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Abstract: We address the interconnection of stochastic systems. A stochastic system is defined as a
probability triple. The specification of the set of events is an essential part of a stochastic model. Models
often require a coarse event sigma-algebra. A stochastic system is linear if the events are cylinders with
fibers parallel to a linear subspace of a vector space. Two stochastic systems can be interconnected if
they are complementary. We discuss aspects of the identification problem from this vantage point.
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1. INTRODUCTION

One of the central aspects of systems thinking is the possibil-
ity of combining systems and viewing a complex system as
an architecture of interconnected subsystems. This feature is
important in all aspects of systems and control, in modeling,
in system identification, in analysis, and in synthesis. In [1] and
[2] we have discussed ‘tearing, zooming, and linking’ modeling
procedures for deterministic systems. In the present section we
deal with the composition of stochastic systems in an informal
way. In Section 3 we formalize interconnection.

A convenient way to visualize systems is by block diagrams.
Figure 1 shows a pictorial representation of a system as a black
box with terminals. The variables w that are relevant in the
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Fig. 1. A system as a black box

model are shown as associated with terminals. In some appli-
cations (as electrical circuits, and some mechanical, thermal,
and hydraulic systems) these terminals can be taken literally,
while for other applications they should be thought of as virtual
terminals. For example, if w ∈ Rn, we may think of each of
the terminals as corresponding to one of the components of
w = (w1,w2, . . . ,wn). The black box indicates that the variables
on the terminals are related, for example through the laws of a
stochastic system.

One way of combining systems is by interconnection. We start
with two systems with variables w1 and w2 respectively, and
obtain a new system with variables w, as shown in Figure
2. The interconnection imposes variable sharing, w1 = w2 =
w. Interconnection can also be viewed as an operation on
the terminal variables of a single system. We start with a
system with variables w1 and w2, and obtain a new system
with variables w by setting w = w1 = w2, as shown in Figure
3. The basic idea of interconnection is variable sharing, in
the sense explained in [1] and [2] for deterministic systems.
Series, parallel, and feedback interconnections are readily seen
to be special cases. We formalize interconnection of stochastic
systems in Section 3.
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Fig. 2. Interconnection of systems
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Fig. 3. Interconnection of terminals

By combining the operations explained above, it is possible
to obtain complex interconnected systems from simpler sub-
systems. We have discussed so far the combination of two
systems. These operations are readily extended sequentially to
more than two systems, and therefore to complex architectures
of interconnected systems.
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Fig. 4. Elimination of variables

2. STOCHASTIC SYSTEMS

In this section we introduce the concept of a stochastic system,
which is nothing else than a probability space as put forward in
orthodox mathematical probability theory.

Definition 1: A stochastic system is a triple (W,E ,P) with

! W a non-empty set, the outcome space, with elements of
W called outcomes,

! E a σ -algebra of subsets of W, with elements of E called
events,

! P a probability measure on E .

The intuitive background underlying this definition is as fol-
lows. Assume that we have a stochastic phenomenon that we
wish to model. The phenomenon produces variables in the
outcome space W. The aim of the model is to specify (i) the
subsets of the outcome space to which a probability is assigned
and (ii) the numerical value of the probability (in the sense of
relative frequency, degree of belief, or whatever interpretation
of probability is relevant in the application at hand) that the out-
comes belong to such a subset. The set in which the outcomes
take on their value is the outcome space W. The set of events
E consists of those subsets of W to which the model assigns a
probability. The probability that the outcomes belong to the set
E ∈ E is P(E).

Two important special cases are obtained as follows. We refer
to these special cases as classical stochastic systems.

! A special case is (W,2W,P) with W a countable set.
P can then be specified by giving the probability p of
the individual outcomes, p : W → [0,1], and defining P
by P(E) = Σ

e∈E
p(e). In this case, every subset of W is

assumed to be an event, and P is completely determined
by the probability of the singletons.

! Another special case is (Rn,B (Rn) ,P) with B (Rn) the
Borel σ -algebra. P can then be specified by a probability
distribution on Rn, or, if the distribution is sufficiently
smooth, by the probability density function p : Rn →
[0,∞) leading to P(E) =

∫

E

p(x)dx.

For a classical stochastic system ‘essentially every’ subset of W
is an event and is therefore assigned a probability. We formalize
the second special case as a definition.

Definition 2: The stochastic system (Rn,B (Rn) ,P) is called a
classical n-dimensional random vector.

