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Abstract—A stochastic system is defined as a probability triple.
Models often require a coarse event sigma-algebra. A notionthat
emerges in this setting is constrained probability, a concept that
is reminiscent but quite distinct from conditional probabi lity. We
end with applying these ideas to a binary channel.

I. I NTRODUCTION

By an ‘open’ system we mean a model that explicitly
incorporates the influence of the environment, but as an
unmodeled feature. Open systems can be interconnected with
other systems. We view interconnection of systems as ‘variable
sharing’: before interconnection, the variables pertaining to the
subsystems are regarded as independent, while after intercon-
nection some of these variables are required to be equal.

Our interest is mainly in systems with as outcome space a
(finite or) countable set, orRn. If the event space consist of all
subsets of the countable outcome space, or of the Borel sets in
the case ofRn, then we call theσ -algebra of events ‘rich’ or
‘fine’, in contrast to ‘coarse’σ -algebras. Openness of systems
requires a coarse eventσ -algebra, in contrast to classical
stochastic systems, where the eventσ -algebra is assumed to
be rich. The eventσ -algebra is an intrinsic, not to be ignored,
feature of the stochastic phenomenon that is modeled.

This is not a paper about the interpretation of probability.
Neither is it a paper about the mathematical foundations
of probability. The article functions completely within the
orthodox measure theoretic setting of probability, with aσ -
algebra of events, the mathematical framework of probability
that is usually attributed to Kolmogorov. The main point of
this article is basically pedagogical in nature, namely that
the emphasis in the teaching of probability on settings where
essentially every subset of the outcome space is an event is
unduly restrictive, even for elementary applications. Concepts,
as linearity, interconnection, and constrained probability, func-
tion comfortably only within the context of coarseσ -algebras.

This conference paper is a summary of a full article [1] that
has recently been submitted.

II. STOCHASTIC SYSTEMS

Definition 1: A stochastic systemis a triple(W,E ,P) with
◮ W a non-empty set, theoutcome space, with elements of

W calledoutcomes,
◮ E a σ -algebra of subsets ofW, with elements ofE are

calledevents,
◮ P a probability measure onE . �

The construction of a stochastic model involves therefore
three steps. In the first step, the phenomenon is formalized

mathematically by determining the outcome spaceW. For the
purposes of the present paper, determining the outcome space
is considered to be evident. In the second step, the set of
eventsE to which we are willing to assign a probability is
specified. We view the specification of the events as a crucial
part of probabilistic modeling, contrary, as we shall see, to
the classical practice of probabilistic modeling. As the third
step, we need to quantify the probability of these events. The
specification ofP yields the numerical probabilistic features
of the model numerically.

Two important special cases are obtained as follows. We
refer to these special cases asclassicalstochastic systems.

◮ The first special case is(W,2W,P) with W a countable
set. P can then be specified by giving the probabilityp
of the individual outcomes,p : W→ [0,1], and defining
P by P(E) = Σ

e∈E
p(e). In this case, every subset ofW is

assumed to be an event, andP is completely determined
by the probability of the singletons. �

◮ The second special case is a Borel probability
(Rn,B (Rn) ,P), whereB (Rn) denotes the class of Borel
subsets ofRn. P can then be specified by a probability
distribution, or, if the distribution is sufficiently smooth,
by the probability density functionp :Rn → [0,∞) leading
to P(E) =

∫

E
p(x)dx. �

For a classical stochastic system ‘essentially every’ subset of
W is an event and is assigned a probability. Thus for classical
stochastic systems, the events are obtained from the structure
of the outcome space. No probabilistic modeling enters in the
specification of the events.

We will illustrate the relevance of specifyingE by a binary
channel in Section VII.
Example: A noisy resistor. Consider a 2-terminal electrical
circuit shown as a black box in Figure 1(a). The aim is to
model the relation between the voltageV and the currentI . The
outcomes are voltage/current pairs

[

V
I

]

. HenceW = R2. An
example is an Ohmic resistor, shown in Figure 1(b), described
by V = RI with R the resistance.
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Fig. 1. 2-terminal electrical circuit



As an example of a noisy circuit, consider a resistor with
thermal noise, governed by the following relation between the
currentI through the resistor and the voltageV across it

V = RI+ ε

with R> 0 andε the voltage generated by the noisy voltage
source, taken to be gaussian, zero mean, and with standard
deviation σ ∼

√
RT with T the temperature of the resistor.

