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Abstract— It is shown that just as we did for a purely resistive
network [10], that circuit analysis is very simple if the elements
are described not by potentials across and currents through
the elements, but rather by the potentials at the nodes and
the external currents into the nodes. For simple R, C or L
components this gives a description with a 2×2 matrix, which
is more complex than the scalar constitutive laws governing the
potential across and current through. However this description
has an advantage in performing the analysis of more compli-
cated circuits. These are built up from simple operations like
joining two nodes, splicing at nodes, and minimalization.

I. INTRODUCTION: TERMINAL BEHAVIOR

We view an electrical circuit as a device that interacts with

its environment through a finite number of wires (henceforth

called terminals and denoted by t1,t2, . . . ,t|T|), as illustrated

in the figure below. Associated with each terminal, there is a

Electrical

circuit

(potential, current)

Electrical

circuit

t1

t2t|T|

potential and a current (by convention counted positive when

it runs into the circuit). Even though only potential differ-

ences are physically measurable, we consider the terminal

potentials and the currents as the essential quantities which

describe how a circuit interacts with its surroundings. The

physical meaning of the potentials is the potential differences

with an arbitrary common point, that can vary over time, and

be external or internal to the circuit. KVL implies that one

may use these potentials instead of the voltages across the

terminals [9].

Assuming that potentials and currents are expressed in

some units (say, volts and amps), we obtained in [10] that the

instantaneous interaction of the circuit with its surroundings

is specified by a vector (P, I) ∈ R|T|×|T|. In this paper we

extend our results from memoryless circuits to RLC-circuits.

Hence the instantaneous behavior no longer suffices to de-

scribe the circuit. The set of functions (P, I)∈ (R|T|×|T|)R that
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are compatible with the internal structure of the circuit and

component values forms a subset B ⊆ (R|T|×|T|)R, called the

terminal behavior of the circuit. (P, I) ∈ B means that the

circuit allows the vector functions (P, I) of terminal variables,

while (P, I) /∈ B means that the circuit forbids the vector

(P, I) of terminal variable functions [7], [8]. In this paper,

we study which subsets B ⊆ (R|T|×|T|)R can occur as the

terminal potential/current behavior of an interconnection of

a finite set of linear nonnegative resistors, inductors and

capacitors. The paper is organized as follows: In Section

II, the purely resistive network is revisited, and the full

characterization we obtained for the behavioral description

are stated. The main goal is to extend these to time-invariant

RLC circuits. One approach, starting from purely resistive,

inductive and capacitive circuits is sketched in Section III. In

order to shed some light on the properties of this operator, an

alternative component-wise building up of the circuit from

its constituent elements is given in section IV. It leads to a

set of necessary conditions for the matrix representing the

manifest potential/current at the external terminals.

II. BEHAVIORAL EQUATIONS OF A RESISTIVE CIRCUIT

There are a number of ways to arrive at equations for the

terminal behavior of a linear resistive circuit. The classical

way of introducing as auxiliary variables the vertex potentials

and the edge currents is convenient and general. Label

the vertices as v1,v2, . . . ,v|V|, the edges as e1,e2, . . . ,e|E|
(assuming there are no self-loops), and the leaves (which

correspond to the external terminals) as t1,t2, . . . ,t|T|. Assign

a direction to each edge. Now introduce the edge incidence

matrix IE ∈ {1,−1,0}|V|×|E| and the leaf incidence matrix

IT ∈ {1,0}|V|×|T| by

(IE)i, j =






1 if ei is incident to and directed

towards v j,

−1 if ei is incident to and directed

away from vi,

0 if ei is not incident to v j,

(IL)i, j =

{
1 if ℓi is incident to v j

0 if ℓi is not incident to v j.

Introduce the vector of vertex potentials PV, of edge currents

IE, of leaf (external terminal) potentials P, and of leaf

(external terminal) currents I

PV =





Pv1

Pv2

...

Pv|V|




, IE =





Ie1

Ie2

...

Ie|E|




, P =





Pt1

Pt2
...

Pt|T|




, I =





It1
It2
...

It|T|




. (1)
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Introduce also the edge resistance matrix R ∈ [0,∞)|E|×|E|,

the diagonal matrix with elements ρ(e1),ρ(e2), . . . ,ρ(e|E|)
on the diagonal.