Deterministic systems emerge as special cases of stochastic
systems, as they should.

Definition 3: The stochastic system (W,E ,P) is said to be

deterministic if E = { /0,B,B complement ,W} and P(B) = 1. B is
called the behavior of the deterministic system.

For a deterministic system, we can state only that outcomes
belong to B with probability one, and to Bcomplement with
probability zero. Deterministic and classical stochastic systems
are extremes of a spectrum ranging from systems with very
coarse to systems with very rich σ -algebras.

3. INTERCONNECTION

In this section we discuss interconnection formally. We start
by considering the situation discussed in Figure 2 with the
assumption that the two interconnected systems are stochas-
tically independent. Note that interconnection comes down to
imposing two distinct probabilistic laws on the same set of vari-
ables. Is it possible to define one law which respects both laws?
As we shall see, this is indeed possible, provided a regularity
condition, called ‘complementarity’, is satisfied.

Definition 4: Two σ -algebras E1 and E2 on a set W are said to be
complementary if for all nonempty sets E1,E ′

1 ∈ E1,E2,E ′
2 ∈ E2

there holds

[[E1 ∩E2 = E ′
1 ∩E ′

2]]⇒ [[E1 = E ′
1 and E2 = E ′

2]].

The stochastic systems Σ1 = (W,E1,P1) and Σ2 = (W,E2,P2)
are said to be complementary if for all E1,E ′

1 ∈ E1 and E2,E ′
2 ∈

E2 there holds

[[E1 ∩E2 = E ′
1 ∩E ′

2]]⇒ [[P1(E1)P2(E2) = P1(E
′
1)P2(E

′
2)]].

In words, complementarity of stochastic systems requires that
the intersection of two events, one from each of the σ -algebras,
determines the product of the probabilities of the intersecting
events uniquely, while complementarity of the σ -algebras re-
quires that the intersection of two sets, one from each of the
σ -algebras, determines the intersecting sets uniquely.

Note that

[[E1,E2 complementary]]⇒ [[E1 ∩E2 = { /0,W}]]

[[E1,E2 complementary,E1 ∈ E1,E2 ∈ E2,
and E1 ∩E2 = /0]]⇒ [[E1 = /0 or E2 = /0]].

Complementarity of two stochastic systems is implied by com-
plementarity of the associated σ -algebras. In order to see
this, let E1,E ′

1 ∈ E1,E2,E ′
2 ∈ E2. On the one hand, if the sets

E1,E ′
1,E2,E ′

2 are all non-empty and E1,E2 are complementary,
then E1 ∩ E2 = E ′

1 ∩ E ′
2 implies E1 = E ′

1 and E2 = E ′
2, and,

therefore, P1(E1)P2(E2) = P1(E ′
1)P2(E ′

2). On the other hand,
assume that at least one of the sets E1,E ′

1,E2,E ′
2, say E1, is

empty. Then E1 ∩ E2 = E ′
1 ∩ E ′

2 implies E ′
1 ∩ E ′

2 = /0. Com-
plementarity of E1,E2 therefore implies that either E ′

1 = /0,
or E ′

2 = /0. Consequently, also in this case E1 ∩E2 = E ′
1 ∩E ′

2
implies P1(E1)P2(E2) = 0 = P1(E ′

1)P2(E ′
2).

It is easy to construct examples involving zero probability
events that show that complementarity of two stochastic sys-
tems does not imply complementarity of the associated σ -
algebras. Complementarity of the event σ -algebras is a more
primitive condition that is convenient for proving complemen-
tarity of stochastic systems.

Definition 5: Let Σ1 = (W,E1,P1) and Σ2 = (W,E2,P2) be
complementary stochastic systems. Then the interconnection
of Σ1 and Σ2, assumed stochastically independent, denoted by
Σ1 ∧Σ2, is defined as the stochastic system

Σ1 ∧Σ2 := (W,E ,P)
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with E the σ -algebra generated by E1 ∪E2, and the probability
P defined through ‘rectangles’ {E1 ∩E2 | E1 ∈ E1,E2 ∈ E2} by

P(E1 ∩E2) := P1(E1)P2(E2) for E1 ∈ E1,E2 ∈ E2.