The noisy resistor defines a stochastic system with outcome
spaceW = R2 and as outcomes voltage/current vectors

[

V
I

]

.
The events are the sets of the form

E =
{[

V
I

]

∈ R
2 | V −RI ∈ A with A⊆ R Borel

}

. (1)

The eventE is illustrated in Figure 2(a). The probability ofE

(a) (b)

I ε

V

V = RI

event E

A
A

Fig. 2. Events for the noisy resistor

equals the probability thatε ∈ A (see Figure 2(b)).
Hence, whereasε is a classical random variable,

[

V
I

]

is not
a classical random vector. Only cylinders with rays parallel
to V = RI (see Figure 2(a)) are events that are assigned a
probability. In particular,V and I are not classical random
variables. Indeed, the basic model of a noisy resistor does not
imply a stochastic law forV or I , in the sense thatV and I
are not classical random variables. �

III. L INEARITY

L
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Fig. 3. Events for a linear system

Definition 2: Let F be a finite field, orR. The stochastic
system(Fn,E ,P) is said to belinear if there exists a linear
subspaceL of Fn such that the events consist of all subsets of
the quotient spaceFn/L whenF if a finite field, or of the Borel
subsets ofFn/L when F = R. Fn/L is a finite dimensional
vector space overF of dimension =n−dimension(L). L is
called thefiber anddimension(L) the number of degrees of
freedomof the linear stochastic system. �

The idea behind Definition 2 is illustrated in Figure 3. The
events are cylinders inRn with rays parallel to the fiberL.
A linear stochastic system is classical if and only ifL= {0}.
Every classical random vector withW = Fn defines a linear

stochastic system. At the other extreme, whenL = F
n, the

event setE becomes the trivialσ -algebra{ /0,Fn}.
Observe that the definition of linearity involves only the

eventσ -algebra, but not the probability measure.

IV. I NTERCONNECTION

w= w1 = w2

w1 w2

SYSTEM 1

SYSTEM 1

SYSTEM 2

SYSTEM 2

Fig. 4. Interconnection

In this section we discuss interconnection. We consider
the situation illustrated in Figure 4 with the assumption that
the two interconnected systems are stochastically independent.
Note that interconnection comes down to imposing two distinct
probabilistic laws on the same set of variables.Is it possible to
define one law which respects both laws?As we shall see, this
is indeed possible, provided some regularity condition, called
‘complementarity’, holds.
Definition 3: Two σ -algebrasE1 andE2 on W are said to be
complementaryif for all nonemptyE1,E′

1 ∈ E1,E2,E′
2 ∈ E2

[[E1∩E2 = E′
1∩E′

2]]⇒ [[E1 = E′
1 andE2 = E′

2]].

Two systemsΣ1 = (W,E1,P1) and Σ2 = (W,E2,P2) are said
to becomplementaryif for all E1,E′

1 ∈ E1 andE2,E′
2 ∈ E2

[[E1∩E2 = E′
1∩E′

2]]⇒ [[P1(E1)P2(E2) = P1(E
′
1)P2(E

′
2)]]. �

In words, complementarity of stochastic systems requires
that the intersection of two events, one from each of the
σ -algebras, determines the product of the probabilities of
the intersecting events uniquely, while complementarity of
the σ -algebras requires that the intersection determines the
intersecting sets uniquely.

It is readily proven that

[[E1,E2 complementary]]⇒ [[E1∩E2 = { /0,W}]]

[[E1,E2 complementary,E1 ∈ E1,E2 ∈ E2,andE1∩E2 = /0]]

⇒ [[E1 = /0 or E2 = /0]],

and, furthermore, that complementarity of two stochastic sys-
tems is implied by complementarity of the associatedσ -
algebras. It is easy to construct examples that show that
complementarity of two stochastic systems does not imply
complementarity of the associatedσ -algebras. The problem is
that the stochastic systems may have too many zero probability
events (the curse of probability theory). Complementarityof
the eventσ -algebras is a more primitive condition that is
convenient for proving complementarity of stochastic systems.



Definition 4: Let Σ1 = (W,E1,P1) and Σ2 = (W,E2,P2) be
stochastic systems and assume that they are complementary.
The interconnectionof Σ1 and Σ2, assumed stochastically
independent, denoted byΣ1∧Σ2, is defined as the system

Σ1∧Σ2 := (W,E ,P),

E := the σ -algebra generated byE1∪E2,

andP defined through ‘rectangles’ by

P(E1∩E2) := P1(E1)P2(E2) for E1 ∈ E1,E2 ∈ E2. �

The definition of the probability P for rectangles
{E1∩E2 | E1 ∈ E1,E2 ∈ E2} uses complementarity in an es-
sential way.E is theσ -algebra generated by these rectangles.
It is readily seen that the class of subsets ofW that consist
of the union of a finite number of disjoint rectangles forms
an algebra of sets. The probability of rectangles defines
the probability of the union of a finite number of disjoint
rectangles. By the Hahn-Kolmogorov extension theorem, this
leads to a unique probability measureP on E .

