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Some Results on  the L, Stability of 
Linear  Time-Varying Systems 

Abstract-This paper  considers the Z, stability of systems with 
a convolution operator in  the forward loop and a time-varying gain 
in  the feedback loop. A frequency-domain condition involving the 
frequency  response of the  forward loop and  the Fourier coefficients 
of the time-varying gain of the  feedback loop is presented. The 
paper also contains  a  somewhat more involved time-domain condi- 
tion in  terms of the open-loop weighting pattern. 

I. INTRODUCTION 

T HE STABILITY of systems  with a convolution 
operator  in  the forward loop and a time-varying  gain 

in the feedback loop has  been considered by  many  authors, 
and  the  result  that is best known is the so-called circle 
criterion which has evolved out of the work of Sandberg 
[I], Zames [ a ] ,  and  others.  The problem considered in 
this  paper is the same, but  the approach is different  in the 
sense that  the estimates which are used here  are  not the 
usual Lz estimates of the  operators  in  the forward and  the 
feedback loop separately but  rather a direct  estimate on 
the gain of their composition. This  approach leads to  an 
interesting  frequency-domain  condition and a more elab- 
orate time-domain  criterion. 

The  setting of the problem is the one used by  Sandberg 
[l] and Zames [a] and uses the idea of extended spaces. 
The  reader is assumed to have some familiarity  with 
I ,  and L, spaces. The proofs require the notions of Banach 
spaces and  Banach algebras. The reader is referred to [3] 
for  details  on  these. 

Let z ( t )  be a complex-valued function of t ,  and  let 
T R. Then P ~ z ( 2 )  is the complex-valued function of t 
defined by PTx(t) = z ( t )  for t < T and P ~ z ( 2 )  = 0 other- 
wise. L,, is the space of all functions z(2) for which 
PTx ( t )  E L,  for all T E R. 

Let I ,  I+, R, R+ denote  respectively the integers, the 
nonnegative  integers, the real  numbers, and  the nonnega- 
tive  real  numbers. Consider now the linear  feedback sys- 
tem shown in  Fig. 1 with\the convolution  operator GI in 
the forward loop defined by 

Glz(t) = gnz(t - tn )  + 1 g ( T ) z ( t  - 7) dT 
ner+ R+ 

and  the time-varying  gain Gz in  the feedback loop defined 

Gzz(t) = k ( t ) z ( t )  

CONVOLUTION 
OPERATOR 

- I 

TIME-VARYING 
GAIN 

Fig. 1. Feedback  system. 

with { t,} , n E I+, a sequence of nonnegative  real  numbers, 
{ g,), n € I+, an Z1 sequence, g € L1 with g ( t )  = 0 for 
t < 0, and k ( t )  E L,. 

A standard  argument shows that Gl and GZ define 
bounded  linear  transformations  from L,  into itself, 
1 < p < m, and  that G1 and Gz are causal  on L,, i.e., 
PTGZ and PTG1 commute  with PT on L,. Thus GI and G2 
map L,  into itself. 

Definition: The feedback  system under consideration  is 
said to be L, stable if,  for any u E L,, any e E L,, which 
satisfies (in  the L, sense) PTu = PT ( I  + G2Gl)e for  all 
T E R actually belongs to L, itself, and if / I  e l lLp  5 
K I I u 1 1 ~ .  for some K E R, independent of u. It is said to 
be L, unstable if it is  not L, stable. 

11. M A I N  RESULTS 

Let 

denote the Laplace  transform of GI. G ( s )  is analytic  in 
Re s > 0. Note that whenever g ( t )  is real-valued, G ( j w )  =: 

G ( - j w ) ,  for all w € R, where the  bar  denotes  the complex 
conjugate. 

