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Abstract— Behavioral system theory has been successful in
providing a viewpoint that does not depend on a priori notions
of inputs/outputs. While there are some attempts to extend
this theory to infinite-dimensional systems, for example, delay
systems, the overall picture seems to remain still incomplete.

The first author has studied a class of infinite-dimensional
systems called pseudorational. This class allows a compact frac-
tional representation for systems having bounded-time memory.
It is particularly appropriate for extending the behavioral
framework to infinite-dimensional context.

We have recently studied several attempts to extend this
framework to a behavioral context. Among them are charac-
terizations of behavioral controllability, particularly involving
a coprimeness condition over an algebra of distributions, and
some stability tests involving Lyapunov functions derived from
Bézoutians.

This article gives a brief overview of pseudorational trans-
fer functions, controllability issues and related criteria, path
integrals, and finally the connection with Lyapunov functions
derived from Bézoutians.

I. INTRODUCTION

Behavioral system theory has become a successful frame-
work in providing a viewpoint that does not depend on a
priori notions of inputs/outputs. An introductory and tutorial
account is given in [7], [2]. In particular, this theory suc-
cessfully provides such notions as controllability, without
an explicit reference to state space formalism. One also
obtains several interesting and illuminating consequences of
controllability, for example, direct sum decomposition of
the signal space with a controllable behavior B as a direct
summand.

There are some attempts to extend this theory to infinite-
dimensional systems, for example, delay systems; some rank
conditions for behavioral controllability have been obtained;
see, e.g., [1], [3], [6]. While these results give a nice gener-
alization of their finite-dimensional counterparts, the overall
picture still needs to be further studied in a more general and
perhaps abstract setting. For example, one wants to see how
the notion of zeros and poles can affect controllability in an
abstract setting. This is to some extent accomplished in [3],
[1], but we here intend to give a theory in a more general, and
unified setting, and provide a framework in a well-behaved
class of infinite-dimensional systems called pseudorational.
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In [9], [11], the first author introduced the notion of pseu-
dorational impulse responses. Roughly speaking, an impulse
response is said to be pseudorational if it is expressible as a
ratio of distributions with compact support, e.g., G = p−1 ∗q
(Warning: we used q−1 ∗ p in [9], [11]) This leads to an
input/output relation

p∗ y = q∗u, (1)

and various system properties have been studied associated
to it: for example,

1) realization procedure
2) complete characterization of spectra in terms of the

denominator of the transfer function
3) stability characterization in terms of the spectrum

location
4) relations between controllability and coprimeness con-

ditions.
The representation (1) is also suitable for behavioral study.

In this paper, we survey results obtained mainly in [14], [15]:
• behavioral controllability and its characterization in

terms of coprimeness of the pair (p,q),
• Lyapunov stability and related conditions derived from

Bézoutians, and finally give indications on
• dissipation conditions.

II. NOTATION AND NOMENCLATURE

C ∞ (R,R) (C ∞ for short) is the space of C∞ functions on
(−∞,∞). Similarly for C ∞ (R,Rq) with higher dimensional
codomains. D (R,Rq) denote the space of Rq-valued C∞

functions having compact support in (−∞,∞). D ′ (R,Rq) is
its dual, the space of distributions. D ′

+ (R,Rq) is the subspace
of D ′ with support bounded on the left. E ′(R,Rq) denotes
the space of distributions with compact support in (−∞,∞).
E ′(R,Rq) is a convolution algebra and acts on C ∞ (R,R)
by the action: p∗ : C ∞ (R,R) → C ∞ (R,R) : w �→ p ∗ w.
C ∞ (R,R) is a module over E ′ via this action. Similarly,
E ′(R2,Rq) denotes the space of distributions in two variables
having compact support in R2. For simplicity of notation, we
may drop the range space Rq and write E ′(R), etc., when
no confusion is likely,

A distribution α is said to be of order at most m if it
can be extended as a continuous linear functional on the
space of m-times continuously differentiable functions. Such
a distribution is said to be of finite order. The largest number
m, if one exists, is called the order of α ([4], [5]). The delta
distribution δa (a ∈ R) is of order zero, while its derivative
δ ′

a is of order one, etc. A distribution with compact support
is known to be always of finite order ([4], [5]).
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The Laplace transform of p ∈ E ′(R,Rq) is defined by

L [p](ζ ) = p̂(ζ ) := 〈p,e−ζ t〉t (2)

where the action is taken with respect to t. Likewise, for
p ∈ E ′(R2,Rq), its Laplace transform is defined by

p̂(ζ ,η) := 〈p,e−(ζ s+ηt)〉s,t (3)

where the distribution action is taken with respect to two
variables s and t. For example, L [δ ′′

s ⊗ δ ′
t ] = ζ 2 ·η .

