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The Application of Lyapunov Methods to the

Computation of Transient Stability Regions for

Multimachine Power Systems
JACQUES L. WILLE1IS AND JAN C. WILLEMAIS, MEMBER, IEEE

Abstract-This paper outlines a method for computing a stability
region for a multimachine power system. It is shown that the dy-
namic equations describing this system are of the type for which
some rather elegant stability criteria are known, of which the
Popov criterion is the most useful. It can be proved by means of a
Lyapunov function which will, together with a method for computing
the domain of attraction of an equilibrium point of a dynamic sys-
tem, lead to a systematic procedure for obtaining an estimate of the
region of stability for a multimachine power system. The procedure
is very well suited for automatic computation and can take into
consideration the effects of damping and of fast governors.

I. INTRODUCTION

WtITH THE advent of large pow-er sy'stems came a re-
newed interest in the stability properties of such systems.

Indeed, the tendency of a systenm to lose synchronism and the
possibility of the existence of oscillations in the power transfer
between interconnected systems appears to be much more
prevalent for large systems than for relatively isolated groups.
Most stability studies are based on direct simulation: the

postfault system behavior is simulated and the stability prop-
erties of the solutions are considered for various values of the
switching time; that is, when normal operating conditions are
restored. For low values of this switching time the system regains
synchronism. The largest acceptable value of the switching time,
i.e., the largest value for which stability prevails, is generally
called the critical switching time. The critical switching time is,
in fact, considered the most important stability limit.

For complex systems this simulation becomes cumbersome and
very costly, since an almost prohibitive amount of computation
is required in its execution. Thus the need increases for the
development of more direct methods for the computation of the
critical switching time.
For a system consisting of a single machine connected to an

infinite bus, a direct method called the equal-area or the energy-
integral criterion [1] has been known for a long time. This
method, however, has no obvious analog for larger systems. A
direct method for estimating the domain of attraction of a given
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equilibrium point (i.e., the set of initial conditions for which
the resulting motion approaches this equilibrium) is given by
the direct method of Lyapunov. This method, which can be
applied to any dynamic system, has in fact been used in studies
concerning the single-machine and multimachine power systems
in several recenit papers [2]-[4].
The difficulty in the application of Lyapunov's direct method

is that in general there is no obvious choice for a function suitable
for use as a Lyapunov function. In most systems describing a
physical (mechanical or electrical) system, the energy stored in
the system appears to be a niatural candidate. The above men-
tioned works are in fact led by energy considerations for the
selection of the Lyapunov function. This is not necessary, how-
ever, and many examples of stable systems are known for
which the energy is not a suitable Lyapunov function. Whether
or not the multimachine power system represents such a case is
an open question. In any event, there is no apparenit reason for
the energy to be always decreasing when the system is in a stable
transient condition.

This paper outlines a method for estimating the domain of
attraction of an equilibrium point based on another choice for
the Lyapunov function for the multimachine stability proble.n.
This choice is inspired by the Lyapunov functioni used in proving
the so-called Popov criterion and its generalizations1 which has
recently received a great deal of attention in the automatic
control literature. The Popov criterion gives a sufficient conditioni
for the stability of a feedback system with a linear time-invariant
system in the forward loop and a memoryless, time-invarianit
but possibly nonlinear element in the feedback loop.
The paper starts by showing that a multimachine power

system can indeed be modeled mathematically in a form for
which the Popov criterion is applicable. This then leads to a
Lyapunov function that establishes at least the local stability
of the equilibrium point; i.e., it establishes that there is a cdo-
main of attraction of the equilibrium point. A method is then
outlined to use the Lyapunov function to estimate this domain
of attraction. This systematic method, which appears to be of
interest in its own right, does not give the domain of attraction
in "closed" form but is very well suited for automatic com-
putation. It will also be indicated that the effects of salient
poles, damping, and fast governwor action can actually be taken
into account without theoretical difficulties, of course at the
expense of increased complexity.