It is assumed that k ( t )  can  be expressed as 
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with { k , } ,  n C I ,  an 11 sequence, {an) ,  n E I ,  a sequence 
of real  numbers, and E L1. Note  that whenever k ( t )  is 
real-valued it follows that if w, E ( w ,  1 then so is -w,. 
Furthermore,  the values k ,  associated  with them  are com- 
plex conjugate of each other,  and f ( - j w )  = f ( j w )  . The 
above  restriction  on k ( t )  is a mild one and allows, e.g., 
every periodic and almost-periodic function  with a Z, 
Fourier series as the feedback  gain. 
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Themem 1 

The feedback  system  under consideration is LZ stable if 

Fa(w) = C I k n G ( j ( w  - wn)) I 
nd+ 

+ 1 f i ( j w ’ ) G ( j ( w  - 4 )  I h‘ 
R 

and 

Fl(w) = E I knG( j ( w  + an)) I 
n J  

+ / I i ( j w ’ ) G ( j ( ~  + 4 )  I h‘ 
R 

satisfy ! j  Fa / / L a ,  1 1  F1 liLa < 1. 
Renza.rk: Note  that if g ( t )  and/or k ( t )  a.re real  valued, 

then I I F ,  ; I L r n  = 1 1  F1 I I L a  and  there  is  thus only one 
La norm to be  computed  in the verification of Theorem 1. 

It is, of course, possible to ma,ke the usual  transforma- 
tion  on the feedback loop. Let ko denote the mean value 
of k ( t )  , Le., the sum of the coefficients with wn = 0 in  the ex- 
pansionofk(t),andletG‘(jw) = ( 1  + k0G(jw))-’G(jw).  

Theorem 2 

Assume tha.t 
inf 1 + koG(s)  I > 0. 

Then  the feedback  system  under  consideration is L2 strable 
if 

Re s 2 0  

F a ’ ( w )  = I knG‘ ( j (w  - a,)) I 
nrl;wn#O 

” R  

and 

+L 
satisfy II F,’ I I L ~ ,  II F1’ I I L ~  < 1. 

Remark: Note  again that if g ( t )  and/or k ( t )  are real- 
valued, then I i  Fa’ 1 1 ~ ~  = [ )  F1’ jjLa. 

As usual, the above  theorems are all derived  from some 
estimate  on the norms of the opera.tors G2G1 and GIG2. The 
above  theorems consider the opera.tors G2Gl and G1G2 as 
nonstationary  operators  in the frequency  domain  and  make 
some L- and  La-type  estimates on the norms. From  these 
conditions Lp stability is then concluded. It is apparent 
tha.t  the roles of the operators GZ a.nd Gl are  dual  in  the 
sense that G2 opera.tes in the frequency  domain precisely 
as GI operates in  the time  domain, and vice versa.. Con- 
sequently,  the question  naturally arises what  the corre- 
sponding  criterion is when these estima.tes are made  in the 
t i a e  domain. This leads to the following theorems. 
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Themem. 3 

The feedback  system  under  consideration is La sta.ble if 

. f w ( t >  = c I g n k ( t  - tn) I + J I g ( T ) k ( t  - I dT 
% e l +  E+ 

satisfies 1 1  fa ] / L a  < 1. It is L1 stable if 

f l ( t )  = c I g n k ( t  + i n )  I + 1 I g ( T ) k ( t  + 7) I CzT 
nd+ E+ 

satisfies 1 1  fl I!La < 1. It is L, stable (1 I p 5 0 ~ )  ) if 

Let ko again  denote the mean vahe  of 12 ( t )  , let k ’ ( t )  = 
I I  fa IIL, < 1 a,nd II fl l l Lm < 1. 

k ( t )  - ko, and  let 

G’( j w )  = (I  + koG( j ~ ) ) - l G (  j w )  

= gn’ exp ( --jutn’) + J g ’ ( t )  exp (- jut> dt. 
nd+ R+ 

Theorenz 4 

Assume tha.t 

inf I 1 + I’c,G(s) I > 0. 

Then  the feedback system  under  consideration is L, stable 
if i I  fa’ ] I L a  < 1. It is L stable if 1 1  f1’ l ] L m  < 1. It is L, 
stable if 1 1  .fa’ 1 1 ~ ~  < 1 and 1 1  f ~ ’  1 1 ~ ~  < 1. The functions 
fa’ ( t )  and fl’(t) are defined exactly  as fa ( t )  and fl ( t )  
but  with k ( t )  , { gn }, { t n }  , and g ( t )  repheed  by k‘(t)  , { gn’} , 
i t n ’ ) ,  and g ’ ( t ) .  

