only
requires the boundedness of this infimum. This observation is due to Zames (private
communication).

2. Dynamical systems. A dynamical system is usually defined on a subset of
the real line as a mapping between function spaces satisfying an appropriate set of
axioms. This paper will be concerned with continuous time systems only. More-
over, it will be assumed that the inputs and the outputs take their values in appro-
priate inner product spaces and that their norm is a locally square integrable
function of time. This restriction precludes a certain amount of generality and is
made mainly for expository purposes since the results of the paper generalize to
much more general situations. In particular, the assumption that the input and
output spaces are inner product spaces is of no consequence to many of the results
in the paper. One of the reasons for treating systems in this setting is the possibility
of introducing and exploiting concepts related to energy and passivity of systems.
Indeed, these have far-reaching implications in stability theory.

There are two main avenues for obtaining mathematical models of systems:
the first one starts with an internal model in which physical laws and intercon-
nections are used to describe the dynamics and which then yield the relation
between the influence variables (the inputs) and the variables of interest (the
outputs). The second approach starts with an input-output relation as the basic
mathematical model to be used. Such a model is usually the logical consequence
from identification experiments at the input-output terminals.

Besides inputs and outputs there is an additional set of variables which is of
fundamental importance in the description of dynamical systems. These are the
so-called states which summarize the effect of past inputs. The internal modeling
approach, in fact, usually displays a state explicitly. More often than not the state
has no immediate physical significance and there is never any uniqueness as to its
choice. Although the basic mechanism of interest in system theory is the generation
of outputs from inputs, it is very often advantageous, however, to view this process
as taking place through this intermediate variable, the state. This point of view
has been particularly useful in such fields as dynamic optimization theory and the
study of Markov processes.

These concepts are formally introduced in the present section, and it is shown
that input-output descriptions and state space descriptions of dynamical systems
are essentially equivalent.
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The first notion is that of signal spaces which will be the input and output
function spaces.

Let V be an inner product space and let R denote the real line. Let f be a V-
valued function defined on R. Then the causal truncation offat T is defined to be the
result of the projection operator Pr defined by

f(t) fort__< T,
(Pf)(t)

0 otherwise.

The anticausal truncation off at T is defined as Qrf f- Prf Consider now
the vector space of V-valued functions on R with .[+ [f(t)]l 2. dt < . This vector
space is itself an inner product space with

(f, f2) (fl(t), f2(t))v dt

as the inner product. It will be denoted by L2(V) and is complete if V is. As usual,
no attention is paid to the fact that a function in L2(V) actually represents the
equivalence class of functions which are equal to it almost everywhere with respect
to Lebesgue measure.

As Wiener remarked when extending Fourier transforms, L(V) is not a very
interesting class of functions since it consists of functions which were small in the
remote past and are destined to become small in the remote future. This last aspect,
in particular, makes this function space of very limited use in stability studies
which precisely refer to this remote future, and any a priori limitations on the
future would therefore be very inappropriate.

A useful extension of L2(V) is its so-called causal extension denoted by L2e(V),
which consists of all V-valued functions on R whose causal truncations belong to
L(V), i.e.,

L2(V) {f :R V[PTf L2(V), all T R}.
The anticausal extension of L2e(V) is similarly defined as

{f :R - V[QTf L2(V), all T R}.
Since all time functions considered in this paper will be assumed to start at some
finite time, very little use of this anticausal extension will be made.

DEFINITION l. Let Lze(V) denote the causal extension of Lz(V). Then the sub-
space of L2e(V) defined by

S(V) - {f L2e(V)lQrf 0 for some T R}
will be called a signal space. Elements of S(V) will be called signals, and elements
of L2(V) f-] S(V) will be called small signals.

Thus, signal spaces consist of functions which vanish in the remote past and
which have, in a sense, no finite escape, but are otherwise quite arbitrary. As is
customary in the related literature, it will be assumed that inputs are applied to
systems starting at some finite time in the past. This time need not be a priori
fixed and will, in general, be different for each experiment. Note that signal spaces
are closed under concatenation and that any "reasonable" physical signal belongs
to a signal space. For the purposes of this paper, signal spaces represent a very
convenient abstraction of reality. The fact that signals are required to have their
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support on a half-line is very important and results in mild conditions for the well-
posedness of mathematical models. In other words, given a mathematical model
for a system (e.g., an integral equation or a differential equation), it will, in general,
be relatively easy to establish that inputs in a given class generate well-defined
outputs, provided, however, that these inputs have their support on a half-line.
For inputs defined on the whole real line (-oe, + oe), establishing this existence
and uniqueness of outputs usually leads to stringent conditions and requires
typically input-output continuity of the system. This case is moreover of dubious
physical significance. For details see [13], [14, 4.63, [15].

Let U S(Vu) and Y S(V) be signal spaces. U will be called the input space,
and Y will be called the output space. Elements of U and Y will be called respec-
tively input signals and output signals. A mapping F from U into Y is said to be
causal (or nonanticipatory) if for all Te R and all ul, u2 U with Prul PTU2,
the equality PTFU PTFU2 holds. 2 This condition is equivalent to requiring
that PrFPT PTF on U.

Note that the signal spaces as introduced above could have been called some-
what more consistently causal signal spaces. The analogous concepts of anti-
causal signal spaces and anticausal operators thus become straightforward.
No use will be made of these concepts, however. An additional notion which is
of some importance is that of a memoryless operator. This would most logically
be defined as an operator which is both causal and anticausal but is easiest (although
equivalently) defined as an operator F, defined by an element r e Y and an instan-
taneous map,f, from V, x R into Vy withf(0, t) 0 for all T and Fu r + Nu,
where (Nu)(t) f(u(t), t) is such that any function u e Lz(Vu) with compact sup-
port yields Nu Lz(l/y) (consequently also with compact support).

DEFINITION 2. A dynamical system is defined as a causal mapping from the
input signal space U into the output signal space Y. If this mapping is memory-
less, then the dynamical system will similarly be called memoryless.

The above setting for the study of input-output relations is similar to the one
employed by Balakrishnan in [16]. The definition eliminates the possibility of
studying differentiators, for instance, but for the purposes of this paper (stability)
such a restriction is not very disturbing. In the study of networks, however, one
clearly wants a more general definition which admits singularity functions in the
impulse response. Zemanian [17] and Balakrishnan [18] have studied systems in
which the inputs are assumed to be infinitely smooth functions and the outputs are
distributions. Extended spaces appeared first in the context of stability theory as a
result of the work of Sandberg [4] and Zames [5].

For many purposes, it is convenient to impose some smoothness conditions
on the operators in question. Note that U and Y have, as signal spaces, no topology
since they are, although derived from normed spaces, not normed themselves.
However, causality enables one nevertheless to make a suitable definition of
local continuity. Although simple continuity is the most logical smoothness
condition to impose, it is very often advantageous to require somewhat stronger
conditions, more specifically Lipschitz continuity. Recall that a (in general non-
linear) map F between normed spaces is said to be Lipschitz continuous if there

Note the abuse of notation in the fact that the symbol PT is used to denote an operator on U and
an operator on Y. This ambiguity, however, causes no difficulty.
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exists a real constant K < oo such that for all x l, x2 in the domain of F,
]]Fx Fx2] KI]x x21 Let F be a causal map from the input space U
into the output space Y. Then F is said to be locally Lipschitz continuous if for all
to, t R, P,IFQ,o is Lipschitz continuous as a map from L2(Vu) into Le(Vy).

DEFIYITIOY 3. A dynamical system is said to be smooth if the defining map
G is locally Lipschitz continuous. It is said to be uniformly smooth if for any given
T > 0, P,+ rGQ, is Lipschitz continuous uniformly in t.

Convention. For convenience it will be assumed that all dynamical systems
under consideration are unbiased, i.e., that they map the zero input into the
zero output;hence GO 0. This absence of a bias term can always be obtained
by a trivial redefinition of G and assumes, for instance, that for memoryless
operators the element r e Y appearing in the definition is the zero element.

Now that the definition of input-output models of dynamical systems has
been introduced, attention is focused on the formalism for the state space des-
cription of dynamical systems. Let R- denote the causal sector of R2 defined as

R- A {(re tl)lt2 tl R, 2
>_ 1}.