II. DYNAMIC EQUATIONS

Consider a multimachine power system. It will be assumiied
that the synchronous machines can be represented by a conistant
voltage behind their transient reactalnce. In other words, it is

1 For a general treatment of Lyapunov stability, see [5] and [6].
For a detailed treatment of the Popov criterion, see [8].
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assumed that the flux linkages of the various sy-nehronous ma-
chines are constant. This assumption is valid in almost all
practical situations since the flux decay is generally much slower
than the transient phenomena that are of interest in transient
stability analysis.
The differential-equation describing the ith machine is then

given by

l d2a1(t) + as d(K) + Pei(t) -Pmi(t) = 0, i = 1,2, ,
dt2 dt

(1)

where

t time
-b angle between rotor shaft of ith machine and shaft

running at synchronous speed (electrical degrees)
M, inertia of ith machine
a, damping coefficient of ith machine, mainly due to

asynchronous torque
Pe, electrical power delivered by ith machine
Pmi mechanical powerdelivered to ith machine.

In most transient stability investigations, the mechanical
input power is assumed to be constant since the governor time
conistants are usually at least one order of magnitude larger
than the transient periods. It will be indicated at the end of the
paper how the effects of fast governors can be incorporated in the
anialysis. To keep matters simple, however, it will be assumed
for the moment that this condition is satisfied and that the me-
chanical input can be assumed constant. The electrical power
output for round-rotor machines is given by

n

Pei = Ei2Gi + EiEjYij cos [6ij- (a1 -a)],
j=1

i = 1,2, * * ,n (2)

where E1 is the internal voltage of the ith machine, G1 is the short-
circuit conductance of the ith machine, and Yij and 01j are,
respectively, the modulus and the phase angle of the short-
circuit transfer admittance between the ith and thejth machines.

In almost all practical situations, the transfer conductances
Gij= Yij cos Oj, i j, are negligible, and only the transfer
susceptances Bj = Yij sin Oj, iX. j, have to be taken into con-

sideration. Then the electrical power output is thus given by

n

Pei = E 2G1 + E E1EjBij sin (.5 - aj), i = 1,2, n. (3)

The above expression for the electrical power will be used
throughout the paper, although the method is equally well
suited to deal with the general case. This expression is not quite
correct for machines with salient poles since the dependence of
the electrical power on the angle differences - ba is not si-
nusoidal. This however can be taken into consideration in a

straightforward way since the methods outlined below do not
depend on this dependence in an essential way. This is shown in
some detail for the one-machine system in [7].
The equilibrium states are the solutions of the set of equations

daj(t)/dt = 0 and Pe = Pmi, i = 1,2, , n. These equations
yield the equilibrium values of the load ang;les up to an arbitrary
constant, since the above equations feature the differences As -
ba only. The above n equations are not overdetermined how-
ever, since

n n

EPmi = E12Gi
i=1 j=1

is a necessary condition for the existence of an equilibrium, and
hence there is a redundancy in the above equations for the load
angles.

Let (610, a2, * , ,5n) be the equilibrium load angles for
which stability has to be determinied. The dynamic equations
describing the motion of the multimachine power system about
these load angles can then be written in state form as

dx(t) = Ax(t) - Bf[Cx(t)]
dt (4)

where x = is. a 2w-dimensional column vector which is the

state of the system. The components of the n-dimensional
column vectors y and z are

dai
Y, i =t t=12, ***n

which is the difference between the actual angular rotor speed
(in electrical degrees) of the ith machine and the synchronous
speed, and

zj = aj _a° i=1,2, ,n

is the difference between the actual and the equilibrium load
angle of the ith machine.

[M-1R on]
In Qn-

is a (2n X 2n) matrix where On and In are, respectively, the
(n X n) identity and zero matrices, and R and Mare the diagonal
(n X n) matrices

M = diag (Mi), R = diag (-aO), i = 1,2 * *,- n.

C = [Omn D]

is an (m X 2n), m = [n(n- 1)1/2 matrix where Omn is a rec-
tangular (m X n) matrix with all zero elements, and D is an (m X
n) matrix such that d = Dz has as its components oI = -Z2-
aI= Zl -Z3y . . . 0n-1 = Z1- Znyfn Z - Z3, an+1 = Z2 - Z4,

ma Zn1 - Zn.