As d l  be shown through an example, the above  stability 
criteria  are  not implied by  the circle criterion. (They by 
no means generalize the circle criterion, however.) This 
might be surprising since i t  is to be expected that LB 
estimates will give the best  results for  linear systems. The 
circle criterion is in  fact based on LZ estimates, and  the 
above  criteria  are  not. The reason why in some circum- 
stances it is thus possible to improve on  the circle criterion 
appears to be that in  the circle criterion the gains of  G2 and 
GI are  estimated  separately  and  they yield an  estimate of 
G2Gl through the inequalit,y G ~ G I  1 1  I I /  G2 1 1  1 1  Gl ! I .  
This  is  not  the ca.se in  the above  criterion which is based 
on  direct  estimates of the norms of G,G1 and GIGZ. 

It. should also be noted  that,  particularly the L,  stability 
obtained  above follows rather easily from t,he usual esti- 
mates which a.re made  in  proving bounded-input,, bounded- 
output  stability for 1inea.r t,ime-varying syst.ems. See [4] 
for a  correct exposition of this relabionship. 

Ra 8 3  

111. EXAMPLES 

Example 1 

Let k ( t )  = ko + kl cos (mot  + +), wo > 0. Theorem 2 
then predicts L2 stability whenever 

i I h I ( 1  G’(j(, - w o ) )  I + I G ’ ( j ( w  + w o ) )  1 )  < 1 

for all w E R. 
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Example 2 

Let k ( t )  = z7,d k,  exp ( --jnwot), wo > 0, and assume 
that G( j w )  satisfies a  filtering  condition of the  type 
I G ’ ( j ( w + n w o ) ) I < < I G ’ ( j w ) I f o r a l l n E I , n # O , a . n d  
I w I I wo/2 .  Then Lg stability  results if 

max I G ’ ( j w )  I max I kn I < 1. 
W € R  n J ;  n#Cl 

Example 3 

Let g ( t )  2 0 and X- ( t )  = A sin mot. Theorem 3 yields 
L, stability if 

sup I A I 1- g ( t )  I cos wo( t  + 4 )  I dt < 1.  
OMlr 0 

The circle criterion  predicts Lp stability if 

I A I l a g ( t )  dt < 1. 

More  generally, whenever g ( t )  2 0 (or g ( t )  I 0 )  , and 
k ( t )  has  synlnletricd limits [i.e.,  ess  supf,R k ( t )  = 

ess inffae k ( t ) ]  then  Theorem 3 will give a t  least  as good 
an estimate  for shbility  as  the circle criterion. 

0 

IV. PROOFS 
Since the results of Theorems 1 through 4 are  essentially 

concerned with  t,he existence of a  bounded inverse of a 
bounded  linear  transformation from a  Banach space int,o 
itself, i t  appears useful to introduce the algebra of bounded 
linear  transformations  from  a  Banach space into itself. 

Let B denote a complex Banach space and  let C(B,B) 
denote the algebra. of all  bounded  linear  operators  from B 
into itself: wit,h addit,ion and multiplication defined in  the 
obvious \my  and  with mult,iplication of elements defined 
as composition of maps. Let the norm  on c ( B : B )  be the 
induced  norm, i.e., for L c (B ,B) ,  

Lemma 1 

.S(B,B) is a  Banach  algebra  with  a  unit. 
Proof: The proof of this  standard result can be found, 

e.g., in Hille and Phillips [3, p. 511. 
The open-loop operator  characterizing the feedback 

system  under  consideration  is a time-varying opera.tor 
belonging to d: (L,,L,) , 1 I p 5 a, and is for the purposes 
of the paper  most easily cha,racterized  by its weighting 
pattern.  This  operator will be imbedded in a  general class 
of time-va.rying operators  with weighting patterns con- 
sisting of a  function and a  string of (time-varying) 
impulses. 

