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Abstract—A stochastic system is defined as a probability triple. mathematically by determining the outcome sp#i¢eFor the
Models often require a coarse event sigma-algebra. A notiothat  purposes of the present paper, determining the outcome spac
emerges in this setting is constrained probability, a congst that s onsidered to be evident. In the second step, the set of
is reminiscent but quite distinct from conditional probability. We . - . e
end with applying these ideas to a binary channel. even_ts_,é” to whl_ch we are vy|l_l|ng_ to assign a probability is

specified. We view the specification of the events as a crucial
|. INTRODUCTION part of probabilistic modeling, contrary, as we shall see, t

By an ‘open’ system we mean a model that explicitiyhe classical practice of probabilistic modeling. As thedh
incorporates the influence of the environment, but as atep, we need to quantify the probability of these events. Th
unmodeled feature. Open systems can be interconnected wjlecification ofP yields the numerical probabilistic features
other systems. We view interconnection of systems as ‘hria of the model numerically.
sharing’: before interconnection, the variables pertajrio the Two important special cases are obtained as follows. We
subsystems are regarded as independent, while afteronteroefer to these special casesaassicalstochastic systems.
nection some of these variables are required to be equal. »  The first special case i§W,2",P) with W a countable

Our interest is mainly in systems with as outcome space a set.P can then be specified by giving the probabiljty
(finite or) countable set, dk®. If the event space consist of all of the individual outcomesp: W — [0,1], and defining
subsets of the countable outcome space, or of the Borelrsets i p py P(E) = = p(e). In this case, every subset f is
the case ofR?, then we call thes-algebra of events ‘rich’ or ecE
‘fine’, in contrast to ‘coarseb-algebras. Openness of systems by the probability of the singletons. -

requires_ a coarse evermt-algebra, in contra_st to classica The second special case is a Borel probability
stoclhasnc systems, where Fhe eyenglg_ebra is assu_med to (R®, % (R™),P), whereZ (R*) denotes the class of Borel
be rich. The evenU—aIggbra is an intrinsic, npt to be ignored, subsets ofR®. P can then be specified by a probability
featu_re .Of the stochastic phenomgnon that 1S modeled. . distribution, or, if the distribution is sufficiently smdut
ThIS is nc_>t a paper about the mterpretatlo_n of probab|_I|ty. by the probability density functiop: R® — [0, ) leading
Neither is it a paper about the mathematical foundations to P(E) = [p(x)dx -
of probability. The article functions completely within eh E
orthodox measure theoretic setting of probability, wittoa For a classical stochastic system ‘essentially every’ siubfs
algebra of events, the mathematical framework of prokgbiliW is an event and is assigned a probability. Thus for classical
that is usually attributed to Kolmogorov. The main point o$tochastic systems, the events are obtained from the wteuct
this article is basically pedagogical in nature, namelyt thaf the outcome space. No probabilistic modeling enters én th
the emphasis in the teaching of probability on settings whespecification of the events.
essentially every subset of the outcome space is an event igVe will illustrate the relevance of specifying by a binary
unduly restrictive, even for elementary applications. €pis, channel in Section VII.
as linearity, interconnection, and constrained probigbflinc- Example: A noisy resistor. Consider a 2-terminal electrical
tion comfortably only within the context of coarsealgebras. circuit shown as a black box in Figure 1(a). The aim is to
This conference paper is a summary of a full article [1] thamodel the relation between the voltageand the currenit. The
has recently been submitted. outcomes are voltage/current paiji$]. HenceW = R2. An
example is an Ohmic resistor, shown in Figure 1(b), desdribe
by V = Rl with R the resistance.

assumed to be an event, aRds completely determined

[I. STOCHASTIC SYSTEMS
Definition 1: A stochastic systens a triple (W, &, P) with
» W anon-empty set, theutcome spagewith elements of
W called outcomes
» & ao-algebra of subsets dfV, with elements o6 are
calledevents
» P aprobability measure or#.
The construction of a stochastic model involves therefore
three steps. In the first step, the phenomenon is formalized Fig. 1. 2-terminal electrical circuit
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As an example of a noisy circuit, consider a resistor witstochastic system. At the other extreme, wlies= F*, the
thermal noise, governed by the following relation betwden t event sets’ becomes the triviab-algebra{0,F"}.
currentl through the resistor and the voltayeacross it Observe that the definition of linearity involves only the
V—Rl+e evento-algebra, but not the probability measure.

