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Abstract— There is an effective way of constructing a Lya-
punov function without recourse to a state space construction.
This is based upon an integral of special type called a path
integral, and this approach is particularly suited for behavior
theory. The theory successfully exhibits a deep connection
between Lyapunov theory and Bézoutians, but it remained
mostly in the finite-dimensional context. This paper extends
the theory to a class of systems described by a wider class
of transfer functions called pseudorational, which contains an
interesting class of distributed parameter systems, e.g., delay
systems. The paper extends the notion of path integrals using
an convolution algebra of distributions, and then relates this
theory to an infinite-dimensional version of Bézoutians, which in
turn gives rise to a new interesting class of Lyapunov functions.

I. INTRODUCTION

It is well known and appreciated that Lyapunov theory
plays a key role in stability theory of dynamical systems.
Lyapunov functions defined on the state space are central
tools in linear and nonlinear system theory.

It is perhaps less appreciated that there is an effective way
of constructing a Lyapunov function and discussing stability
without recourse to a state space formalism. This approach is
based upon an integral of special type, called path integral.
Given a dynamical system and trajectories associated with
it, an integral is said to be a path integral if its value is
independent of the trajectory except that it depends only on
its values (including derivatives) at the end points.

This leads to an elegant theory of constructing Lyapunov
functions for linear systems; it was developed in late 60s
by R.W. Brockett [1]. This approach had been somewhat
forgotten for quite some time since then, but recently new
light is shed on this approach in the behavioral context
[4], [5]. The approach is particularly suitable for behavioral
theory, and it provides a basis-free approach for the general
theory of stability and Lyapunov functions.

So far the theory has only been developed for finite-
dimensional systems for various technical reasons. Recently,
the authors developed a new framework for studying be-
haviors for infinite-dimensional systems [12] in the context
of pseudorational transfer functions. This class of systems
is described as the kernel of a convolution operator as
{w : p ∗w = 0} with p a distribution with compact support.

Delay systems, retarded or neutral, or systems with bounded
impulse response can be well handled by this class (see, e.g.,
[9]), and provides a suitable framework for generalizing path
integrals and related Lyapunov theory; see also [13].

II. NOTATION AND NOMENCLATURE

C ∞ (R,R) (C ∞ for short) is the space of C∞ functions on
(−∞,∞). Similarly for C ∞ (R,Rq) with higher dimensional
codomains. D (R,Rq) denote the space of Rq-valued C∞

functions having compact support in (−∞,∞). D ′ (R,Rq) is
its dual, the space of distributions. D ′

+ (R,Rq) is the subspace
of D ′ with support bounded on the left. E ′(R,Rq) denotes
the space of distributions with compact support in (−∞,∞).
E ′(R,Rq) is a convolution algebra and acts on C ∞ (R,R)
by the action: p∗ : C ∞ (R,R) → C ∞ (R,R) : w �→ p ∗ w.
C ∞ (R,R) is a module over E ′ via this action. Similarly,
E ′(R2,Rq) denotes the space of distributions in two variables
having compact support in R2. For simplicity of notation, we
may drop the range space R

q and write E ′(R), etc., when
no confusion is likely,

A distribution α is said to be of order at most m if it
can be extended as a continuous linear functional on the
space of m-times continuously differentiable functions. Such
a distribution is said to be of finite order. The largest number
m, if one exists, is called the order of α ([2], [3]). The delta
distribution δa (a ∈ R) is of order zero, while its derivative
δ ′

a is of order one, etc. A distribution with compact support
is known to be always of finite order ([2], [3]).

The Laplace transform of p ∈ E ′(R,Rq) is defined by

L [p](ζ ) = p̂(ζ ) := 〈p,e−ζ t〉t (1)

where the action is taken with respect to t. Likewise, for
p ∈ E ′(R2,Rq), its Laplace transform is defined by

p̂(ζ ,η) := 〈p,e−(ζ s+ηt)〉s,t (2)

where the distribution action is taken with respect to two
variables s and t. For example, L [δ ′′

s ⊗ δ ′
t ] = ζ 2 ·η .