B M-1DE]
L OnmA

is a (2n X m) matrix where O.m = OmnT (T denotes transpose)
and E is a diagonal (m X m) matrix, E = diag(ek) with ek =
EjEjB j, where i and j are the indices of the components of z
on which ak is dependent, i.e., ak = Zi-Z.-
The vector-valued function f(d) has m elements and is of the

diagonal type, which means that the ith component oa1 of d
only-depends--on the ith component-of f(d).hIndeed, f1(a1)
sin (ai +-ai) - sin a10, i = 1, 2, * n where a1i is the ith
component of

610

a0
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It is a simple matter to verify the equivalence of the state
vector differential equation (4) anld the system of differential
equations (1). For a three-machine system
and matrices become

-[al/Ml
O

A = 0
1
O

-.

the above vectors

O O 0 0 0
-a2/M2 0 0 0 0

0 -a1/M3 0 0 0
0 0 0

O 0
1 0 0 0 0
0 1 0---0 0

LZI- Z2 I - 1 0
a'-=ZI- Z3 D = I 0 -I

F-O 0 0 1 -1 01
c=LO 0 0 1 0 -

LO0 00 1 -1_j

EIE2B12/Mt
-ElE2BI2/M2

B = 0L

_- O

EjE3Bl3/Ml 0

0 E2E3B23/M12
-ElE3Bl3/A3 -E2E3B23/M13

0 0
0 0

0 0 _

The stability properties of the equilibrium solution x = 0
of systems described by this class of differential equations have
been studied quite intensively in the last decade. The general
approach of establishing conditions for stability for such systems
is the direct method of Lyapunov. This procedure is outlinied in
the next section.
The model obtained above also holds for the system consisting

of a single machine co)nnected to an infinite bus. This system is
actually a two-machine system, but one of the machilnes (the
infinite bus) has an infinite inertia (M2 co). Its load angle is
hence constant and can be taken as the reference angle.

III. STABILITY OF EQUILIBRIUM STATE
The local stability properties of equilibrium solutions can be

derived from linearization of the equations of motion around the
equilibrium solution. Since this linearized system is linear and
time invariant, it suffices to consider the eigenvalues of the (2n X
2n) matrix D = A-BSC where S = diag (cos ozj) is an (m X m)
diagonal matrix. For the reason mentioned in the previous
section (i.e., the equilibrium angles are-only determined up to an
arbitrary constant), D has at least one zero eigenvalue. The
equilibrium state is locally asymptotically stable if (and only
if) the 2n - 1 remaining eigenvalues of D have their real parts
negative.

It is simple to show that, for a single machine tied to an
infinite bus, the damping coefficient and the synchronizing
torque must be positive. For a three-machine system, the
eigelvalues of the matrix

D [M-;R M-1T]

with

-(a±12+ al)
T = a12

L. al

al12 aJ13
- (al2 + a23) a23

a23 -(a13 + a2.3)_

and j - EjEjBIj cos (ai - 6jO) are to be computed. One
eigenvalue will always be zero. If the others have negative real
parts, then local asymptotic stability follows.

Local stability only allows the conclusion that for initial
conditions sufficiently close to the equilibrium state of the post-
fault system, the solutions tend to this equilibrium. It is a basic
requirement for acceptable steady-state operating conditions.
Multimachine power systems are in general not asymptotically
stable in the large (i.e., not all solutions approach the equi-
librium solution). There are very often multiple equilibrium
solutions, periodic solutions, and initial conditions that lead to
asynchronism.

It is thus of great importance not only to establish the local
stability properties of the equilibrium solution, but to estimate
the actual domain of attraction; i.e., the set of initial conditions
for which hthe -solutions approach the equilibrium -should some-
how be estimated. This then allows for a more meaningful
judgment of the desirability of the steady-state operating
conditions and for the design of some relevant parameters,
e.g., the critical switching time. A method of obtaining such an
estimate is outlined in the remainder of the paper.

