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Abstract— The aim of this paper is to obtain periodic state
space representations for periodic input–output behavioral
systems using a lifting technique which allows to associate a
time–invariant behavior to a periodic one. Our approach differs
from the classical one since we do not start from a transfer
function description but rather from linear difference equations
with periodically time-varying coefficients.

Index Terms— Mathematical systems theory, linear systems,
discrete-time systems, behavior.

I. INTRODUCTION

The problem of finding state space representations for
periodic systems has deserved great attention, see, e.g.,
[1]–[8]. The available contributions consider exclusively the
realization of transfer functions or impulse responses.

In this paper we are concerned with a similar problem,
in the context of the behavioral approach. This means that
our object of interest is the behavior of a system, a set that
consists of all the signal trajectories that are admissible
according to the system laws. In particular, such trajectories
do not necessarily correspond to zero initial conditions,
and therefore the behavior may contain more trajectories
than the ones that can be generated by the system transfer
function or impulse response. In this sense, our realization
problem is aimed at a broader class of systems.
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Our starting point is the description of a periodic behavior
by means of linear difference equations with periodically
time–varying coefficients. Based on this, we obtain a
description for the set of corresponding lifted trajectories,
which is a time–invariant behavior, described in terms of
a linear constant coefficient difference equations. Using
behavioral techniques, it is possible to construct minimal
state space representations for the lifted behavior that can
be used (either directly or after a suitable transformation)
to obtain a minimal periodic state space representation of
constant dimension for the original periodic behavior.

II. PRELIMINARIES

In the behavioral framework, see [9], [10], a dynamical
system Σ is defined as a triple Σ = (T,W,B), where T⊆
R is the time set, W is the signal space, and B⊆ WT :=
{w:T→W} is the system behavior. The behavior is a set
that consists of all the signal evolutions that are compatible
with the system laws. In this paper we shall be concerned
with the discrete–time case, that is, T=Z, and assume that
the signal space is W = R2. In general, in the behavioral
approach all the system variables are treated in an equal
footing, and no a priori distinction is made between inputs
and outputs. This distinction can be made a posteriori, if at
all appropriate. Here we shall assume that this input–output
partition has been made and w=(u, y) consists of the input
component u and the output component y.

For τ ∈Z, define the τ–shift as στ : (Rq)Z→(Rq)Z, by

(στw) (k) := w (k + τ) .

While the behavior B of a time–invariant system over
Z is characterized by its invariance under the time shifts,
which amounts to σB=B, [9], [10], P -periodic behaviors
are required to be invariant only with respect to shifts that
are powers of σP .

Definition 2.1: [11] A system Σ is said to be P–periodic,
with P ∈N, if its behavior B satisfies σPB=B. $

We consider single input–single output P–periodic behav-
iors B described by difference equations with periodically
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time–varying coefficients, i.e.

(
pt
(
σ, σ−1

)
y
)
(t+Pk)=

(
qt
(
σ, σ−1

)
u
)
(t+Pk) , (1)

t=0, . . . , P−1, k∈Z ,

where, for each time instant t = 0, . . . , P − 1,
pt
(
ξ, ξ−1

)
, qt

(
ξ, ξ−1

)
∈R

[
ξ, ξ−1

]
are Laurent polynomials

in the indeterminate ξ. Note that (1) can also be written as

(
p
(
σ, σ−1

)
y
)
(Pk)=

(
q
(
σ, σ−1

)
u
)
(Pk) , k∈Z, (2)

where

p
(
ξ, ξ−1

)
:=





p0
(
ξ, ξ−1

)

ξp1
(
ξ, ξ−1

)

...

ξP−1pP−1

(
ξ, ξ−1

)




,

and similarly for q
(
ξ, ξ−1

)
. From now on, such systems

will simply be called SISO P–periodic behaviors.