Consider the space Y, consisting of complex-valued 
(generalized)  functions  on R X R defined by 

y ( t , ~ )  = Z U ( ~ , T )  + g n ( t ) 8 ( ~  - t + Tn) 
n J  

and the spa.ce Yl consisting of complex-valued (general- 
ized)  functions on R X R defined by 

y ( t ,T )  = .ZU(t,T) + hn(T)8(t - 7 - 7n). 
n d  

By defining addition  and scalar  multiplication in  the 
obvious m y ,  Y ,  and 1’1 become vector spaces. Y, and 1’1 

can  be  equipped  with  a  norm if some assumptions about 
the  integrability  in  the t or T direction is made. It is thus 
assumed that’ if y Y,, then u: ( t ,  e )  E L1 and { g, ( t )  1 Zl, 
for almost all t E R, and if y E Yl,  then ,E( * , T )  E L1 a.nd 
( h n ( 7 )  ] E 11 for almost. all T E R. Let 

f m ( t )  = I I  lL.‘(t,.) l lL l  + II b l ( 0  I I121 

f 1 ( ~ >  = I1 ~ J J ( . , T )  l l ~ l  + II {1 ln (T)  1 1111. 

and 

Let y E E’, iff, E L,  and 1 1  y IIY, 4 I !  .f, IlL,, and y E Y1 
if jl E. L,  and I /  y ] I y l  1 1  j~ IIL,. It can  be verified that 
the spaces Y ,  and Y1 thus defined are  in  fact Bana.ch 
spaces. This  generalization of a. well-known  fa.ct. for  time- 
invariant  operators (see, e.g., [3, p. 1531) is left to  the 
reader since i t  follows rather easily if one keeps the validity 
of this result for t,he time-invariant case in  mind. 

The intersection of Y, and Y, will be an  important space 
n-hich uill be considered in  the sequel, and consists of all 
y ( t , ~ )  which can be mit ten in  both  the fornls imposed by 
Y, and 1’1. A few words of explanation of this cha,racteriza- 
tion of Y, n Yl appears necessary. It imposes a  uniform 
integrability  constraint  on , w ( ~ , T )  in  both  the t and  the 7 
direction. It can also easily be verified that if y Y, n 1’1, 

then g,(t) = k,(t - 7%). 
The spaces Y, and 1’1 are introduced for t.he reason 

t,hat every element. of Ym and Y 1  defines a bounded  linear 
transfornlat.ion  from L,  and L1, respect,ively, into it.self. 
I\loreover,  every  element of Y, n Y1 defines a bounded 
linear t.ra.nsformat.ion from L,, 1 5 p 5 a, into it,self. 
This is the subject of the following lemma. Consider thus 
the mapping fornlally defined by 

j$,’X(t) = x Q l l ( t ) x ( t  - T,,) + 
nJ 

Lemna 2 

The  integrations involved are  with respect to ( - ) ,  

f 
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2 )  If zc E Y1, then JV E C ( h , L 1 )  and 1 1  W ~ I ~ ~ L ~ , L ~ I  = 

3) If zc E Y ,  n I;, then W E c(Lp,Lp) ,  1 4 p 2 =, 
and / I  W I ] . ~ ( L , , L , )  4 I j  20 / ! ~ , ~ ’ p - i l  X jly:’* with l / p  + 

Proof: For simplicity  in  notat,ion, a m m e   t h a t  g,(t) = 0 
for all 11 E I (t.he extension to cover the general case is 
st,raightfor~~~a.rd),  and assume that 1 < p < (the case 
p = 1 or p = = can easily be treated  directly).  Then 

1 1  w l i Y l .  

l / q  = 1. 

W X ( t )  = I, w(t ,r)z(r)  dr  

m d  thus 

5 1 1  70 I / Y p - l  

2 1;’ ‘20 I ! B , P P ’  1 1  ‘tu l l y l  1 1  IiLpP 

and  thus I! W x ( t )  I I L .  4 !I ZL: I l y o O ~ - l  1 1  w I j Y p  [ I  x / I L p ,  as 
chimed. 

