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Some New Rearrangement  Inequalities  Having 
Application  in  Stabilitv Analvsis 

Abslracl-The Sylvester test for establishing the positivity of 
quadratic forms is a basic tool. For  nonquadratic forms, however, 
necessary and s d c i e n t  conditions for positivity are generally not 
known. Given here  are  some simple  necessary and sufficient condi- 
tions for  forms of the type 

2 ZkfZklf(Z1) 
k. 1-1 

to be positive. These  results  are derived by combining a classic 
result of Hardy, Lifflewood, and Polya  with the Birkhoff characteri- 
zation of doubly stochastic  matrices. The  results  are applied to  the 
difference  equations governing a nonlinear  feedback loop. In this 
setting  they yield new and quite  general  conditions  for stability. 

I. INTRODUCTIOK 
N THE CLASSIC  book on inequalities  by  Hardy, 
Littlewood,  and  Polya [l], Chapter 10 is  devoted 
to  questions  relating  the  inner  products of simi- 

larly  ordered  sequences  to  the  inner  products of rear- 
ranged  sequences. The  simplest  result given  there states 
tha t  if x 1 2 x 2 2  . . . >_x, and y 1 2 y 2 2  . . . 2 y n  and if 
ya(l), ys(2), . . yr(n) is  any  rearrangement of the 
y sequence,  then 

k=l k=l  

The  informal  explanation of this  fact in [l] is  that  given 
a lever  arm  with  hooks a t  distances XI, xp, . . , x, from 
a pivot,  and  weights  yl, y2, . , yn to  hang  on  the 
hooks, the  largest  moment  is  obtained  by  hanging  the 
largest  weight  on  the  farthest  hook,  the  next  largest 
weight on the  next  most  distant hook,  etc. 

This  result  has  an  interpretation in terms of positive 
transformations.  Recall tha t  a finite  dimensional  linear 
transformation  is  called  positive if the  inner  product 
between  any  vector  and  its  image  under  the  transforma- 
tion  is  non-negative.  Thus, y =  Q x  defines  a  positive 
transformation if and  only if the  matrix Q plus  its 
transpose  is  non-negative  definite.  Since  simple neces- 
sary  and sufficient conditions for a  matrix  to be  non- 
negative  definite  are  known, any  linear finite  dimen- 
sional  transformation  can  be  checked for postivity.  For 
nonlinear  transformations,  the  situation  is  quite differ- 
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ent  and  this  is where the  rearrangement  inequality  is 
useful. Suppose  that f is a scalar-valued  function of a 
scalar  argument,  and  that Y k  is related  to XL by  the (in 
general)  nonlinear  transformation 

n 

y k  = I l t . k l f ( X I )  * (1) 
2=1 

If f is  a  monotone  nondecreasing  function,  then a 
suitable  renumbering of the x’s gives xl_<x?_< . . . < X n  
and f(x1) _<f(x?) 5 . . . <f(xn). Hence  the  transforma- 
tion 

- 

y k  = f ( x k )  - f ( X n ( k , )  

satisfies 
ll n 

x k y k  = Xkj(Xk) - Xkj(XZ(kd 2 0 
k= 1 e= 1 

and  is positive. If f ( x )  denotes  the  n-vector whose  com- 
ponents  are f(xi), then in  language of positive  trans- 
formations,  the  Hardy,  Littlewood,  and  Polya  rearrange- 
ment  theorem  says  that  the  transformation 

y = (1 - P%f(X) 

is  positive  where I is the  identity  matrix, P is  any 
permutation  niatrix,  and f is  monotone  nondecreasing. 
I t  will be  shown  that  this  result  together  with a result 
of Birkhoff on the  decomposition of doubly  stochastic 
matrices  permits  the  derivation of a number of interest- 
ing  positivity  conditions for a  class of transformations 
of the  type defined by (1). 

Why  are  positive  transformations  important?  Many 
techniques  involve  establishing a t  a certain  point  that a 
certain  function  is  non-negative  definite,  e.g.,  second 
variations  in  optimization  and  Liapunov  functions  and 
their  derivatives,  etc.  This verification can, of course, 
often  be  reduced  to  establishing  the  positivity of a  cer- 
tain  transformation.  The  particular  transformations  de- 
fined by (1) are of special  interest  in  the  study of systems 
whose  nonlinear  terms  each  depend  on a single argu- 
ment.  Systems of this  type  have been  extensively 
studied  in  connection  with  the so-called frequency  power 
formulas of R’Ianley and Rowe [2] and  the Lur’e  feed- 
back  loop  stability  problem [SI. The  present  paper  is 
the  result of trying to bring  certain  methods  and  results 
in  these  areas  into  harmony. I n  particular,  Prosser [4] 
and  Black [SI used the  rearrangement  theorem,  to  get 
frequency power formulas.  Quite  independently  O’Shea 



[6] ;~111011nccd a result {vhich strongl). reseml)les  ccr- 
tain  results of Page [ T I  on frequency power formulas. 
I n  a  related  paper,  Zanles  and  Falb [SI provided,  using 
a  factorization of certain  operators,  an  important  re- 
finement of the usual  positive  operator  argument  to  ob- 
tain  stability  criteria.  This  paper also  provides  the  tools 
necessary to  bring  into  nearly  complete  agreement  the 
frequency power formula  and  the  positive  operator 
points of view. 

The  present  paper  starts  with  establishing  positivity 
conditions  for  certain  transformations which are  both 
necessary and sufficient. In  order  to use the full  power 
of these  results  in  the  stability  problem,  it  is  necessary 
to consider  positive  operators which are  formed  by  a 
time-varying  linear  system  and  a  monotone  or  an  odd 
monotone  nonlinearity. The  results  that  are  obtained 
by specializing to  the  time-invariant  case  are  exactly 
those  in  the  literature.  The proof of the  stability 
theorem follows the  argument used by  Zames  and  Falb 
[SI, but  a  more  difficult factorization  theorem  is 
needed.  The  factorization  theorem  given  here  is  felt 
to be of interest in i ts  own right.  Its proof is  inspired 
by a  paper by Baxter [9] in probability  theory. 

For  various  technical  reasons,  the  discussion is largely 
concerned  with difference equations.  With  some  modi- 
fications,  similar  results  can  be  obtained for differential 
equations. 