The definition of the probability P for rectangles uses com-
plementarity in an essential way. E is in fact the σ -algebra
generated by these rectangles. It is readily seen that the class
of subsets of W that consist of the union of a finite number
of disjoint rectangles forms an algebra of sets, that is, a class
of subsets of W that is closed under taking the complement,
intersection, and union. The probability of rectangles defines
the probability on the subsets of W that consist of a union of a
finite number of disjoint rectangles. By the Hahn-Kolmogorov
extension theorem, this leads to a unique probability measure
P on E , the σ -algebra generated by the rectangles. This con-
struction of the probability measure P is completely analogous
to the construction of a product measure.

The notions of interconnection of stochastic systems and of
complementarity of stochastic systems and σ -algebras consti-
tute the main original concepts of this paper, viewed as a con-
tribution to mathematical probability theory. Obviously, there
holds E1,E2 ⊆ E . Also, for E1 ∈ E1 and E2 ∈ E2, we have
P(E1) = P1(E1) and P(E2) = P2(E2). Hence interconnection
refines the event σ -algebras and the probabilities. This im-
plies in particular that Σ1 and Σ2 are unfalsified by Σ1 ∧ Σ2.
The stochastic system (W,E ,P) is said to be unfalsified by
(W,E ′,P′) if for all E ∈ E ∩E ′ there holds P(E) = P′(E).

Note that for E1 ∈E1 and E2 ∈E2, P(E1∩E2)=P1(E1)P2(E2)=
P(E1 ∩W)P(W ∩ E2) = P(E1)P(E2). Hence E1 and E2 are
stochastically independent sub-σ -algebras of E . This expresses
that Σ1 and Σ2 model phenomena that are stochastically inde-
pendent.

The deterministic systems (W,E1,P1) and (W,E2,P2) with
behavior B1 and B2 respectively, are complementary if either
B1 =W, or if B2 =W, or if B1 and B2 are both strict subsets of
W and B1 ∩B2 += /0. Their interconnection is equivalent to the
deterministic system (W,E ,P) with behavior B1 ∩B2.

We illustrate interconnection by our two examples.

Example: The interconnected noisy resistor. Consider the in-
terconnection of a noisy resistor and a voltage source with an
internal resistance and thermal noise. This leads to the configu-
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-

+

-
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I

I

V

V = RI

V =V0 −R′I

event ∈ E1

event ∈ E2

event ∈ E

R
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Fig. 5. Interconnection of noisy resistors

ration shown in Figure 5(a). System 1 corresponds to the noisy
resistor and is described by V = RI + ε . System 2 correspond
to the voltage source, and is described by V = V0 − R′I + ε ′

with V0 a constant voltage, R′ the internal resistance, and ε ′ a
random variable independent of ε . Assume that ε ′ is gaussian,
with zero mean and standard deviation σ ′. A rectangular event
of the interconnection is shown in Figure 5(b). It is easily seen
that the corresponding σ -algebras are complementary if and
only if R+R′ += 0. The σ -algebra of the interconnected system

is then the Borel σ -algebra on R2, and
[

V
I

]

is the classical 2-

dimensional random vector governed by the equations
[

1 −R
1 R′

][

V
I

]

=

[

ε
ε ′+V0

]

.

Example: Equilibrium price/demand/supply. Consider first the
deterministic price/demand and price/supply characteristics of
an economic good. Assuming that these characteristics pertain
to the same good imposes price1=price2, while equilibrium im-
poses demand = supply. We view imposing these conditions as

price

demand supply

equilibrium

Fig. 6. Deterministic equilibrium price/demand/supply

interconnection. It is readily verified that the interconnection of
the deterministic price/demand and price/supply systems yields
the deterministic system with equilibrium behavior the inter-
section of the price/demand and price/supply characteristics as
illustrated in Figure 6.

In the stochastic case, we start with the stochastic system
Σ1 = ((0,∞)2,E1,P1) that models the price/demand, and Σ2 =
((0,∞)2,E2,P2) that models the price/supply. The elements of
E1 and E2 are those to which a probability is assigned (see the
discussion of Example 2 in Section 2). Interconnection of Σ1

and Σ2 means p1 = p2 = p (expressing that the prices pertain to
the same good), and d = s (expressing the equilibrium condition
demand = supply).

price

demand supply

event ∈ E1 event ∈ E2

event ∈ E

Fig. 7. Price/demand/supply event

Under reasonable conditions (related, for example, to the
cardinality, shape, and monotonity of the price/demand and
price/supply events) the associated σ -algebras E1 and E2 are
complementary, and the interconnection σ -algebra consists of
the Borel subsets of (0,∞)2. A rectangular event for the inter-
connected stochastic system is shown in Figure 7. The proba-
bility for the interconnected stochastic system follows the con-
struction of Definition 6.