By the well-known Paley-Wiener theorem [2], [3], p̂(ζ ) is
an entire function of exponential type satisfying the Paley-
Wiener estimate

|p̂(ζ )| ≤C(1 + |ζ |)rea|Reζ | (3)
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for some C,a ≥ 0 and a nonnegative integer r.
Likewise, for p ∈ E ′(R2,Rq), there exist C,a ≥ 0 and a

nonnegative integer r such that its Laplace transform

|p̂(ζ ,η)| ≤C(1 + |ζ |+ |η |)rea(|Reζ |+|Reη|). (4)

This is also a sufficient condition for a function p̂(·, ·) to
be the Laplace transform of a distribution in E ′(R2,Rq). We
denote by PW the class of functions satisfying the estimate
above for some C,a,m. In other words, PW = L [E ′].

Other spaces, such as L2, L2
loc are all standard. For a vector

space X , Xn and Xn×m denote, respectively, the spaces of n
products of X and the space of n×m matrices with entries in
X . When a specific dimension is immaterial, we will simply
write X• X•×•.

III. QUADRATIC DIFFERENTIAL FORMS

In the classical context, path integrals and quadratic dif-
ferential forms are studied over the ring of polynomials
in two variables R[ζ ,η ] [4], [5]. Consider the symmetric
two-variable polynomial matrix Φ = Φ∗ ∈ Rq×q[ζ ,η ], where
Φ∗[ζ ,η ] := ΦT [η ,ζ ], with coefficient matrices as Φ(ζ ,η) =
∑k,� Φk,�ζ kη�. The quadratic differential form (QDF for
short) QΦ : (C ∞)q → (C ∞)q is defined by

QΦ(w) := ∑
k,�

(
dk

dtk w
)T

Φk,�

(
d�

dt�
w
)

.

For example, Φ = (ζ + η)/2 yields the QDF QΦ =
w(dw/dt).

Observing this example, we notice that we can view Φ
as the Laplace transform of two-variable distributions (δ ′

s ⊗
δt + δs ⊗ δ ′

t )/2 where δ ′
s denotes the derivative of the delta

distribution in the variable s, and likewise for δ ′
t , δs, δt , etc.;

αs⊗βt denotes the tensor product of two distributions α and
β . (In fact, L [δ ′

s ] = ζ , and L [δ ′
t ] = η .)

Generalizing this, we can easily extend the definition
above to tensor products of distributions in variables s and t,
and then to distributions Φ ∈ E ′(R2). Indeed, if Φ = αs⊗βt ,
α,β ∈ E ′(R)

QΦ(w) = (w∗α) · (β ∗w),

and extend linearly for the elements of form ∑k,� α i
s ⊗ β j

t .
Since E ′(R)⊗E ′(R) is dense in E ′(R2) (cf., [3]), we can
extend this definition to the whole of E ′(R2). Finally, for the
matrix case, we apply the definition above to each entries.

In short, given Φ ∈ E ′(R2,Rq),

Φ(v,w) = vs ∗Φ∗wt (5)

where the convolution from the left is taken with respect to
the variable s while that on the right is taken with respect
to t. For example, v∗ (∑αk ⊗β�)∗w = ∑k,�(v∗αk)s(β� ∗w)t .
This gives a bilinear mapping from (C ∞) to (C ∞). Then the
quadratic differential form QΦ associated with Φ is defined
by

QΦ(w) := Φ(w,w) = vs ∗Φ∗wt|s=t . (6)

Given Φ ∈ E ′(R2)q×q such that Φ∗ = Φ, we define the
quadratic differential form QΦ : (C ∞)q → (C ∞)q associated
with Φ by

QΦ(w) := Φ(w,w) = (ws ∗Φ∗wt)|s=t (7)

as a function of a single variable t ∈ R.