IV. LYAPUNOV FUNCTION
Consider the dynamic system described by the differential

equation

dx(t) = Ax(t) - Bf[Cx(t)]
dt (5)

where A, B, and C are, respectively, (2n X 2n), (2n X m), and
(m X 2n) matrices, and f(o-) maps the m-dimensional vector
d = col (a1, U2, * * * vm) into the m-dimenensional vector f(d) =
col [fi(all), f2(a2), X. , fm(om)]. Note that the nonlinearity f(d) is
time invariant, menmoryless, and of the diagonal type (as ex-
plained in Section II). It is furthermore assumed that f(O) = 0
and that all the eigenvalues of the matrix A have nonpositive
real parts.
As was shown above, the motion of the state of a multimachine

power system around an equilibriunm state is described by an
equation such as (5).
The stability of the null-solution of (5) has been studied by

several authors in the recent control theory literature. The
following theorem is a generalization of the celebrated Popov
stability theorem to systems with multiple nonlinearities. It
concerns the asymptotic stability in the large of the solution
x(t) = 0 of (5) and thus ensures that for any initial condition
x(t = 0) = x0, the ensuing solution x(t) satisfies limi x(t) = 0.

Theorem 1

The null solution of the differential equation (5) is asympto-
tically stable in the large if

1) 0 < o-ifi(u1)for all i = 1,2, ,m and o- p 0, and
2) there exists a diagonal (m X m) matrix Q = diag (qi),

qi > 0,

such that Z(s) = (I,,, + Qs) C(sl2,, - A)-1B is a positive real
matrix; i.e., Z(jco) + ZT(-.j1) is a nonnegative definite Hermitian
matrix for all real co > 0.

The question of whether or not, for particular matrices, A,
B and C, Q exist, can in general be resolved quite readily using
graphical techniques ot directly using analytical means. The
properties of positive real functions and of positive real functions
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of rational functions have been extensively studied in the
electrical network synthesis literature. At this point, let it
suffice to remark that this problem can be resolved without much
difficulty. An appropriate reference where problems of this type
are discussed is [8], where further references can be found.
The above stability theorem can be proven in a number of

ways. One of them is by constructing a suitable Lyapunov
function that involves solving certain algebraic matrix equations
involving the matrices A, B, C, and Q. The above reference gives
methods of (numerically) obtaining this Lyapunov function.
The computational difficulties encountered are rather mild,
and the reader is referred to the specialized literature for details.
The solution can be obtained in a very systematic way and the
procedure is very well suited for automatic computation. The
form of the Lyapunov function and methods to obtain it are
given in Appendix I.
The nonlinearities appearing in the mathematical description

of the multimachine power system do not satisfy the conditions
1) of the above theorem since they are of the type f,(oo) =
sin (o-j+afj)-sin ui0, and hence the inequality o1f1(ci) > 0 is
only satisfied for a range of values a. Hence asymptotic stability
in the large cannot be concluded. However with the aid of the
function V(x) which is to be found as explained above, one can
obtain an estimate (through coinsideration of V(x)) of the domain
of attraction. This estimate will be large if the Lyapunov func-
tion V(x) "fits" well to the system. The reason for advertising
the particular choice given by the Popov criterion is that this
Lyapunov function has given such excellent results for asymp-
totic stability in the large, and cain thus be considered as the
optimal choice. However, the following analysis can be modified
rather easily if other Lyapunov functions are used.
For the three-machine system it is hence required to find a

diagonal matrix Q = diag (q), qi > 0, such that Z(s) =
(I + Qs)G(s) is a positive real matrix where

Theorem 2

Let 81' denote the boundary of r and let V1 denote the mini-
mum of V(x) over all x in 8r. The equation V(x) = V1 defines a
bounded surface inside P and contains 0. The reoion R1 enclosed
by this surface belongs to the domain of attraction of 0.

The above theorem follows rather easily from the fact that
V(x) < 0 for all x in r and the usual estimates of the domain of
attraction based on Lyapunov functions.

It is possible to obtain a larger domain of attraction by taking
into consideration the particular structure of the nonlinear
differential equation under consideration and using the methods
outlined in [9] for differential equations containing a single non-
linear element.

Let Si be the part of 81' where either cix = aim or cix =
¢im, and let Li be the intersection of Si and the set of all x for
which c [Ax - Bf(Cx)] = 0.

Theorem 3

Let V2 denote the minimum of V(x) over all x in Li, i = 1,2,
... , m. (Clearly V2 > V1 and equality holds exceptionally.)
The equation V(x) = V2 defines a bounded surface in-side r
and contains 0. The region R2 enclosed by this surface belongs
to the domain of attraction of 0.