For interconnection of the stochastic system Σ1 = (W,E1,P1)
with the deterministic system Σ2 = (W,E2,P2) with behavior
B, stochastic independence is trivially satisfied. Σ1 and Σ2 are
then complementary if and only if

[[E1,E
′
1 ∈ E1, and E1 ∩B= E ′

1 ∩B]]⇒ [[P1(E1) = P1(E
′
1)]].
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Assuming complementarity, interconnection leads to the sto-
chastic system that is equivalent to (W,E ,P) with E = EB ∪
{Bcomplement,W}, where EB = {E1 ∩B | E1 ∈ E1}. The proba-
bility P of the interconnection is given by P(E) = P1(E1) with
E1 any element of E1 such that E = E1 ∩B. This implies that
P(B) = 1, and the probability in the interconnected system is
therefore concentrated on B.

We now consider the interconnection of terminals as shown in
Figure 3. Before interconnection, we have the stochastic system
Σ = (W×W,E ,P) with variables (w1,w2). Both w1 and w2

have their outcomes in W, and these outcomes are coupled
through E and P. The interconnection imposes w1 = w2 and
we wish to consider the stochastic system that governs w =
w1 = w2. This stochastic system a special case of the situation
discussed in the previous paragraph with the behavior of the
deterministic system defined by B= {(w1,w2)∈W×W | w1 =
w2}. Complementarity requires that

[[E1,E2 ∈ E and E1 ∩B= E2 ∩B]]⇒ [[P(E1) = P(E2)]].

Complementarity and interconnection yield the stochastic sys-
tem Σ′ = (W,E ′,P′) with

[[E ′ ∈ E
′]] :⇔ [[ ∃ E ∈ E such that E ′ = {(w,w) | (w,w) ∈ E}]]

P′(E ′) = P(E).

System interconnection (see Figure 2) and terminal intercon-
nection (see Figure 3) are closely related. However, terminal
interconnection is more general, since it also deals with inter-
connection of systems that are not stochastically independent.

4. INTERCONNECTION OF LINEAR STOCHASTIC
SYSTEMS

Definition 4: The n-dimensional stochastic system (Rn,E ,P)
is said to be linear if there exists a linear subspace L of Rn

such that the events are the Borel subsets of the quotient space
Rn/L, and the probability is a Borel probability on Rn/L.
Note that Rn/L is a finite dimensional real vector space with,
therefore, well-defined Borel sets. Rn/L has dimension = n−
dimension(L). L is called the fiber and dimension(L) the
number of degrees of freedom of the linear stochastic system.
The stochastic system (Rn,E ,P) is said to be gaussian if it is
linear and if the Borel probability on Rn/L is gaussian.

We consider a probability measure that is concentrated on a
singleton to be gaussian. More generally, a gaussian probability
measure may be concentrated on a linear variety.

The idea behind Definition 4 is illustrated in Figure 8(a). The

LL

event event

M

M

(a) (b)

Fig. 8. Events for a linear system

events are cylinders in Rn with rays parallel to the fiber L. A
linear stochastic system is a classical random vector if and only
if L= {0}. Every classical random vector with W=Rn defines

a linear stochastic system. At the other extreme, when L= Rn,
the event set E becomes the trivial σ -algebra { /0,Rn}.

A concrete way of thinking about a linear n-dimensional
stochastic system is in terms of two linear subspacesL,M of Rn

that are complementary, L⊕M = Rn, and a Borel probability
PM on M. Take as events the sets of the form

E = {
⋃

w∈M

(w+L) | M a Borel subset of M}

(see Figure 8(b)) and P(E) equal to PM(M). A linear n-
dimensional stochastic system is thus parameterized by its lin-
ear fiber L, a linear subspace M complementary to L, and a
Borel probability on M.

Let R ∈ Rp×n be a matrix of full row rank (that is, rank(R) =
p) and ε a classical p-dimensional random vector with Borel
probability Pε . Consider the equation

Rw = ε (1)

describing the stochastic laws of the vector w ∈ Rn. This
equation defines the linear stochastic system Σ = (Rn,E ,P)
with

[[E ∈ E ]] :⇔ [[E = R−1(A) for some Borel subset A ⊆ R
p]],

P
(

R−1(A)
)

:= Pε(A).

