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Abstract—The behavioral approach to dynamical systems is
applied to electrical circuits. This offers an attractive way
to introduce circuits pedagogically. An electrical circuit is a
device that interacts with its environment through wires, called
terminals. Associated with each terminal, there are two variables,
a potential and a current. Interconnection is viewed as terminals
that share their potential and their current after interconnection.
A port is a set of terminals that satisfies port-KCL. If terminals
{1,2, . . . , p} form a port, and Vk denotes the potential and Ik

the current at the k-th terminal, then we define the power
that flows into the circuit at time t along these p terminals
as V1(t)I1(t) +V2(t)I2(t) + · · ·+Vp(t)Ip(t), and the energy that
flows into the circuit along these p terminals during the time-
interval [t1,t2] as

∫ t2
t1

(

V1(t)I1(t)+V2(t)I2(t)+ · · ·+Vp(t)Ip(t)
)

dt.
These expressions for power and energy are not valid unless
the set of terminals forms a port. We conclude that terminals
are for interconnection, and ports are for energy transfer. We
formulate a theorem stating that a connected RLC circuit forms
a 1-port.

I. INTRODUCTION

The aim of this article is to explain the distinction that

should be made in physical systems between interconnection

of systems on the one hand, and energy transfer between sys-

tems on the other hand. Interconnection happens via terminals,

while energy transfer happens via ports. We consider systems

that interact through terminals, as wires for electrical circuits.

We use the behavioral approach [8] as a pedagogically

attractive way to discuss mathematical models and dynamical

systems, and, in particular, electrical circuits.

II. CIRCUITS

We view an electrical circuit as a device, a black-box, with

wires, called terminals, through which the circuit can interact

with its environment (see Figure 1). The interaction takes place
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Fig. 1. An electrical circuit

through two real variables, a potential and a current, at each

terminal. Throughout, the current is counted positive when it

flows into the circuit. For the basic concepts of circuit theory,

see [2] and [3]. The setting developed in [5] and [6] has the

same flavor as our approach.

An N-terminal electrical circuit is a dynamical system Σ =
(R,R2N ,B), with time axis R, signal space R

2N , and behavior

B a subset B ⊆
(

R
2N

)R
; (V, I) ∈ B means that the time-

function (V, I) = (V1,V2, . . . ,VN , I1, I2, . . . , IN) : R → R
N ×R

N

is compatible with the architecture and the element values of

the circuit.

Circuit properties are defined in terms of the behavior.

◮ A circuit obeys Kirchhoff’s voltage law (KVL) if

(V1, . . . ,VN , I1, . . . , IN) ∈ B and α : R → R imply

(V1 + α, . . . ,VN + α, I1, . . . , IN) ∈ B.

◮ A circuit obeys Kirchhoff’s current law (KCL) if

(V1, . . . ,VN , I1 . . . , IN) ∈ B implies I1 + · · ·+ IN = 0.

◮ A circuit is linear if B is a linear subspace of
(

R
2N

)R
.

A circuit obeys KVL if the behavioral equations contain only

the differences Vi−V j for i, j ∈ {1,2, . . . ,N}. KVL means that

the potentials are defined up to an arbitrary additive constant

(that may change in time). KCL means that the circuit stores

no net charge. Linearity means that the superposition principle

holds.

The behavior of the classical linear circuit elements are

defined by equations. For the 2-terminal elements, we have

resistor: V1 −V2 = RI1, I1 + I2 = 0,

capacitor: C
d

dt
(V1 −V2) = I1, I1 + I2 = 0,

inductor: V1 −V2 = L
d

dt
I1, I1 + I2 = 0,

while for the 4-terminal elements, we have

transformer:

V1 −V2 = n(V3 −V4), nI1 + I3 = 0, I1 + I2 = 0, I3 + I4 = 0,

gyrator:

V1 −V2 = gI3, V3 −V4 = −gI1, I1 + I2 = 0, I3 + I4 = 0.

The transistor is a 3-terminal element. Denote the terminals

by {e,c,b}. In the case of a pnp transistor, the behavioral

equations are of the form Ie = fe(Ve−Vb,Vc−Vb), Ic = fc(Ve−
Vb,Vc −Vb), Ie + Ic + Ib = 0. An n-terminal connector is an

element with equations

V1 = V2 = · · · = Vn, I1 + I2 + · · ·+ In = 0.
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III. INTERCONNECTION

We view interconnection as connecting terminals, like sol-

dering wires together. Assume that we have a circuit with N
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Fig. 2. Terminal connection

terminals. Connecting terminals N − 1 and N, as shown in

Figure 2, leads to imposing the relations

VN−1 = VN , IN−1 + IN = 0.