Clearly the above theorem gives a larger domain of attraction
than what is predicted by Theorem 2. The proof is a relatively
straightforward extension of the methods outlined in [9]. The
application of Theorem 3 generally leads to a considerable
enlargement of the domain of attraction compared to what
can be obtained from Theorem 2. This will be illustrated later on
by means of an example.

1 1
I +
IAIs +a1 M12s ± a2

G(s) = ! 1
S il1s + a,

L 112s + a2

1
1fi8s + a1

1 1
A1is + a1 +M3S + a3

1

1l3s + a3

1

M2s + a2 EjE2B12
1 1 B

31128+ a2 + 31 ± a31

If all the damping coefficients at are zero, then qi -, >o is the
only possible choice. If a1, a2, a3 > 0, then Z(s) can be made
positive real not only with qi -* co, but also for finite values of
the constants qi, and many possible functions V(x) can thus be
conistructed.

V. DETERMINATION OF REGION OF
ASYMPTOTIC STABILITY

If the nonlinear functions in (5) do not satisfy the conditions
cj1(ci) > 0 for all a1 # 0 but only for a finite (or semi-infinite)
interval containing zero, then the Lyapunov functions con-
structed in the preceding section can still be used to compute
the region of asymptotic stability of the null solution.
Assume thus that oif(cf) > 0 for of' < at < 0 and 0 < oi <

aiM, i = 1,2, * , m, and that the second condition of Theorem 1
is satisfied. Let the ith row of the matrix C be denoted by the
2n--dimensional vector ci. Let P denote the region determined
by all 2n-dimensional vectors x such that al' < clx < clr,
0m2 < C2 X < ai2 Camm . cmTx <. j. Let V(x) denote
the Lyapunov functions constructed in Section IV. V(x) (the
derivative of V along solutions) will be nonpositive for x in r,
but not necessarily for other values of x.

The procedures for estimating the domain of attraction as
given by the above theorems is very well suited for automatic
computation. The main computational difficulties are the mini-
mizations that appear in the determination of the regions I,
and R2. (A related but not as general method for estimating the
domain of attraction is given in Appendix II.)

VI. TRANSIENT STABILITY REGION AND

CRITICAL SWITCHING TIME

The following procedure can be used for determining the critical
switching time based on stability considerations.

1) Determine the prefault steady-state operation of the
system.

2) Integrate numerically the dynamic equations of the faulted
system with the prefault steady-state operating point as initial
conditions.

3) Determine the postfault steady-state operation of the
system and its local stability.

4) Compute the Lyapunov function using Theorem 1 and
estimate the domain of attraction using Theorem 2 or Theorem 3.

0
E1E3B13

0

0
0

E2E3B23J
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5) If the system state is within the domain of attraction at the
moment of fault clearance, then the postfault system does not
lose synchronism.

6) Otherwise the switching time should be reduced at least
to the time when the fault swing trajectory leaves the domain
of attraction.

VII. EFFECT OF FAST GOVERNORS

If the relative value of the time constants of the governors and
the transients does not warrant the assumption that the me-
chanical power input is constant, then it is usually assumed that
the mechanical power iniput to the ith machine is related to
d61/dt = i by Pmi=Pm2j + Pm, with Pmi = -Hi(s)w(s), and
where

Hi(s) -=qi,k-q Sk-, + + q,,o
sk + . . + pi,o

is the transfer function of the governor of the ith machine and
Pm? is a constant.
The equations of the ith machine are then given by

dy1(t)dt= Aiyi + biwi

= ¾idtdw1

Mi dwIt = -aiz-Pei + Pmi0 + ciTyidt

where Ai is a (k X k) matrix anid bi and ci are k-dimensional
vectors such that Hi(s) = cT(1s - Ai)-lbi, and where yi is a
k-dimensional vector, representing the state of the governor
of the ith machine. There are several ways of choosing the
Ai, bi, and c>. Procedures for obtaining such representations
can be found in standard texts oni the state-space description of
linear svstems.
The equilibrium states are theni to be determined through the

equations to1 = 0, yi = 0, and Pea= Pm?° for i = 1,2,2 * , n.
The stability properties and the domain of attraction can then
again be determined by bringing the system in the form of (5)
and usinig the methods outlined above.