The behavioral equations of the circuit can be written

compactly as

IEPV + RIE = 0, I
⊤
E IE + I

⊤
L I = 0, ILPV = P. (2)

The first of these equations expresses that the potential drop

across each vertex is equal to the resistance times the current.

The second equation expresses that the algebraic sum of the

currents that flow into each vertex is zero (recall that we

have chosen the terminal currents to be positive when they

run into the circuit). The third equation expresses that the

potential of an external terminal is equal to the potential of

the vertex to which the corresponding leaf is incident.

Equations (2) specify the terminal behavior of the resistive

circuit. As is common when modeling interconnected sys-

tems, these equations contain auxiliary (‘latent’) variables

(the vertex potentials and edge currents PV, IE) in addition

to the (‘manifest’) variables (the terminal potentials and

currents P, I) which the model aims at. The terminal poten-

tial/current behavior is given by

B = {(P, I) ∈ R
|T|×|T|| ∃ (PV, IE) ∈ R

|V|×R
|E|s.t.(2)}.

Since these equations are linear, the latent variables variables

can be completely eliminated, resulting in a set of linear

relations: LV P+ LII = 0, for the manifest variables. In total

we have |V|+ |E| latent and 2|T| manifest variables, related

by the |V|+ |E|+ |T| equations (2). were derived in [10]. It

was shown that |T| (= (|V|+ |E|+2|T|)− (|V|+ |E|+ |T|))
equations relate (V, I). A somewhat different approach, via

the weighted Laplacian matrix of a graph is presented in

[5]. We restate first the main result in [10].

Theorem 1: In a suitable ordering of the terminals of a

linear resistive circuit, the equations governing the terminal

behavior take the following specific form. There exist posi-

tive integers N1,N2, . . . ,Nk with N1 + N2 + · · ·+ Nk = |T| so

that the behavioral equations take the form

Pt1 = Pt2 = · · · = PtN1
=: P̃1

PtN1+1
= PtN1+2

= · · · = PtN1+N2
=: P̃2

...
...

Pt|T|−Nk+1
= Pt|T|−Nk+2

= · · · = P|T| =: P̃k (3)

Ĩ1 := It1 + It2 + · · ·+ ItN1

Ĩ2 := ItN1+1
+ ItN1+2

+ · · ·+ ItN1+N2

...
...

Ĩk := It|T|−Nk+1
+ It|T|−Nk+2

+ · · ·+ I|T| (4)

combined with 



Ĩ1

Ĩ2

...

Ĩk




= G





P̃1

P̃2

...

P̃k




, (5)

with G ∈ R
k×k a square matrix satisfying

(i) Gi,i ≥ 0 for i = 1,2, . . . ,k,
(ii) Gi, j = G j,i ≤ 0 for i, j = 1,2, . . . ,k, i 6= j

(iii) ∑k
i=1 Gi, j = ∑k

j=1 Gi, j = 0 for i, j = 1,2, . . . ,k.

Square matrices satisfying (i), (ii), and (iii) are called sym-

metric hyperdominant with zero excess.

Conversely, for a set of equations having the structure of

equations (4, 5), with G ∈ Rk×k symmetric hyperdominant

with zero excess, there exists a linear resistive circuit with

these terminal potential/current behavioral equations.

III. GENERAL ADMITTANCE DESCRIPTION

The port behavioral description of a capacitor is similar

to that of the resistor
[

I1

I2

]
=

[
C −C

−C C

]
d

dt

[
P1

P2

]
. (6)

Obviously, this is equivalent to the set I1 = C d
dt

(P1 − P2).
and I1 + I2 = 0. But unlike the R and the C, the inductor

behavioral equations (I1 + I2 = 0,P1 − P2 = L d
dt

I1 are not

unimodularly equivalent to the symmetrical form

d

dt

[
I1

I2

]
=

[
Γ −Γ
−Γ Γ

][
P1

P2

]
, (7)

as the latter only implies constancy of the sum I1 + I2.

Just as in the specification for the purely resistive network,

the topology or architecture of the RLC circuit is a digraph

with leaves without self loops. The edges correspond to the

circuit elements. Introduce three |E|× |E| diagonal matrices,

R, L and C defined respectively as follows: Rii = R(ei) if

there is a resistor with resistance R(ei) in edge ei, and 0 else.