This implies that after interconnection the terminals share the

variables VN−1,VN , and IN−1, IN (up to a sign). Interconnection

is therefore variable sharing. The interconnected circuit has

N −2 terminals. Its behavior is

B
′ = {(V1, I1,V2, I2, . . . ,VN−2, IN−2) : R → R

2(N−2)| ∃V, I

such that (V1, I1,V2, I2, . . . ,VN−2, IN−2,V, I,V,−I) ∈ B}.

Once we have defined the connection of two terminals of

the same circuit, we obtain what happens when we connect

two terminals of two different circuits, or many terminals of

many circuits (see Figure 3).

Circuit 1

Circuit 1 Circuit 2

Circuit 2

Circuit 3

Fig. 3. Interconnection of circuits.

Interconnection preserves many circuit properties. In par-

ticular, if B obeys KVL, or KCL, or is linear, then so does

B′.

IV. PORTS

In this section, we introduce a notion that is essential to

the energy exchange of a circuit with its environment and

between circuits. Consider an N-terminal circuit, and single

out p terminals, which we take to be the first p terminals.

The set of terminals {1,2, . . . , p} forms a port :⇔

(V1, . . . ,Vp,Vp+1, . . . ,VN , I1, . . . , Ip, Ip+1, . . . , IN) ∈ B

⇒ I1 + I2 + · · ·+ Ip = 0.
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Fig. 4. Port

We call this relation port-KCL.

KCL implies that all the terminals combined form a port,

and if terminals {1,2, . . . , p} form a port, then so do terminals

{p + 1, p + 2, . . . ,N}. If terminals {1,2, . . . , p} form a port,

then we call this set of terminals a p-terminal port. If the circuit

terminals are partitioned into the ports {1, . . . , p1},{p1 +
1, . . . , p1 + p2}, . . . ,{p1 + · · ·+ pk−1 + 1, . . . , p1 + · · ·+ pk−1 +
pk = N}, then we call the circuit a k-port consisting of p1-,

. . ., pk-terminal ports.

If the set of terminals {1,2, . . . , p} form a port, then we

define the power that flows into the circuit at time t along

these p terminals to be equal to

power = V1(t)I1(t)+V2(t)I2(t)+ · · ·+Vp(t)Ip(t),

and the energy that flows into the circuit along these p

terminals during the time-interval [t1,t2] to be equal to

energy =

∫ t2

t1

(V1(t)I1(t)+V2(t)I2(t)+ · · ·+Vp(t)Ip(t)) dt.

These formulas for power and energy are not valid unless these

terminals form a port ! In particular, it is not possible to speak

about the energy that flows into the circuit along a single wire

— a conclusion that is physically evident. Power and energy

flow are not ‘local’ physical entities, but they involve ‘action

at a distance’, they require more than one terminal.

Resistors, capacitors, and inductors are 2-terminal 1-ports.

Transformers and gyrators are 2-terminal 2-ports. Terminals

{1,2} and {3,4} of a transformer and a gyrator form 1-ports,

and the energy that flows into the port {1,2} is equal to the

energy that flows out of the port {3,4}. A transistor is a 3-

terminal 1-port, and a connector that connects n terminals is

an n-terminal 1-port. A 2-terminal circuit that consists of the

interconnection of circuits that all satisfy KCL forms a 1-port,

since KCL is preserved under interconnection. In particular,

a 2-terminal circuit that is composed of resistors, capacitors,

inductors, transformers, gyrators, connectors, etc. forms a port.

However, a pair of terminals of a circuit with more than two

terminals rarely form a port.

1

2

3

4

Fig. 5. A transmission line
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For the circuit shown in Figure 5, the terminals {1,2,3,4}
form a port, but there is no reason why the terminal pairs

{1,2} and {3,4} should form ports. In particular, it is not

possible to discuss the relation between the energy that flows

from the terminals {1,2} to the terminals {3,4}.