By factoring p and q as, see [12],

p
(
ξ, ξ−1

)
= PL

(
ξP , ξ−P

)
ΩP (ξ) (3)

q
(
ξ, ξ−1

)
= QL

(
ξP , ξ−P

)
ΩP (ξ) (4)

where

ΩP (ξ) :=
[
1 ξ · · · ξP−1

]T
,

we write down relation (2) as

(
PL

(
σP , σ−P

)
ΩP (σ) y

)
(Pk)

=
(
QL

(
σP , σ−P

)
ΩP (σ) u

)
(Pk) , k ∈ Z . (5)

Define the lifted input and output trajectories

uL (k) := (Lu) (k) :=





u (Pk)
...

u (Pk + P − 1)





yL (k) := (Ly) (k) :=





y (Pk)
...

y (Pk + P − 1)





see [11]–[14], and note that L
(
σP v

)
=σ (Lv). Then (5) can

be written as

(
PL

(
σ, σ−1

)
yL

)
(k) =

(
QL

(
σ, σ−1

)
uL

)
(k) , k ∈ Z. (6)

The behavior BL, defined by L(B):={(Lu,Ly) , (u, y)∈B},
called the lifted behavior associated with B, is time–
invariant, and equals the set of trajectories

{(
uL, yL

)
∈
(
R

P
)Z

×
(
R

P
)Z

| (6) holds
}
,

that is,

B
L=ker

[
PL

(
σ, σ−1

)
−QL

(
σ, σ−1

)]
.

Given a P–periodic input–output behavior B, we
say that a P–periodic state space system Σ (·) =
(A (·) , B (·) , C (·) , D (·))






(σx) (k)=A (k)x (k)+B (k)u (k)
k∈Z,

y (k)=C (k)x (k)+D (k)u (k)
(7)

where A (·) , B (·) , C (·) , D (·) are periodic functions with
period P , is a (periodic) state space representation of B if

B = {(u, y) | ∃x such that (u, x, y) satisfies (7)} .

The definition of a (time–invariant) state space representation
Σ=(A,B,C,D) for a time invariant behavior is analogous,
see [15]. A state space representation of a behavior will be
called minimal if the dimension of the state vector is the
smallest among all the representations of the same behavior.

Notice that according to this definition, a state space
representation should describe the whole system behavior
and not only its transfer function (or impulse response). This
issue is particularly relevant in the case of non controllable
behaviors, [9], [10].

III. PERIODIC STATE SPACE REPRESENTATIONS

In this section we investigate the construction of periodic
state space representations for SISO periodic behaviors.
This differs from the realization problems previously
considered by other authors, see, e.g., [7], [16], since we
are not interested in merely realizing the transfer function
or the impulse response. Instead, we start from a periodic
behavior B described by a linear difference equation with
periodically time–varying coefficients as (1), and exploit the
connections B and its (time–invariant) lifted version BL in
order to construct periodic state space representations. More
concretely, we show how to obtain periodic state space
representations for B from state space representations of
the time–invariant behavior BL, which can be obtained by
standard algorithms, see [17, pp. 72–77].

For this purpose we start by studying the relationship
between periodic state space representations of a given
periodic behavior B and time–invariant state space
representations of the lifted behavior BL. For the sake of
simplicity we consider only the case of P = 2. General P
follows along the same lines.

Let us start by assuming that a n–dimensional state space
representation Σ (·) = (A (·) , B (·) , C (·) , D (·)) of B is
given, i.e.,






(σx) (k)=A (k)x (k)+B (k)u (k)
k ∈ Z,

y (k)=C (k)x (k)+D (k)u (k)
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where A (·)∈Rn×n, B (·)∈Rn×1, C (·)∈R1×n and D (·)∈
R are periodic functions with period 2. Letting

z (k) = x (2k)

uL (k) =

[
u (2k)

u (2k + 1)

]

yL (k) =

[
y (2k)

y (2k + 1)

]

we obtain the following time–invariant n–dimensional state
space representation ΣL=(F,G,H, J) for BL :

{
z (k + 1) = Fz (k) +GuL (k)

yL (k) = Hz (k) + JuL (k) ,
(8)

with

F = A (1)A (0) G =
[

A (1)B (0) B (1)
]

H =

[
C (0)

C (1)A (0)

]
J =

[
D (0) 0

C (1)B (0) D (1)

]
.

This representation is also obtained in [7], [14], [18] in a
different context.

We shall say that the representation ΣL = (F,G,H, J)
of BL is induced by the representation Σ (·) =
(A (·) , B (·) , C (·) , D (·)) of B, or equivalently, that
Σ (·) induces ΣL. Moreover, we shall call a representation
ΣL of BL induced whenever it is induced by some periodic
representation Σ of B.

Note that, for the n–dimensional induced representation
(8), the (n+ 1)–square matrix

M :=

[
F G1

H2 J21

]
,

with G1, H2, and J21 defined by

[
G1 G2

]
:= G

[
H1

H2

]
:= H

[
J11 J12
J21 J22

]
:= J ,

can be factored as

M =

[
A (1)A (0) A (1)B (0)

C (1)A (0) C (1)B (0)

]

=

[
A (1)

C (1)

]

︸ ︷︷ ︸
n

[
A (0) B (0)

]}
n .