VIII. EXAMPLES

A. One-Mllachine System with Constant Power Input [7]
Consider a round-rotor machine connected to an infinite bus

described bv the differential equations

d2(t dyt
+ d(t) + B{sin [y(t) + 6] -sin 60} = 0d;P, dt

wheIe y = 6- 6. Let x2 = dy/dt and xi = y. The method out-
lined in Saction IV yields the Lyapunov function

V(x,,x2) = Ax12 + aX22 + 2x1X2
+ 2aB(cos 30 - cos (xi + 60) - xi sin 60)

where a > 1/A is a constant. The stability region obtained by
applyinig theorem 2 is giveen by the set RI, which consists of all

vectors [xj that satisfy V(x1, x2) < (A - I/a)(r - 260)2 +
X2

2aB [2 cos 60 - (r - 260) sin 6' ]. Theorenm 3 yields as an esti-
mate of the domain of attraction the set R2, consisting of all

X2 Equal Area
Criterion

Fig. 1. Regions of stability for example in Section VIII-A.

vectors [xi] that satisfy xi < 7r - 260 and V(xl, x2) < A (7r -

260)2 + 2aB[2 cos 60 - (r - 260) sin 60]. For the numerical
example 60 = 600, A = 0.5 pu, and B = 1 pu, this yields the
regions R1 and R2 as shown in Fig. 1. The damping coefficient
chosen in this numerical example is much larger than those
encountered in practice but was chosen for the sake of argu-
ment and to illustrate the possibilities obtained through applica-
tion of Theorem 3.

B. One-Machine System with Fast Governor

Consider the same system and numerical values considered
in Section VIII-B, but assume that the power input is regulated
by a fast governor with transfer function

H(s) = K
1 + Ts

with K = 1 pu, T = 2 pu. The Lyapunov function is given by
V(x1, X2, X3) = X12 + aX22 + X32 + 2x,x2 - 2X1X3 + a[l -
2 cos (xi + 7r/3) - V\lxl] where xi = a-60, x2 = d6/dt, X3 =
pmi./Pm. = pmi/B sin 60, d = 3a - 2 + 2V/2a(a - 2), and
a > 2 is a constant.
Theorem 2 yields the stability region RI: all x such that

V(x1, X2, X3) <w2/9 (1- 1/a - 1/j) + a(2 - n V/)h, whereas
Theorem 3 yields R2: all x such that xi < ir/3 and V(x1, x2, X3)
< ir2/9 (1 - 1/j) + a(2 - mr/\/3). The intersections of these
stability regions and the planes x1 = 0, X2 = 0, and x3 = 0 are
shown in Fig. 2. Also shown in Fig. 2 are the curves obtained by
the method suggested in [3].

C. n-Machine System Without Governors
It is apparent that (I + Qs) G(s) with G(s) = C(Is - A)-'B

is positive real if qi - a) for all i. The Lyapunov function thus
obtained is given by

n 714,2 n-1 n

V (x) = rLi + ZE EEEjB1j[cos (30i - 3o)
=2 i=l j=i+l

cos (3a - j) - (ai - 3j - 6i + 6j0) sin (6t0 - bi°)
This Lyapunov function is equivalent to the total system

energy and was considered in [3 ].
The above considerations thus show that our methods repre-

sent a generalization of existing methods. The previous example
indicated that these generalizations might in fact lead to con-
siderable improvements for the estimation of the domain of
attraction.
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KO.

x2
Ref. 3

(a)

Ref. 3

(h)

Ref. 3

(c)

Fig. 2. Regions of stability for example in Section VIII-B.
(a) xi = 0. (b) x3 = 0. (C) X2 = 0.