The above show  that W is well defined and  that in- 
equalit,y holds in I ) ,  2 ) ,  and 3 ) .  To show that actually 
equalit,y  holds  in 1) and 2); certain  particular choices of 
z ( t )  need to be made which yield an L,  or L1 gain which 
is a.rbit.rarily close t,o ) I  w i!y, or j I ui i/I’L, respectively. The 
det.ails of the resulting  tedious  inequality  manipulations 
are left to t,he reader. Let, it just be mentioned tha.t  for the 
L,  case, signum  functions for x([), and for the h case, 
de1t.a-like functions,  ought to be considered to  obtain t.his 
tight  estimate. 

One more import.ant  fact which is needed about t.he 
relat,ionship of Y, and Y I  with 6:(L,,L,) and C(L1,L), 
respe~t~ively, is the algebraic struct,ure of Y, and Yl t,hem- 
selves. Let Y ,  and Y 1  be ma.de into algebras by defining 
mult,iplicat,ion of element,s as composition of maps.  This 
composition makes sense by  the previous  lemma and 
satisfies t.he norm  inequalities  by L,emmas 1 and 2 .  Closed- 
ness of >-, and Y 1  under mult.iplication is  immediate from 
considernt,ion of the weighting pa.tterns of the resulting 
map. 

Lemma 3 

Y, is a closed subalgebra of 6: (L,,L,) a.nd Y1 is  a closed 
subalgebra of d: (Ll,L1). 

Proof: Since Y ,  and Yl a.re Bana.ch algebras  themselves 
and equipped,  by  Lemma 2, with the norms of C(L,,L,) 
and 6:(L,Ll) respectively, t,he lemma follows. 

A few more facts  on existence of inverses are needed to 
complete the  introductory  material which goes into  the 
proofs of Theorems 1 and 3. These  are stated  in Lemmas 
4 and 5. The proofs are bot,h immedia.te. 

Lemna. 4 

Let W be an element of a  Bana,ch  algebra B, with a 
unit I .  Then I + 1.Y is invertible if 1 1  W / ! B  < 1. In  fact, 

( I  + T q - 1  = (-1)”W”. 
, lI+ 

Lemma 5 
Let F l  and W2 be elements of a Bana.ch algebra B with 

unit I. Then I + W1W2 is invertible if and only if I + 
W2W1 is, and  in  fact, 

( I  + W2W1) -1 = I - m 2(I + W11V2)-1W1. 

The  stage is now set  to att.empt the proofs of Theorems 

Proof of Theorem 1: Consider t.he ma.ppings in  the fre- 
1 through 4. 

quency doma.in defined by H p  ( j w )  = G ( j w )  t ( j w )  and 

Hex( j w )  = k,z( j ( ,  - w , ) )  
n €1 

+ J i( j ( w  - w ’ ) ) z (  j w ’ )  clw’ 
R 

where G, ( k , }  and f are  as defined in Section 11. Clearly 
H1 and H2 agree with Gl and GZ on L?. Let X 1 2  = H1H2 

a,nd X 2 1  = H2H1. Then M I 2  and Q f 2 1  correspond to  the 
time-varying 1%-eighting patterns  (in  the frequency  domain) 
given by 

m42(w,w’) = G (  j w ) L (  j ( w  - w ‘ ) )  

+ k,G( jw)S(w’ - w + w,) 
n d  

= C ( j w ) i ( j ( w  - w ’ ) )  

+ knG( j ( ~ ‘  + wn))6(w - W ‘  - w n )  
n r I  

m21(w,w’)  = k (  j ( w  - w’))G(  j w ’ )  

+ C k,G( j ( w  - wn)>S(w’  - w + w,) 
nJ 

= i ( j ( w  - w ’ ) ) G ( j w ’ )  