DEFIymoy 4. A (mathematical model of a) dynamical system is said to be
in state spaceform if it is determined by an abstract set X (the state space) and two
maps, b, the state transition map, and y, the output reading map, satisfying the
following axioms:

(i) q5 maps R x X x U into X’
(ii) (Causality)" qS(t, to, xo, u) 4(t, to, xo, P,(2,ou) for all (t, to) e R,

xoeX, and ue U;
(iii) (Consistency): ok(to, to, Xo, u) xo for all to e R, Xo e X, and u e U
(iv) (Composition law or semi-group property): 4)(te, to, Xo, U)= b(te, tl,

b(t, to, Xo, u), u) for all (t, to), (t:, tl) R-, xo X, and u e U;
(v) y maps R x X x V into V and the value of the output at time is

given by y(t, x(t), u(t))
(vi) X is a subset of an inner product space Vx
(vii) (Unbiasedness)" 43(t, to, 0, 0) 0 for all (t, to) R, and y(t, O, O) 0

for all e R;
(viii) Let X denote the signal space induced by V, (i.e., X S(V)); it is then

assumed that the functions

x(t) Qto)(t, to, x u) { (t, to, x,

0

Qtoy(t, x(t), u(O) / y(t, x(l),

0

for >= to,

otherwise,

for => to,

otherwise,

belong to X and Y respectively for all to e R, Xo e X, and u e U.
Axioms (i)-(v) are the usual axioms involved in describing dynamical systems

from a state space point of view. Axiom (vi) induces a topology on the state space
and will be needed in the definitions of Lyapunov stability, for instance. 3 Axiom

The assumption that X is an inner product space is restrictive and inconvenient for many applica-
tions, more so than would appear at first sight. For a study of dynamical systems whose state space is a
group manifold see [26].
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(vii) is in keeping with the unbiasedness convention introduced above, and axiom
(viii) guarantees the absence of a finite escape and results in the fact that locally
square integrable inputs produce locally square integrable outputs.

A dynamical system in state space form thus views the generation of outputs
from inputs as occurring through the composition of two maps, Gx and Gy, with
G,: U X and Gy: X U Y. The map G is a dynamical system in its own
right (with X viewed as the output space) but satisfies a richer set of axioms
than merely those implied by the dynamical system axioms: in addition, it is
required that this map have the Markov property which results in a decoupling
of the past from the future in the sense that the present value of the state has suffi-
cient information in it so as to summarize the effect of past inputs. The state space
thus represents an adequate memory-bank. The map Gy is memoryless (with input
space X U) and the dependence of y(t) on past values of u is obtained through
the dependence on x(t). It is a simple matter to verify that the composite system
y G(Gu, u) is indeed a dynamical system in the input-output sense. Note
also that GxO satisfies the axioms for dynamical systems without inputs as studied
in classical mechanics and its extensions.

The next definitions refer to the smoothness of the state transition map and the
output reading map. These smoothness conditions are generally quite important
aspects of a particular dynamical system in state space form. For instance, it can
be shown that otherwise any finite-dimensional dynamical system can be realized
by a one-dimensional dynamical system if this latter is not required to have any
smoothness. It suffices therefore to consider a one-to-one map from R" into R
and appropriately modify the state space and the maps defining the dynamical
system.

DEFINITION 5. A dynamical system in state space form is said to be smooth
if for any (t, to) e R there exist K, K2, K3, K4 < DO such that

IP,,Q,o(C(t, to, X Ul) (/)(t, to, X2, U2)

KallXl x2 + K2 PtlQto(Ul u2)

for all x l, x2 X and u l, U2 U, and

/’,Q,o(y(t, x(t), u(t)) y(t, x(t), u(t)))

K3 P,1Qto(Xl x2) + K4 PtQto(Yl- u2)

for all x l, x2 e X and u l, u2 e U.

It is said to be uniformly smooth if for any T>__ 0 and to + T in the above
inequalities, the constants K, K2, K3, K4 may be taken independent of to.

These definitions are entirely analogous to those imposed for input-output
systems. It is a simple matter to verify that (uniformly) smooth dynamical systems
in state space form define (uniformly) smooth input-output dynamical systems.
It is also clear that uniform smoothness and smoothness are equivalent for time-
invariant systems.

The final discussion of this section involves the relationship between the above
definitions of dynamical systems. As might be expected they are indeed equivalent.
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DEFINITION 6. Consider the dynamical system G and a dynamical system
in state space form with defining maps b and y. Then the dynamical system in
state space form is said to be a realization of G if any u U with o R such that

PtoU 0, yields (Gu)(t) y(t, q(t, to, O, u), u(t)) for all R. The dynamical system
in state space form thus defines the same input-output relation as G.

THEOREM 1. Every (smooth, uniformly smooth) dynamical system has a (smooth,
uniformly smooth) realization in state space form.

Proof The proof proceeds by construction. The state space X V will be
taken to be the collection of all functions in L2(Vu) with compact support, and
the state at time will be taken to be Ptu, where u U is the input to the system.
Thus, for instance,

qb(t, xo o, u) S,P,u xo + SPQoU,
where S denotes the shift operator (Sz)(t) z(t T), and

y(t, x, u)= (Gu)(t) (GP,u)(t) (GS_,S,Ptu)(t) a___ (GS_tx(t))(t).

It is left to the reader to verify that these maps indeed satisfy the axioms of dyna-
mical systems in state space form. The smoothness claims are also easily verified
directly in view of the simplicity of the state transition map and the fact that the
output map and the original dynamical system are essentially identical.

The above theorem, although too trivial and general to be of significance
in specific instances, yields a rather interesting canonical decomposition of non-
linear dynamical systems into a linear, time-invariant, reachable dynamical
part followed by a memoryless nonlinear part.4 Note also that the dynamical
part in this decomposition may be described by the partial differential equation

#x(z, t)/& 8x(z, t)/cgz, z <= O,

with the boundary control x(0, t)= u(t) and with solutions defined in an ap-
propriate sense. The function x(z, t) for z >= 0 then plays the role of the state at
time t, and the partial differential equation describes the evolution of the initial
state x(z, to) resulting from the input u(t). Notice also that in the above realization
the map y inherits linearity and time-invariance of G.

It should be noted that the equivalence of a dynamical system and a state
space realization of a dynamical system might nevertheless lead the latter model
to produce an output which could not be the result of any input to the former
model. Such outputs result from initial states which are somewhat artificial in
the sense that they cannot be produced by past inputs. The equivalence of a
dynamical system and one of its realizations is thus really a zero initial state
equivalence.

Notation. Let G denote a dynamical system in state space form, x0 X,
to R, and u U. Then the function defined by

y(t, dp(t, to, Xo, U), U(t)) for t> T=> to,

0 otherwise,

4 It was pointed out to the author that similar decomposition due to Wiener [19] and Balakrishnan
El6] have appeared in the literature.
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will be denoted by QrG(to, Xo, u) (or Qry(to, Xo, u) when there is no danger of
confusion).

3. Fundamental properties of dynamical systems. A number of fundamental
concepts related to dynamical systems and their state space realizations are
introduced and discussed in this section: they relate to the influence of the control
on the state (reachability, controllability, and connectedness), of the state on the
output (observability and irreducibility), and of the input on the output (stability
and continuity).

DEFINITION 7. The state space of a dynamical system in state space form
is said to be reachable if given any x e X and e R, there exists a to e R, to =< t,
and a u e U such that qS(t, to, 0, u) x. A dynamical system in state space form
is said to be controllable if given any Xo e X and to e R, there exists a e T, _>_ to,
and a u e U such that q(t, to, Xo, u) 0. The state space of a dynamical system
in state space form is said to be connected if given any Xo, x X there exists an
element (tl, to) R- and a u e U such that b(t, to, Xo, u) x.

Reachability thus requires the map b(t,., 0, .) to be onto X, whereas con-
trollability requires that 0 be in the range space of b(., to, Xo,.). Note that
reachability, controllability, and time-invariance imply connectedness.

DEFINITION 8. A dynamical system in state space form is said to be observable
if for any to e R, knowledge of Qtoy(to, xo, 0) (uniquely) determines xo 6 X. The
state space of a dynamical system in state space form is said to be irreducible if
for any given o R and Xo e X there exists a Q,ou U, such that knowledge of
Q,oy(to, Xo, u) (uniquely) determines Xo e X.

Observability thus requires the map y(to,., 0) to be one-to-one on X, whereas
irreducibility requires the map y(to,’, u) to be one-to-one on X by choosing
(QtoU)(X). It is clear that observability implies irreducibility and that the nomen-
clature "irreducible" is quite appropriate since if the state space is not irreducible,
then there exist at least two initial states which will be completely indistinguishable
under experimentation: these two states are thus entirely equivalent, and nothing
will be lost by eliminating one of them from the state space.