Likewise Lii = L(ei) if there is an inductor of value L(ei)
and 0 else, and Cii = C(ei) if there is an capacitor of value

C(ei) in the edge ei, and 0 else. The proper extension of (2)

is then the set of equations (see [9])

Y

(
d

dt

)
IEPV +Z

(
d

dt

)
IE = 0,

I
⊤
E IE + I

⊤
L I = 0, ILPV = P, (8)

where the polynomial matrices Z (ξ ) and Y (ξ ) are diagonal

and Zii(ξ ) = (R +L ξ )ii if that element is nonzero,and 0

else. Likewise, Yii(ξ )= (C ξ )ii if that element is nonzero,and

0 else. These equations define the current/potential behavior

of the circuit as

B = {(I,P) ∈ R
|T|×|T|| ∃ (IE,PV) ∈ R

|E|×R
|V|s.t.(8)}.

This description has the latent variables IE and PV in it.

Eliminating these is not an easy matter. What makes it

difficult is the controllability issue. If one does not worry

about controllability, one may proceed with the transfer

functions (see below). The issue about the interpretaion of

differential equations involving rational functions emerges

[11]. This approach results in an extension of the resistive

network result, i.e., some symmetric hyperdominant with

zero excess structure. In [9] this is shown in terms of (real)

exponential solutions.
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Can one exploit more structure? Similar to (5), in the com-

pact form IR = GPR, we can obtain an exhaustive description

for a purely capacitive network

IC = C
d

dt
PC. (9)

The matrix C has diagonal elements Cii=sum of capacities of

the capacitors connected to leaf i, and Ci j = negative of the

capacity between leaf i and j. Since the behavioral equations

for an inductor imply a symmetric description (7), a partial

behavioral description of a purely inductive network is, in a

compact form,

d

dt
IL = ΓPL.

The matrix Γ has diagonal elements Γii=sum of inverses of

the inductances of the inductors connected to leaf i, and

Γi j = negative of the inverse inductance, L−1
i j between leaf i

and j. The remaining equations (KCL for inductors) further

constrain the behavior.

Note that C and Γ are matrices of the same form as

G in the purely resistive network we described earlier.

Consequently they possess the symmetric, hyperdominant,

zero-excess structure.

As an alternative approach, one can construct a circuit by

joining the resistive, inductive and capacitive parts and then

eliminate the nodes that are not necessary in the behavioral

description (i.e., the internal nodes).

To this effect, single out the leaves in the resistive circuit

that will remain (external) after connection, and partition

the other in leaves that connect to either terminals from

the inductive or the capacitive circuit. Likewise identify the

nodes connected to leaves and the nodes to be eliminated

in the inductive and capacitive circuit. The heavy lines

in Figure 1 denote collections of terminals. However as

ultimately connections will be made, it is understood that

dimILR = dimIRL, and similarly for the other doubly indexed

current and potential vectors.

(IR, PR)

R C

L

(IC, PC)

(IRC, PRC)

(IRL, PRL

(ICR, PCR)

(ICL, PCL)

(ILR, PLR) (ILC, PLC)

(IL, PL)

Fig. 1. Joining R L and C

Thus



IR

IRC

IRL



 =



 G








PR

PRC

PRL





with similar forms for the capacitive and inductive circuits.

After elimination, the RCL network enclosed by the dot-

ted line in Figure 1 results. However,as before issues of

controllability (actually lack of it) may occur, whenever

Schur complements are taken. Controllability is equivalent

to right coprimeness of certain polynomial matrices in the

equations. Note that each of the matrices G, C and Γ is

symmetric, hyperdominant with zero excess, but perhaps

reducible, as shown in the example of Figure 2: The given

RC circuit is decomposed first into a purely resistive and

a purely capacitive circuit. For this we double up some of

the terminals: Terminal 5 in the original RC circuit has a

copy, 5’, in the resistive and a copy, 5”, in the capacitive

circuit. Likewise terminals 2, 3 and 4, but not 1 are doubled.

Consequently we introduce IR = I1, and IRC = [I2, I3, I4, I5]
T ,

while ICR = [I′2, I
′
3, I

′
4, I

′
5]

T , etc. Note that there are no IC com-

ponents, because no terminals connect to only a capacitor.

Terminals of the R- and C-circuits with like numbers are

connected (and if this vertex is not a terminal, eliminated).