11. GEKEk4LIZATIOWS OF A  CLASSICAL 
REARKWGEMENT  INEQUALITY 

DeJfinitions 
Two  sequences of real  numbers { X I ,  X Z ,  . . - , x, ) and 

{ yl, yp ,  . , yn  1 are said  to  be similarly ordered if the 
inequality x I ; < x l  implies tha t  yk<yl.. Thus  two se- 
quences  are  similarly  ordered if and  only  if  they  can  be 
rearranged  such  that  the  resulting  sequences  are  both 
monotone  nondecreasing, i.e., there  exists  a  permuta- 
tion ~ ( k )  of the n first  integers [ r ( k )  takes on each of 
the  values 1, 2, * - , n just  once  as k varies  through  the 
values 1, 2,  . . , n ]  such  that both the  sequences 

are  monotone  nondecreasing. TWO sequences  are  said  to 
be unbiased if xkyk 2 0. Clearly  two  sequences  are  simi- 
larl5: ordered  and  unbiased if and  only if the  augmented 
sequences { X I ,  x2, . . , x,, xn+l}  and ( y l ,  y2, . - . , y,,, 
yn+l]  with Y.+~=O are  similarly  ordered. TWO se- 
quences  are  said  to  be similarZ31 ordered and symmetric 
if they  are  unbiased  and if the  sequences { I X I ] ,  

Ix21, . . . , \ x n \  1 and ( I y l l ,  l y 2 1 ,  * - ,  lynl ] aresimi- 
larly  ordered. 

Example :  Let f(u) be a mapping  from  the  real  line 
into  itself,  and  consider  the  sequences [XI, 12, - . , X ,  ] 
and [f(xl), f(xz), . . , f(x,) ] . These  two  sequences will 
be  similarly  ordered for all sequences {XI, 8 ,  . . . , X, ] 
if and  only if f(u) is a  monotone  nondecreasing  function 
of u, i.e., if for  all (TI and U P ,  ( (T~-UZ)(~(U~)  -f(u2)) 2 0 .  

{x,,,,, X z ( 2 ) r  - - . x r ( n )  1 and ( y a ( l ) ,   y a ( ? ) ,  . . . , Y.(,)} 

third  quadrant  function, i.e., i f  for all u, of(.) 2 0 .  They 
\vi11 he sinlilarl!? ordered  and  symmetric if and only- if 
/(a) is an  odd~nlonotone nondecreasing  function of a, 
i.e., iff(.) is monotone  nondecreasing  and f(r) = -f(-a) 
for  all a. 

De$nitionsl 
4 real (TzXn) matrix M= (mkJ is  said to  be dozibly 

hyperdominant with zero  excess if m x - t  5 0  for k #Z, and if 

n n 

wzkz = wzkl = o for all K ,  E .  
k=1 I= 1 

I t  is said to  be doubly  hyperdominant if mkl_<O for 
k #1, and if 

?I n 

An (nXn)  matrix ~1.f is said to  be doubly   dominant  if 

n n 

2 I m~ I and mx- 2 I ~m 1 . 
k=l 
k+Z 

2- 1 

17% 

I t  is  clear that  all of the classes of matrices  introduced 
above  are  subclasses of the class of all  matrices whose 
s>-mmetric  part  is  non-negative  definite,  and  that  every 
doubly  hyperdominant  matrix  is  doubly  dominant. 

Two other classes of matrices which will be  used in 
the sequel and which  have  received  ample  attention  in 
the  past  are defined belom-. 

Definitions 
An (nXn)  matrix is  said to  be doubly  stochastic 

if i t  is a  non-negative  matrix (i.e., mt.20 for all k ,  1)  
and if its rows and  columns  sum  to 1. -An ( n x n )  matrix 
is said  to  be a permutation matrix if every  row  and col- 
umn  contains n- 1 zero  elements  and  an  element  which 
equals 1. The  relation  between  the  class of doubly 
stochastic  matrices  and  permutation  matrices is given 
in the following lemma  due  to Birkhoff. 

L e m m a  1 (Birkhofl): The  set  of all doubly  stochastic 
matrices  forms a convex  polyhedron  with  the  permuta- 
tion  matrices  as  vertices, i.e., if X is a doubly stochastic 
matrix  then 

Y 

M = CuiPi 
i=l 

with ni>O, 

-&, 
i=l 

a t  least in the electrical network literature. The  term doubly is used 
The term dominant is standard. Hyperdominant is prevalent, 

b). analogy with doubly stochastic where a  property of a matrix  also 
holds for its transpose. Beyond this  the nomenclature originates with 

They will be  unbiased if and  only  if f(u) is a- first and the  authors. 
- 
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and P i  a permutation  matrix. This decomposition is, in 
general, not  unique. 

Proof': A short proof can be found  in  Xlarcus  and 
hIinc [IO]. 

Theorem 1 states  the  main  result of this  paper  and is 
a considerable  generalization of a classical rearrange- 
ment  inequality  due  to  Hardy,  Littlewood,  and  Polya 
[l]. This  inequality is stated in Lemma 2. 

L e m m a  2 (Hardy,  Lit t lewood,  and Po lya ) :  Let 
(xl ,  x2, . . - , x n  } and ( yl, y2, . . . , y n }  be  two  similarly 
ordered  sequences,  and  let ~ ( k )  be  a  permutation of the 
first n integers.  Then 

k = l  k= 1 

Proof: A proof can  be  found  in [ l ] .  

Theorem 1 
A necessary  and sufficient condition  for the bilinear 

2 , n k l a k y l  = - l l l k I  < 0. 
k , L l  

Assume  next  that  the  matrix X fails to be  doubly 
hyperdominant  with  zero excess  because 

n 

mti z 0 
k = l  

for  some I (a  similar  argument  holds if 

n 

m k l  # 0 
1=1 

for  some k), and consider the  sequences [ 1, . , 1, 
1 + ~ ,  1, . . . , 11 and  (0 ,  . . . , 0, E-1, 0, . . , O }  with 
E # O ,  and  the  elements 1 + E  and in the 2th spot.  This 
leads  to 

2 mr;z-?:x.yz = €-I m k z  + m.11. 
B ,  z=1 k = l  

form By taking E sufficiently  small  and of an  appropriate  sign, 

to  be  non-negative  for all  similarly  ordered  sequences can thus be  made negative. 
1x1, x2, . . . , x n }  and (yl, y 2 ,  . . . , y n }  is  that  the 
matrix X =  (nzl:l) be  doubly  hyperdominant  with  zero  The following two  theorems  are  generalizations of 
excess. Theorem 1 to  similarly  ordered  unbiased  and  to  simi- 

Proof: larly  ordered  symmetric  sequences. 
1) Suf ic iency:  Let X be a doubly  hyperdomi- 

nant  matrix  with zero  excess and let r be a positive Tjworem 2 
number  such  that r>,wz/:z for all k, I .  Clearly 
~ ~ ~ = ~ ( I - r - l ( r ~ - ~ ~ ~ ) ) .  Since,  however, r - l ( r I - M )  is 
a doubly  stochastic  matrix,  it  can  be  decomposed  as 

necessary and sufficient condition for the bilinear 
form 

\vi t h 
N 

ffi 2 0, 7 ffi = 1 
i - 0  

and Pi a permutation  matrix.  Thus AT can  be  written  as 

K 

M = &(I - Pi) with pi 2 0. 
i= 1 

to be  non-negative for  all similarly  ordered  unbiased 
sequences (XI, xp, . . , x ,  } and { yl, yz, . - , y n }  is tha t  
the  matrix M =  (mkJ be  doubly  hyperdominant. 