Therefore rankM ! n .

Conversely, let now ΣL = (F,G,H, J) be a state space
representation of BL, with

F ∈ R
n×n G =

[
G1 G2

]
∈ R

n×2

H =

[
H1

H2

]
∈ R

2×n J =

[
J11 J12

J21 J22

]
∈ R

2×2 .

Define

M :=

[
F G1

H2 J21

]
. (9)

Assume that rankM ! n and decompose this matrix as

M =

[
E1

E2

]

︸ ︷︷ ︸
n

[
D1 D2

]}
n . (10)

Then it can be shown that Σ (·)=(A (·) , B (·) , C (·) , D (·)),
with

A (0) = D1 B (0) = D2 (11)

A (1) = E1 B (1) = G2 (12)

C (0) = H1 D (0) = J11 (13)

C (1) = E2 D (1) = J22 , (14)

is a periodic state space representation of B of dimension n.

These considerations lead to the following result.

Proposition 3.1: Let B be a SISO 2–periodic behavior
and BL the lifted behavior associated to B. Then a n–
dimensional state space representation ΣL=(F,G,H, J) of
BL, with

F ∈ R
n×n G =

[
G1 G2

]
∈ R

n×2

H =

[
H1

H2

]
∈ R

2×n J =

[
J11 J12
J21 J22

]
∈ R

2×2 ,

is induced if and only if

rank

[
F G1

H2 J21

]
! n .

Moreover, in this case, Σ (·) = (A (·) , B (·) , C (·) , D (·))
defined as in (11)–(14) is a periodic n–dimensional state
space representation of B that induces ΣL. $

As the next example shows, not every state space
representation of BL is an induced one.

Example 3.2: Consider the 2–periodic input–output be-
havior B described by

([
σ2 − 1

σ

]
y

)
(2k) =

([
0
1

]
u

)
(2k) .

Its associated lifted behavior BL, defined according to (6),
is given by

([
σ−1 0
0 1

]
yL

)
(k) =

([
0 0
1 0

]
uL

)
(k) ,

for which a minimal state space representation, of dimension
1, is






σz (k) = z (k)

yL (k) =

[
1
0

]
z (k) +

[
0 0
1 0

]
uL (k) .
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In this case the matrix M defined in (9) is given by

M =

[
1 0
0 1

]
, (15)

which is clearly of full rank, and hence not decomposable
as in (10). $

However, as we shall see, it is always possible to construct
an induced state space representation of BL starting from a
non–induced one. In fact, let ΣL = (F,G,H, J) be a n–
dimensional representation of BL,

{
σx (k) = Fx (k) +GuL (k)

yL (k) = Hx (k) + JuL (k) ,

which is not induced by a periodic state space representation
of B. This means that the (n+ 1)× (n+ 1) matrix

M =

[
F G1

H2 J21

]

has rank n+ 1. Augment this matrix by adding a zero row
to F and G1 and a zero column to F and H2, yielding

M̃ =





F

0...
0

G1

0 · · · 0 0 0 · · · 0

H2

0...
0

J21





. (16)

Note that this corresponds to adding a superfluous (zero)
state xs to the original representation, in order to obtain a
higher dimensional one, of the form:






σxe (k) =




F

0...
0

0 · · · 0 0



xe (k) +

[
G

0

]
uL (k)

yL (k) =



 H

0...
0



xe (k) + JuL (k) .

Clearly M̃ is an (n+ 2)× (n+ 2) matrix with rank n+ 1
that can be decomposed as

M̃ =

[
E1

E2

] [
D1 D2

]
,

with

[
E1

E2

]
:=




F G1

0 0
H2 J21





[
D1 D2

]
:=

[
I 0 0
0 0 I

]
.

This yields a (n+ 1)–dimensional state space representation
Σ (·)=(A (·) , B (·) , C (·) , D (·)) of B, given by:

A (0) = D1 B (0) = D2 (17)

A (1) = E1 B (1) =

[
G2

0

]
(18)

C (0) =
[

H1 0
]

D (0) = J11 (19)

C (1) = E2 D (1) = J22 , (20)

cf. (11)–(14).

Thus, it is always possible to construct a periodic state
space representation Σ for a SISO 2–periodic behavior
B starting from a state space representation ΣL of BL.
Moreover dim (Σ)=dim

(
ΣL

)
or dim (Σ)=dim

(
ΣL

)
+1.