IX. CONCLUDING REMARKS
This paper has outlined a method of obtaining an' estimate of

the domain of attraction of a multimachine power system. The
system equations are expressed such that the nonlinear terms
appear as diagonal nonlinearities, depend linearly on the state,
and influence the derivative of the state system linearly. This then
allows, through the application of some well-known stability
criteria, the construction of a Lyapunov function that is claimed
to "fit" the system optimally. This Lyapunov function is then
used to obtain a region of asymptotic stability of the equilibrium
solution, i.e., a set of initial conditions for which synchronism is
restored. Two methods of obtaining such a region are presented.
The first one is straightforward; the second is more complex,
but it yields better results, particularly when damping is
present.
The method is very well suited for automatic computation

and yields an estimate of the critical switching time without
relying on simulation, thus in general requiring a much smaller
computational effort.
The application of the direct method of Lyapunov to the

power system stability problem is not new and some fine papers
[2], [3] on the subject have appeared. This paper uses the
same philosophy, and is an attempt to indicate how better results
(at the expense of a somewhat more complex procedure) can be

obtained and how other effects such as fast governors, salient
poles, damping, etc., can be taken into consideration without
requiring essential modifications.

APPENDIX I

THE LYAPUNOV FUNCTION

The Lyapunov function is given by
m rCixV(x) = xTPx + E 2qi f1(ori) do-

where ci denotes a 2n-dimensional vector that is the ith row of C,
i.e.,

_C2

and gq denotes the ith entry of the (m X m) diagonal matrix Q
which appears in the statement of Theorem 1.
P is a real (2n X 2n) symmetric positive.definite matrix which

is the solution of the (algebraic) matrix equations

PA + ATP = -LLT

PB = CT - L F+ ATCTQ

WTW = QCB + BTCTQ

where W and L are (auxiliary) matrices. It can be shown that a
sufficient (and actually also necessary) condition for the above
nonlinear matrix algebraic equations to have a positive definite
solution P is the (I + sQ) C(Is - A)-1B is a positive real matrix.
This positive definite solution can be obtained by spectral
factorization methods, by direct solution of the above nonlinear
algebraic equations, or by methods involving finding the steady
state-of -anonliear-matr---differential-equatior.---The- partieular
method to be used depends primarily on the dimension of the
system. For lower order systems, the spectral factorization
nmethods are to be recommended and the com-putations can
essentially be performed by hand. For higher order systems,
however, one generally has to resort to a recursive scheme to
solve these nonlinear algebraic equations.

APPENDIX H

ESTIMATE OF DOMAIN OF ATTRACTION WHEN
ENERGY-LIKE LYAPUNOv FUNCTION IS USED

The Lyapunov function used in Theorem 1 is, as is apparent
from Appendix I, indeed positive definite if o-ji(ai) > 0 for all
o-. It can also be shown that V(x) is then nonpositive along
solutions. These conclusions however are in general false if the
above inequality holds, as is the case for the multimachine power
system, for only a range of values of o-.

It can nevertheless be true that even though V(x) is then not
positive definite-due to the terms qi foix f1(oj)daj, which need
then not be positive-the derivative along solutions V(x)
would nevertheless be nonpositive for all x. This is in particular
the situation when all the damping coefficients in the dynamic
equation are positive, which results in the positive realness of
sEC(Is - A)-'B, if one computes the Lyapunov function by
letting qi -o in Appendix I. It can be shown that V(x) then
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becomes a sum of squares, and TV(x) is nonpositive definite in
the whole state space. Under the circumstances it is then possible
to make a more accurate estimate of the domain of attraction.
This is the subject of Theorem 4.

Theorem 4

Let V(x) be as given, and assume that V(x) along solutions is
nonpositive for all x. Consider the surfaces V(x) = k > 0. For
small values of k the surfaces are bounded since by assumption
crf(Qr1) > 0 for ci sufficiently small. Let k kmax be the smallest
nonzero value of k for which OV(x)/0x1 - OV(x)/0x2 = . .. =

aV(X)1aX2n = 0 has a solution for some x such that V(x) = k.
Then the region R3 containing the origin and enclosed by the
surface V(x) = kmax belongs to the domain of attraction of 0.
The proof of Theorem 4 argues that the function V(x) vanishes

at the origin and is cupshaped near the origin, i.e., for |lx!
sufficiently small. The surafees V(x) = k are thus bounded
for small positive k. When k increases, then the surfaces remain
bounded until either the surface V(x) = k passes through a
point where V(x) has a relative maximum (i.e., OV(x)/ox1 = - *
= CV(x)/0x2n = 0 for some x on this surface), or k assumes some
value that is a limiting value of V(x) as x -- o along some line.
The latter case, however, cannot happen for the function V(x)
considered here.
Theorem 4 thus states that the surfaces V(x) = k > 0 remain