By the well-known Paley-Wiener theorem [4], [5], p̂(ζ ) is
an entire function of exponential type satisfying the Paley-
Wiener estimate

|p̂(ζ )| ≤C(1 + |ζ |)rea|Reζ | (4)

for some C,a ≥ 0 and a nonnegative integer r.
Likewise, for p ∈ E ′(R2,Rq), there exist C,a ≥ 0 and a

nonnegative integer r such that its Laplace transform

|p̂(ζ ,η)| ≤C(1 + |ζ |+ |η |)rea(|Reζ |+|Reη|). (5)

This is also a sufficient condition for a function p̂(·, ·) to
be the Laplace transform of a distribution in E ′(R2,Rq). We
denote by PW the class of functions satisfying the estimate
above for some C,a,m. In other words, PW = L [E ′].

Other spaces, such as L2, L2
loc are all standard. For a vector

space X , Xn and Xn×m denote, respectively, the spaces of n
products of X and the space of n×m matrices with entries in
X . When a specific dimension is immaterial, we will simply
write X•, X•×•, etc.

III. PSEUDORATIONAL BEHAVIORS

We review a few rudiments of pseudorational behaviors as
given in [13], [14].

Definition 3.1: Let R be an p× w matrix (w ≥ p) with
entries in E ′. It is said to be pseudorational if there exists a
p×p submatrix P such that

1) P−1 ∈ D ′
+(R) exists with respect to convolution;

2) ord(detP−1) = −ord(detP), where ordψ denotes the
order of a distribution ψ [4], [5] (for a definition, see
the Appendix).

Definition 3.2: Let R be pseudorational as defined above.
The behavior B defined by R is given by

B := {w ∈ C ∞ (R,Rq) : R∗w = 0} (6)

The convolution R∗w is taken in the sense of distributions.
Since R has compact support, this convolution is always well
defined [4]. The distributional behavior BD ′ defined by R
is given by

BD ′ := {w ∈ (D ′)w|R∗w = 0}. (7)

where D ′ denotes the space of distributions on R.
Remark 3.3: We here took C ∞ (R,Rq) as the signal space

in place of L2
loc(R,Rq) in [14], but the basic structure remains

intact.
A state space formalism is possible for this class and it

yields various nice properties as follows:

Suppose, without loss of generality, that R is partitioned as
R =

[
P Q

]
such that P satisfies the invertibility condition

of Definition 3.1, i.e., we consider the kernel representation

P∗ y + Q∗u = 0 (8)

where w :=
[

y u
]T is partitioned conformably with the

sizes of P and Q.
A nice consequence of pseudorationality is that this space

X is always a closed subspace of the following more tractable
space XP:

XP := {x ∈ (L2
[0,∞))

p |P∗ x|[0,∞) = 0}, (9)

and it is possible to give a realization using XP as a state
space. The state transition is generated by the left shift
semigroup:

(στ x)(t) := x(t + τ)

and its infinitesimal generator A determines the spectrum of
the system ([9]). We have the following facts concerning
the spectrum, stability, and coprimeness of the representation[

P Q
]

([9], [11], [12], [13]):

Facts 3.4: 1) The spectrum σ(A) is given by

σ(A) = {λ | det P̂(λ ) = 0}. (10)

Furthermore, every λ ∈ σ(A) is an eigenvalue with
finite multiplicity. The corresponding eigenfunction for
λ ∈ σ(A) is given by eλ tv where P̂(λ )v = 0. Similarly
for generalized eigenfunctions such as teλ tv′.

2) The semigroup σt is exponentially stable, i.e., satisfies
for some C,β > 0

‖σt‖ ≤Ce−β t , t ≥ 0,

if and only if there exists ρ > 0 such that

sup{Reλ : det P̂(λ ) = 0} ≤ −ρ .
As a rather direct consequence, we have the following

lemma on stability of behaviors. Let R ∈ (E ′(R,Rq))p×q

be pseudorational, and let B be the autonomous behavior
defined by R, i.e.,

B = {w : R∗w = 0}. (11)

We discuss stability conditions in terms of R.
Lemma 3.5: The behavior B is exponentially stable if and

only if

sup{Reλ : det R̂(λ ) = 0} < 0. (12)
Proof See [15]. �

IV. CONTROLLABILITY AND COPRIMENESS

We now introduce the notion of controllability [2] in the
present context.