: . IV. INTERCONNECTION
with R> 0 ande¢ the voltage generated by the noisy voltage

source, taken to be gaussian, zero mean, and with standard
deviation o ~ v/RT with T the temperature of the resistor. 1 W
The noisy resistor defines a stochastic system with outcome

spaceW = R? and as outcomes voltage/current vectpys.

The events are the sets of the form u\!

E:{m €R? |V -RIcAwith ACR Borel}. 1)

SYSTEM 1 [ 2| sYsTEM 2

.-
W=W; =Wy

The eventE is illustrated in Figure 2(a). The probability &

v eventE

Fig. 4. Interconnection

A
\ In this section we discuss interconnection. We consider
A ‘ the situation illustrated in Figure 4 with the assumptioatth
the two interconnected systems are stochastically indipen
@ ® Note that interconnection comes down to imposing two distin
Fig. 2. Events for the noisy resistor probabilistic laws on the same set of variablast possible to
define one law which respects both laws®we shall see, this
equals the probability that € A (see Figure 2(b)). is indeed possible, provided some regularity conditiofieda
Hence, whereas is a classical random variablY | is not ‘complementarity’, holds.
a classical random vector. Only cylinders with rays pafall®efinition 3: Two g-algebras$; and&> on W are said to be
to V = RI (see Figure 2(a)) are events that are assignedc@mplementaryf for all nonemptyEy, Ej € &1,Ep, E) € &
probability. In particularV and | are not classical random P , ,
variables. Indeed, the basic model of a noisy resistor does n [EinE2=E NEp] = [E1=E, andE, = E3].

imply a stochastic law fok or I, in the sense thaf andl  Two systemsy; = (W, &1, P;) and 3, = (W, &,P,) are said

are not classical random variables. B (be complementaryf for all E1,E} € & andEp,E) € &
[l LINEARITY [E1NEz = E]NE)] = [Pu(E1)P:(Ez) = PL(E])Po(Ep)]. W
event In words, complementarity of stochastic systems requires
L that the intersection of two events, one from each of the

o-algebras, determines the product of the probabilities of
the intersecting events uniquely, while complementarity o
the o-algebras requires that the intersection determines the
intersecting sets uniquely.

It is readily proven that

Fig. 3. Events for a linear system [61, 62 complementafy=- [£1N &2 = {0, W}]

Definition 2: Let F be a finite field, orR. The stochastic [£1,&, complementanyE; € &1,E; € &,andEqNE; = 0]
system(F*,&,P) is said to belinear if there exists a linear ~ [E1=0 orE,— 0]

subspacé. of F* such that the events consist of all subsets of
the quotient spaceé® /L whenF if a finite field, or of the Borel and, furthermore, that complementarity of two stochast& s
subsets off* /L. whenF =R. F*/L is a finite dimensional tems is implied by complementarity of the associated
vector space oveF of dimension =n — dimension(L). L is algebras. It is easy to construct examples that show that
called thefiber anddimension(IL) the number of degrees ofcomplementarity of two stochastic systems does not imply
freedomof the linear stochastic system. B complementarity of the associatedalgebras. The problem is
The idea behind Definition 2 is illustrated in Figure 3. Thé#hat the stochastic systems may have too many zero pratyabili
events are cylinders ifR® with rays parallel to the fibel.. events (the curse of probability theory). Complementanity
A linear stochastic system is classical if and onljf.i= {0}. the evento-algebras is a more primitive condition that is
Every classical random vector wift = F* defines a linear convenient for proving complementarity of stochastic egs.