Proof: 
1) Suf ic iency:  Let M be  a  doubly  hyperdominant 

matrix  and define 

This  decomposition of doubly  hyperdominant  matrices 
with  zero excess shows  that  it  is enough  to  prove  the 
sufficiency part  of Theorem 1 for  the  matrices I-Pi. m n + l , n ; l  = 2 l t z k l .  

This,  however,  is  precisely  what  is  stated  in  Lemma 2. 

hyperdominant  with  zero excess  because m k l > O  for that  
some k #I, in which  case the  sequences  with n- 1 zero 
elements  except +1 and -1 in,  respectively,  the Kth 
and  Ith  spots  lead  to 

and 

k.2-l 

2) Necessity: The  matrix M may fail 1 . 0  be  doubly  Then  taking = y n + l  = 0, i t  follo\vs from  Theorem 1 

n + l  2 '?xk@&yl = ?fiklqyl 2 0 
k, Z=1 k , 2=1 
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since the  augmented  matrix M* = ( m k J ,  k, I = 1,2 . . . , 
n f l  is  doubly  hyperdominant  with  zero  excess and 
since  the  sequences ( X I ,  xp, . . . , x,, xn+l ] and 
( y l I   y2 ,  . . . , yn, yn+l ] with xnil = = 0 are  similarly 
ordered. 

2) Necessity: The  same  sequences  as  in  Theorem 1 
can  be  used if the  matrix &I fails  to be doubly  hyper- 
dominant  because m,;r> 0 for  some k # Z. Assume  next 
that  the  matrix M fails to  be  doubly  hyperdominant 
because 

n 

Cmnkl < o 
k=l 

for  some I (a  similar  argument  holds if 

n 

Cmnkl < o 
z= 1 

for  some k), and  consider  the  sequences used in  Theorem 
1 with  the  additional  restriction  that E > O .  Then  by 
taking E > 0 sufficiently  small, 

can  be  made  negative. 

Theorem 3 
A necessary  and  sufficient  condition  for  the  bilinear 

form 

2 '?nkl%kyl 
P I  2-1 

to  be  non-negative  for all similarly  ordered  symmetric 
sequences { X I ,  xz, . . . , 2,) and { Y I ,  Y Z ,  . . . , Yn 1 is 
that  the  matrix AI= ( m k l )  be  doubly  dominant. 

Proof :  
1) Suf ic iency:  Let AI be  a  doubly  dominant  ma- 

trix.  Clearly 

k=2 

n 

- I l t Z B l l  I :n\ I r 2 !  . 
k,Z=l 

T h e  right-hand  side of the  above  inequality is non- 
negative  by  Theorem 2 since  the  matrix M*= ( m * k d  

with m*kl=mkl when k =  1 and m*,l= - I r n ~ l  when 
k # 1  is doubly  hyperdominant  and  since  the  sequences 

are  similarly  ordered  and  unbiased.  This  implies  that 
(Ix11, l + - ,  I x n l )  and ( I Y l l ,  l Y ? I , - . I  lY.Il 

2 f l zkzxky2  2 0. 
k , l= l  

2) Necessity: Assume that  the  matrix M fails  to 
be  doubly  dominant  because 

for  some I (an  analogous  argument  holds i f  

Zgk 

for some k), and  consider  the  sequences [ -sgn mll, . . . , 
-sgn nzL-1,~~ 1 + ~ ,  -sgn m2+l.2, . . . , -sgn m,,] and 
{ O ,  . . e ,  0, E - ~ ,  0,  . . . , 0 )  with  sgn a=a/lal if 
a f 0 ,  sgn 0 = 0, E > O  and 1 + E  and 6-l elements  in  the 
lth  spots.  This  leads  to 

which,  by  taking E sufficiently  small,  leads  to 

111. EXTENSIOX TO &-SUMMABLE SEQCEXCES 

Defini t ions 
Asequenceofrealnumbers(a~),k=O,+1,+2;~.. 

is  said  to  be Z, szmmable ( $ 2 1 )  if 

The collection of all  &summable  sequences  forms a 
Hilbert  space  lyith  the inner product of two  elements 
x =  { x k )  and y =  { y k ) ,  k = O ,  +1, + 2 ,  . . . , defined as 

An array of real  numbers R= { r ~ ~ l ) ,  k, Z=O, +1, 

mable  sequences x the  sequence { y k )  defined by 
5 2 , .  . . , is said to belong to 6(&, h)  i f  for all &sum- 

exists  for  all k, is 12 summable,  and if there  exists  a 
constant  such  that 

The  greatest lower  bound of all  numbers  which  satisfy 
this  inequality  is called the norm of R, denoted  by 1 1  RI( . 
The  transpose of R,  denoted R', is  the  array R'= { r K { )  
with rkl)=rlk.  A standard  result  in  the  theory of 
bounded  linear  operators  in  Hilbert  space [ll, p. 521 
states  that R' belongs to  S(b, Z2) if and  only if R does, 
that  IlRll =IIR'II, and  that (x, R y ) =  (R'x, y )  for  all 
.& summable  sequences x and y .  An  element R of 
e(&, Z2) is said to  have a bounded inverse if there  exists 
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for the  inner  product {x,  M y )  to be  non-negative  for  all { y k }  , k =  0 ,  f 1 ,  f 2, . . . , governed by  the  equation 
. .  

an  element R-l of e(Z2, 22) such  that RR-l=  R-'R= I ,  
with I=(b , l )  and &z=0 for k # l ,  & t = 1 .  I t  is well 
known that  (R-l)'= (R')-l. 