The above nomenclature is common (although far from standard) in the
related literature with the possible exception of irreducibility which is often taken
to indicate the set-theoretic minimality of the state space. Observability and irre-
ducibility are equivalent for linear systems with a finite-dimensional smooth state
space realization. The simplest example of systems in which these concepts are
different are systems with multiplicative control described, e.g., by 2 uAx. It
should also be remarked that the above definitions, although natural, are not the
most convenient ones for certain applications. Although it can be shown that every
dynamical system has a realization with a reachable state space, it is sometimes
very difficult to discover exactly what states are reachable (and to define X then
appropriately). For instance, in systems described by partial differential equations
these reachable states have certain smoothness properties which are not a priori
known; therefore, in certain applications it is much more convenient to adopt
an "almost" reachability requirement. The same remark holds for the following

See, for example, the proof of Theorem 1.
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definitions which, in addition, require an appropriate choice of the topology on
the state space.

DEFINITION 9. The state space of a dynamical system in state space form
is said to be uniformly reachable if there exist a continuous function ’R + --, R +

(R + denotes the nonnegative real numbers) with cz(0) 0 and a constant T => 0,
such that for any x e X and e R, there exists a u e U with Ptu 2 0( .,Y such
that 4(t, t- T, 0, u)= x. Uniform controllability and uniform connectedness are
similarly defined. A dynamical system is said to be uniformly observable if there
exist a strictly monotone increasing continuous function/’R / R with (0) 0
and lim_ / (a) + and a constant T e R, T __> 0, such that for any x e X
and to e R,

IIPo+ rQoy(to, x, O)[ >= ( x ).

The state space of a dynamical system in state space form is said to be uniformly
irreducible if with/ and Tas before, the inequality

[IPto+ TQto(Y(to, X1, U) Y(to, x2, u))[[ 2 >= fi(l[xx x2 I)

holds for all x, x2 X, to R, and some u U.
The above definitions differ somewhat from those in the literature. Most of

the papers concerned with uniform controllability for linear systems follow
Kalman’s [20] original definition, which imposes many more restrictions than the
definitions used here. In particular, it requires any control which makes the
transfer from state 0 at time Tto state x at time to be such that PQ_ Tu

2

>= (llxll) > 0.
The most efficient realization of a dynamical system is one in which the state

space is reachable and irreducible. This indeed guarantees that every output which
can be observed as a result of initial conditions and inputs could have been ob-
served by properly choosing the past input and that two different initial conditions
will lead to different outputs by properly choosing the input. Two realizations
which are both reachable and irreducible are thus isomorphic. They differ in the
sense that their state spaces are labeled differently. The one-to-one onto map
between these state spaces may, in general, be a function of time, however. A
realization of a dynamical system in which the state space is reachable and ir-
reducible can thus properly be called minimal, a notion which has many more
substantive implications for linear systems. In looking for reachable and irreducible
realizations it is natural to consider as the candidate for the state space the equi-
valence classes of those inputs up to time which yield the same output after time t,
regardless of the input after time t; more precisely, by considering the equivalence
class {Pu[ Qy is fixed for all Q,u} as a typical element of the state space. The
difficulty with this representation is that, in general, the state space itself then
becomes a function of time. There are two methods of getting around this difficulty"
one is to modify the original axioms and definitions so as to allow for a state space
which is itself a function of time; the other is to define a dynamical system as a
causal and a noncausal map depending on whether one considers time moving
forward or backward from the initial time. The state is thus alternatively required
to summarize past and future, and the state space thus has many more invariant
properties with respect to time. This device has been used successfully by Kalman
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21] and others in their study of systems described by the Volterra integral equation

y(t) w(t, r)u(r) d

with separable kernel w. This principle rests on dubious physical grounds, however,
and leads to technical difficulties for infinite-dimensional systems. The above
problems do not occur in stationary systems.

Recall that a mapping between normed spaces is said to be bounded if it
maps bounded sets into bounded sets. It is said to have a finite gain if there exists
a K < such that for any p >= 0 the ball with radius p gets mapped into the ball
with radius Kp. The infimum of all real numbers K achieving the above inequality
is usually called the gain of the operator.

DEFINITION 10. A dynamical system, G, is said to be input-output stable
if it maps bounded sets of small signals in U into bounded sets of small signals in
Y. It is said to be finite-gain input-output stable if it is stable and if there exists a
K < such that for any small signal u U, IlGul -<_ Kllu[. The infimum of all
such real numbers K will be denoted by GII. A dynamical system G is said to be
input-output continuous if it is stable and if the map G is continuous (in the topology
induced by L2(V,) and L2(Vr) as a map from U f’l Le(V,) into Y f3 L2(Vr). It is
said to be input-output Lipschitz continuous if G is actually Lipschitz continuous.

It can be shown [14, 2.4] that a dynamical system is finite-gain stable if and
only if the gain of Pt,GQto is bounded for all to, e R, uniformly in to and l-

In fact,

G lim Pt,GQto I,
o,t

and this limit is approached monotonically. A similar relationship holds for
Lipschitz continuity.

Related, but not identical, are the following more familiar Lyapunov stability
concepts for dynamical systems in state space form.

DEFINITION 11. The equilibrium state of a dynamical system in state space
form is said to be globally attractive if for any xo X and to R,

lim b(to + T, to, Xo, 0) 0.

It is said to be un!lormly globally attractive if this limit is uniform in to. It is said
to be stable if for any e > 0 and o R there exists a 6(e, to) such that b(to + T, to,
Xo, 0)[ =< e for all T >= 0 whenever IXol _<_ . It is said to be uniformly stable if
6(, to) may be chosen independent of to. A dynamical system in state space form
is said to be bounded if for any xo X and to R, qS(to + T, to, Xo, 0) is bounded
on the half-line T >= 0. It is said to be uniformly bounded if this bound may be
chosen independent of to. A dynamical system in state space form is said to be
globally asymptotically stable if the equilibrium state is globally attractive and
stable. It is said to be uniformly globally asymptotically stable if the equilibrium
state is uniformly globally attractive, uniformly stable, and uniformly bounded.

The usual method of proving stability of systems in state space form is
to consider an appropriate Lyapunov function. The following definition of a
Lyapunov function is a convenient one for the present discussion.
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DEFINITION 12. Let V be a mapping from X R into R +, with V(x, t) 0
if and only if x 0. Then Vis said to be a Lyapunovfunction for a dynamical system
in state space form if for any Xo X and to R,

(i) V(c/)(t, to, Xo, 0), t) is a monotone nonincreasing function of for >__ to;
(ii) limT-o V(dP(to + T, to, Xo, t), to + T) O.

The function V will be called a uniform Lyapunov function if, in addition, the
limit in (ii) is uniform in o and if V(x, t) is bounded in for all x X. The function
V is said to be decrescent if there exists a continuous function a’R / - R / with
a(0) 0 such that V(x, t) <= a(I]x for all x X and R. It is said to be positive

definite if there exists a monotone increasing continuous function fi’R + R +

with fl(0) 0 such that V(x, t) >= fl(xll) for all x X and R. It is said to be
radially unbounded if there exists a continuous function 7"R+ R+ with
lim_ + 7(a) + ov such that V(x, t) >__ 7( Ix for all x X and R. If V is a
Lyapunov function for a dynamical system in state space form, then the equilibrium
state is globally asymptotically stable if V is positive definite, and the dynamical
system is bounded if V is radially unbounded. If V is a uniform Lyapunov function,
then the equilibrium state is uniformly globally attractive if V is positive definite,
and uniformly stable if Vis positive definite and decrescent the system is uniformly
bounded if Vis radially unbounded, and uniformly globally asymptotically stable
if V is radially unbounded, positive definite, and decrescent. Notice also that
decrescency implies the last condition in the definition of a uniform Lyapunov
function, and thus a .decrescent Lyapunov function for a uniformly globally
asymptotically stable system is a uniform Lyapunov function.

The main purpose of this paper is to study the relations between input-output
stability and global stability. It seems reasonable to expect that an input-output
stable system will be globally stable if inputs sufficiently influence states and if
states sufficiently influence outputs. Then internal instability should reflect into
external instability. That this can be made precise is shown in the next section.