Definition 4.1: Let R be pseudorational, and B the be-
havior associated to it. B is said to be controllable if for
every pair w1,w2 ∈ B, there exists T ≥ 0 and w ∈ B, such
that w(t) = w1(t) for t < 0, and w(t) = w2(t −T ) for t ≥ T
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In other words, every pair of trajectories can be concatenated
into one trajectory that agrees with them in the past and
future.

We also introduce an extended notion of controllability as
follows:

Definition 4.2: Let R be pseudorational, and BD ′ be the
distributional behavior (7). BD ′ is said to be distributionally
controllable if for every pair w1,w2 ∈ B, there exists T ≥ 0
and w∈B, such that w|(−∞,0) = w1 on (−∞,0), and w|(T,∞) =
σ−T w2 on (T,∞).

Let us now introduce various notions of coprimeness.
Definition 4.3: The pair (P,Q), P,Q ∈ E ′(R) is said to

be spectrally coprime if P̂(s) and Q̂(s) have no common
zeros. It is approximately coprime if there exist sequences
Φn,Ψn ∈E ′(R) such that P∗Φn +Q∗Ψn → δ I in E ′(R). The
pair (P,Q) is said to satisfy the Bézout identity (or simply
Bézout), if there exists Φ,Ψ ∈ E ′(R) such that

P∗Φ+ Q∗Ψ = δ I, (13)

Or equivalently,

P̂(s)Φ̂(s)+ Q̂(s)Ψ̂(s) = I (14)

for some entire functions Φ̂,Ψ̂ satisfying the Paley-Wiener
estimate (4).

It is well known [2] that controllability admits various nice
characterizations in terms of coprimeness, image represen-
tation, full rank conditions, etc. We here attempt to give a
generalization of such results to the present context. To this
end, we confine ourselves to the simplest scalar case, i.e.,
p = m = 1. We will also assume that q also satisfies the
condition that the zeros of q̂(s) is contained in a half plane
{s |Re s < c} for some c ∈ R.

Theorem 4.4: Let R be pseudorational, and suppose with-
out loss of generality that R is of form R :=

[
p q

]
where

p satisfies the invertibility condition in Definition 3.1. Let
BD ′ be the distributional behavior (7). Then the following
statements are equivalent:

1) BD ′ is controllable.
2) There exist ψ ,φ ∈ E ′(R) such that p ∗φ + q∗ψ = δ .
3) BD ′ admits an image representation, i.e., there exists

M over E ′(R) such that for every w∈BD ′ , there exists
� ∈C∞(R) such that w = M ∗ �.

4) BD ′ is a direct summand of D ′, i.e., there exists an
distributional behavior B′ such that D ′ = BD ′ ⊕B′.

5) Let Λ := {λ ∈C|p̂(λ ) = 0}. Suppose that the algebraic
multiplicity of each zero λ ∈ Λ is globally bounded.
There exist k ≥ 0 and c > 0 such that

|λ kq̂(λ )| ≥ c, ∀λ ∈ Λ. (15)
Proof See [14]. �

V. PATH INTEGRALS

The integral ∫ t2

t1
QΦ(w)dt (16)

(or briefly
∫

QΦ) is said to be independent of path, or simply
a path integral if it depends only on the values taken on by

w and its derivatives at end points t1 and t2 (but not on the
intermediate trajectories between them).

The following theorem gives equivalent conditions for Φ
to give rise to a path integral.

Theorem 5.1: Let Φ ∈ E ′(R2)q×q, and QΦ the quadratic
differential form associated with Φ. The following conditions
are equivalent:
(i)

∫
QΦ is a path integral;

(ii) ∂Φ = 0;
(iii)

∫ ∞
−∞ QΦ(w)dt = 0 for all w ∈ D (R,Rq);

(iv) the expression Φ̂(ζ ,η)/(ζ + η) belongs to the class
PW .

(v) there exists a two-variable matrix Ψ ∈ E ′(R2)q×q that
defines a Hermitian bilinear form on (C ∞)q ⊗ (C ∞)q

such that
d
dt

QΨ(w) = QΦ(w) (17)

for all w ∈ C ∞ (R,Rq).
For a proof, see [15].

VI. PATH INTEGRALS ALONG A BEHAVIOR

Generalizing the results of Section V on path integrals in
the unconstrained case, we now study path integrals along a
behavior B.

Definition 6.1: Let B be the behavior (6) with pseudo-
rational R. The integral

∫
QΦ is said to be independent of

path or a path integral along B if the path independence
condition holds for all w1,w2 ∈ B.

Let B be as above. We assume that B also admits
an image representation, i.e., B = M ∗ C ∞ (R,Rq). This
implies that B is controllable. In fact, for a polynomial R,
controllability of B is also sufficient for the existence of an
image representation, but in the present situation, it is not
fully known. A partial necessary and sufficient result for the
scalar case is given in [14].