Example 3.1: Define Φ := (1/2)[δ ′
s ⊗ δt + δs ⊗ δ ′

t ]. Then
Φ(v,w) = (1/2)[(dv/ds)(s) · w(t) + v(s) · (dw/dt)(t)] and
QΦ(w) = (1/2)[(dw/dt)(t) ·w(t)+ w(t) · (dw/dt)(t)].

Example 3.2: For Φ := δ ′′
−1 ⊗ δ ′

−1,

QΦ(w) = Φ(w,w) =
d2w
dt2 (t + 1) · dw

dt
(t + 1).

A. Basic Operations on E ′(R2,Rq) or PW

Let P ∈ (E ′)(R2)n1×n2 . Define P˜ ∈ (E ′)n2×n1 by

P˜ := (P̌)T (8)

where α̌ is defined by

〈α̌,φ〉 := 〈α,φ(−·)〉,α ∈ E ′,φ ∈ C ∞ (R,R) .

Hence for P̂ ∈ (PW )n1×n2 , P̂˜(ζ ) = (P̌T )̂ = (P̃)̂(ζ ) =
P̂T (−ζ ).

For P̂ ∈ PW •×•[ζ ,η ], P̂∗(ζ ,η) := P̂T (η ,ζ ). Also,

P̂•(ζ ,η) := (ζ + η)P̂(ζ ,η).

In the (s,t)-domain, this corresponds to

•
P= (δ ′

s ∗P)+ (δ ′
t ∗P) =

(
∂
∂ s

+
∂
∂ t

)
P. (9)

∂ P̂(ξ ) := P̂(−ξ ,ξ ).

For an element P of type P = αs ⊗βt , this means

∂P = α̌t ⊗βt .

The formula for the general case is obtained by extending
this linearly.

We note the following lemma for the expression
Φ̂(ζ ,η)/(ζ + η) to belong to the class PW :

Lemma 3.3: Let f ∈ (PW )•×•. f (ζ ,η)/(ζ +η) belongs
to the class PW if and only if ∂ f = 0, i.e., f (−ξ ,ξ ) = 0.

Proof If f (ζ ,η) = (ζ +η)g(ζ ,η) for some entire function
g, then clearly f (−ξ ,ξ )= 0 for every ξ . Conversely, suppose
f (−ξ ,ξ ) = 0 for every ξ . For each η ∈ C, define

fη (ζ ) := f (ζ ,η).

Then by f (−ξ ,ξ ) = 0, fη (ζ ) has a factor (ζ +η), and can
be written as fη (ζ ) = (ζ +η)gη(ζ ). The analyticity of g in
ζ and in η follows from that of f . Write gη(ζ ) as g(ζ ,η).
We must show the Paley-Wiener estimate (4) for g. Since f
satisfies (4), we have, for |ζ + η | ≥ 1, that

|g(ζ ,η)| =
∣∣∣∣ f (ζ ,η)

ζ + η

∣∣∣∣ ≤C(1 + |ζ |+ |η |)rea(|Reζ |+|Reη|),

(10)
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because |ζ +η | ≥ 1. If we show the same type of estimate for
the region |ζ +η | ≤ 1, the proof would be complete. Now fix
any ζ ∈ C, and consider the region Dζ := {η : |η +ζ | ≤ 1},
whose boundary is γζ = {η : |η +ζ |= 1}. According to (10),
|g(ζ ,η)| ≤ C(1 + |ζ |+ |η |)rea(|Reζ |+|Reη|) on γζ . Then by
the maximum modulus principle, g(ζ ,η) satisfies the same
estimate in the region Dζ . Since ζ is arbitrary, it satisfies the
estimate (10) irrespective of |ζ + η | ≤ 1 or not. This shows
the Paley-Wiener estimate for g, and the claim is proved. �

The following lemma is a direct consequence of the
definition of

•
Ψ:

Lemma 3.4: For Ψ ∈ E ′(R2,Rq)•×•,

d
dt

QΨ = Q •
Ψ
.