4. Input-output stability and global stability. This section establishes the
fundamental relationship between input-output stability and global stability.
In trying to obtain these internal stability implications from external data, one
defines certain functions which depend on the external variables only. In order
for these functions to be well-defined and to qualify as suitable Lyapunov functions,
a number of additional assumptions have to be made, and it is at this point that
reachability, controllability, observability, and input-output stability become
relevant. There are two natural functions to consider for this purpose:

(i) V(x, t) inf PtQtoul 2, where the infimum is to be taken over all to -<_
and u U with th(t, to, 0, u) x (the infimum (supremum) over the void set is by
assumption + (- )), and

(ii) Vo(x, t) - [[Q,y(t, x, 0)[[ .
The symbolism is clear: the first function is inspired by reachability, and the
second by observability. V is well-defined if the state space is reachable, and Vo
is well-defined if the state space is reachable and if the dynamical system is
input-output stable. Indeed, let u U be such that b(t, to, 0, u) x. Then

Q,y(t,x,O)]2 =< ]GPu 2 <_ G 2 Ptu 2.
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If Vo(x, t) is well-defined, then it is clearly monotone nonincreasing along un-
driven solutions and approaches zero when oe since

Vo(4(t, to, Xo, o), t) IIY( b( to Xo, 0), 0)112 d

The function Vr is also monotone nonincreasing along undriven solutions, although
this is not as immediate. The argument used in the demonstration of this fact will
repeatedly be used in the sequel and will therefore only here be done explicitly.
Thus, consider V(b(tl, x, t, 0), tl) with t >= t, and denote b(t:, x, t, 0) by X

Then V(x, t) infllP,,Qou[I 2. The state of the dynamical system can be driven
to x at time t by first driving it from 0 at time to to x at time and then applying
zero control until time t. This is, in general, a suboptimal control for reaching
X at time t, even when it is driven to x at time in an optimal fashion. This
suboptimal strategy thus shows that V(x, t) =< V(x, t).

The basic relationships between input-output stability and global stability
are stated in the following theorems.

THEOREM 2. A uniformly observable realization of an input-output stable
dynamical system with a reachable state space is globally asymptotically stable and
bounded, and Vo is a positive definite radially unbounded Lyapunovfunctionfor it.

Proof It suffices to show that Vo is a positive definite radially unbounded
Lyapunov function. By reachability and input-output stability, V0 is well-defined.
By observability, Vo 0 if and only if x 0; it is monotone nonincreasing and
approaches zero along undriven solutions since

IlY(Z,b(z,t x O) 0) 112Vy

It remains to be shown that V is positive definite and radially unbounded. This,
however, is an immediate consequence of uniform observability.

Note that in the above theorem the uniform observability condition cannot
simply be relaxed to only observability, even if at the same time one assumes
uniform reachability rather than merely reachability.

THEOREM 3. A uniformly observable realization of a finite-gain input-output
stable dynamical system with a uniformly reachable state space is uniformly globally
asymptotically stable, and V and Vo are positive definite radially unbounded de-
crescent uniform Lyapunovfunctions for it.

Proof From finite-gain input-output stability it follows that

and thus that

Vo(x, t) _<_ G v(x, t).

Vr is well-defined and decrescent by uniform reachability, and Vo is well-defined,
positive definite, and radially unbounded by uniform observability. Thus both
Vo and V are positive definite, radially unbounded, and decrescent, and the
theorem follows if it can be shown that Vo(ck(to + T, to, Xo, 0), to + T) approaches
zero as T oe, uniformly in to. Notice that with T as in the definition of uniform
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observability it follows that

Vo(c(to + T, to, Xo, 0), + T)[ Vo(xo, to) <= 1

where a and fl are as in the definitions of uniform reachability and uniform observ-
ability. This implies uniform convergence of the Lyapunov function V0 since for
any e > 0 and M < Do there exists a 6 > 0 such that fi(a)[a(a) >= 6 > 0 for all
0 < e a =< M < oo. Hence the system is uniformly globally asymptotically
stable, which in turn implies that V is a uniform Lyapunov function.

Note that finite-gain stability (or uniform smoothness) and uniform observ-
ability yield that every control u transferring state 0 at time to to state x at time
requires

P,9.,oU >= -/(I
a condition which is usually part of the definition of uniform controllability [20].
As a final remark in this section, note that the fact that the inputs and outputs take
their values in inner product spaces is inessential and that the results hold, mutatis
mutandis, if these spaces are merely normed spaces. The inner product structure
becomes very important in the next section, which is concerned with passivity.

5. Lyapunov functions for passive systems. The notions which will be intro-
duced in this section are those of passivity and certain concepts related to energy.
It will be assumed in this section that the inner product spaces under consideration
are real.6

DEFINITION 13. Let U Yand let G be a dynamical system from U into Y
Then G is said to be passive if for all u U and R, (Ptu, PtGu} > O. It is said to
be strictly passive if G el is passive for some e > 0.

This terminology is to be interpreted as follows" (u(t), y(t))v, represents
the instantaneous power delivered to the system from the outside. Thus (P,u, P,y)
represents the total energy at time delivered to the system from the outside. If
regardless of the termination and in the absence of initial excitations this energy
is nonnegative, then the system is passive viewed from its input-output terminals.

It can be shown (see [14, 2.17]) that if G is input-output stable, then it is
passive if and only if (u, Gu >__ 0 for all small input signals u.

DEFINITION 14. Let G be a dynamical system in state space form. Then the
required energy, Er, is defined on X R as

Er(x, t) 6_4_ inf (P,u, P,Gu),

where the infimum is to be taken over all to and u e U with P,ou 0 which
yield 4(t, to, O, u) x. The available energy, E, is defined on X x R as

E,(x, t) sup (Pt, Qtu, Pt, Qty(t, x, u)>.
ueU
ta>_t

The cycle energy, Ec, is defined on X R as E Ea. Thus

Ec(x, t) inf (P,u, Pt, Gu),

Complex inner product spaces can be treated equally well by considering the real part of the inner
product in the definitions of passivity and energy.
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where the infimum is to be taken over all to and with o __< <_ and u e U
with Prou 0, which yields b(t, to, 0, u) x.

The available energy is thus the maximum energy which can be extracted
from a system, whereas the required energy is the energy needed to excite a system
to a given set of initial conditions. The cycle energy is the minimum energy it
takes to cycle a system between the equilibrium and a given state. Note that all
of the above energies are defined in terms of input-output relations.

LEMMA 1. Consider a realization ofa passive dynamical system and assume that
the state space is reachable. Then Ea, Er and E exist (i.e., E,, Er, E < ) and are
nonnegative. Moreover, 0 <= E,, E <= E.

Proof That E and Ec are finite and nonnegative follows immediately from
passivity and reachability. Hence, since E, + Ec Er, E, < E.

It remains to be shown that Eo is nonnegative. This follows by considering
Qtu 0, which shows that the supremum in the definition of Ec is taken over
a set which contains zero. This completes the proof of the lemma.

The inequality Ea __< E formalizes the intuitive notion that passive systems
cannot supply more energy to the outside than has previously been supplied to
them from the outside. Note that none of the above notions satisfactorily defines
the stored energy, E(x, t), which is an internal property of a dynamical system
and thus usually a function of the realization. The passivity definition employed
here is purely input-output. Similar definitions of internal passivity can be made,
and the theory for linear time-invariant dissipative systems [22] is available. One
can then pose the question of whether or not every input-output passive system
has a passive realization. These ramifications fall beyond the scope of the present
paper. It would be interesting to verify that the stored energy in a passive reali-
zation of a passive system satisfies the inequality E, _<_ E <= Er, as it should.

The cycle energy E is a measure of the degree of irreversibility of a system.
This is the intuitive basis for the following definitions.

DEFINITION 15. A passive dynamical system in state space form is said to
be irreversible if E(x, t) 0 only if x 0. It is said to be uniformly irreversible
if there exists a monotone increasing function 7 :R + R + with ,(0)= 0 and
lim_. + 7(a) + m such that for all x e X and R, E(x, t) >= (llxll). It is said
to be reversible if E 0, i.e., if Er E,.

THeOReM 4. The available energy, E,, and the required energy, E, are de-
crescent uniform Lyapunovfunctions for a uniformly observable realization ofa pas-
sive finite-gain input-output stable dynamical system with a uniformly reachable
state space.