Combining the descriptions we get (see figure 1)

1

2 3

4

5

5’

1

2’

3’

4’

2” 3”

4”

5”

Ga

Gb

Gc

Ca

Cb

Ga

Gb

Gc

Ca

Cb

Fig. 2. Partial G and C circuits





I

I

D









IR

IRC

IRL

ICR

IC
ICL

ILR

ILC

IL





=

7756



=





G

CD

Γ









PR

PRC

VPRL

PCR

PC

PCL

PLR

PLC

PL





,

together with the current constraints on the inductive sub-

network. Alternatively, we can do things ‘right’ from the

beginning and use the behavioral equations Ii + I j = 0, Ii =
Γi j

d
dt

(Pi − Pj) for each inductive component, and use the

resulting nonsymmetric behaviorial description for the in-

ductive part. Letting I′
T

= [I′R, I′C, I′L] and P′
T

= [P′
R,P′

C,P′
L]

elimination results in the matrix fraction description [2]

X(D)

[
IT
Iin

]
= Y (D)

[
PT

Pin

]

describing the terminal behavior B and thus equivalent to

(8). It is possible to eliminate the internal variable Iin and

Pin and obtain a polynomial matrix description F
(

d
dt

)[
IT
PT

]

[9].

IV. BUILDING A CIRCUIT FROM ITS COMPONENTS

This is done in two steps. First, to allow for parallel

combinations of distinct elements, we need to consider

graphs, which are permitted to have several edges connected

to the same two vertices. The first step then reduces the

graph description to a simple graph (no parallel edges or self-

loops), by reducing the number the edges between vertices

to at most one. This is performed by induction, one edge at

a time. The second step assumes that one leaf is incident to

every vertex. Then take away one leaf, by letting its current

be zero and eliminating the corresponding potential. The

induction in both steps is shown in the representation of the

behavioral equations.

A. Graph reduction

Let vertices vi and v j have k edges between them, labeled

e1, . . . ,ek. We zoom in onto this subcircuit by disconnecting

all edges connecting vi to all vertices except v j and likewise

for the edges incident to v j but not to vi. This leaves just the

parallel edges connecting vi and v j. Now disconnect k− 1

edges from v j and introduce k− 1 new vertices, which to-

gether with the original v j are labelled v j1 , . . . ,v jk . This gives

a star shaped graph (center at vi), the corresponding circuit

has the behavioral form, given in terms of the currents and

potentials (Ii,Pi) and (I j = [I j1 , . . . , I jk ]
T ,Pj = [Pj1 , . . . ,Pjk ]

T )
[

Ii

I j

]
=

[
∑k

ℓ=1 Yjℓ −Y T
j

−Yj diagYj

][
Pi

Pj

]

where Y T
j = [Yj1 · · ·Yjk] and diagYj is the diagonal matrix

with Yjℓ in the ℓ-th position. The Yjℓ belong to R+∩R+ξ ∩
R+ξ−1. Consequently, the above matrix is symmetric and

its row and column sums add to one. Moreover, since the

admittances only involve elementary components, is only has

terms in ξ ,1 and ξ−1. Hence each of these three coefficient

matrices is symmetric, hyperdominant with zero excess. Link

now the j-vertices one at a time, by setting the corresponding

potentials equal: v j,k−1 = v jk, replacing the I j,k−1-row by

I
(1)
j,k−1 = I j,k−1 + I jk, and finally deleting the last row (corre-

sponding to I jk). This gives a k−1×k−1 matrix of the same

form with as (1,k− 1)- and (k− 1,1)-entry −y j,k−1 − y j,k,

and last entry on the diagonal y j,k−1 + y j,k. This new matrix

is again the sum of three symmetric hyperdominant matrices

with zero excess, respectively multiplied by ξ , 1, and ξ−1.

Now keep iterating until a 2×2 matrix results for the edge

ei j. Since at each step the structure is preserved, the graph

with vertices {vi,v j} and edges {e1, . . . ,ek} is reduced to a

simple graph withe the same two vertices and a single edge.

The resulting edge admittance, Yi j(ξ ) is of the form Gi j +
Ci jξ + Γi jξ

−1 where each coefficient is nonnegative. Doing

this reduction for all multiple edges in the full pseudograph

reduces the topology to a graph. In particular, the circuit

described on this graph has ’elements’ of the form Yi j(ξ )
described above on its edges. We note that each of these

‘elements’ are positive real (pr) functions. Summarizing:

Theorem 2: The manifest behavior for an RLC circuit

where each vertex is connected to a terminal is represented

by I = Y (ξ )V where Y (ξ ) = G+Cξ +Γξ−1 where G,C and

Γ are symmetric, hyperdominant matrices with zero excess.