Proof Consider αs ⊗βt , and consider the action w �→ (w∗
α) · (β ∗w). According to (9), differentiation of this yields
(w ∗ (dα/ds)) · (β ∗w) + (w ∗ α) · ((dβ/dt) ∗ w)|s=t = (w ∗
δ ′

s ∗α · (β ∗w)+ (w∗α) · ((δ ′
t ∗β )∗w)|s=t = Q •

Ψ
(w). Extend

linearly and then also extend continuously to complete the
proof. �

IV. PATH INTEGRALS

The integral ∫ t2

t1
QΦ(w)dt (11)

(or briefly
∫

QΦ) is said to be independent of path, or simply
a path integral if it depends only on the values taken on by
w and its derivatives at end points t1 and t2 (but not on the
intermediate trajectories between them).

The following theorem gives equivalent conditions for Φ
to give rise to a path integral.

Theorem 4.1: Let Φ ∈ E ′(R2)q×q, and QΦ the quadratic
differential form associated with Φ. The following conditions
are equivalent:
(i)

∫
QΦ is a path integral;

(ii) ∂Φ = 0;
(iii)

∫ ∞
−∞ QΦ(w)dt = 0 for all w ∈ D (R,Rq);

(iv) the expression Φ̂(ζ ,η)/(ζ + η) belongs to the class
PW .

(v) there exists a two-variable matrix Ψ ∈ E ′(R2)q×q that
defines a Hermitian bilinear form on (C ∞)q ⊗ (C ∞)q

such that
d
dt

QΨ(w) = QΦ(w) (12)

for all w ∈ C ∞ (R,Rq).
Proof
(i) ⇒ (iii) is trivial by taking t1 and t2 outside the support
of w.
(ii) ⇔ (iii) is obvious from Parseval’s identity∫ ∞

−∞
QΦ(w)dt =

1
2π

∫ ∞

−∞
ŵT (−iω)Φ̂(−iω , iω)ŵ(iω)dω .

(The implication (iii) ⇒ (ii) requires a technical argument
that nonvanishing Φ̂ for some ω0 yields a nonzero integral

on the right for some w, but this follows from a standard
real analysis argument.)
(ii) ⇔ (iv) This is obvious from Lemma 3.3.
(iv) ⇔ (v) follows trivially from Lemma 3.4.
(v) ⇒ (i) is trivial. �

V. PSEUDORATIONAL BEHAVIORS

We review a few rudiments of pseudorational behaviors as
given in [12].

Definition 5.1: Let R be an p× w matrix (w ≥ p) with
entries in E ′. It is said to be pseudorational if there exists a
p×p submatrix P such that

1) P−1 ∈ D ′
+(R) exists with respect to convolution;

2) ord(detP−1) = −ord(detP), where ordψ denotes the
order of a distribution ψ [2], [3] (for a definition, see
the Appendix).

Definition 5.2: Let R be pseudorational as defined above.
The behavior B defined by R is given by

B := {w ∈ C ∞ (R,Rq) : R∗w = 0} (13)

The convolution R∗w is taken in the sense of distributions.
Since R has compact support, this convolution is always well
defined [2].

Remark 5.3: We here took C ∞ (R,Rq) as the signal space
in place of L2

loc(R,Rq) in [12], but the basic structure remains
intact.

A state space formalism is possible for this class and it
yields various nice properties as follows:

Suppose, without loss of generality, that R is partitioned as
R =

[
P Q

]
such that P satisfies the invertibility condition

of Definition 5.1, i.e., we consider the kernel representation

P∗ y + Q∗ u = 0 (14)

where w :=
[

y u
]T is partitioned conformably with the

sizes of P and Q.
A nice consequence of pseudorationality is that this space

X is always a closed subspace of the following more tractable
space XP:

XP := {x ∈ (L2
[0,∞))

p |P∗ x|[0,∞) = 0}, (15)

and it is possible to give a realization using XP as a state
space. The state transition is generated by the left shift
semigroup:

(στ x)(t) := x(t + τ)

and its infinitesimal generator A determines the spectrum of
the system ([6]). We have the following facts concerning
the spectrum, stability, and coprimeness of the representation[

P Q
]

([6], [7], [8], [9]):

Facts 5.4: 1) The spectrum σ(A) is given by

σ(A) = {λ | det P̂(λ ) = 0}. (16)

Furthermore, every λ ∈ σ(A) is an eigenvalue with
finite multiplicity. The corresponding eigenfunction for
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λ ∈ σ(A) is given by eλ tv where P̂(λ )v = 0. Similarly
for generalized eigenfunctions such as teλ tv′.

2) The semigroup σt is exponentially stable, i.e., satisfies
for some C,β > 0

‖σt‖ ≤Ce−β t , t ≥ 0,

if and only if there exists ρ > 0 such that

sup{Reλ : det P̂(λ ) = 0} ≤ −ρ .

VI. PATH INTEGRALS ALONG A BEHAVIOR

Generalizing the results of Section IV on path integrals in
the unconstrained case, we now study path integrals along a
behavior B.

Definition 6.1: Let B be the behavior (13) with pseudo-
rational R. The integral

∫
QΦ is said to be independent of

path or a path integral along B if the path independence
condition holds for all w1,w2 ∈ B.

Let B be as above. We assume that B also admits
an image representation, i.e., B = M ∗ C ∞ (R,Rq). This
implies that B is controllable. In fact, for a polynomial R,
controllability of B is also sufficient for the existence of an
image representation, but in the present situation, it is not
fully known. A partial necessary and sufficient result for the
scalar case is given in [12].

We then have the following theorem.

Theorem 6.2: Let B be a behavior defined by a pseudora-
tional R, and suppose that B admits an image representation
B = imM∗. Let Φ be as above. Then the following condi-
tions are equivalent:
(i)

∫
QΦ is a path integral along B;

(ii) there exists Ψ = Ψ∗ ∈ PW q×q[ζ ,η ] such that

d
dt

QΨ(w) = QΦ(w) (17)

for all w ∈ B;
(iii)

∫
QΦ′ is a path integral where Φ′ is defined by

Φ′(ζ ,η) := MT (ζ )Φ(ζ ,η)M(η);
(iv) ∂Φ′ = 0;
(v) there exists Ψ′ = (Ψ′)• = PW q×q[ζ ,η ] such that

d
dt

QΨ′(�) = QΦ′(�)

for all � ∈ C ∞, i.e., Ψ′• = Φ′.
Proof The equivalence of (iii), (iv) and (v) is a direct
consequence of the image representation B = M ∗C ∞ and
Theorem 4.1. The crux here is that the image representation
reduces these statements on w ∈ B to the unconstrained �
via w = M ∗ �. The equivalence of (ii) and (v) is also an easy
consequence of the image representation: for every w ∈ B
there exists � ∈ C ∞ such that w = M ∗ �.

Now the implications (ii) ⇒ (i) and (i) ⇒ (iv) are obvious.
�

We also have the following proposition:

Proposition 6.3: Let B be as above, admitting an image
representation B = imM∗. Suppose that the extended Lya-
punov equation

X∗ ∗R + R∗ ∗X = ∂Φ (18)

has a solution X ∈ E ′(R2)q×q. Then
∫

QΦ is a path integral.

Outline of Proof Take w1,w2 ∈ B and t1, t2 ∈ R, and con-
sider

∫ t2
t1 QΦ(w1) and

∫ t2
t1 QΦ(w2). Since B admits the image

representation B = imM∗, there exist �1, �2 ∈ C ∞ (R,Rq)
such that wi ∈ M ∗ �i, i = 1,2.