Proof It will first be shown that E is decrescent. By the Schwarz inequality,

It thus follows from finite-gain stability that there exists a constant K < such
that E,(x, t)<= K infllP,ull 2, where the infimum is to be taken over all to _-<
and u U with Prou O, c(t, to, O, u) x. By uniform reachability, E,(x, t) is thus
decrescent. It will now be shown that Er is a Lyapunov function. That E(x, t) is
nonincreasing along undriven solutions follows from its definition and by letting
u 0 from to until t, using an analogous argument to the one used in 4 in
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showing that V is monotone nonincreasing. By Theorem 3,

qS(t0 + T, to, Xo,0)0 as T---, ce,

uniformly in to, which by decrescence indeed implies that Er is a uniform Lyapunov
function. Since E, __< Er, it remains to be shown that Ea is monotone nonincreasing
along undriven solutions. This follows from an analogous argument to the one
used to show that E, is nonincreasing. This completes the proof.

Theorem 4 is not as convincing as one might like it to be since it does not
make any claims about the positive definiteness of the Lyapunov functions. This
positive definiteness can be obtained using somewhat stronger hypotheses. The
available energy E, will be positive definite if the feedback system with the dynam-
ical system G in the forward and some constant gain k > 0 in the feedback loop
remains a well-defined dynamical system. This is the case under weak additional
assumptions on G. The resulting control to be used to show definiteness of Eo
is the solution e of the feedback equation Qt(e + kG(t, x, e)) 0. This corresponds
to the input which results from a termination of the system with a positive resistor.
The required energy E will be positive definite if Eo is or if the system is strictly
passive (rather than merely passive). A third possibility is to require uniform
irreversibility, since Ec _-< E.

6. Feedback systems. One of the main reasons for being interested in stability
stems from its importance in feedback control. The canonical form of the feedback
system considered in this paper is shown in Fig. 1, and the closed loop system is
thus described by the implicit equations

(FE) (I + G)e u, y Ge.

FIG. 1. Thefeedback system under consideration

It will be assumed that the input signal space U and the output signal space
Yare the same and that G is a dynamical system from U into Y. Two questions
related to the well-posedness of this feedback system arise:first, whether or not
the closed loop feedback system still represents a well-defined dynamical system
in its own right and, second, whether or not the state space induced by a realization
of G will also qualify as the state space for the closed loop system. These issues
fall beyond the scope of this paper, and it will be explicitly assumed rather that
these well-posedness conditions are satisfied. It is thus assumed that:

(i) (I + G)-1 exists (as a map from U into itself) and is causal. This implies
that the closed loop system G(I + G)-1 I- (I + G)-1 is itself a dynamical
system from the input space U into the output space Y.



LYAPUNOV FUNCTIONS FOR INPUT-OUTPUT SYSTEMS 121

(ii) If G is described in state space form with state space X, then X also qualifies
as the state space for the closed loop dynamical system G(I + G)- 1, and a unique
solution to the feedback equations exists for any initial condition Xo e X, initial
time to e R, and input u e U.

These well-posedness questions have been investigated in the literature
[14, 4.23, [15] and the simplest sufficient conditions essentially impose a restric-
tion on the feedthrough in G, in addition to some smoothness conditions on the
open loop system. They are satisfied in most models and, in particular, whenever G
contains a pure or generalized delay.

In the study of feedback systems it is important to establish conditions on the
open loop .operator in order to draw conclusions about the closed loop system.
The first questions thus answered are those related to controllability and irreduci-
bility.

THEOREM 5. Consider the feedback system described by equations (FE). Then
teachability (controllability, connectedness, irreducibility) of the state space reali-
zation of the open loop system implies reachability (controllability, connectedness,
irreducibility) of the associated state space realization of the closed loop system.
Uniform reachability (controllability, connectedness, irreducibility) ofthe state space
realization of the open loop system implies uniform teachability (controllability,
connectedness, irreducibility) of the associated state space realization of the closed
loop system provided the open loop system is in addition uniformly smooth.

Proof Preservation of reachability, controllability, or connectedness is
essentially obvious. Indeed, let ul be a control which results in the desired transfer
for the open loop system. Then the control u u + GUl will clearly result in
the same transfer for the closed loop system. Irreducibility of the closed loop
system will be established by contradiction. Assume therefore that there exist
X1, X2 X, Xl @ x2, and to R such that

QtoG(I + G)- l(to, X1, hi) QtoG(I + G)- l(to, X2, U) for all u U.

This implies that

Q,oG(to, Xl, ul) QroG(to, x2, Ul)

for all U which can be written as

Ul u Q,oG(I + G)- l(to, Xl, u), u e U.

Since Ul can thus be taken to be any element of U by choosing u ul + QoG(to,
xl, ul), this shows that

QtoG(to, xl, ul) QoG(to, x2, Ul) for all Ul e U.

Hence, the open loop system is not irreducible whenever the closed loop system
is not irreducible. To show uniform reachability, let u be a control such that
b(t, to, 0, u) x with to T and T as in the definition ofuniform reachability.
The control u + Gu then transfers the closed loop system from state 0 at to T
to state x at t. Since
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uniform reachability of the closed loop system thus becomes a consequence of
uniform reachability of the open loop system if IIPGQ_ 11 is uniformly bounded,
which in turn is a consequence of the uniform smoothness assumption. Preserva-
tion of uniform irreducibility is shown in a similar way. This completes the proof.

The above theorem contains no surprises with the possible exception that it
does not state the preservation of observability under feedback. This is in fact
untrue, and it is necessary to consider nonlinear systems to obtain satisfactory
counterexamples. The system uAx, y---Cx will lead to a counterexample
for the contention that closed loop observability follows from open loop observa-
bility. This phenomenon is by and large a consequence of the definition of observa-
bility which is really observability under zero input. If one were to modify this
definition and require that for all given inputs u U the response to different
initial states should be different, then this observability under arbitrary inputs
would indeed by preserved under feedback. These two types of observability
are equivalent for linear systems. Note that the above theorem states the equiva-
lence of teachability (controllability, connectedness, irreducibility) of the open loop
and the closed loop system since putting positive unit feedback around the closed
loop system gives back the open loop system. The fact that only feedback systems
with unit feedback are being considered is also inessential to the basic result.

7. Lyapunov functions for feedback systems. In trying to define Lyapunov
functions for input-output stable feedback systems, one can of course apply the
techniques developed by 4 and 5. Such an approach is not very promising since
the computation of some of the Lyapunov functions defined there requires detailed
knowledge of the closed loop system, whereas it is desirable to pose the calcula-
tions and variational questions entirely in terms of the open loop dynamical system.
This holds, in particular, for the function Vo defined in 4.

It can be shown [13] that a feedback system is finite-gain input-output stable
if and only if there exists a constant e > 0 such that the inequality
>- e IlPtUll holds for all u U and R. In fact, e- may be taken as any real number
larger than the gain of (I + G)-. It should also be remarked that for linear feed-
back systems stability, continuity and finite-gain stability are equivalent.

Now consider the following two functions which are defined as variational
problems and will lead to Lyapunov functions for feedback systems"

(i) V,(x, t)= inf]]PtQto(U + y(to, O, U))[I 2 when the infimum is to be taken
over all u U and to s/ such that 4(t, to, 0, u)= x (4) and y denote the state
transition and output reading map of the open loop dynamical system).

(ii) V(x, t) -inf(]lPtQ,(u + y(t, x, b/))[[ 2 e:[[PQ,u[[2), where the infimum
is to be taken over all u U and ta >_ t.

Txao 6. Assume that the feedback system described by equation (FE) is

uniformly observable, finite-gain input-output stable, and that the state space is

uniformly reachable. Let K denote the gain of (I + G)- and let 0 <
Then the feedback system is uniformly globally asymptotically stable and V and V
are positive definite radially unbounded decrescent uniform Lyapunov functions
for it.

Proof Note that uniform global asymptotic stability and the claims about V
follow from Theorem 3. It will now be shown that V is finite.



LYAPUNOV FUNCTIONS FOR INPUT-OUTPUT SYSTEMS 123

Let u e U and to <= be such that PtoUl 0 and 4(t, to, O, U l) X. Then

Pt,Qt(u + y(t, x, u))= P,,(Q,u + P,u + y(to, O, Q,u +
Pt(ul + y(to, O, Ptul)).

Thus,

Pt,Qt(u + y(t, x, u)) 2 >= e2 Pt,(Qu + Ptul) 2 Pt(ul + y(to, o, PtU1))[I 2

2 Pt(u + y(t0 0 Pul))ll 2e2 n,, O,u 2 + e21ntu
and

V(x, t) >__ e2[lpulll 2 IIP,(Ul + y(to, o, Pul))ll 2.