Definition 4: Let 23 = (W,&1,P1) and 2 = (W, &,P,) be with W countable, is a classical stochastic system and that
stochastic systems and assume that they are complementéry- (W,&’,P’) is another stochastic system. Then the
The interconnectionof %; and Z,, assumed stochasticallyalgebras associated wity andZ, can only be complementary
independent, denoted B4 A %5, is defined as the system if & is trivial, that is, & = {0,W}. More generally, if
the stochastic system& and &’ are complementary then
21NZ2:=(W,8,P), for E € &', we hyaveE NW=EnNE = WF?E, and gence
& = the o-algebra generated b U &, P(E) = P(E)P'(E) = P'(E). Therefore the following zero-one
andP defined through ‘rectangles’ by law must hold:
P(E1NEy) = PUE))Po(Ep) for E1€ &1,Er € &. M [E€ &)= [P(E)=P(E)=0orP(E)=P'(E) =1].
The definition of the probability P for rectangles This is a very restrictive condition off. For example, if each
{E1NEz | E1 € &1,Ez € 62} uses complementarity in an essingleton has positiv®-measure, thed” = {0, W}.
sential way.& is the o-algebra generated by these rectangles. We conclude thatlassical stochastic are models of closed
It is readily seen that the class of subsetsVbfthat consist systemsThese systems cannot be interconnected with other
of the union of a finite number of disjoint rectangles formsystems. Open systems require a coarsggebra. This shows
an algebra of sets. The probability of rectangles definasserious limitation of the classical stochastic framewsitkce
the probability of the union of a finite number of disjointinterconnection is one of the basic tenets of model building
rectangles. By the Hahn-Kolmogorov extension theorens, thi
leads to a unique probability measuPeon &. VI. CONSTRAINED PROBABILITY
Obviously, there holds;, &, C &. Also, for E; € &1 and Consider the stochastic systefW,&,P). Let S be a
E; € &, we haveP(E;) = P(E;NW) = Pi(E;) andP(E;) = nonempty subset dfY. In this section we discuss the meaning
P(WNE,) = P,(Ez). Hence interconnection refines the everaf the stochastic system induced @, &’,P) with outcomes
o-algebras and the probabilities. This implies in partictitat constrained to be irS. We shall see that this is indeed a
%, and 2, are unfalsified byz; A 2. The stochastic systemsensible concept.
(W, &,P) is said to beunfalsifiedby (W,&”,P') if for all E€  Definition 5: Let ~Z = (W,&,P) be a stochastic system and
&Né&' there holdsP(E) = P'(E). Note also that folE; € &1 S C W. Assume that the regularity condition
andEz €&, P(E1NEy) =Py El)Pz E))=P El)P E>). Hence
& and & aré stocha)lsticaﬁly ind(epgnder(n sak(alg)ebras of [Fr.E2€ & andEyNS = E2NS] = [P(Ry) = P(E)]
&. This expresses thal; and >, model phenomena that areholds. Then the stochastic system
stochastically independent.
Zls == (S,&s,Pls)
V. OPEN VERSUS CLOSED SYSTEMS &|s = {E' CS | E'= ENS for someE € &},
As a general principle, it is bgst to aim for model§ that are P|s(E') := P(E) with E € & such thatE’ = ENS,
opensystems, and a mathematical theory of modeling should
reflect this aspect from the very beginning. Models usuallg calledthe stochastic systeBnwith outcomes constrained to
leave some of the individual variables free, unexplained, abe inS. |
merely express what one can conclude about a coupled sefhe regularity condition basically implieS ¢ &. In fact,
of variables. A model should incorporate the influence of the S € &, then regularity holds if and only ifv € S with
environment, but should leave the environment as unmodelpdobability 1, that is, if and only ifP(S) = 1. In order to
Consider for example the classical notion of an see this, observe first th&NS = WNS. HenceS € & and
dimensional stochastic vector process as a family of meastegularity yield P(S) = P(W) = 1. Conversely, assume that
able mapsf; : Q — R*t € T (T denotes the time-sgtfrom S e & andP(S) =1. ThenE € & impliesP(E) = P(ENW) =
a basic probability spac®, with g-algebraez, to R*, with P(ENS) + P(ENSemPlement — p(ENS). ThereforeEy, E; €
o-algebraz(R"). This is very much a closed systems viewg” andE; NS = E; NS imply P(E1) = P(E1NS) = P(E2N
since once the uncertain parameteE Q has been realized, S) = P(E;). Hence (VI) holds. It follows that constraining
the complete trajectory € T — fi(w) € R* is determined. interesting whers ¢ &.
Such models leave no room for the influence of the environ-Note that constraining essentially corresponds to in-
ment. Stochastic systems with a coarselgebra do allow to terconnecting (W,&,P) with the ‘deterministic’ system
incorporate the unexplained environment. (W, {0,S,scomplementyyy p/y with P/(S) = 1. The regularity
Another way of looking at ‘open’ versus ‘closed’ systems isondition corresponds to complementarity.
by considering interconnection. An open stochastic sys@m  The notion ofthe stochastic systel with outcomes con-
be interconnected with other systems, a closed system tarstaained to be inS, while reminiscent of the notion athe
be interconnected (or, more accurately, it can only be 4intestochastic syster@ conditioned on outcomes if, is quite
connected with a trivial stochastic system). We illustridtat different from it. The former basically requirés¢ &, while
coarseness of the-algebras is essential for complementaritthe latter requiresS € &. Secondly, constraining associates
in the case th&V is countable. Assume tha = (W,2% P), with the eventE € & of %, the eventENS of Z|s with
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probability P(E), while conditioning associates with the evenThe pair of system:{Zuo,Zul) is a probability kernel.
E € & of £ the eventENS, also in &, with probability o
P(ENS)/P(S). So, constraining pulls the probability & A The symmetric binary channel