Suppose that w1 and w2 have the same values and deriva-
tives at end points t1 and t2. Clearly w = M ∗ �, for � =
�1 − �2. Then � ∈ C ∞ (R,Rq). This � does not necessarily
have a compact support, but suppose for the moment that
supp� ⊂ [−t1, t2]. Since R∗M = 0, we have

M∗ ∗ (∂Φ)∗M = M∗ ∗ (X∗ ∗R + R∗ ∗X)∗M = 0. (19)

Then the assertion readily reduces to Theorem 4.1. Indeed,
we have from Parseval’s identity and (19)∫ t2

t1
QΦ(w)dt =

1
2π

∫ ∞

−∞
ŵT (−iω)Φ̂(−iω , iω)ŵ(iω)dω

=
1

2π

∫ ∞

−∞
�̂

T
(−iω)M̂∗(X̂∗R̂ + R̂X̂)M̂�̂(iω)dω

= 0

Hence the integrals
∫ t2

t1 QΦ(w1) and
∫ t2

t1 QΦ(w2) are equal.
When � does not have compact support, take any ε > 0.

It is possible to multiply a C ∞ function χε(t) taking values
in [0,1] as

χε(t) :=
{

1, t ∈ [t1, t2]
0, t < t1 − ε or t > t2 + ε.

Then χε� → � as ε → 0. Also,∫ ∞

−∞
QΦ(M ∗ χε�) →

∫ t2

t1
QΦ(w)dt

as ε → 0. Hence the claim holds for the general case. �

VII. STABILITY

Let R ∈ (E ′(R,Rq))p×q be pseudorational, and let B be
the autonomous behavior defined by R, i.e.,

B = {w : R∗w = 0}. (20)

We discuss stability conditions in terms of R.
Lemma 7.1: The behavior B is exponentially stable if and

only if

sup{Reλ : det R̂(λ ) = 0} < 0. (21)
Outline of Proof Without loss of generality, we can shift
R to left so that suppR ⊂ (−∞,0]. Consider R :=

[
R I

]
,

and define

B := {[ y u
]T : R∗ [

y u
]T = 0}.

Then B ⊂ π1(B), where π1 denotes the projection to the
first component. Hence B is asymptotically stable if every
element of π1(B) decays to zero asymptotically. Now note
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that B is trivially controllable, every trajectory w ∈ B can
be concatenated with zero trajectory as

w′(t) =
{

w(t), t ≥ 0
0, t ≤−T

for some T > 0. Then π1(w′) clearly belongs to XR because
R∗w = 0. According to Facts 5.4, w(t) goes to zero as t →∞,
and this decay is exponential. This proves the claim. �

VIII. LYAPUNOV STABILITY

A characteristic feature in stability for the class of pseu-
dorational transfer functions is that asymptotic stability is
determined by the location of poles, i.e., zeros of det R̂(ζ ).
Indeed, as we have seen in Lemma 7.1, the behavior

B = {w : R∗w = 0},
is exponentially stable if and only if sup{Reλ : det R̂(λ ) =
0} < 0, and this is determined how each characteristic solu-
tion eλ ta, a∈Cq (det R̂(λ ) = 0), behaves. This plays a crucial
role in discussing stability in the Lyapunov theory. We start
with the following lemma which tells us how p ∈ E ′(R,Rq)
acts on eλ t via convolution:

Lemma 8.1: For p ∈ E ′(R,Rq), p ∗ eλ t = p̂(λ )eλ t .
Proof This is obvious for elements of type ∑αiδti . Since
such elements form a dense subspace of E ′ ([2]), the result
readily follows. �

We now give some preliminary notions on positivity (resp.
negativity).

Definition 8.2: The QDF QΦ induced by Φ is said to
be nonnegative (denoted QΦ ≥ 0) if QΦ(w) ≥ 0 for all
w ∈ C ∞ (R,Rq), and positive (denoted QΦ(w) > 0) if it is
nonnegative and QΦ(w) = 0 implies w = 0.