Since the right-hand side of this inequality depends on PtUl only, the result follows.
The fact that V is nonnegative follows from taking u G(I + G)-l(t,x, 0).
That V is monotone nonincreasing along solutions follows from the usual argu-
ment explained earlier. To show that

V(ch(to + T, to, Xo, 0), to + T) - 0 as T -
uniformly in o, it suffices to show that V is decrescent since qb(to + T, to, Xo, 0)

0 as T oc uniformly in to. It follows from the above inequality that

V(x, t)__< inf(llPt(Ul + y(to, O, PtUl))ll 2 f,2llPtUll[2),

where the infimum is to be taken over all to _-< and U e U with P,oUl 0 and
b(t, to, 0, u l) x. Decrescence thus follows from uniform reachability and finite-
gain stability. Positive definiteness and radial unboundedness follows by con-
sidering u e -G(I + G)-l(t, x, 0) which yields V(x, t) >__ fl(llxll) by uniform
observability. This completes the proof.

The standard methods for proving stability of feedback systems is to show that
the open loop gain is less than unity (small loop gain theorem) or to show that the
open loop dynamical system may be viewed as the cascade of two passive systems
(positive operator conditions). These cases admit special consideration and are
treated in the remainder of this section.

Consider therefore the following two functions:
(i) rl(x,t)=-inf(llQ,ul] 2- IlQty(t,x,u)ll2), where the infimum is to be

taken over all u e U with Itull < oe, and
(ii) Vz(x, t) inf(llP,ull IIP,GulI2), where the infimum is to be taken over

all to e R and u e U with Ptou 0 and qb(t, to, 0, u) x.
THEOREM 7. Assume that the feedback system described by equations (FE)

is uniformly observable, that the open loop dynamical system has gain less than unity
and that the state space is uniformly reachable. Then the feedback system is finite-
gain input-output stable and uniformly globally asymptotically stable and V1 and Va
are positive definite radially unbounded decrescent uniform Lyapunov functions
for it.

The case in which the open loop consists of the composition of a dynamical
system G1 followed by a memoryless dynamical system G2 whose gain product is
less than unity has received a great deal of attention and leads to a Lyapunov
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function which only depends on G1. Consider therefore the following functions:
(i) V(x,t) -inf(]]Q,u 2 IG1]]-2 Q,Ga(t,x,u) 2), where the infimum is

to be taken over all u U with ]lull < oo, and
(ii) Vd(x,t)= inf(llPtul[ 2- IIGIlI-zlIPtGulI2), where the infimum is to be

taken over all to R and u U with Ptou 0 and b(t, to, 0, u) x.
THEOREM 8. Assume that the feedback system described by equations (FE)

is uniformly observable and that the state space is uniformly reachable. Let G G2G
where G1 is a uniformly controllable, uniformly observable dynamical system and
G2 is a memoryless dynamical system. Assume that the product of the gains of G
and G2, IIGll] ]IG2]], is less than unity. Then the feedback system is finite-gain
input-output stable and unijbrmly globally asymptotically stable and V and V
are positive definite radially unbounded decrescent uniform Lyapunovfunctionsfor it.

Proof The proofs of Theorems 7 and 8 offer no surprises considering the
previous theorems, and the details will be omitted. The stability claims follow
from the so-called small-gain theorem [5] for input-output stability and Theorem 2.
Existence of V1, V2, V and V follows from the small gain condition, decrescence
from uniform reachability, and positive definiteness by taking u 0. Mono-
tonicity along undriven solutions requires a minor modification of the usual
argument. Consider, for instance, the function V’ of Theorem 8. Let tl >= to and
x q(tl, to, Xo, 0), with q the state transition map of the closed loop feedback
system. Choose u on (to, l) to equal e P,Q,o(1 + G)-l(to, Xo, 0). Thus,

V(xo, to) => -lie 2 + Ga[-2 Gl(to, Xo e) 2 + VT(x1, t).

Since, however,

e 2 + Glll-2]lp,Q,oG,(to, Xo, e) 2 G2p,QtoGl(to, Xo ,e) 2

-2GI Pt,QtoGl(to, Xo, e)ll 2

24- Ga -2)[Pt,Q,oG(to, Xo, e 2

and IIG]1-2 IG2 ]2 > 0, V(xo, to) V(x1, tl) as desired. This completes the
proof.

Theorem 8 is particularly useful, for instance, when G1 is linear and G2 is
nonlinear or when G1 is linear and time invariant and G2 is time-varying. The
variational problems which then result are indeed much simpler if one applies
Theorem 8 than those needed in Theorem 7.

The two theorems which follow are the counterparts of the preceding ones,
but with passivity conditions replacing the small gain condition. The stability
theorem which lies at the basis of these results states that a feedback system is
finite-gain input-output stable if the open loop dynamical system G is the composi-
tion of a passive system, G1, and a strictly passive finite-gain input-output stable
system, G2. This decomposition is usually not the result of physical considerations,
but rather a mathematical device which allows one to prove stability of the closed
loop system.

Assume thus that G, G1 and G2 with G G2G1 are dynamical systems in
state space form with state spaces X, X1 and X2 respectively. The space X1 x X2
certainly qualifies as another state space for G but will, in general, be much larger
than X, particularly if the latter is minimal (i.e., reachable and irreducible). In
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general, this is true in stability applications since the factors G and G2 are usually
not natural decompositions of G but are constructed with the aid of so-called
"multipliers," which usually results in this inflation of the state space. Assume
now that the dynamical system G in state space form has a reachable and irre-
ducible state space X. Consider the dynamical system G G2G with state space
X )< X2 and assume that the state (xl, X2) t X )< X2 is reachable at e R, i.e.,
that there exist a to =< and u e U with Prou 0 such that q51(t, to, 0, u) xl and
b2(t, to, O, Glu) x2 (bl and (D2 denote the state transition maps of G1 and G2
respectively). Consider now on this subset of reachable states at time the equiva-
lence classes of those which yield the same output after time for all u e U, i.e., the
reachable states (x’, x) and (x’, x) will be considered equivalent if

Q,G2(t, x2, Gl(t, x’, u)) Q,G2(t, X2, Gl(t, xl, u)) for all u e U.

There is (by minimality) a one-to-one and onto correspondence between these
equivalence classes and the space X. Denote by X,(Xl, x2) the element of X cor-
responding in this sense to the equivalence class derived from the reachable state
(xl, x2). The map Xt may in general depend explicitly on t. Assume furthermore
that there exist constants k and K such that

k(llxall 2 + Ilx2[I 2) IIXt(x1,X2)]] 2 g(llxlll 2 -4-IIx2112) for all tR

and reachable states (xl, x2) X1 X X2 The decomposition of G into G G2G
will then be called a compatiblefactorization of the dynamical system G.

The statement of the theorem which follows involves Lyapunov functions
defined on X1 x X2, but these can, by the above remarks, also be considered as
Lyapunov functions on the state space X provided one only considers pairs (x 1, x2)
which are reachable. The following theorem statement then becomes clear.

THEOREM 9. Assume that the feedback system described by equations (FE)
is uniformly observable and that the state space is uniformly reachable. Assume also
that the open loop dynamical system G has a uniformly reachable and uniformly
irreducible state space and that it admits a compatible factorization G G2G
into the uniformly observable dynamical systems G1 and G2 with uniformly reachable
state spaces X1 and X2 respectively. Assume that one of thesefactors is passive and
uniformly smooth and that the other is strictly passive and finite-gain input-output
stable. Then the closed loop feedback system is finite-gain input-output stable and
uniformly globally asymptotically stable, and the total available energy, E, E(,1)
+ c,=(2)-, and the total required energy, Er EI)+ =(2)_r, are decrescent uniform
Lyapunov functions for it. (The superscripts refer to the dynamical systems com-
posing G.)

Proof Decrescence of E on X x X2 follows from Theorem 4 with an appro-
priate modification in the proof in order to replace finite-gain stability by the uni-
form smoothness condition. Decrescence on X1 x X2 then implies decrescence
on X bythe inequality in the definition ofa compatible factorization. Since E, <__ E,
E, is also decrescent. The stability claims about the feedback system are well
known [5], and it remains to be shown that the energy functions are monotone
nonincreasing along undriven solutions. This will only be shown for the required
energy. The proof for the available energy is similar.
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Let (X’l, xz) e X1 x X2 anc] to e R be given, and let (Xl, X2) X X X2

denote the state of the dynamical systems G2G1 at time tl >_- to resulting from the
transfer along solutions of the undriven feedback system. Then

inf (Pt,ul, PtlGlUl) -+- inf (P,u2, PtIG2ue)
x’ ,t x’ ,t

=< inf (PtoUl, PtoGlUl) -+- inf (Ptou2, PtoG2u2)
x’ ,to x,to

nt- (Pt,Qtoc1, Pt,OtoGl(tO, Xl, c1)) nt- (PtlOtoC2, Pt,QtoG2(to, x’2, e2)),

where the notation inf_x;,,t ,, for instance, denotes the infimum over all __< t
and ux U with Ptu 0 and qS(tl, t, 0, u) x. The other symbolism is to be
interpreted in an analogous way. The inputs el and e denote respectively (I
+ G)- l(to, (x’l, xz), 0) and GI(I + G)- a(to, (x’, x’2), 0). The desired result then
follows if one notices that Qtoe2 QtoG(to, x’, e) and that Qtoel -QtoG2(to,
x’2, G(to, x], e)) since this shows that the contributions of the last two terms in
the above inequality cancel. This completes the proof.