We then have the following theorem.

Theorem 6.2: Let B be a behavior defined by a pseudora-
tional R, and suppose that B admits an image representation
B = imM∗. Let Φ be as above. Then the following condi-
tions are equivalent:
(i)

∫
QΦ is a path integral along B;

(ii) there exists Ψ = Ψ∗ ∈ PW q×q[ζ ,η ] such that

d
dt

QΨ(w) = QΦ(w) (18)

for all w ∈ B;
(iii)

∫
QΦ′ is a path integral where Φ′ is defined by

Φ′(ζ ,η) := MT (ζ )Φ(ζ ,η)M(η);
(iv) ∂Φ′ = 0;
(v) there exists Ψ′ = (Ψ′)• = PW q×q[ζ ,η ] such that

d
dt

QΨ′(�) = QΦ′(�)

for all � ∈ C ∞, i.e., Ψ′• = Φ′.
For a proof, see [15].
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VII. LYAPUNOV STABILITY

A characteristic feature in stability for the class of pseu-
dorational transfer functions is that asymptotic stability is
determined by the location of poles, i.e., zeros of det R̂(ζ ).
Indeed, as we have seen in Lemma 3.5, the behavior

B = {w : R∗w = 0},
is exponentially stable if and only if sup{Reλ : det R̂(λ ) =
0} < 0, and this is determined how each characteristic solu-
tion eλ ta, a∈Cq (det R̂(λ ) = 0), behaves. This plays a crucial
role in discussing stability in the Lyapunov theory. We start
with the following lemma which tells us how p ∈ E ′(R,Rq)
acts on eλ t via convolution:

We give some preliminary notions on positivity (resp.
negativity).

Definition 7.1: The QDF QΦ induced by Φ is said to
be nonnegative (denoted QΦ ≥ 0) if QΦ(w) ≥ 0 for all
w ∈ C ∞ (R,Rq), and positive (denoted QΦ(w) > 0) if it is
nonnegative and QΦ(w) = 0 implies w = 0.

Let B = {w : R∗w = 0} be a pseudorational behavior. The
QDF QΦ induced by Φ is said to be B-nonnegative (denoted

QΦ
B≥ 0) if QΦ(w)≥ 0 for all w∈B, and B-positive (denoted

QΦ(w)
B
> 0) if it is B-nonnegative and if QΦ(w) and w ∈B

imply w = 0. B-nonpositivity and B-negativity are defined
if the respective conditions hold for −QΦ.

We say that QΦ weakly strictly positive along B if

• QΦ is B-positive; and
• for every γ > 0 there exists cγ such that aT Φ̂(λ ,λ )a ≥

cγ ‖a‖2 for all λ with p̂(λ ) = 0, Reλ ≥−γ and a ∈Cq.

Similarly for weakly strict negativity along B.
For a polynomial Φ̂, B-positivity clearly implies the

second condition. However, for pseudorational behaviors,
this may not be true. Note that we require the above estimate
only for the eigenvalues λ , whence the term “weakly”.

Theorem 7.2: Let B be as above. B is asymptotically
stable if there exists Ψ = Ψ∗ ∈ E ′(R2)q×q whose elements
are measures (i.e., distributions of order 0) such that QΨ

is weakly strictly positive along B and
•
Ψ weakly strictly

negative along B.
Proof See [15]. �

VIII. THE BÉZOUTIAN

We have seen that exponential stability can be deduced
from the existence of a suitable positive definite quadratic
form Ψ that works as a Lyapunov function. The question
then hinges upon how one can find such a Ψ. The objective
of this section is to show that for the single-variable case,
the Bézoutian gives a universal construction for obtaining a
Lyapunov function.

In this section we confine ourselves to the case q = 1, that
is, given p ∈ E ′, we consider the behavior

B = {w : p ∗w = 0}.

Define the Bézoutian b(ζ ,η) by

b(ζ ,η) :=
p(ζ )p(η)− p(−ζ )p(−η)

ζ + η
. (19)

Note that this expression belongs to the class PW [ζ ,η ], and
hence its inverse Laplace transform is a distribution having
compact support. Let us further assume that p is a measure,
i.e., distribution of order 0. If not, p̂(s) possess (stable) zeros,
and we can reduce p̂(s) to a measure by extracting such
zeros. For details, see [10].