Let B = {w : R∗w = 0} be a pseudorational behavior. The
QDF QΦ induced by Φ is said to be B-nonnegative (denoted

QΦ
B≥ 0) if QΦ(w)≥ 0 for all w∈B, and B-positive (denoted

QΦ(w)
B
> 0) if it is B-nonnegative and if QΦ(w) and w ∈B

imply w = 0. B-nonpositivity and B-negativity are defined
if the respective conditions hold for −QΦ.

We say that QΦ weakly strictly positive along B if
• QΦ is B-positive; and
• for every γ > 0 there exists cγ such that aT Φ̂(λ ,λ )a ≥

cγ ‖a‖2 for all λ with p̂(λ ) = 0, Reλ ≥−γ and a ∈Cq.
Similarly for weakly strict negativity along B.

For a polynomial Φ̂, B-positivity clearly implies the
second condition. However, for pseudorational behaviors,
this may not be true. Note that we require the above estimate
only for the eigenvalues λ , whence the term “weakly”.

Theorem 8.3: Let B be as above. B is asymptotically
stable if there exists Ψ = Ψ∗ ∈ E ′(R2)q×q whose elements
are measures (i.e., distributions of order 0) such that QΨ

is weakly strictly positive along B and
•
Ψ weakly strictly

negative along B.
Proof Let expλ : R → C : t �→ eλ t be the exponential
function with exponent parameter λ . Lemma 7.1 implies that
we can deduce stability of B if there exists c > 0 such that

aexpλ (·) ∈ B, a �= 0 implies Reλ ≤−c < 0. Now take any
γ > 0 and consider aexpλ (·) ∈ B with Reλ ≥−γ . Then

QΨ(aexpλ ) = aT Ψ̂(λ ,λ )a(exp2Reλ (·)),
and

Q •
Ψ
(aexpλ ) = (2Reλ )aT Ψ̂(λ ,λ )a(exp2Reλ (·)).

Hence the weak strict positivity of QΨ(w) implies
aT Ψ̂(λ ,λ )a ≥ cγ ‖a‖2 ≥ 0. Also since the elements of Ψ̂ are
measures, aT Ψ̂(λ ,λ )a ≤ β ‖a‖2. On the other hand, weak
strict negativity of Q •

Ψ
implies

Q •
Ψ
(aexpλ (·)) ≤−ρ ‖a‖2 .

Combining these, we obtain

(2Reλ ) · c‖a‖2 ≤−ρ ‖a‖2

and hence Reλ ≤−ρ/(2c) < 0 for such λ . Since other λ ’s
satisfying p̂(λ )= 0 satisfy Reλ <−γ , this yields exponential
stability of B. �

Remark 8.4: In the theorem above, the condition that the
elements of Ψ be measures is necessary to guarantee the
boundedness of Ψ(λ ,λ ). However, for the single variable
case, one can reduce the general case to this case. See the
next section.

Proposition 8.5: Under the hypotheses of Theorem 8.3,

QΨ(w)(0) = −
∫ ∞

0
Q •

Ψ
(w)dt (22)

Proof Note that

QΨ(w)(t)−QΨ(w)(0) =
∫ t

0
Q •

Ψ
(w)dt.

By Theorem 8.3, QΨ(w)(t)→ 0 as t → ∞, the result follows.
�

IX. THE BÉZOUTIAN

We have seen that exponential stability can be deduced
from the existence of a suitable positive definite quadratic
form Ψ that works as a Lyapunov function. The question
then hinges upon how one can find such a Ψ. The objective
of this section is to show that for the single-variable case,
the Bézoutian gives a universal construction for obtaining a
Lyapunov function.