‘globally’ into ENS, while conditioning associates with v y So S1
‘locally’ the probability of ENS, renormalized byP(S). .Z _/
VII. BINARY CHANNEL " " oo °
Open stochastic systems are often thought of as classic4 Yor—8-" 9= E, T BT E
stochastic systems with ‘input’ parameters, that is, asralya U U U
of probability measures on the output space, parameterized UO(a;l ”°(b)”1 UO(C)Ul

by the input. Such families of probability measures go un-
der the name ofprobability kernels The main distinction

between probability kernels and our approach consistsén th We show how to approach the symmetric binary channel

input/output view of open systems that underlies probigbili . . i :
kernels. While inputs and outputs definitely have their plaéjsmg constrained probability. We start with the system

in modeling, especially in signal processing and in feellbac Tspe= (UxY,&,P).

control, the input/output view of systems has many drawback

when modeling open physical systems, as argued for exampl@s the outcome space, shown in Figure 6(a)]isY. The

in [2] for the deterministic case: a physical system is not @€ntsé consist of theg-algebra generated by

signal processor. With input/output thinking one cannat ge _ _

off the ground when modeling, for example, simple electri- Eo = {(to,Yo). (U1,y2)}, 1 = {(Uo.y), (Uz.Yo)

cal circuits [3], the paradigmatic examples of intercoritedc The generating set fof is shown in Figure 6(b). Note that

systems. the o-algebra generated byEq,E;} is not equal to 2*Y.
Developing the themes (interconnection, linearity, caaist  >gpc is not a classical stochastic system. The probabititig

ing) of the present article using probability kernels inittiell  determined by

generality lies beyond our scope. We now explain some of the

connections between our notion of stochastic system on the P(Eo) = p.P(E1) =1-p.

one hand, and probability kernels on the other hand, by mean§yow considerzgp,. with outcomes constrained to be in

of an example that is important in applications, namely, the

binary channel So = {(u,y) | u=up} andS; = {(u,y) | u=us},

Fig. 6. Events for the symmetric binary channel

u p u P respectively. The setSy andS; are illustrated in Figure 6(c).
1 Y1 1 Y1 . . p. . o .
1-p 1-pg It is easily verified that the regularity condition of Defioit 5
is satisfied for botl$y andS;. The resulting stochastic systems

z =(Y,2¥,P ith
Uo A Yo Uo A Yo are SbCISO ( ’ ’ |So) wi

() (b) Plse(Yo) = P,Plso (Y1) =1—p,
Fig. 5. Binary channel and zst|Sl _ (Y’zy’ P|Sl) with
The channel functions as follows. There are two possible Pls, (Yo) = 1— p,Pls, (Y1) = p.

inputs,ug anduy. The channel transmits the input and produces
two possible outputsyy andy;. The inputug leads to output Observe thabspds, and Zsnds, yields preciselythe systems
yo with probability pp and toy; with probability 1— pg, while 2, and %, that specify the channel as a probability kernel.
the inputu; leads to outputy; with probability p; and to Note that the symmetric binary channel can be viewed
yo With probability 1— p1. If pp = p1 = p, then we call the as @ linear stochastic system. Identify bdthand Y with
channelsymmetric while if po % p1, then we call the channel GF(2), the Galois field{0,1}. SetW = U x Y = GF(2)*.
asymmetricThe symmetric binary channel is shown in Figurd Nen Zsnc is a linear stochastic over the field G with
5(a), while the asymmetric binary channel is shown in Figufer L = {(0,0),(1,1)} and probabilitesP(L) = p and
5(b). P(0,1)+L)=1-p.