The reader is referred to the remark following Theorem 4 for conditions
to ensure positive definiteness and radial unboundedness. Notice again that
positive definiteness on X x X suffices for positive definiteness on X by the
definition of a compatible factorization. The case in which the operator G2 is
memoryless leads, as in the small gain case, to a simplification. This is stated in the
following final theorem.

THEOREM 10. Assume that the feedback system described by equations (FE)
is uniformly observable and that the state space is uniformly reachable. Assume that
the open loop dynamical system, G G2G1, consists of the composition of a uni-
formly observable, finite-gain input-output stable, strictly passive dynamical system,
G1, with a uniformly reachable state space, followed by a memoryless passive
dynamical system, G2. Then the closed loop feedback system is finite-gain input-
output stable and uniformly globally asymptotically stable, and the available energy,
E(o), and the required energy, E1), are decrescent uniform Lyapunov functions
for it.

Proof The proof combines the ideas in the proofs of Theorems 8 and 9 and is
left to the reader.

The theorems developed here treat the small gain stability conditions and the
passive operator stability conditions. The methods can, however, easily be ex-
tended to treat conic operators as well.

8. Examples.
Example 1. Let G(s) be a p x m matrix of rational functions of s with lims.

G(s) 0, and assume that {A, B, C} is a minimal8 realization of G(s). Assume that

The norms and inner products involved in these examples are the usual norms and inner products
of Euclidean spaces. Prime denotes transposition. For the calculations involved in the solution of the
variational problems in this section, see [23, 21, 22, 23 and 25]. Although some of the problems are
not treated explicitly there, the modifications merely require algebraic manipulation and no new
methodology.

Algebraically this means that A is an n x n matrix, that the n x nm and n x np matrices (B, AB,
.., A"-XB) and (C’,A’C’,..., (A’)"-C’) are of full rank n, and that G(s) C(ls A)-XB. The full
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the poles of G(s), which by minimality equal the eigenvalues of A, are in Re s < 0.
The system : Ax + Bu; y Cx is thus finite-gain input-output stable and
globally asymptotically stable, and Theorem 3 yields as positive definite decrescent
radially unbounded Lyapunov functions the quadratic forms X’KlX and x’K2x,
where K1 is the (unique, positive definite) solution of the linear matrix equation
A’X + XA -C’C, and K is the (unique, positive definite) solution of the
linear matrix equation AX + XA’ -BB’. Clearly, these are only two of many
possible Lyapunov functions for this asymptotically stable dynamical system.

Example 2. Let G(s) be an m m matrix of rational functions of s with lim_
G(s) < , and assume that {A, B, C, D} is a minimal realization of G(s). Assume
that the poles of G(s) are in Re s < 0, that G(jo9) + G’(-jo9) is Hermitian positive
definite for all o9 R, and that D + D’ is positive definite. The n-dimensional
system : Ax + Bu; y Cx + Du and thus strictly passive, finite-gain input-
output stable, and globally asymptotically stable. The available energy, Ea(xo, to),
is given by

inf r/,
uL2(O, oo)

where r/= u’(t)y(t) dt,

subject to the constraint : Ax + Bu; y Cx + Du, x(0) Xo, and is indepen-
dent of o. This variational problem is a least squares problem and, by Lemma 1,
an infimum exists. This infimum is, in fact, attained by the feedback control

and

b/ --(O + O’)-l(C q- B’K)x

min r/ t/* x’oKxo/2,
uL2(O,c)

where K K’ is the (unique) negative definite solution of the algebraic Riccati
equation

0 -A’X XA + (C + B’X)’(D + D’)-I(C + B’X).

Note [8], 9], [10] that this implies the existence of an n x n positive definite
matrix P P’ (P K), and n m matrix L, and an m x m matrix W0 such that
(Kalman-Yakubovich-Popov)

A’P + PA -LE,

PB C’ LWo,

W’oWo D + D’.

rank condition on (B, AB, ..., A"- 1B) is equivalent to controllability, reachability, and connectedness,
and the full rank condition on (C’, A’C’,..., (A’)"-IC’) is equivalent to observability and irreduci-
bility, where these notions refer to the linear time-invariant finite-dimensional system Ax + Bu;
y Cx. For these systems, the observability considered here is equivalent to observability under
arbitrary inputs, and all of these properties hold uniformly whenever they hold. Global asymptotic
stability requires all the eigenvalues of A to be in Re 2 < 0 and is equivalent to input-output continuity
if the system is minimal.
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Since, moreover, in this (linear) case the passivity is necessary and sufficient for the
existence of the required infimum, and since passivity is equivalent to positive
realness of G(s), the above conditions (existence of K or P) are also necessary for
positive realness. Thus the available energy Ea(x, t) x’Px/2 is a positive definite
radially unbounded decrescent Lyapunov function. The required energy, E,(xo, to),
is somewhat more involved to calculate and is defined by

where

inf inf r/,
T>= 0 u.L2(- T,O)

O

rl u’(t)y(t) dt,
-T

subject to the constraint9 9 Ax + Bu; y Cx + Du, x(-T)= O, x(O)= Xo,
and is independent of to. The above variational problem is again a least squares
problem, and by Lemma 1, an infimum exists. This infimum can be characterized
as follows"

q* inf min r/= X’o2Xo/2,
T >- 0 uLz(- T,O)

where 2; P + W-1 and P P’ is the (unique) positive definite solution of the
algebraic Riccati equation

0 A’X + XA + (C- B’X)’(D + D’)-1(C- B’X).

In fact, this matrix is the same as the one appearing in the calculation of the avail-
able energy and is such that A A B(D + D’)- 1(C B’P) is an asymptotically
stable matrix. W is the (unique) solution of the linear matrix equation A 1X + XA’I
=-B(D + D’)-IB’, and is symmetric positive definite. The required energy

-1E,(x, t) 1/2x’Px + :x W x is also a positive definite radially unbounded decres-
cent Lyapunov function. The cycle energy Ec E,- Ea is given by Ec(x, t)

:x W- x. The system is thus lossy.
Example 3. Let g(s) be a rational function of s with lim_, g(s) 0 and assume

that {A, b, c’} is a minimal realization of g(s). Let k be a scalar. Assume that the
Nyquist locus of g(s) does not intersect but encircles the 1/k point in the complex
plane -p times in the clockwise direction, where p is the number of poles of g in
Re s >= 0. Then the closed loop system Yc (A kbc’)x is globally asymptotically
stable, and Theorem 6 yields as a positive definite radially unbounded decrescent
Lyapunov function x’Rx, where R R’ is the (unique) negative definite solution
of the algebraic matrix Riccati equation

O= -A’X-XA +
(kc + Xb)(kc + Xb)’

e2

with e > 0 such that [1 + kg(jco)l >-_ el > e for all co e R.

It is important to realize that this variational problem is not equivalent to the simpler one which

o_asks to evaluate infu,L2 oo,0) u’(t)y(t) dt subject to : Ax + Bu y Cx + Du, x(O) Xo. (This
latter variational problem leads again to the available energy.)
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Example 4. Let G(s) be a p x m matrix of rational functions of s with lims_
G(s) 0 and assume that {A, B, C} is a minimal realization of G(s). Assume that
the poles of G(s) are in Re s < 0, and that for all co R the eigenvalues of the
matrix G’(-jco)G(jco) are inside the open ball with radius p-2 in the complex
plane. Letf(a, t) be a Rm-valued function defined on Rp R, Lipschitz continuous
on Rp, uniformly in t, and satisfying, for some a < p, the inequality If(a, t)
_<- 1111 for all (a, t) Rp R. Consider now the nonlinear differential equation

2"(t) Ax(t)- Bf(Cx(t), t).