We have the following theorem:

Theorem 8.1: Suppose that p ∈ E ′ is a measure. The
following conditions are equivalent:
(i) B = {w : p∗w = 0} is exponentially stable;

(ii) there exists ρ > 0 such that sup{λ : p̂(λ ) = 0} ≤ −ρ ;
(iii) Qb ≥ 0 and the pair (p, p˜) is coprime in the following

sense: there exists φ ,ψ ∈ E ′ such that

p∗φ + p˜∗ψ = δ (20)

(iv) Qb is weakly strictly positive definite, and Q•
b

is weakly
strictly negative definite.

Proof Omitted. See [15]. �

IX. DISSPATIVITY

Definition 9.1: Let Φ,Ψ,Δ ∈ E (R2)q×q. A quadratic dif-
ferential form QΨ is a storage function for Φ if

d
dt

QΨ ≤ QΦ.

A quadratic differential form QΔ is a disspation function if

Δ ≥ 0 and
∫

QΦ =
∫

QΔ.

For pseudorational behaviors, we have the following ex-
tension of the finite-dimensional case given in [8]:

Theorem 9.2: Let Φ ∈ E (R2)q×q. The following condi-
tions are equivalent:

1) For every w ∈ D(R,Rq),∫
QΦ(w)dt ≥ 0.

2) There exists a storage function for Φ.
3) There exists a dissipation function for Φ.

Proof Omitted. See [16] �

Acknowledgments This research is supported in part by the
JSPS Grant-in-Aid for Scientific Research (B) No. 18360203, and
Grant-in-Aid for Exploratory Research No. 22656095. The SISTA
research program of the K.U. Leuven is supported by the Research
Council KUL: GOA AMBioRICS, CoE EF/05/006 Optimization
in Engineering (OPTEC), IOF-SCORES4CHEM; by the Flemish
Government: FWO: projects G.0452.04 (new quantum algorithms),
G.0499.04 (Statistics), G.0211.05 (Nonlinear), G.0226.06 (cooper-
ative systems and optimization), G.0321.06 (Tensors), G.0302.07
(SVM/Kernel), G.0320.08 (convex MPC), G.0558.08 (Robust
MHE), G.0557.08 (Glycemia2), G.0588.09 (Brain-machine) re-
search communities (ICCoS, ANMMM, MLDM); G.0377.09
(Mechatronics MPC) and by IWT: McKnow-E, Eureka-Flite+, SBO

Y. Yamamoto et al. • Pseudorational Behaviors and Bezoutians 

1920



LeCoPro, SBO Climaqs; by the Belgian Federal Science Policy
Office: IUAP P6/04 (DYSCO, Dynamical systems, control and
optimization, 2007-2011) ; by the EU: ERNSI; FP7-HD-MPC
(INFSO-ICT-223854); and by several contact research projects.

REFERENCES
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[4] L. Schwartz, Théorie des Distribution, Hermann, 1966.
[5] F. Treves, Topological Vector Spaces, Distributions and Kernels, Aca-

demic Press, 1967.
[6] P. Vettori and S. Zamperi, “Module theoretic approach to controlla-

bility of convolutional systems,” Linear Algebra and its Applications,
351-352: 739–759, 2002.

[7] J. C. Willems, “The behavioral approach to open and interconnected
systems,” Control Systems Magazine , 27: 46–99, 2007.

[8] J. C. Willems and H. L. Trentelman, “On quadratic differential forms,”
SIAM J. Control & Optimization, 36: 1703–1749, 1998.

[9] Y. Yamamoto, “Pseudo-rational input/output maps and their real-
izations: a fractional representation approach to infinite-dimensional
systems,” SIAM J. Control & Optimiz., 26: 1415-1430, 1988.

[10] Y. Yamamoto and S. Hara, “Relationships between internal and
external stability with applications to a servo problem,” IEEE Trans.
Autom. Control, AC-33: 1044-1052, 1988.

[11] Y. Yamamoto, “Reachability of a class of infinite-dimensional linear
systems: an external approach with applications to general neutral
systems,” SIAM J. Control & Optimiz., 27: 217-234, 1989.

[12] Y. Yamamoto, “Equivalence of internal and external stability for a
class of distributed systems,” Math. Control, Signals and Systems, 4:
391-409, 1991.

[13] Y. Yamamoto, “Pseudorational transfer functions—A survey of a class
of infinite-dimensional systems,” Proc. 46th IEEE CDC 2007, New
Orleans: 848–853, 2007.

[14] Y. Yamamoto and J. C. Willems, “Behavioral controllability and
coprimeness for a class of infinite-dimensional systems,” Proc. 47th
IEEE CDC 2008, Cancun: 1513–1518, 2008.

[15] Y. Yamamoto and J. C. Willems, “Path Integrals and Bézoutians for
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