Conversely, for every such matrix, there exists an RLC circuit

with these terminal potential/current behavioral equations.

B. Simple Graph reduction

The second step in obtaining the manifest behavioral

equations when not every vertex links to a leaf (terminal)

now follows by eliminating terminals in the description

of Theorem 2. For instance, if the last vertex is to be

‘internalized’, we set in

I = Y (ξ )V

where dimI = dimP = n, then set In = 0 and eliminate Pn.

Partitioning Y (ξ ) as

Y (ξ ) =

[
Ŷ −y

−y′ yn

]
(10)

and setting IT = [Î, In] results in the Schur complement

(reduced) behavioral description

Î = [Ŷ − yy′/yn]V̂ . (11)

Also note that, with 1 = [1, . . . ,1]T , the column sum property

is expressible as

Ŷ (ξ )1 = y(ξ ) (12)

y′(ξ )1 = yn(ξ ). (13)

It readily follows from (12) and (13) that [Ŷ − yy′/yn]1 = 0.
Hence the matrix in (11) is symmetric and its rows and

columns sum to zero. Unless yn is not a function of ξ ,

corresponding to a purely resistive edge element, the behav-

ioral equations are no longer described by three symmetric

hyperdominant matrices with zero excess.
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However symmetry and zero sum properties are preserved

throughout each single reduction. Hence, we conclude that

the manifest behavioral equations for an RLC circuit are

given by Î = ŶV̂ , where Ŷ is symmetric with row and

column sums equal to 0. But is there more structure?

Since the off-diagonal elements in (3) are the negative

of positive real functions, one might conjecture that this

property is preserved. However, this is false! (See further).

Definition A matrix Y (ξ ) is positive real (pr) if x∗Y (s)x
is a pr function for all x ∈ C.

Lemma 3: If a rational N ×N matrix Y (s) is symmetric

and pr, then its Schur complements are symmetric, and

hyperdominant with zero excess on the positive real axis.

Proof: similar to the resistive case.

Note that if Y (ξ ) is pr, then, by definition x∗Y (ξ )x is a

pr function for all x ∈ Cn. Consequently, x∗Y (σ)x ≥ 0 for

all real nonnegative σ . This implies that Y (σ) is positive

semi-definite and symmetric. The Schur complements, Ysc,

of such matrices are also symmetric and positive definite:

z∗Ysc(σ)z ≥ 0.

But are these conditions also sufficient? Could a

necessary and sufficient condition for an N ×N matrix to

be the terminal admittance of a passive RLC circuit be that

Y is symmetric, p.r zero excess, hyperdominant for real ξ
(non-diagonal elements of Y (ξ ) nonpositive for real ξ ≥ 0.)?

Remarks

(1.) It is still unknown which conditions are sufficient.

For a resistive network, we have necessary and sufficient

conditions.

(2.) Positive realness of the −Ŷi j for i 6= j is not a necessary

condition. Consider the following counterexample. The full

G

C C

Fig. 3. Y to ∆

behavioral description of this four terminal circuit is I = YP

with, for simplicity letting G = 1 and C = 1

Y =





1 −1

ξ −ξ
ξ −ξ

−1 −ξ −ξ 1 + 2ξ



 . (14)

We want to eliminate the terminal incident to the center of

the Y-circuit. The corresponding Schur complement is

1

(1 + 2ξ )




2ξ −ξ −ξ
−ξ ξ 2 + ξ −ξ 2

−ξ −ξ 2 ξ + ξ 2



 . (15)

The (2,3)-element is

−
ξ 2

1 + 2ξ
.

Its real part evaluates on the imaginary axis to

ℜY23( jω) =
ω2

1 + 4ω2
.

Hence −Y23(ξ ) is not a pr function. The interpretation of

(15) is as the admittance matrix of the Delta in the Y-∆
transformation. The admittances in the edges of the Delta

are thus not all positive real functions!

V. CONCLUSION

We have shown how the behavioral equations for a

purely resistive circuit with time invariant resistors may

be extended to an RLC circuit with linear time-invariant

elements. The behavior is represented by a rational matrix

in ξ which is symmetric, positive real and with zero column

and row sums. Its evaluation on the positive real axis is

hyperdominant with zero excess. We have also shown that

the full extension (notably the converse) of Theorem 1 for

purely resistive networks is far from trivial. In particular the

quest for sufficient conditions is still open.
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