+ k,G( j w ’ ) S ( ~  - W’ - w n )  
?Ed 

and hence m12,1n21 E Y ,  n Y1. 3Ioreover 

I I  m12 l l Y l  = I I J Y  I G ( . i 4 f ( . i ( ,  - 4 )  I ah 

+ C j i S ( j ( w ‘  + wn>> I 
9 d  



664 

and 

I I  m?l l l Y w  = /I/-, I x-(j(o - " ) ) G ( j u ' ) )  I du' 
+m 

+ C I L G ( j ( u  - an)) I 
n d  I lLm 

Notice that  thus 1 1  m12 / I Y l  = 1 1  F1 ] I L m  and 1 1  7nz1 j l Y ,  = 
I ]  F ,  ~ ~ L , ,  a.nd thus  that  by assumption 

I I  ml? l l Y l ,  ] I  mz1 l l Y m  < 1. 

Hence rnE and m21 are  by  Lemmas 4 and 3 invertible  on YI  
and Y,, respectively. This  then implies by Lemma 5 that 
rn91 is  thus  invertible  on Y ,  n Yl. This inverse thus  has a 
weighting pattern which  belongs to Y ,  n Yl. It induces  by 
Lemma 2 an  element of 6:(L2,L2) n-hich obviously qualifies 
for the inverse of I + G2G1 on Lp. It remains  to be shown 
that ( I  + G2GI)-l is causal. This, however, follows since a t  
no point  in  the previous proof  was the  fact used that  the 

T E R .  Hence I + G?G1 has  a  bounded causal inverse on 
Lp. Let e E Lp, satisfy PTu = PT(I + G2Gl)e, for  all T E R. 
Thus PTe = PT ( I  + G2Gl)-lPTu. Hence I I PTe I I L ?  5 
I] ( I  + G2G1)-I I] I I u I IL2 which  proves L2 stability as 
claimed. 

Proof of Theorem 3: The proof of Theorem 3 is com- 
pletely  analogous to  the proof of Theorem 1 with  the  time 
domain repla.ced by  the  frequency  domain  and  the roles 
of L ( t )  and G(  ,+I) reversed.  However,  somewhat  stronger 
conclusions  can be  made since in  this case L1 and L,  are 
of some  intrinsic  importance. The proof thus proceeds by 
demonstrating that  the assumptions of the  theorem assure 
that I + G2G1 has a bounded inverse on L,  or LI if 
I I jm I ~ L ,  or I I f 1  I lL ,  < 1, respectively. This merely involves 
application of Lemmas 2, 3 ,  and 4. Lemma 4 also immedi- 
ately shows that  this inverse is in  addition causal. If 
1 1  f m  I ~ L , ,  l l ~ ,  < 1 then  the n-eighting pattern of t.his 
inverse w i l l  actually  belong to Y ,  n Yl and  thus  by  Lemma 
2 induces an element of 6: (L,,L,) , 1 5 p 5 = . Causality 
is  again  immediate  from  Lemma. 4 and st,abilit.y then 
follows in all the  previous cases by  an identical  argument 
to  the one used  in the proof of Theorem 1. 

Proof of Theorems 2 and 4: Some well-lcnom  results  (see 
[ 3 j ,  p. 150) ensure that I + LoG1 has  a  bounded causal 
inverse  on L,, 1 5 p 5 cc. Since 

Lz( - m ,+ cc ) was  being  considered rather  than Lp ( T ,  cc ) , 

[ I  + (G2 - koI) GI ( I  + koGl)-'j ( I  + koG1) = I + G2G1 

i t  follows that  this case can  thus be  reduced to Theorems 
1 and 3. 