In order to make the terminal pairs {1,2} and {3,4} of

the transmission line in Figure 5 into ports, one can add unit

transformers, as shown in Figure 6.
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Fig. 6. A transmission line with unit transformers

V. INTERNAL PORTS

In order to study the energy flow inside a circuit, we

introduce in this section circuits with both external and internal

terminals. In many circumstances, a model of an electrical

circuit is needed that describes not only the behavior of the

potential and current on the external terminals, but also the

behavior of certain variables inside the circuit. These internal

variables could in principle be any combination or function

of internal variables, but for simplicity we assume that we

are concerned with the potential and current on certain of the

internal terminals, as shown in Figure 7.

Assume that there are N external terminals, {1,2, . . . ,N},

and N′ internal terminals, {1′,2′, . . . ,N′}. The dynamic laws

of the circuit define a dynamical system Σ = (R,R2(N+N′),B),
where (V, I) ∈ B means that the time-function (V, I) =
(V1, . . . ,VN ,V1′ , . . . ,VN′ , I1, . . . , IN , I1′ , . . . , IN′) : R →R

2(N+N′) is

compatible with the architecture of the circuit and the values

of the elements in the circuit.
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Fig. 7. A circuit with external and internal terminals.

Terminals {1′,2′, . . . ,N′} forms an internal port :⇔

(V1, . . . ,VN ,V1′ , . . . ,VN′ , I1, . . . , IN , I1′ , . . . , IN′) ∈ B

⇒ I1′ + I2′ + · · ·+ IN′ = 0.

A circuit has in general external ports, consisting of only

external terminals, internal ports, consisting of only internal

terminals, and mixed ports, consisting of both external and

internal terminals. The internal ports allow to consider the

power and energy flow between internal parts of a circuit. For

example, it is possible to consider the energy transferred into

the terminals {1,2} and {3,4} of the circuit shown in Figure

8, since these pairs of terminals form internal ports.
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Fig. 8. A terminated transmission line

In addition to power and energy flow along ports, one can

consider port-like trajectories, that is elements of B which

have I1(t)+ I2(t)+ · · ·+ Ip(t) = 0 for t ∈ [t1,t2]. In this case,

rather than port-KCL being implied by B as a consequence of

properties of the circuit, it is imposed on B, for example by the

intended termination that one has in mind. In such situations,

it is legitimate to discuss power and energy flow along a set

of terminals. This situation is frequently encountered in the

classical literature, for example in the theory of N-ports.

VI. TERMINALS ARE FOR INTERCONNECTION, PORTS FOR

ENERGY TRANSFER

As explained before, interconnection means that certain

terminals share the same potential and current (up to a sign).

This is distinctly different from stating that power or energy

flows from one side of an interconnection to the other side.

Power and energy involve ports, and this requires consideration

of more than one terminal at the time. For example, the two

circuit 2

Electrical Electrical

circuit 1

Fig. 9. Interconnected circuits

circuits in Figure 9 share four terminals, but it is not possible

to speak of the energy that flows from circuit 1 to circuit

2, unless the connected terminals form internal ports, and it

is not possible to speak about the energy that flows from the

environment into circuit 1, or from the environment into circuit

2, unless the external terminals of circuit 1 and of circuit 2

form ports (or the behavior is restricted to port-like behavior).

Of course KVL and KCL imply that the complete set of

external terminals of the interconnected system forms a port.

Setting up behavioral equations of a circuit involves in-

terconnection and variable sharing. Exchange of power and

energy involves ports. Interconnections need not involve ports

or power and energy transfer. These observations put into

perspective power-based modeling methodologies of intercon-

nected systems, as bond graphs [7], [4]. In [8] we propose a

modeling methodology for interconnected systems based on

tearing, zooming, and linking, which involves interconnection

by sharing variables, but in which power considerations do not

take a central place.
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VII. CIRCUITS WITH 2-TERMINAL PORTS

A 2N-terminal circuit that consists of N pairs of terminals

{1,2},{3,4}, . . . ,{2N − 1,2N} that all form 1-ports can be

described in terms of 2N port variables, N voltages and N

currents, instead of 4N terminal variables, 2N potentials and

2N currents. The 2N-terminal circuit Σ =
(

R,R4N ,B
)

leads

to the N-port circuit Σport =
(

R,R2N ,Bport

)

with behavior

Bport := {(V1,V2, . . . ,VN , I1, I2, . . . , IN) : R → R
2N |

(V1,0,V2,0, . . . ,VN ,0, I1,−I1, I2,−I2, . . . , IN ,−IN) ∈ B}.