L e m m a  3 :  Let R= { r r z )  be  such that  the sequences 
{ r k l )  are ZI summable  for fixed k and I ,  uniformly  in k 
and I ,  i.e.,  there  exists  an M such  that 

+ X  +m 

Then R belongs to S(&, I?) and IlRll <M. 
Proof: The  Schwartz  inequality  and  Fubini's 

theorem  for  sequences [12, p. 2451 yield the following 
inequalities: 

/ +x \ 112 

The  previous  definitions  in  this  section  and  Lemma 3 
are  standard. In  what follows an  important role will be 
played  by  some  particular  elements of S(Z2, 12) and 
some  particular  sequences  which will now  be  introduced. 

Dejini f ions 
T h e  definitions of similarly  ordered,  similarly ordered 

unbiased,  and similarly ordered symmetric Z2-summable 
sequences  are  completely  analogous  to  the  case of finite 
sequences  and will not be  repeated  here. I t  is  possible to  
show that  two  &-summable  sequences  are  similarly 
ordered if and  only if they  are  similarly  ordered  and 
unbiased. An element 34 of g(h ,  Z2) is  said  to  be doubly 
hyperdominnnt if m k l s  0 for k # I  and if 

exist  and  are  non-negative  for  all 1 and k .  An element 
- 1  of 2(Z2, I ? )  is said  to  be doubly  dominant if 

f a  +a 

I=* 
l#k 

I t  is clear  from  Lemma 3 that  if X belongs to e(&, &) 
and is doubly  hyperdominant  or  doubly  dominant,  then 
1 ;  M I 1  52 supk m k p .  This  supremum is finite  since 121 

belongs to  e(&, I?). 
The following extension of Theorems 2 and 3 holds. 

Theorem 4 
Let M= {mk.}, k ,  I = O ,  + 1 ,   2 2 ,  . . . ~ be  an  element 

of S(&, I?) .  Then a necessary  and  sufficient  condition 

a) similarly  ordered  unbiased  12-summable  sequences 

b)  similarly  ordered  symmetric 12-summable  se- 
x and y ,  and 

quences x and y 

is that  ;lJ be 

1 )  doubly  hyperdominant,  and 
2) doubly  dominant. 

Proof: I t  is  clear that  all  finite  subsequences of x and 
y are  similarly  ordered  and  unbiased.  Hence,  by  Theo- 
rems 2 and 3 all  finite  truncations of the  infinite  sum  in 
the  inner  product ( x ,  My) yield a non-negative  number. 
Thus the  limit,  since  it  exists, is also  non-negative. 

Of particular  interest  are  the  arrays A= { r . l } ,  

on the difference of the  indices K and 1. These  arrays  are 
said  to  be of the ToepZitz  type and  have been  intensively 
studied  in  classical  analysis (see, e.g., [IS]). I t  follows 
from  Lemma 3 that  if R =  { r k - 1 1  is of the  Toeplitz  type, 
then  it  belongs  to c(&, h) if k = O ,  f l ,  t - 2 ,  . . * 

is Z1 summable. The  previous  theorem  can  be  phrased 
somewhat  simpler  in  this  case.  However,  another  defi- 
nition  is  needed  first. 

K ,  2=0, * 1,  2 2 ,  . . . , for which the  entries  depend  only 

Definit ion 
An I1-summable sequence {a;:} is  said  to  be hyper- 

dominant  if a k < O  for k # O  and if 

a k r 0 .  
+= 

I;=-m 

I t  is said  to  be dominant  if 

+P; 
ao 2 1 G I .  

k=-x 
k#O 

l'lworem 5 
Let M= ( n ~ ~ - ~ )  k ,  l+O, + 1, + 2 ,  . . . , be  an  element 

of e(&, 12) which  is of the  Toeplitz  type.  Then a neces- 
sary  and sufficient  condition  for  the  inner  product 
( x ,  M y )  to be  non-negative  for  all 

a)  similarly  ordered  unbiased  &summable  sequences 

b)  similarly  ordered  symmetric  12-summable se- 
x and y 

quences x and y 

is that  { nzk } be 

1) hyperdominant 
2)  dominant. 

Proof:  This  theorem is a  special  case of Theorem 4. 

11.'. ST.L\BILITP O F  DIFFERENCE EQVTATIOKS 
Consider  the  system  defined by  the  relation  between 

the input sequence { u k  ] and  the output sequence 
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+m 

y k =  g k Z t t z $ - r k  k = 0 ,  51, r t 2 , .  . . 
Z=- Lo 

where the  array { g k l } ,  k ,  1=0, +1, $.2, . . , is the 
weighting  pattern. I t  will be  assumed  that  the  system 
under  consideration  is causal, i.e., that  u g = r I ; = O  for 
k _<N implies that  yk  = 0 for k 5 N.  Thus g k l  is  assumed 
to  be zero  for all k <l.  The  system defined above  is 
slightly  more  general  than  the  input-output  relation 
governed  by  the n-dimensional  difference  equation 

~ k + l  = A k n : ,  + bi:tCk 

yk = ckt%k + dr,fck k = 0,  1 ,   2 ,  - * * 

x0 given 

where be and c k  are n vectors, d k  is a scalar, AI; is  an 
(nXn)  matrix  and xk is an n vector  called  the stnfe of the 
system.  This  input-output  relation  is  a  particular case 
of the  input-output  relation  defined  above  with 

gkl = c k ' A ~ ; - ~  . . . AZilbl for k 2 1 + 2 

gkz = ck'bk fork = I +  1 

gkz = dt for k = I 
gkz = 0 otherwise 

and 

r k  = cktA~:-l * -40xo for k 2 1 

Y o  = c;xo 

rt = ZLk = 0 for k < 0. 

The  case  in  which  the  system  is  time  invariant is of 
particular  interest.  The  system is  then  defined  by  the 
equation 

is 

yl; = gk-lzLz + ~ 1 :  k = 0, +1, & I ,  . . . 
l=-= 

where g k  is assumed to be  zero  for k < 0. This  system  is 
slightly  more  general  than  the  input-output  relation 
governed  by  the  n-dimensional difference equation 

x k + l  = A ~k + bfcr, 

y k = ~ ' ~ k + d  k = O , 1 , 2 , . . .  

where b and c are  constant n vectors, d is a  scalar  con- 
stant,  A is a constant (nxn)  matrix,  and xk is  an n 
vector called the state of the  system. This input-output 
relation  is a particular  case of the  input-output  relation 
defined  above  with 

gk = c'Ak-'b for k > 0 

go = d 

gl; = 0 for k < 0 

r k  = c'Akx0 for k 2 0 

rk = ztk = 0 for k < 0. 