Obviously, there holdsE1,E2 ⊆ E . Also, for E1 ∈ E1 and
E2 ∈ E2, we haveP(E1) = P(E1∩W) = P1(E1) and P(E2) =
P(W∩E2) = P2(E2). Hence interconnection refines the event
σ -algebras and the probabilities. This implies in particular that
Σ1 and Σ2 are unfalsified byΣ1∧Σ2. The stochastic system
(W,E ,P) is said to beunfalsifiedby (W,E ′,P′) if for all E ∈
E ∩E ′ there holdsP(E) = P′(E). Note also that forE1 ∈ E1

andE2 ∈ E2, P(E1∩E2) =P1(E1)P2(E2) =P(E1)P(E2). Hence
E1 and E2 are stochastically independent sub-σ -algebras of
E . This expresses thatΣ1 and Σ2 model phenomena that are
stochastically independent.

V. OPEN VERSUS CLOSED SYSTEMS

As a general principle, it is best to aim for models that are
opensystems, and a mathematical theory of modeling should
reflect this aspect from the very beginning. Models usually
leave some of the individual variables free, unexplained, and
merely express what one can conclude about a coupled set
of variables. A model should incorporate the influence of the
environment, but should leave the environment as unmodeled.

Consider for example the classical notion of ann-
dimensional stochastic vector process as a family of measur-
able mapsft : Ω → Rn, t ∈ T (T denotes the time-set), from
a basic probability spaceΩ, with σ -algebraA , to Rn, with
σ -algebraB(Rn). This is very much a closed systems view,
since once the uncertain parameterω ∈ Ω has been realized,
the complete trajectoryt ∈ T 7→ ft (ω) ∈ Rn is determined.
Such models leave no room for the influence of the environ-
ment. Stochastic systems with a coarseσ -algebra do allow to
incorporate the unexplained environment.

Another way of looking at ‘open’ versus ‘closed’ systems is
by considering interconnection. An open stochastic systemcan
be interconnected with other systems, a closed system cannot
be interconnected (or, more accurately, it can only be inter-
connected with a trivial stochastic system). We illustratethat
coarseness of theσ -algebras is essential for complementarity
in the case theW is countable. Assume thatΣ1 = (W,2W,P),

with W countable, is a classical stochastic system and that
Σ′ = (W,E ′,P′) is another stochastic system. Then theσ -
algebras associated withΣ1 andΣ2 can only be complementary
if E

′ is trivial, that is, E
′ = { /0,W}. More generally, if

the stochastic systemsΣ and Σ′ are complementary then
for E ∈ E ′, we haveE ∩W = E ∩E = W ∩E, and hence
P(E) = P(E)P′(E) = P′(E). Therefore the following zero-one
law must hold:

[[E ∈ E
′]]⇒ [[P(E) = P′(E) = 0 or P(E) = P′(E) = 1]].

This is a very restrictive condition onΣ′. For example, if each
singleton has positiveP-measure, thenE ′ = { /0,W}.

We conclude thatclassical stochastic are models of closed
systems. These systems cannot be interconnected with other
systems. Open systems require a coarseσ -algebra. This shows
a serious limitation of the classical stochastic framework, since
interconnection is one of the basic tenets of model building.

VI. CONSTRAINED PROBABILITY

Consider the stochastic system(W,E ,P). Let S be a
nonempty subset ofW. In this section we discuss the meaning
of the stochastic system induced by(W,E ,P) with outcomes
constrained to be inS. We shall see that this is indeed a
sensible concept.
Definition 5: Let Σ = (W,E ,P) be a stochastic system and
S⊆W. Assume that the regularity condition

[[E1,E2 ∈ E andE1∩S= E2∩S]]⇒ [[P(E1) = P(E2)]]

holds. Then the stochastic system

Σ|S := (S,E |S,P|S)
E |S := {E′ ⊆ S | E′ = E∩S for someE ∈ E },

P|S(E′) := P(E) with E ∈ E such thatE′ = E∩S,

is calledthe stochastic systemΣ with outcomes constrained to
be in S. �

The regularity condition basically impliesS /∈ E . In fact,
if S ∈ E , then regularity holds if and only ifw ∈ S with
probability 1, that is, if and only ifP(S) = 1. In order to
see this, observe first thatS∩S = W∩S. HenceS ∈ E and
regularity yield P(S) = P(W) = 1. Conversely, assume that
S ∈ E andP(S) = 1. ThenE ∈ E impliesP(E) = P(E∩W) =
P(E∩S)+P(E∩Scomplement) = P(E∩S). ThereforeE1,E2 ∈
E andE1 ∩ S = E2 ∩ S imply P(E1) = P(E1 ∩ S) = P(E2 ∩
S) = P(E2). Hence (VI) holds. It follows that constraining is
interesting whenS /∈ E .