Remark: The proofs of Theorems 1 and 3 for the case 
1 < p < co are  not based  on the principle that,  the condi- 
tions of the  theorems assure that  the open-loop gain iz * 1 ess 
than  unity.  This might  nevertheless  be the case, but t.he 
invertibility  results  are  not  based  on  the  contraction 
principle. The estimates  are  somewhat  more delicate and 

'are  based on consideration of the weighting pattern of the 
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inverse and proving  some  properties of this  inverse  weight- 
ing  pattern. This is  done  through  consideration of I + GIGp 
a,nd I + GpGI simultaneously.  Moreover, in  Theorem 1 
artificial spaces (i.e., L1 and L,  functions of W )  axe intro- 
duced which only in  the Lz case have a meaning in  the 
time domain  where stability  is defined. It should also be 
noted that  the introduction of Banach algebras in  the 
proofs appears  to  be  the  natural  setting for the analysis 
which  goes into proving the  results. 

v. CONCLUDLXG REbraRItS 

1) It is a  simple matter  to generalize the preceding 
theorem  to  the case where Gl is a  matrix convolution 
operator  and Gz is  a  time-varying matrix  multiplication. 
In  particular,  Theorem 2 then becomes (for the real-valued 
case) 

a)  1 1  F' I l L m  < 1, where 

F ' ( u )  = C I1 k n  II I I  G ' ( j ( u  - u n ) )  II 
n d ; w n # )  

2) The condition infR, s 2 ~  I 1 + t G ( s )  I > 0 can, at 
least  when gn = 0, for all n E I+, be  reduced to 

does not encircle the -1 + O j  point  in  the complex  pla.ne. 
3) Theorems 2 and 4 can be stated  as  instability 

theorems if the condition 

inf I 1 + koG(s) I > 0 
Re s>o 

is replaced by 

inf I 1 + koG(s) I = 0 and inf I 1 + koG(s) I > 0 
Re s>O Re s a  

(see [S j for details). 
4) It is of course not necessary to assume that ko in 

Theorems 2 and 4 is the mean  value of k(f) .  This was 
merely  done  because i t  apparently gives the best  results. 

5) If the system  is described by  an  ordinary differential 
equation  then L2 sta.bility implies asymptotic  stability. 
For more  results  in  that,  direction see Sandberg [l]. 
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Minimum Sensitivity Design of Linear 
Multivariable Feedback Control Systems 

by Matrix Spectral  Factorization 

Abstract-A scalar  measure of system sensitivitg to plant 
parameter variations is employed in the design of linear lumped 
stationary  multivariable feedback control systems. The plant 
parameters  are  treated  as  random variables, and design  formulas 
are derived which lead to systems with the  smallest expected value 
for  the chosen scalar sensitivity  measure. The design  formulas give 
physically realizable  feedback and  tandem compensation network 
transfer function matrices provided the overall system  transfer 
function matrix is properly specified. The solution of the minimum 
sensitivity  design problem is obtained by first solving the multi- 
variable semi-free-co&guration Wiener problem. 

T 
IKTRODCCTIOK 

HE RESULTS of a.n earlier effort [l] are  extended 
to linear  lumped  st,ationary  multivariable  control sys- 

tems  in t.his paper.  The  system considered is shown in 
Fig. 1. The  plant is representeed by  the  rational tra.nsfer 
function  matrix G p ( s , a ) .  It is assumed tha.t, the  plant is 
asymptotically  stable.  (When  the  plant is not  asymptot- 
ically st,able,  but is completely controllable, it can  always 
be made  asymptot~ically  stable  with  st.ate  variable  feedback 
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Feedback 

Fig. 1. System. 

[ 2 ]  or with  output  feedback t.hrough a  compatible  ob- 
server [SI.) The N-dimensional  column  vector a! repre- 
sents  the mean or expected  value of the  plant  parameters. 
and  any  deviation from the mean  is  denoted by &a!. Thus, 

E(6crjj = 0, i = 1,2,. - -,AT (1)  

where E (  } denotes t.he expected vdue,  and 6ai is the ele- 
ment  in  the  it.h row of 6a. It is assumed that  the covariance 
mat,rix (the prime  denotes  the  transpose) 

= E(Ga6a’) = [uij],aji = uij = E(boli6ajj ( 2  j 

is known, and  that  the variations 6ai are small and inde- 
pendent of the signals in  the  system.  The  input R is 
generated  by  a  stationary  stochastic  process  with  known 
power spectral  density nmtrix. 

The  rational  transfer  function  matrices G,(s) and H ( s )  
represent, respectively, the  tandem compensation  network 