Formally, denote the input alphabet®s= {up,u; } and the

output alphabet a¥ = {yp,y1}. The channel is specified as o
two classical stochastic systems, We next show how to approach the asymmetric binary

channel from our point of view. We start with the system

B. The asymmetric binary channel

2y = (Y’ZY’ PUO) and %, = (Y’ZY’ Pul) ’ Zabe= (Ux Y x E,&,P)

ith th babilities determined b . .
w © probabilities determined by with E = {e1,e,,e3,64}. Thus the outcome space, shown in

Py (Yo) = Po, Py (Y1) = 1— po, Py, (Yo) = 1—p1, Py, (Y1) = p1.  Figure 7(a), is the Cartesian productldk Y andE. The space



[E is introduced in order to generate the channel uncertainind >ands, = (Y x E, &s, ), Pls,) with &|s, generated by

The eventsg consist of theg-algebra generated by

E1 = {(Uo,Yo,€1), (U1,¥0,€1)},
E> = {(Uo,Yo,€2), (U1, y1,€2)},
Es = {(Uo,y1,€3), (U1, Y0,€3)},
Es = {(Uo,Y1,€4), (U1,y1,€4)}.

The generating set fo¥ is shown in Figure 7(b). Note
that the g-algebra generated b{E;, E,,E3,E4} is not equal

to 2UxYxE_ 5., is not a classical stochastic system. Théwo

probability P is determined by

P(E1) = po(1— pa),
P(E3) = (1 po)(1— p1),

P(E2) = pop1,
P(E4) = (1 po)pa.

E
€4
€
(@ o
e
S o 3 Uy
. ol Ey
o W/E3
0 L=
i
ToyoeyDuuyy XY
E So S1
“ —
© °
el
el
----- UxY

(uo, Yo) (Uo. Y1) (U, Yo) (U1, Y1)

Fig. 7. Events for the asymmetric binary channel

Now consider the stochastic systemp. with outcomes
constrained to be in

So

{(u,y,e) | u=up} andS; = {(u,y,e) | u=uz},

respectively. The setSy andS; are illustrated in Figure 7(c).
It is easily verified that the regularity condition of Defioit 5
is satisfied for botl$y andS;. The resulting stochastic system
areXapds, = (Y X E,&s,, Pls,) With &|s, generated by

Er={(Yo.&1)}, Ex={(Yo.&2)},
Es={(y1.&)}, Es={(y1,84)},

Plso(E1) = po(1— p1),
Plso(E3) = (1 po)(1— py),

Plso(E2) = Pop1,
Plso(E4) = (1— po)p1,

E1={(Yo,€1)},
Es = {(Yo,&)},

Ex={(y1.&)},
Es={(y1,&4)},

Plso(E1) = po(1— p1), Pls,(E2) = Popa,
Plso(Es) = (1= po)(1—p1),  Plsy(Ea) = (1 — po)p1.

Observe that after elimination &f that is, the marginal prob-
ability for y, Yands, andZands, yields preciselythe systems
and Zy, from that specify the channel as a probability
kernel.

The introduction ofE and >, shows that the specification
of a channel as a probability kernel can be interpreted impa ve
natural way as constrained stochastic systems. The pidfpabi
kernel can also be interpreted in terms of conditional pbidba
ities by defining, forrr € [0,1], Py(up) = mandPy(u1) =1— .
We then obtain stochastic systems willy, and Z,, the
conditional probabilities of givenu. Since the interpretation
of the probability kernel as conditional probabilities végs
modeling the environment, that is, interpreting the inpus
a classical random variable, we feel that the interprataitio
terms of constrained probability is a more satisfactory one
conceptually.

When ¢ a classical random vector, thgn= f(u,&) can
be dealt with by considering as an input parameter which
together with € generates the output. For example, the
symmetric binary channel can be realized this way by taking
U =Y = {0,1}, € a random variable taking values {{©,1}
with P:(0) = p,P:(1) = 1— p, and setting

u+y=e¢

over GR2). The asymmetric binary channel can be realized
by settingU =Y = {0,1}, and

y=¢(l-u)+&u

with &, &1 independent random variables both taking values
in {0,1} with P(¢p =0) = pp andP(&, = 1) = pz. In terms

of the €s discussed above, we have thep< (0,0),e; <>
(0,1),e3+ (1,0),e4 <> (1,1).
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