The port description is more parsimonious than the terminal

description, since it involves only half as many variables.

Classical circuit theory has focusses on elements that have

2-terminal ports (resistors, capacitors, inductors, transformers,

gyrators), interconnected by connectors. The architecture of

such circuits can be nicely described in terms of digraphs with

leaves, with 2-terminal ports in the edges, connectors in the

vertices, and leaves for the external terminals.

Unfortunately, the set-up used in classical circuit theory has

serious drawbacks. To begin with, important circuit elements,

as transistors, do not consist of 2-terminal ports. Also, the

interconnection of 2-terminal ports does not lead to circuits

with 2-terminal ports. Such circuits need not even have an

even number of terminals. This is illustrated by circuits,

as Y ’s or ∆’s, that have 3 external terminals. The terminal

approach for the description of circuits is much more suited

for hierarchical modeling [8] than the port description, even

though, as we have seen, the latter leads to models that are

more parsimonious in terms of the number of variables needed.

Often, the port structure studied does not result from the

architecture and the element values of the circuit, but from the

intended use of terminal pairs as 2-terminal 1-ports. In other

words, we are not dealing with proper ports, but with port-like

behavior. Unfortunately, the classical literature is often quite

confusing about this point.

VIII. TWO THEOREMS

We end this article with some concrete results regarding

ports. Informally, the first theorem states that a connected RLC

circuit forms a 1-port. In order to have a multiport, we need to

use multiport building blocks, as transformers or gyrators. In

order to make this into a precise result, we need to introduce

a bit of graph theory.

A graph with leaves is defined as G = (V,E,L, fE, fL),
with V a finite set of vertices, E a finite set of edges, L

a finite set of leaves, fE the edge incidence map, and fL
the leaf incidence map. fE maps each element e ∈ E into

an unordered pair [v1,v2], with v1,v2 ∈ V, and fL is a map

from L to V. A path from leaf ℓ1 ∈ L to leaf ℓ2 ∈ L is a

sequence (ℓ1,v1,e1,v2,e2, . . . ,vn,en,vn+1, ℓ2) with vm ∈ V for

m = 1,2, . . . ,n+1, em ∈E for m = 1,2, . . . ,n, ℓ1 incident to v1,

vm, vm+1 incident to em for m = 1,2, . . . ,n+1, and ℓ2 incident

to vn+1. A graph with leaves is said to have connected leaves

if there is a path between every pair of leaves.

For RLC circuits, the architecture is defined by a graph with

leaves G = (V,E,L, fE, fL). The leaves correspond to external

terminals, and the vertices to connectors. Associate with each

edge a positive linear resistor, or a positive linear capacitor,

or a positive linear inductor.

Theorem : Assume that the graph with leaves that defines the

architecture of a linear passive N-terminal RLC circuit has

connected leaves. Then this circuit has no ports other than the

one consisting of the complete set of terminals {1,2, . . . ,N}.

In [9], this theorem is proven for resistive circuits. The

Bott-Duffin synthesis result immediately leads to a general-

ization of this theorem to circuits with arbitrary linear passive

impedances in the edges.

A second result involves the relation between port-KCL and

port-KVL. Consider an N-terminal circuit, and single out the

first p terminals. The set of terminals {1,2, . . . , p} satisfies

port-KVL

:⇔ [[(V1, . . . ,Vp,Vp+1, . . . ,VN , I1, . . . , Ip, Ip+1, . . . , IN) ∈ B

and α : R → R]] ⇒ [[(V1 + α, . . . ,Vp + α,Vp+1, . . . ,VN ,

I1, . . . , Ip, Ip+1, . . . , IN) ∈ B.

This condition is equivalent to asking that the behavioral

equations contain the variables Vi for i ∈ {1,2, . . . , p} only

through the differences Vi −V j for i, j ∈ {1,2, . . . , p}.

Theorem : For a linear passive circuit port-KCL ⇔ port-KVL.

The notion of a port may be generalized to other types (me-

chanical, thermal, hydraulic) of systems. The generalization to

mechanical systems is especially interesting due to the fact that

a mass does not form a port.
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