Let  the  input be given as a function  of  the  output by 
the  feedback  law 

ZJk = - f b k )  4- v!$ 

I I I 

{f (yk)) { yk} 
f ( a )  

Fig. 1. The feedback loop. 

where v k ,  k =  0, + 1, + 2, . . . , is a sequence of real 
numbers  and f(u) is a mapping  from  the  real  line  into 
itself. The  resulting  feedback  system  is  shown  in  Fig. 1, 
and  the  equation of motion  becomes 

Definit ion 

The  feedback  system  under  consideration  is  said  to 
be 12-stable if for  all  /&summable  sequences Y =  { Y ~ }  and 
V =  {w:} k = O ,  + 1 ,  + 2 ,  . . . , all  solutions { y k }  which 
are such that  

exists  for  all  integers n are  L-summable  and  satisfy  the 
inequality 

for  some consfants p1 and p2. 
Remark :  Notice  that Z2-stability implies  that 

limk+m yk = 0 ,  and  that  for  the  n-dimensional difference 
equation  described  above  it  implies  that if vk=O for  all 
k ,  then 

lim sup I y k l  = 0,  

which  in turn  implies  asymptotic  stability in the  sense 
of Liapunov  provided  the  system  is  uniformly  com- 
pletely  observable. 

The  remainder of this  section  is  concerned  with  find- 
ing  sufficient  conditions  for the  feedback  system (2) to  
be  &stable. First some  additional  definitions  and 
notation. 

a p 0  k-0.1.2,. . . 

Notat ion  and  Def ini t ions 
Let x = { x k ) ,  k = O ,  +1, + 2 ,  . . . , be any  sequence 

of  real  numbers.  Then Fx denotes the  sequence {&I;) } , 
k = O ,  + 1 ,  5 2 , .  . F is  said  to  be bounded if there 
exists a constant K such  that If(u> I S K I  ul for  all u. 
If  f(u) is invertible,  then F-'x denotes  the  sequence 
[f-l(xk) 1.  F is said  to  be monotone (or odd monotone) if 
f(u) is a monotone  (or  an odd monotone)  function of u. 
F is  said  to  be strictly  monotone (or strictly odd monotone) 
if f(a) --w is a monotone (or an  odd  monotone)  function 
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of u for some E > O .  Clearly if F is  strictly  monotone, 
then F-l is well defined,  monotone,  and  bounded. If F 
is bounded,  then  it  maps Z2-summable sequences  into 
Z,-summable sequences. For  any  integer n,  P,x denotes 
the  sequence 1 YE ] with y k  = x5 for k 5 n and yI; = 0 other- 
wise. P,  belongs to  s(&, 22), P,*=P, and IIPnll =l.  
P,F and FP, commute  whenever f(0) = 0, and  thus  in 
particular  when F is bounded. 

Definitions 
An  element R of S ( k ,  I?)  is  said to  belong to  C+(12, Z2) 

if r k l  = 0 whenever k < l .  I t  is said to  belong t o  C-(Z2, 1,) 
if R' belongs to s+(l?, Z2). The  causality  assumption  on 
the  system  introduced  above implies tha t  if G =  { g, l )  

belongs to  s(Z2, Z?), then  it belongs to s+(k,  Z2). Kote 
the  analogy  between  this  notation  and  the  notation 
used  for spectral  factorization  in  filtering  theory (see, 

Lem,ma 4 :  Let R be  an  element of 2+(&, ZA2). Then 
e.g., [141). 

P,R and P, commute for  all l?-summable  sequences. 
Proof: Let y = P,Rx. Then 

+w 

Y k  = Tklll for k 5 t Z  
I = - =  

and y k =  0 otherwise.  Since,  however, rkl = 0 for k <I,  
the  first  summation  reduces  to 

k 

yc = rklsz 
I=-* 

which  shows that  indeed y = P,RP,x. 
4 n  important  step in the proof of the  stability  theo- 

rem  that follows  relies  on the  fact  that  certain  elements 
of s(Z2, l?) can  be  factored  in  a  suitable  fashion.  This  is 
stated in the  next  theorem,  the proof of which will be 
given in Section V n-hich is devoted  to  this  factorization 
problem. 

Theorem 6 

Let Z be an  element of s(&, 12) which  is  such that  
2-€1 is doubly  dominant for  some E > O .  Then  there 
exist  elements df and N of e(&, 1,) such  that 

1) z = M A r  
2)  M has  a  bounded  inverse AT-' 
3 )  belongs to S+(Z2, 1,) and helongs to e-(&, &). 

IIoreover, if Z is of the  Toeplitz  type,  then 31 and ,V 
may be taken  to  be of the  Toeplitz  type. 

Proof:  The  proof will be given  in  Section V. 

Dejinition 
An  element R of 2(&, l,) is said  to  be non-negative if 

( x ,  Rx)  2 0 for  all &summable  sequences x. 

The  road  is  now  open for the following stability 
theorem which is the  main  result of this  section  and is 
an extension of similar  results  obtained  by O'Shea and 
Younis [6], 1151 and  Zames  and  Falb-[SI. 

Theorem 7 
A sufficient condition for the  feedback  system  under 

consideration  to  be  &stable  is  that 

1) G belongs to S(&, 12) and F is  strictly  monotone 
(strictly  odd  monotone),  and  bounded 

2)  there  exists  an  element Z of s(&, &) such  that 
Z = E I  is  doubly  hyperdominant  (doubly  domi- 
nant) for  some E >  0 and  such  that ZG is  non-nega- 
tive. 

Proof: Let y = { yl: ] be any  solution of the  equation of 
motion  which  is  such that  

exists  for all integers n. Let x =  Fy. Sotice  that  since F 
is strictly  monotone  and P,y is 12-summable, i t  follows 
tha t  P,x and P,F-lx are l,-summable. From  the  equa- 
tion of motion  it follows that  

P,F-'x + P,GP,x = P,(& + r )  n = 0, k 1, k 2, * * . 
Let Z be  factored as in  Theorem 6. From  this  theorem, 
Lemma 4, and  the  above  equality  it follows tha t  

(P,&I'P,x,  P,-YF-'P,x) + (P,M'P,x,  P,SGP,x) 
= (P,M'P,x,  P,,V(Gu -I- r ) ) .  

However, 

(P,M'P,x, P,XF'P,*) 
= (P,,M'P,z, P,,,~F-'(M')-'P,M'P,r) 
= (M'(M')-'P,M'Pn~, LTF-'(M')-lP,M'P,x) 
= ((M')-'PJl'P,x,  ZF-'(Al')-lP,M'P,~) 
2 E((M')-'P,,M'PnX, F-'(M')-'P,M'P,x) 
2 e(Pnx, F-'P,s) 2 d(Pnx, PnR:). 