bounded until they hit a relative maximum of V(x), which could
then in this sense qualify for the equilibrium point of the system
that is "closest" to the one considered, i.e., the origin 0. The
application of Theorem 4 requires the solution of the equations
aV(XV/1X1 = * = aV(X)/ax2n = 0, but in some cases provides
excellent estimates on the domain of attraction.
Theorem 4 is essentially a generalization of the argument used

in [3] and [4]. In fact, the example in Section VIII-C gives the
expression obtained when the energy (or equivalently qj -) co)
is considered in the choice of the Lyapunov function. The deriva-
tive along solutions lV(x) is then nonpositive, and thus Theorem
4 is applicable. This yields the domain of attraction V(x) <
V(x") where xX satisfies OV(x")/ox1 = CV(x')/0x2 =-. - =
V(X') f2n= 0, and is the closest equilibrium point in the sense

precisely defined above (and is locally unstable).

Example
As an example for the application of Theorem 4, consider the

three-machine system with per-unit values M1 = M2 = M3 = 1,
El = E2 = E3 =1, B12 = 4, B13 = B23 = 2, P1 = -P3, P2 = 0,
and G11= G22 = G33 = 0. It thus consists of a machine (or a
group of machines) delivering power to a bus of finite capacity,
where reactive power is supplied by a synchronous condensor.
Then 610 -62 = 18.80, 610 - 630 = 59g90, 6lU _- 6a = 26.7°0
and b6u - 63u = 142.90. The stability region R3 about the stable
equilibrium obtained by the procedure suggested by Theorem 4 is
hence given by w12 + 1022 + '32 - 6(61- 63) - 8 cos (2 - 61)-
4 cos (63- 63)- 4cos (62 - 63) + 17.16 <0.
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Discussion

Gerald G. Richardson (Bonneville Power Administration, Port-
land, Ore.): The authors are to be commended for a very interesting
paper.
The Bonneville Power Administration presently solves transient

stability studies of the Pacific Northwest power system by the direct
simulation method using a 500-bus digital computer program. With
the advent of regional interconnections, the 500-bus program is
no longer large enough to represent the high-voltage grid accurately.
Our engineers now are developing a 2000-bus stability program to
investigate larger systems. Because of the inertias involved and the
long ties between systems, swings must be carried out for several
seconds to obtain one full oscillation. It takes even longer for cases
that are on the borderline of being unstable. This represents a lot of
computer time. I am sure that the industry eagerly awaits a simpler
and faster approach to the solution of its stability problems.
The examples in the paper, used to illustrate the application of

Lyapunov methods, are excellent. However, there is a big difference
between a one-machine problem and actual power system problems.
I would be very interested in seeing a solution for a more complicated
system using the Lyapunov method compared with the solution by
direct simulation. Two examples of faults at different locations on
the same system wouLld be very desirable.
There are many happenings in a time sequence of events following

a disturbance, such as circuit reclosing, generator dropping, or
series capacitor switching. Other circuits may open by relay action
due to the initial disturbance. The fault may be single line to ground
instead of three phase. Please explain how the Lyapunov method can
take these factors into account. Even if the method cannot evaluate
such a successive occurrence of happenings, I think the stability
evaluation offered by the Lyapunov method looks very promising.

Manuscript received June 18, 1969.

Jacques L. Willems and Jan C. Willems: The authors thank the
discusser for his interest in the paper. As Mr. Richardson points
out, the need for direct methods for stability investigations is
urgent, since direct simulation of large systems requires an almost
prohibitive amount of computer programming and computer time.
The authors only included textbook-type examples of single-machine
systems mainly because of their illustrative character. The direct
introduction of the successive occurrence of events such as circuit
reclosing, generator dropping, and series capacitor switching would
lead to the consideration of nonautonomous differential equations,
and for such systems stability theory is much less developed. The
authors therefore proposed to integrate the system equations in
order to obtain the postfault initial state, and to apply Lyapunov
techniques in checking whether or not the postfault initial state is
within the transient stability region of the equilibrium state of the
postfault system. The sequence of events the discusser mentions
would thus have to be considered when integrating the system equa-
tions during the fault conditions.

Manuscript received August 18, 1969,
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