R−1 denoted the pullback of R. The fiber of this linear stochas-
tic system is kernel(R). The number of degrees of freedom
equals n− p. We call (1) a kernel representation of Σ. Every
n-dimensional linear stochastic system admits a kernel repre-
sentation. Note that (1) defines a gaussian stochastic system if
and only if ε is gaussian. An n-dimensional gaussian system
with n− p degrees of freedom represented by (1) is hence
parameterized by the triple (R,m,S) with R ∈ Rp×n a matrix

of full row rank, m ∈ Rp the mean, and S ∈ Rp×p,S = S1 2 0,
the covariance of ε . All triples (R,m,S) that define the same
gaussian system are obtained by the transformation group

(R,m,S) 3→−→−→−→−→−→
U∈Rp×p nonsingular

(UR,Um,USU1). (2)

Theorem 1: Consider the linear n-dimensional stochastic sys-
tems Σ1 = (Rn,E1,P1) and Σ2 = (Rn,E2,P2) with associated
fibers L1 and L2. The σ -algebras E1 and E2 are complementary
if and only if

L1 +L2 = R
n.

The proof is straightforward.

Consider the linear n-dimensional stochastic systems Σ1 and Σ2

and assume that L1 +L2 = Rn is satisfied. Then the intercon-
nected system Σ1∧Σ2 is again a linear n-dimensional stochastic
system. Its fiber is L1 ∩ L2. Hence Σ1 ∧ Σ2 is a classical n-
dimensional random vector if and only if L1 ⊕L2 = Rn. If Σ1

and Σ2 are gaussian, so is Σ1 ∧Σ2.

Let R1w = ε1 be kernel representation of Σ1 and R2w = ε2 be a
kernel representation of Σ2 with R1 and R2 both of full row rank.
Then L1 +L2 = Rn requires kernel(R1)+kernel(R2) = Rn,

which is equivalent to requiring that R =
[

R1
R2

]

is also of full

row rank. Assuming complementarity yields
[

R1
R2

]

w =
[

ε1
ε2

]

as

a kernel representation of the interconnection Σ1 ∧Σ2. Its fiber
is kernel(R) = kernel(R1)∩kernel(R2).
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5. IDENTIFICATION

In this section we discuss some implications to the problem of
building models from data of the view of stochastic systems and
their interconnection that emerges from the previous sections.
The question we deal with is system identification: how can
we recover the laws that govern a stochastic system from
measurements?

Consider the stochastic system Σ=(W,E ,P). Assume that out-
comes, realizations of the variables w ∈W, of the phenomenon
that is modeled by Σ are observed. The aim is to identify the
model, that is E and P, from the observations. In order to gen-
erate these observations, experimental conditions need to be set
up during the data collection process. The data do not emerge
from the stochastic system all by itself, but from observing Σ
in interaction with an environment (see Figure 9). One of the

System Environment

Fig. 9. Data collection

questions that arises is whether it is possible to disentangle
from the data the laws of the stochastic system from the laws
of the environment. We make a clear distinction between mod-
eling a stochastic system from data and obtaining the statistical
features of a random vector from samples. The latter problem
consists of inferring the statistical laws by sampling a random
vector in an experimental set-up, while the former problem
requires in addition disentangling the laws of the system from
the laws of the environment that was active while sampling.

Let us illustrate this issue by means of the noisy resistor. The

variables
[

V
I

]

are governed by V = RI+ε and the identification

problem consists in deducing the parameters of the model,
that is R and σ , the standard deviation of ε , from measured
voltage/current pairs. These measurements may be generated
in various ways. One possibility is to fix the current by driving
the noisy resistor by a constant current source and measure
various realizations of the voltage. Another possibility is to fix
the voltage by putting a constant voltage source across the noisy
resistor and measure various realizations of the current. A third
possibility is to terminate the noisy resistor by a voltage source
with internal resistance and thermal noise as shown in Figure
5, and measure various realizations of the voltage/current pair.
These terminations of the noisy resistor give rise to three data
clouds, with completely different statistical features each, and
from each of these data clouds we may attempt to deduce the
parameters R and σ .