Note that constraining essentially corresponds to in-
terconnecting (W,E ,P) with the ‘deterministic’ system
(W,{ /0,S,Scomplement,W},P′) with P′(S) = 1. The regularity
condition corresponds to complementarity.

The notion ofthe stochastic systemΣ with outcomes con-
strained to be inS, while reminiscent of the notion ofthe
stochastic systemΣ conditioned on outcomes inS, is quite
different from it. The former basically requiresS /∈ E , while
the latter requiresS ∈ E . Secondly, constraining associates
with the eventE ∈ E of Σ, the eventE ∩ S of Σ|S with



probabilityP(E), while conditioning associates with the event
E ∈ E of Σ the eventE ∩ S, also in E , with probability
P(E ∩ S)/P(S). So, constraining pulls the probability ofE
‘globally’ into E ∩ S, while conditioning associates withE
‘locally’ the probability of E∩S, renormalized byP(S).

VII. B INARY CHANNEL

Open stochastic systems are often thought of as classical
stochastic systems with ‘input’ parameters, that is, as a family
of probability measures on the output space, parameterized
by the input. Such families of probability measures go un-
der the name ofprobability kernels. The main distinction
between probability kernels and our approach consists in the
input/output view of open systems that underlies probability
kernels. While inputs and outputs definitely have their place
in modeling, especially in signal processing and in feedback
control, the input/output view of systems has many drawbacks
when modeling open physical systems, as argued for example
in [2] for the deterministic case: a physical system is not a
signal processor. With input/output thinking one cannot get
off the ground when modeling, for example, simple electri-
cal circuits [3], the paradigmatic examples of interconnected
systems.

Developing the themes (interconnection, linearity, constrain-
ing) of the present article using probability kernels in their full
generality lies beyond our scope. We now explain some of the
connections between our notion of stochastic system on the
one hand, and probability kernels on the other hand, by means
of an example that is important in applications, namely, the
binary channel.
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Fig. 5. Binary channel

The channel functions as follows. There are two possible
inputs,u0 andu1. The channel transmits the input and produces
two possible outputs,y0 andy1. The inputu0 leads to output
y0 with probability p0 and toy1 with probability 1− p0, while
the input u1 leads to outputy1 with probability p1 and to
y0 with probability 1− p1. If p0 = p1 = p, then we call the
channelsymmetric, while if p0 6= p1, then we call the channel
asymmetric. The symmetric binary channel is shown in Figure
5(a), while the asymmetric binary channel is shown in Figure
5(b).

Formally, denote the input alphabet asU= {u0,u1} and the
output alphabet asY = {y0,y1}. The channel is specified as
two classical stochastic systems,

Σu0 =
(

Y,2Y,Pu0

)

and Σu1 =
(

Y,2Y,Pu1

)

,

with the probabilities determined by

Pu0(y0) = p0,Pu0(y1) = 1− p0,Pu1(y0) = 1− p1,Pu1(y1) = p1.

The pair of systems
(

Σu0,Σu1

)

is a probability kernel.

A. The symmetric binary channel
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Fig. 6. Events for the symmetric binary channel

We show how to approach the symmetric binary channel
using constrained probability. We start with the system

Σsbc= (U×Y,E ,P).

Thus the outcome space, shown in Figure 6(a), isU×Y. The
eventsE consist of theσ -algebra generated by

E0 = {(u0,y0),(u1,y1)},E1 = {(u0,y1),(u1,y0)}.

The generating set forE is shown in Figure 6(b). Note that
the σ -algebra generated by{E0,E1} is not equal to 2U×Y.
Σsbc is not a classical stochastic system. The probabilityP is
determined by

P(E0) = p,P(E1) = 1− p.

Now considerΣsbc with outcomes constrained to be in

S0 = {(u,y) | u= u0} andS1 = {(u,y) | u= u1},

respectively. The setsS0 andS1 are illustrated in Figure 6(c).
It is easily verified that the regularity condition of Definition 5
is satisfied for bothS0 andS1. The resulting stochastic systems
areΣsbc|S0 = (Y,2Y,P|S0) with

P|S0(y0) = p,P|S0(y1) = 1− p,

andΣsbc|S1 = (Y,2Y,P|S1) with

P|S1(y0) = 1− p,P|S0(y1) = p.