These  equalities follom- from  the  factorization  and  re- 
peated use of Lemma 4. The  inequalities hold  for  some 
d > O  by Theorem 4 since Z--el is  doubly  hyperdomi- 
nant  (dominant) since F-l is  monotone  (odd  monotone) 
and since F is bounded.  Similar  manipulations  and  the 
fact  that ZG is non-negative  yield 

(P,M'Ps, Pn.TGPnr) 2 0. 

The  Schwartz  inequality  and  the  triangle  inequality 
for 13-summable sequences yield 

I (P,M'P,s, P,i\:X(Go + r ) )  I 
5 l l M l l  11i1711 (Pnx, P,X)'!~(II GI1 (Pnzj, P , J ) ~ / ~  + (P,r,  P,J)'/'). 

From  the  above  inequalities  and  the  equality  preceding 
them, i t  follows thus  that  

(P,x, P,x)'/? 5 e'-'IIMII 11.Y11 ~IGII(F, v)l" 

+ E ' - q i M l  \ ~ X I l ( r ,  r)"Z 

which,  since this inequality  holds for  all n, since the 
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right  side is independent of n  and  since F is  strictly 
monotone,  yields 1-2 stability.  This  ends  the proof of the 
theorem. 

The  case  in  which the  system  is  time  invariant  and 
the  multiplier  is of the  Toeplitz  type  is, of course, of 
particular  interest  and  yields  the  stability  theorem  ob- 
tained bs- O'Shea  and  Younis [15]. The positivit?.  condi- 
tion  and  the  doubly  hyperdominance  (doubly  domi- 
nance)  condition  can  then  be  stated  in  terms of z trans- 
forms.  This  is  done  in  the  next  theorem.  But  first  the 
definition of a z transform will be  introduced.  For a dis- 
cussion of limit in the  mean  transform  ideas,  see,  e.g., 
Feller [16, p. 6011. 

De$nition 

The z-transform of an  Z2-summable sequence 1.1; 1 ,  
k = O ,  +1, + 2 , .  . . , is  defined by 

k=-- 

and  exists  for I zI = 1. The inverse z-transform of a  func- 
tion  which  is  square  integrable  along I zI = 1 is the 
12-summable  sequence {a?: }  defined by 

Lemma 5: Let   R=  / rk- l ] ,  k, I = O ,  fkl, 2 2 ,  . . . , he 
an  element of s(&, 12) which is of the  Toeplitz  type. 
Then  a  necessary  and  sufficient  condition  for  the  inner 
product (x, Rx) to  be  non-negative for all  Is-sunlmal,le 
sequences x is that t h e  z-transform of rl; 1 ,  K ( z )  satisfies 
Re R ( Z )  20 for almost  all z wit11 1 zI = 1. 

f 'roqf:  I t  is well known that 

(x, Rs) = - 4 R(z)  I X ( 2 )  l?z-'dz 

- - ~ S _ , R ( ~ Y )  I x(e jU) l~w 

2a 1i1-1 

1 "  

and  the conclusion follows. 

Theorem 8 

A sufficient  condition  for  the  feedback  system  under 
consideration to he  &-stable is that 

1) G is  an  element of c(Z2, 12) which is of the  Toeplitz 
type  and F is  strictly  nlonotone  (strictlJ-  odd  monotone) 
and  bounded 

2) there  exists  a Z ( z )  such  that  Z(Z)--E  is  the  e-trans- 
form of a  hyperdominant  (dominant)  sequence for 
some E > O  and  such  that  Re G(z)Z(z) 2 0  for  almost  all 
z with I z (  =l.  

Remarks  and Comments 

1) For the  n-dimensional  time-invariant  difference 
equation  above, i t  is quite  simple  to  show  that G will 
belong  to e(&, I,) if all eigenvalues  of A have  magnitude 
less than  unity. 

2)  Since  in  Theorems 7 and 8, F is assumed  to  be 
bounded, i t  follows that all  solutions  under  considera- 
tion  satisfy 

for  some  constants p3 and p4. 
3) The  fact that  the E > O  appears  in  the  hyperdomi- 

nance  (dominance)  condition  is  not  essential  and  could 
be  replaced  by  requiring Z G - E I  to  be  non-negative  for 
some -E> 0. 

1;. FACTOKIZATIOX OF OPERATORS 
From  the  previous  section  the  importance of obtain- 

ing  a  suitable  factorization of certain  elements of 
S(12, &) is apparent.  Similar  factorizations  have  been 
studied  in  relation  to  probability  theory  and  optimal 
control  theory.  The  problem  is  one of considerable  inter- 
est  and  difficulty,  and  the  natural  setting  for  the  study 
of such  factorizations  appears  to  be a Banach  algebra 
[SI, 191. The general  factorization  theorem  thus  ob- 
tained  is  then  specialized  to a class of elements of 
c(&, &) and is shown  to  yield  Theorem 6. I t  will be  in- 
dicated  that  in  case  these  elements of s(&, Z2) are in 
addition of the  Toeplitz  type,  the  results  are  rather 
conservative  and  that a less  restrictive  factorization 
theorem  due  to  Iirein [ I f ,  p. 19SI2  exists. The  setting of 
the  factorization  problem is the  same  as used by  Zames 
and  Falb [SI, b u t  the  results  appear to be  more  general. 
The  method of proof is inspired  by  a  paper  by  Baxter 
P I .  
Dejinitions 

Banach algebra is a normed  linear  space u over  the 
real  or  complex field  11-hich  is complete  in  the  topology 
induced  by  its  norm  and 11-hich has a mapping (mul- 
tiplication) from u x u  into u defined. This  multi- 
plication is associative,  is  distributive  with  respect  to 
addition,  is  related  to  scalar  multiplication  by 
a(A B )  = A  ( a B )  = ( d ) B ,  and  to  the norm  on u by 
ljABllI.\lAll I(Bl( for all A ,  B E u  and  all  scalars  a. A 
Banach  algehra is said  to  have  a un.if element if there 
exists  an  element I E u  such  that A I =  I A  = A  for  all 
A Eo. Xn  element A of a  Banach  algebra  with  a  unit 
element is said to be invertible if  there  exists  an  element, 
A-1, of u such  that A.4-1=A-1;1 = I .  -4 bounded  linear 
transformation 7~ from u into itself is  said to  be a 
projection on u if +=T and if the  range of x is a sub- 
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algebra of u. Note  that  the  range of a projection  is  thus 
closed  under  addition  and  multiplication.  The norm of 
a, 1 1 ~ 1 1  is  defined  in  the  usual  way as the  greatest lower 
bound of all  numbers M which  satisfy 11aAll5 MI1 All for 
all A Ea. B denotes the  identity  transformation  on u. 