For the noisy resistor it may be reasonable to assume that
the experimenter can control the environmental conditions that
are active during data collection. On the other hand, in many
situations, for instance in economics, in the social sciences, or
in biology, the data are collected in a passive way, in vivo, so
to speak. The problem of disentangling the laws of the system
from the laws of the environment then becomes imperative.
As an example, assume that we wish to identify the stochastic

system that governs the price/demand of an economic good. We
could attempt to deduce the laws of this stochastic system from
observing various realizations of the variables (p,d). If these
measurements are obtained under the equilibrium condition
demand = supply, then, as shown in Section 3, under reasonable
conditions, the data are realizations of a classical 2-dimensional
random vector, and then the probability distribution of (p,d)
depends not only on the stochastic price/demand system, but
also on the stochastic price/supply system. The stochastic laws
of the price/supply may also be unknown. Is it nevertheless
possible to identify the stochastic price/demand system from
the data?

In this paper we discuss only a very special case of the identifi-
cation problem. We assume that the system to be identified is an
n-dimensional gaussian stochastic system. We further assume
that the data are collected while the system is interconnected
with another n-dimensional gaussian stochastic system that is
stochastically independent and complementary to the system
to be identified, and such that the interconnected system is a
classical random vector. As we have seen in Section 4, this
classical random vector is also gaussian and we assume that
from sampling, its mean and covariance matrix have been de-
duced. We assume therefore that the data consist of the mean
and covariance of the probability distribution of the outcomes
in the interconnected system.

Let L ⊆ Rn be the fiber of the gaussian system Σ = (Rn,E ,P)
to be identified and let Rw = ε be a kernel representations of
Σ. R ∈ Rp×n is a matrix of full row rank and L = kernel(R).
Since Σ is assumed to be gaussian, ε is a classical gaussian
p-dimensional random vector. Let m ∈ Rp be the mean and
S ∈ Rp×p,S = S1 2 the covariance of ε . Let L′ ⊆ Rn denote
the fiber of the gaussian system Σ′ = (Rn,E ′,P′) that is inter-
connected with Σ during data collection. Assume that Σ and Σ′

are stochastically independent and that L⊕L′ = Rn. Then, as
shown in Section 4, the σ -algebras of Σ and Σ′ are complemen-
tary and the interconnected system Σobserved = Σ∧Σ′ is a classi-
cal n-dimensional stochastic system (Rn,B(Rn),Pobserved) with
Pobserved a gaussian probability distribution on Rn. Let µ ∈ Rn

be its the mean and Γ ∈ Rn×n,Γ = Γ1 2 0 its covariance.

Σ is unfalsified by Σobserved if and only if

Rµ = m and RΓR1 = S.

The disentanglement question becomes: Is it possible to deduce
from these equations Σ, that is (R,m,S) up to the equivalence
(2), from Σobserved, that is from (µ ,Γ)?

Let R′w = ε ′ be a kernel representation of Σ′. R′ ∈R(n−p)×n is a

matrix of full row rank with kernel(R′) = L′. Let m′ ∈ R(n−p)

be the mean and S′ ∈ R(n−p)×(n−p),S′ = S′1 2 0 the covari-
ance of ε ′. Since Σ and Σ′ are assumed to be stochastically
independent, ε and ε ′ are independent. L⊕L′ = kernel(R)⊕

kernel(R′) = Rn implies that the matrix
[

R
R′

]

∈ Rn×n is non-

singular. Hence

[

R
R′

]

w =
[ ε
ε ′

]

is a kernel representation of Σobserved = Σ∧Σ′. The mean µ and
covariance Γ of Σobserved = Σ∧Σ′ are related to the parameters
R,m,S,R′,m′,S′ of Σ and Σ′ by
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[

R
R′

]

µ =
[ m
m′

]

[

R
R′

]

Γ
[

R
R′

]1
=

[

S Op×(n−p)

O(n−p)×p S′

]

. (3)

The following theorem shows the extent to which it is possible
to deduce the parameters R,m,S,R′,m′,S′ of Σ and Σ′ from the
parameters µ ,Γ of Σobserved = Σ∧Σ′.

Theorem 2: Let µ ∈ Rn and Γ ∈ Rn×n,Γ = Γ1 2 0 be given.

For every R′ ∈ R(n−p)×n of full row rank, there exist

(1) R ∈Rp×n with
[

R
R′

]

∈ Rn×n nonsingular,

(2) m ∈ Rp and m′ ∈ Rn−p,
(3) S ∈ Rp×p,S = S1 2 and S′ ∈ R(n−p)×(n−p),S′ = S′1 2 0

such that (3) holds. If R′ΓR′1 4 0, then R,m,S are uniquely
determined by (3), up to the equivalence (2).