Observe thatΣsbc|S0 and Σsbc|S1 yields preciselythe systems
Σu0 andΣu1 that specify the channel as a probability kernel.

Note that the symmetric binary channel can be viewed
as a linear stochastic system. Identify bothU and Y with
GF(2), the Galois field{0,1}. Set W = U×Y = GF(2)2.
Then Σsbc is a linear stochastic over the field GF(2) with
fiber L = {(0,0),(1,1)} and probabilitiesP(L) = p and
P((0,1)+L) = 1− p.

B. The asymmetric binary channel

We next show how to approach the asymmetric binary
channel from our point of view. We start with the system

Σabc= (U×Y×E,E ,P)

with E = {e1,e2,e3,e4}. Thus the outcome space, shown in
Figure 7(a), is the Cartesian product ofU×Y andE. The space



E is introduced in order to generate the channel uncertainty.
The eventsE consist of theσ -algebra generated by

E1 = {(u0,y0,e1),(u1,y0,e1)},
E2 = {(u0,y0,e2),(u1,y1,e2)},
E3 = {(u0,y1,e3),(u1,y0,e3)},
E4 = {(u0,y1,e4),(u1,y1,e4)}.

The generating set forE is shown in Figure 7(b). Note
that theσ -algebra generated by{E1,E2,E3,E4} is not equal
to 2U×Y×E. Σabc is not a classical stochastic system. The
probability P is determined by

P(E1) = p0(1− p1), P(E2) = p0p1,

P(E3) = (1− p0)(1− p1), P(E4) = (1− p0)p1.
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Fig. 7. Events for the asymmetric binary channel

Now consider the stochastic systemΣabc with outcomes
constrained to be in

S0 = {(u,y,e) | u= u0} andS1 = {(u,y,e) | u= u1},

respectively. The setsS0 andS1 are illustrated in Figure 7(c).
It is easily verified that the regularity condition of Definition 5
is satisfied for bothS0 andS1. The resulting stochastic systems
areΣabc|S0 = (Y×E,E |S0,P|S0) with E |S0 generated by

E1 = {(y0,e1)}, E2 = {(y0,e2)},
E3 = {(y1,e3)}, E4 = {(y1,e4)},

P|S0(E1) = p0(1− p1), P|S0(E2) = p0p1,

P|S0(E3) = (1− p0)(1− p1), P|S0(E4) = (1− p0)p1,

andΣabc|S1 = (Y×E,E |S1),P|S1) with E |S1 generated by

E1 = {(y0,e1)}, E2 = {(y1,e2)},
E3 = {(y0,e3)}, E4 = {(y1,e4)},

P|S0(E1) = p0(1− p1), P|S0(E2) = p0p1,

P|S0(E3) = (1− p0)(1− p1), P|S0(E4) = (1− p0)p1.

Observe that after elimination ofe, that is, the marginal prob-
ability for y, Σabc|S1 and Σabc|S2 yields preciselythe systems
Σu0 and Σu1 from that specify the channel as a probability
kernel.

The introduction ofE andΣabc shows that the specification
of a channel as a probability kernel can be interpreted in a very
natural way as constrained stochastic systems. The probability
kernel can also be interpreted in terms of conditional probabil-
ities by defining, forπ ∈ [0,1], Pu(u0) = π andPu(u1) = 1−π .
We then obtain stochastic systems withΣu0 and Σu1 the
conditional probabilities ofy given u. Since the interpretation
of the probability kernel as conditional probabilities requires
modeling the environment, that is, interpreting the inputu as
a classical random variable, we feel that the interpretation in
terms of constrained probability is a more satisfactory one
conceptually.

When ε a classical random vector, theny = f (u,ε) can
be dealt with by consideringu as an input parameter which
together with ε generates the outputy. For example, the
symmetric binary channel can be realized this way by taking
U = Y = {0,1}, ε a random variable taking values in{0,1}
with Pε(0) = p,Pε(1) = 1− p, and setting

u+ y= ε

over GF(2). The asymmetric binary channel can be realized
by settingU= Y= {0,1}, and

y= ε0(1−u)+ ε1u

with ε0,ε1 independent random variables both taking values
in {0,1} with P(ε0 = 0) = p0 and P(ε1 = 1) = p1. In terms
of the e’s discussed above, we have thene1 ↔ (0,0),e2 ↔
(0,1),e3 ↔ (1,0),e4 ↔ (1,1).
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