The  following  factorization  theorem states the  main 
result of this  section. 

Theorem 9 
Let u be a Banach  algebra  with a unit  element  and 

let a+ and a- = $-a+ be  projections  on u. Let u+ and u- 
be  the  ranges of T+ and a-, and  assume  that IIa+II 5 1 
and  that  ~ ~ a - ~ ~  51. Let Z be  an  element of u. If 
llZll< l p I ,  then  there  exist  elements Z+Eu and Z-Eu 
such  that 

1) M=pI-Z=Z-Z+ 
2) Zf and 2- are  invertible 
3) Z+ and (Z+)-1 belong  to3 u+@ f, and 2- and 

(Z-)-l belong to  u-@I.  

Proof: Since  the proof of the  theorem is rather 
lengthy,  it  is  subdivided  into  several  lemmas. 

Lemma 6: Let { A ) ,  {PPI  and { N k ) ,  k = l ,  2, . - , 
be  sequences of elements of u, u+, and u-, respectively, 
and  assume  that  for  some ro> 0 and  all I rl SUO, 

1) the  series 

k=l  k=l 

and 
?i 

A~ = I + LVkrk 
k=l 

converge, and 
2) A =PN.  

Then A uniquely  determines  the  sequences { P.) and 

Proof: Equating coefficients of equal  powers  in r 
( N P } .  

in  the  equality A =PAT leads  to 

n- I 

P, + S, = A, - PI;.v,-~ for n = 2, 3 ,  . . . . 
k= 1 

Thus 

and 

which  shows that  A uniquely  determines P, and N n  

provided it  uniquely  determines PI, . . . , P,-1 and 

with REu' and a a scakr. u-@I is defined analogously. 
8 w+@I denotes  all  elements of u which are of the form R f a I  

N 1 ,  . . , AT,,-l. Since A uniquely  determines PI and 
Nl by P1=a+A1 and Nl=n-A1, the  result  follows by 
induction. 

Lemma 7: The  equations 

P = I + r7r+(ZP) 

and 

N = I + r r - ( X Z )  

have  a  unique  solution P E a  and N E u  for  all I 1 1  I I P I  - I .  

Moreover,  these  solutions  are  given  by  the  convergent 
series 

x W 

P = P~Y'=  and K = :\'krk 

B=O b=O 

with Po=No=I, P,+1=7rf (Zpk)  and lv1,+1=~- (Nkz). 
Notice  that PEu+$I  and  that  NEa-eI. 

Proof:  The  result follows  from the  inequalities 

I!YT+(Z(A - m l l  I I P I-lIIzil II A - B!I 

r.rr ((Ad - BMl l  I I P 1 - 1 1 1 ~ 1 1  II -'l - BII j l  - 

and  the  contraction  mapping  principle [18, p. 431. 
Moreover, it  is  easily  verified  that  the  successive  ap- 
proximations  obtained  by  this  contraction  mapping 
with Po= No= I yield the power  series  expressions of 
P and N as claimed  in  the  lemma. 

Lemma 8: The  solutions P and N to  the  equations of 
Lemma 8 are  invertible  for  all I rl I I P I  -l and 

P - 1  = I - YT+('VZ) 

x-1 = I - r7r-(ZP). 

Moreover, N-'P-l=I-rZ for  all 1 1 1  I 1pI- l .  Notice 
that  P-lEo-@I and  that  N-lEu+@I. 

Proof: From  the  equations  defining P and N ,  i t  
follows that for 

and 

Since  all  elements of u which are of the  form I-I3 with 
llBll<l are  invertible,  it follows thus  that  I-ra+(NZ),  
I = m - ( Z P )  and I - r Z  are  invertible  for Irl < I p I - l / 2  
and  their  inverses  are  given  by  the  convergent  series 

( I  - m + ( Y Z ) ) - '  = I + (T+(LXZ))V 

( I  - r7r-(ZP))-l = I + (T-(zP))krk 

( I  - r z y  = I + Zkrk. 

00 

k=l 

OG 

k=l 

00 

k=1 
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Fronl  tlle  equations o f  P and N ,  i t  follo\vs t 1 1 a (  for 
Irl S l p I - l ,  ( I - rZ)   P=I-n- (ZP)   and  N ( I - r Z )  
= I - w + ( N Z ) ,  and  thus  that  for Irl <p-1/2 

( I  - rZ)- l  = P(I  - m7r-(ZP))-' = ( I  - m+(.I~Z))-'S. 

Since all elements in the  above  equalities  are  given  by 
the series  expansions  given  earlier  and  in  Lemma 7, and 
since u+ and u- are closed under  addition  and  multiplica- 
tion,  Lemma 6 is  applicable,  This  yields for 171 _< I pI -l /2 

P = (I - 77r+(SZ))-', s = ( I  - r7r-(ZP))-' 

and 

PLY = ( I  - rZ)-l. 

Thus  for I rl 5 I pI -'/2 the following equalities  hold: 

P ( I  - r7r+(ATZ)) = ( I  - r7r+(SZ))P = I 

N ( I  - rr-(ZP)) = ( I  - rT-(zP))/v = I 

(I - rr - (ZP)) ( I  - m + ( X Z ) )  = I - rZ.  

Since  for 1 rl I I pI -l all terms in the  above  equalities 
are  given  by geometrically  convergent power  series  in r ,  
they  are  malytic for I rl _< ( P I  - I .  Since,  however, 
equality  holds for I rl < ( p I  -1/2, i t  is  concluded  from 
the  analyticity  that  equality  holds for  all I rl 5 I pI . This 
ends  the proof of Lemma 8. 

Proof of Theorem 9 :  Let r=p-' in Lemma 8. The  
theorem follows with  Z-=p(I-p-'a-(ZP)), (Z-)-I 
=p-'N, Z+=I-p-'r+(NZ), and  (Z+)-l=P. 

I t  will  now be  shown that  under a suitable choice of 
the  Banach  algebra  and  the  projection  operators,  the 
following  corollaries to  Theorem 9 hold.  These  corollar- 
ies then yield  Theorem 6. 