Example 3.3: Recall Example 3.2. Adding a zero row and
a zero column to matrix M given in (15), as illustrated

previously, we obtain a new 3× 3 matrix M̃ given by

M̃ =




1 0 0
0 0 0
0 0 1



 ,

which can be decomposed as



1 0 0
0 0 0
0 0 1



 =




1 0
0 0
0 1




[

1 0 0
0 0 1

]
.

This factorization allows us to obtain a 2–dimensional state
space reapresentation Σ (·) = (A (·) , B (·) , C (·) , D (·)) of
B, given by:

A (0) =

[
1 0
0 0

]
B (0) =

[
0
1

]

A (1) =

[
1 0
0 0

]
B (1) =

[
0
0

]

C (0) =
[

1 0
]

D (0) = 0

C (1) =
[

0 1
]

D (1) = 0 . $

Since every time–invariant input–output behavior has
a state space representation [17], we conclude that every
periodic input–output behavior also has a periodic state
space representation.

Notice that every state space representation Σ of
B induces a representation ΣL of BL with the same
dimension. Moreover, as a consequence of the following
lemma, either the minimal state space representations of B

are all induced or none of them is.

Lemma 3.4: Let BL be the lifted behavior associated to
a SISO 2–periodic behavior B. If BL has one minimal state
space representation which is induced, then all its minimal
representations are induced. $

On the other hand, if the minimal state space repre-
sentations of ΣL of BL (with dimension, say, nBL) are
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not induced, then there exists an induced representation of
dimension nBL + 1. This implies that

nBL ! nB ! nBL + 1 ,

where nB denotes the minimal dimension of the state space
representations of B.

The previous considerations can be summarized as
follows.

Theorem 3.5: Let B be a SISO 2–periodic behavior and
let BL be the corresponding lifted behavior. Then:

(i) B has a 2–periodic state space representation Σ (·) =
(A (·) , B (·) , C (·) , D (·));

(ii) The dimensions nB and nBL of the minimal state space
representations of B and of BL, respectively, are such
that:

nBL ! nB ! nBL + 1;

(iii) A minimal periodic state space representation of B

can be obtained by Algorithm 3.6.

$

Algorithm 3.6:

• Input: A SISO 2–periodic behavior B;
• Output: A minimal 2–periodic state space

representation of B.

Step 1. Construct the lifted behavior BL;

Step 2. Compute a minimal representation ΣL =
(F,G,H, J) of BL and its dimension nBL ;

Step 3. Construct the matrix M as in (9);

Step 4. If rankM ! nBL :

4.1. decompose M as in (10), with n = nBL , to
obtain E1, E2, D1 and D2;

4.2. define Σ (·) = (A (·) , B (·) , C (·) , D (·)) as in
(11)–(14);

go to Step 6.
Else: continue;

Step 5. Construct the (nBL + 2)×(nBL + 2) matrix M̃ (of
rank nBL + 1) as in (16):

5.1. Decompose M̃ as

M̃ =

[
E1

E2

] [
D1 D2

]
,

where

[
E1

E2

]
has full column rank and

[
D1 D2

]
has full row rank;

5.2. Define Σ (·)= (A (·) , B (·) , C (·) , D (·)) as in
(17)–(20);

Step 6. Output: “Minimal state space representation of B”:
Σ (·)=(A (·) , B (·) , C (·) , D (·));

Step 7. End. $

IV. CONCLUSION

In this paper we have investigated the problem of
obtaining state space representations for periodic input–
output behaviors by exploiting the lifting technique. This
classical approach to periodic systems has been previously
used in a different context for the realization of periodic
transfer functions or of impulse responses. In this paper
we have approached the realization problem from the
behavioral point of view and aimed at obtaining a state
space representation for the whole system behavior. As
pointed out earlier, this differs from the classical transfer
function or impulse response realization problem for the
case of noncontrollable behaviors. We have shown that
every SISO behavior described by a linear difference
equation with 2–periodic time–varying coefficients can be
represented in state space form, and have presented an
algorithm to obtain a corresponding minimal state space
representation from a minimal representation of the lifted
behavior. The generalization of these results to the case of
MIMO P–periodic systems with P > 2 can be achieved
along the same lines will be reported elsewhere. Apart from
the realization problem itself, many other relevant questions
concerning state space representations of periodic behaviors,
such as, for instance, the characterization of minimality, are
currently under investigation.
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