In this section we confine ourselves to the case q = 1, that
is, given p ∈ E ′, we consider the behavior

B = {w : p ∗w = 0}.
Define the Bézoutian b(ζ ,η) by

b(ζ ,η) :=
p(ζ )p(η)− p(−ζ )p(−η)

ζ + η
. (23)

Note that this expression belongs to the class PW [ζ ,η ], and
hence its inverse Laplace transform is a distribution having
compact support. Let us further assume that p is a measure,
i.e., distribution of order 0. If not, p̂(s) possess (stable) zeros,
and we can reduce p̂(s) to a measure by extracting such
zeros. For details, see [10].
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We now have the following theorem:

Theorem 9.1: Suppose that p ∈ E ′ is a measure. The
following conditions are equivalent:
(i) B = {w : p ∗w = 0} is exponentially stable;

(ii) there exists ρ > 0 such that sup{λ : p̂(λ ) = 0} ≤ −ρ ;
(iii) Qb ≥ 0 and the pair (p, p˜) is coprime in the following

sense: there exists φ ,ψ ∈ E ′ such that

p ∗φ + p˜∗ψ = δ (24)

(iv) Qb is weakly strictly positive definite, and Q•
b

is weakly
strictly negative definite.

Proof The equivalence of (i) and (ii) are already shown.
Note first that for w ∈ B, we have

d
dt

Qb(w) = |p ∗w|2 −|p˜∗w|2 = −|p˜∗w|2 (25)

because p ∗w = 0.
(i) ⇒ (iii) Since B is asymptotically stable, we have from
(25)

Qb(w)(0) =
∫ ∞

0
|p˜∗w)|2dt ≥ 0.

Now exponential stability implies that sup{λ : p̂(λ ) = 0} ≤
−ρ for some ρ > 0 and also ([10])∣∣∣∣ 1

p̂(ζ )

∣∣∣∣ ≤C, Reζ ≥ 0. (26)

This implies that for λn, n = 1,2, . . . with p̂(λn) = 0,
|p̂˜(λn)| = |p̂(−λn)| ≥ (1/C). Then by the coprimeness con-
dition [12, Theorem 4.1], (p, p˜) satisfies the Bézout identity
(24).
(iii) ⇒ (i) and (iv) By (25), we have for w ∈ B,

d
dt

Qb(w) ≤ 0.

We show that (d/dt)Qb(w) < 0. Suppose that (d/dt)Qb(w)=
0 for some w, i.e., p˜ ∗w = 0 according to (25). Then w ∈
B∩Bp˜ , where

Bp˜ := {w ∈ C ∞ (R,R) : p˜∗w = 0}.
Since (p, p˜) satisfies (24), B ∩Bp˜ = 0 because for w ∈
B∩Bp˜

w = (φ ∗ p + ψ ∗ p˜)∗w = 0.

Hence (d/dt)Qb(w) < 0. Again by [12, Theorem 4.1] and
(24) there exists c > 0 such that

|p̂˜(λn)| ≥ c > 0

for all λn with p̂(λn) = 0. Then

−|p̂˜(λn)|2 = −|p̂(−λn)|2 ≤−c2. (27)

Hence Q•
b

is weakly strictly negative definite. Furthermore,

Qb(expλn
(·)) =

− p̂(−λn)p̂(−λ n)
2Reλn

exp2Reλn
(·)

Now take any γ > 0, and suppose Reλn ≥−γ . Then by (27)

− p̂(−λn)p̂(−λ n)
2Reλn

≥ |p̂(−λn)|2
2γ

≥ c2

2γ
> 0.

Hence Qb is weakly strictly positive definite. Hence by
Theorem 8.3, B is asymptotically stable. This proof also
shows that (iii) implies (iv).
(iv) ⇒ (i) This is already proved in Theorem 8.3. �

When p belongs to the class R as defined in [11], we can
relax condition (iv) as follows:

Corollary 9.2: Let p be pseudorational, and suppose that
p belong to the class R as defined in [11]. Then B is
exponentially stable if Qb is B-positive.
This is obvious since there are only finitely many zeros of
p̂(ζ ) in {ζ : −ρ < Reζ < 0} for arbitrary ρ . A simplified
proof of Theorem 8.3 without requiring uniformity works,
just as in the finite-dimensional case. Note that we do not
have to require weak strict positivity.
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