This differential equation may be viewed as the mathematical model of the un-
driven feedback system studied in 6 with the open loop dynamical system de-
scribed by the equations

2"(t) Ax(t) + Bu(t), y(t) f(Cx(t), t),

and the closed loop dynamical system determined by the equations

2"(t) Ax(t) Bf(Cx(t), t) + Bu(t), y(t) f(Cx(t), t).

This system satisfies all the assumptions for Theorem 8 to be applicable, and the
nonlinear differential equation is thus uniformly globally asymptotically stable
by the small gain theorem. Consider now

inf [u’(t)u(t) pay’(t)y(t)] dr,
ueL O

subject to the constraint 2 Ax + Bu y Cx, x(O) Xo. This infimum exists
and is given by x’oKxo when K is the (unique) negative definite solution of the
matrix Riccati equation

0 -A’X- XA + XBB’X + pzc’c.
Theorem 8 thus states that -x’Kx is a positive definite radially unbounded
decrescent uniform Lyapunov function for this nonlinear differential equation.
Theorem 8 yields as another positive definite radially unbounded decrescent
uniform Lyapunov function x’(K + W-1)x, where K is as defined above and W
is the (unique, positive definite) solution of the linear matrix equation

(A- BB’K)X + X(A- BB’K)’= -BB’.

Example 5. Let g(s) be a rational function of s with lims_ g(s)= 0, and
assume that {A, b, c’} is a minimal realization of g(s). Assume that the poles of
g(s) are in Re s < 0 and that there exists a real number a >__ 0 such that for some
constant > 0, Re ( + jco)g(jco) >_ e > 0 for all co >_ 0. Let f(a) be a real-valued
function defined on R, Lipschitz continuous on R, and satisfying for some 6 > 0
the inequality f(a)/a > 6 > 0 for all a e R, a 4: 0. Consider now the nonlinear
differential equation 2’(0 Ax(t)- bf(c’x(t)). This differential equation may be
viewed as the mathematical model of the undriven feedback system studied in 6
with the open loop dynamical system described by the equation

2, Ax + bu; y f(c’x),
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and the closed loop dynamical system described by the equations

Yc Ax bf(c’x) + bu, y f(c’x).

The open loop dynamical system can be viewed as the cascade of the two systems"
a linear time-invariant system with transfer function (s + a)g(s) followed by a
nonlinear system which is the cascade of a linear time-invariant system with trans-
fer function 1/(s + ) followed by the memoryless nonlinearity f(. ). The state
equations of the first system are

c Ax + bu, y ac’x + c’Ax + c’bu.

This system satisfies the assumptions of the system of Example 3 which thus
yields expressions for the available energy, the required energy, and the cycle
energy. The state equations for the second system are. -az + u, y- f(z).
The available energy Ea(z, t) for this system is independent of to and is defined by

where

Ea(zo) inf inf r/,
T>_ 0 u6L2(O,T)

u(t)y(t) dr,

subject to -z + u, y f(z), z(O) Zo. Thus

with

r F(z(T)) + a z(t)f(z(t)) dt- F(zo)

F(z) af(a) da.

Since F(a) >= 0 and af(a) >= 0 for all a e R, and since the value of

z(t)f(z(t)) dt + F(z(r))

can be made arbitrarily small by proper choice of u, it follows that

Eo(zo) F(zo) af(a) da.

Similarly, the required energy

Er(zo) F(zo) af(a) da.

The cycle energy Ec for this first order nonlinear system is thus zero, and the system
is reversible. It is a simple matter to show that the above factorization of the system
5c Ax + bu, y f(c’x) is a compatible factorization as defined in 7. Notice
that reachable states satisfy the condition Zo C’Xo, which defines a hyperplane
in the space R" R. Theorem 9 thus yields as positive definite radially unbounded
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decrescent Lyapunov functions for the nonlinear differential equation 2 Ax
bf(c’x) satisfying the conditions enumerated earlier (i.e., the conditions of the

Popov criterion):

(i) V(x)=-x’Px + f(a)da, where P P’ is the (unique) positive

definite solution of the algebraic Riccati equation o

1
0 A’X + XA + c,b(Oc’ + c’A b’X)’(oc’ + c’A b’X).

-1(ii) V(x) + x I47 x, where W is the (unique) solution of the linear matrix
equation

A1X + XA’
bb’ b
2c’b

with A1 A (ac’ + c’A b’P),

and is symmetric positive definite.
Example 6. Path integrals [23, 26], [25].
LEMMA 2 [23, p. 170]. Assume that x(t) is an n times differentiable function of

and that aii, i, j O, 1, ..., n, are constants. Then the

t, dix(t) dix(t)
r j dt

i,i= o dti dti

is independent ofpath (i.e., it depends only on the values of x(t) and its derivatives at

to and 1) ifand only if the polynomial

h(s) aj(s’(- s) + (- s)isi)
i,j=O

vanishes identically.
This lemma leads to rather specific formulas for the Lyapunov functions

described in this paper. For instance, Theorem 3 thus yields as a Lyapunov func-
tion for the differential equation p(D)x(t) 0 with D d/dt and p(s) a polynomial
with all its roots in Re s < 0,

V(x, x{* ..., x"- ) inf inf t/
T> 0 x(t)lx(- T) x(n- x)(- T)= 0

x(O)=x,...,x(’- x)(0)=x( )

where rl o_ r (P(D)x(t))2 dt. Let r(s) be a solution of the polynomial equation
p(s)p(-s) r(s)r(-s), and let (pp)+(s)= p(-s) and (p)-(s)= p(s) denote the
solutions with poles respectively in Re s > 0 and Re s < 0. Now rewriting r/as

o
[(p(D)x(t))2 (r(D)x(t))2] dt + (r(D)x(t))2 dt,

-T

one observes that by Lemma 2 the first integral is independent of path and thus
depends on the values of x, x(1), x("- 1) only. The integrand in the second
integral is nonnegative and should hence be made as small as possible. By choosing

Compare with the results of [24].



132 JAN C. WILLEMS

r(s) (p) + (s) p(- s) and letting T + oe, the contribution of this second
integral can indeed be made arbitrarily small and yields a positive definite radially
unbounded decrescent Lyapunov function for p(D)x(t) 0, the quadratic form

V(x, 2,..., x"- 1)) [(p(D)x(t))2 (p(- D)x(t))2 dr,

with x(t) any n times differentiable function such that

x(O) X, "’’, X(n- 1)(0) X(n- 1)

and

lim x(t) x(,- 1)(t) 0.
t-

If g(s) is chosen such that

lim
q(s)

and Req(Jco) >_ 0 for all co,
p(jco)

then Theorem 4 yields as Lyapunov functions

o 1
Er(X 2, X(n- 1)) [p(D)x(t)q(D)x(t) -((Pgl + q)+(O)x(t))2] dt

and

fo 1
E,(x, 2,..., x("-1)) [p(D)x(t)q(D)x(t) -((Pgl + q)-(D)x(t))] dt

with x(t) any n times differentiable function such that

X(0) X, "’’, X(n- 1)(0) X(n- 1)

and

lim x(t) x.- l)(t) O.
t

9. Conclusions. The development of the results and the techniques described
in this paper evolves in three stages: the first one introduces and compares the
input-output description with the state space description of dynamical systems
and shows their equivalence. The second part in the development leads to the
equivalence of input-output stability and global stability under appropriate
controllability and observability conditions; the third issue is the construction of
Lyapunov functions.

The methods for constructing Lyapunov functions involve, for the most part,
variational problems and are posed in the framework of systems with inputs and
outputs this notwithstanding the fact that the system for which global asymptotic
stability (in the sense of Lyapunov) is to be shown is an autonomous (undriven)
system. The results thus obtained serve as a further relationship between the areas
of dynamic optimization and stability theory and focus interest on a class of opti-
mization problems, some of which will, in fact, lead to singular controls.
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It is felt that the importance of this paper lies in its theoretical contribution
in demonstrating the equivalence between global asymptotic stability and input-
output stability, which, as expected, merely requires appropriate controllability
and observability (more precisely: reachability and uniform observability).
It also serves to unify the two main approaches to stability theory: input-output
stability and Lyapunov stability. In this latter class it unifies and generalizes the
various available results by posing the construction of these Lyapunov functions
as variational problems.

The results of the paper could also serve as a starting point to develop tech-
niques which will lead to suitable Lyapunov functions for estimating the domain
of attraction for nonglobal stable systems. This is a problem of great practical
importance, and the methods of the paper lead to tractable variational problems
which could be used in such an analysis.
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