Corollary 1: Let Z be  an  element of c(k, 12) n-hich  is 
such  that Z--el is doubly  dominant for  some E > O .  
Then  there  exist  elements M and N of c(Z2, 12) such  that 

1) Z= M N ,  
2 )  M and N have  bounded  inverses 1U-l and N-' 
3) N and N-1 belong to 2+(l2, A)  and X and 3T-l 

belong to  .$-(A, I?). 

CoroZZury 2:  Let A @)--E be the  z-transform of a se- 
quence which is  dominant for  some E > O .  Then  there 
exist  functions A+(z) and A - ( z )  such that  

1) A (2) = A-(z )A+(z )  
2)  A+(z) and (A+(z))-l are  the  e-transforms  of k- 

summable  sequences { a b + )  and i b k + }  with 
nk+= bJz+=O for k < O ,  and A-(2) and (A-(z))-' 
are  the  z-transforms of A-summable  sequences 
{ak - )  and { b k - }  with nk-=b,-=O for k > O .  

Proof: I t  will be shown  that  these corollaries follow 
from  Theorem 9 under a suitable choice of the  Banach 
algebra u and  the  projections T+ and T-. 

Corollary 1 follows from  Theorem 9 with u all  mem- 
bers of .e(&, Z2) such  that if A = { aElf Eo, then  the se- 
quences { a k l ]  are  &summable  for fixed k and 1, uni- 

formly in k and I ,  i.e.,  there  exists  an dl such  that 

t m  t r  I U N I  I M and I a . ~  1 I M .  
k=-m I = -  m 

Multiplication is defined in  the usual  way. The  norm  is 
defined as the  greatest lower  bound of all numbers Af 
satisfying  the  above  inequalities.  The  nonobvious ele- 
ments in the verification of the  fact  that u forms  a 
Banach  algebra  are  that u is closed under  multiplication, 
that  llABllIllAll llBl\ for  all A ,  B E u ,  and  that u is 
complete.  Closedness  under  multiplication, follows 
from  Fubini's  theorem  for  sequences [12, p. 2451 and 
the  inequalities 

5 I E aksbir( I c c I a.kil I bit 1 
+XI +w 

5 1 1 - 4  IlBll 

which  also  shows tha t  \ (AB\ (  <((AI( I(B(1. Completeness 
follows  from the  fact  that  the  set of all  1'-summable se- 
quences is complete.  The  projection  operator T+ is de- 
fined by a+A = B  with A = ( u k l } ,  B= { b k l }  and 
nkl=bkl for k>Z, br,l=O otherwise,  and T-=f?-T+. I t  is 
clear that  Iln+ll = 1 and  that  ( I T - I I  = 1. The  only  fact  that 
is left  to be  shown is that  if for some E > O  2-€1 is 
doubly  dominant,  then Z can  be  written  as Z = p I - - A  
with llAll < p .  I t  is easily  verified that  any p with 
I p I  >supk,O,+l,+2 z k k  yields  such  a  decomposition. 

The  proof of Corollary 2 is completely  along  the  lines 
of the proof of Corollary 1, but  \\-it11 u, all  11-summable 
sequences,  multiplication of A = I I ~  and B = { b,] , 
defined by A B  = C =  { 61; ] with 

I=-* k=-= 

The  projection  operator T+ is defined by a+A = B with 
A =  { a , } ,  B =  ( b k ] ,  and b ~ ~ = n k  for k 2 0 ,  bk=O for 
k < O ,  and n-=f?-T+. 

Remark: The  factorization in Coro1lar)- 2 is valid 
under  much n-eaker conditions  than  stated.  Indeed, 
although  dominance of the involved  sequence is cer- 
tainly sufficient  for the  factorization  to  be possible, it is 
by  no  means necessary as  is shon-n by  the following the- 
orem  due to Krein [li, p. 1981. 

Th.eorem 10 (Krein) 
Let A ( z )  be  the  z-transform of an 11-summable se- 

quence. Then  there exist  functions .4+(z) and A-(z )  
such  that 

1) A (2) =A-(2 )   A+(z )  
2) A+(z) and (A+(z))-l are  the  z-transforms  of 

Z1-summable sequences { Q+} and ( b k + }  with 
a(:+= bk+ = 0 for k <0, and A-(2)  and (A-(z))-l 



WILLElMS AND BROCKETT: REARRANGEMENT  INEQUALITIES FOR STABILITY AVALYSIS 549 

are  the  z-transforms of Zl-summable sequences {.x.-] and {biz-) with uJ:-=bk-=O for k > O  if and 
only if 

a) A ( Z ) Z O  for 121 = I  
b)  the increase  in the  argument of the  function 
.4(z) as  z moves  around  the circle I zI = 1 in 
counterclockwise  direction  is  zero. 

hloreover, all factorizations which satisfy  conditions 
a)  and  b) differ only  by  a  multiplicative  constant. 

Proof:  -1 proof can  be  found  in  Krein [17] .  
I t  is clear that  if A (z) - E  is the  z-transform of a  domi- 

nant  sequence for some E > 0,  then A (z) satisfies the con- 
ditions of the  above  theorem  since  Re A ( z )  > e > O  for 
121 =l.  

VI.  CONCLUSIOW 

‘The conditions  for  stability  derived  here  involve  the 
multiplier  idea in matrix  form  rather  than in the  form of 
scalar  functions of a  complex  variable, as  has been the 
case  in  earlier  work  since  Popov. They  apply  to  time- 
varying  and  time-invariant  systems.  However,  the 
tests are difficult. Further research  is  required to  identify 
some  relatively  simple  special  cases. T h e  basic  inequal- 
ities  involving  sums of terms of the  type Cx.,~?cl,rnt~(xl) 
appear  to  be of great  interest in  themselves. I t  is true, 
however,  that for time-invariant  systems  and  multi- 
pliers, the  stability  results of this  paper  do  not  go be- 
yond  those of O’Shea, and hence it appears  that  quite 
different  arguments will be  needed to  extend  his  results 
i f ,  indeed,  they  are  shown  to be only sufficient  condi- 
tions.  Basically  the  arguments  are  elementary if the 
discussion is limited to  time-invariant  systems  and 
multipliers.  In  that  case, all  matrices  are of the  Toeplitz 
type  and  the  required  factorization is not  hard,  at  least 
in the case of rational  functions. I t  is felt  that  the  ap- 
proach used  here results  in  a  more  elegant proof than 
those  previously  published. The  general  case,  however, 
requires  the  factorization  given  in  Theorem 9 and  the 
argument is consequently  more difficult. Both  the fac- 
torization  theorem  and  the  basic  inequalities  are  poten- 
tially useful  in other  areas of system  theory.  This re- 
quires  further  investigation. 
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