Proof: By choosing suitable bases, we can assume that R′ =
[ O(n−p)×p I(n−p)×(n−p) ]. Choose R = [ Ip×p − L ]

with L ∈ Rp×(n−p) to be determined. Clearly
[

R
R′

]

∈ Rn×n is

nonsingular. Partition µ and Γ conformably to R′, as

µ =
[µ1

µ2

]

and Γ =
[

Γ1,1 Γ1,2
Γ2,1 Γ2,2

]

.

Equations (3) become

m = µ1 +Lµ2, m′ = µ2,

S = Γ1,1 −Γ1,2L1−LΓ2,1 +LΓ2,2L1, S′ = Γ2,2, Γ1,2 = LΓ2,2.

These equations define m,m′,S,S′, provided there exists L
such that Γ1,2 = LΓ2,2. Γ 2 0 implies that kernel(Γ2,2) ⊆
kernel(Γ1,2). Hence there indeed exists an L such that Γ1,2 =
LΓ2,2. Hence there exist then L,m,S,m′,S′ such that (3) holds.
"

Since R′ΓR′1 4 0 corresponds to Γ2,2 4 0, this implies that the

solution L is unique and given by L=Γ1,2Γ−1
2,2. Hence there then

exist unique L,m,S,m′,S′ such that (3) holds.

The above theorem of course also holds with the roles of
Σ and Σ′ reversed. The theorem shows that without further
assumptions on Σ or Σ′, it is not possible to deduce the laws
of Σ from the laws of Σobserved. In fact, Σ being unfalsified from
Σobserved leaves the fiber of Σ completely unspecified. So, not
only is Σ unidentifiable from Σobserved, but the deterministic
part of Σ, governed by Rw = 0, is left completely arbitrary.
Without further structural information on the system or on the
environment, it is not possible to recover the parameters of Σ
from sampling. The theorem also implies that the parameters
µ ,Γ of Σobserved together with the fiber L′ of Σ′ specify Σ and
Σ′ uniquely, provided R′ΓR′1 4 0. The condition R′ΓR′1 4 0
is called sufficiency of excitation. It requires that there is an
adequate variety of experiments generated by the environment.

As a concrete example, consider gaussian linear regression.
Partition w as w =

[w1
w2

]

with w1 ∈ Rn1 and w2 ∈ Rn2 . The
stochastic system Σ1 to be identified is described by

w1 = Lw2 + ε,

with L ∈Rn1×n2 and with ε an n1-dimensional gaussian random
vector with mean m and covariance S. The environment Σ2 is
described by

w2 = ε ′,

with ε ′ an n2-dimensional gaussian random vector that is inde-
pendent of ε . Denote the mean of ε ′ by m′ and the covariance
by S′. The form of this equation implies that the fiber of Σ2 is

known and equal to image

([

In1×n1
0n2×n1

])

. The above theorem

guarantees therefore that in this case it is possible to identify
parameters L,m,m′,S,S′ by sampling. Persistency of excitation
means S′ 4 0. If this condition is satisfied then the parameters
L,m,m′S,S′ are uniquely identifiable by sampling.

There are various further structural conditions that can be
given on Σ or Σ′ and that imply identifiability. For the noisy
resistor terminated by a voltage source with internal resistance
and thermal noise (see Figure 5), the following conditions are
sufficient for identifiability of the noisy resistor parameters R
and σ : either (i) knowledge of R′, assuming σ ′ > 0, or (ii)
knowledge of V0 += 0.

For the economic example the full complexity of the identifia-
bility question emerges. Sampling under equilibrium conditions
does not lead to identification of the price/demand elasticity. A
more elaborate controlled experiment is needed to entangle the
price/demand and price/supply systems.

As we have already mentioned there are many applications
in statistics in which one attempts to identify the stochastic
laws governing a phenomenon involving two real variables. As
we remarked, such a law often leads to a coarse σ -algebra.
The important observation here is that data generation through
sampling requires interconnection with another system, and
therefore data collection involves two distinct random systems.
One of these stochastic systems expresses the intrinsic random
laws one is after, while the other expresses the features of the
environment that happens to be acting during the data collection
experiment. Disentangling these laws requires further structural
assumptions on the experimental set-up.
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