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Abstract— We present a near-optimal deterministic filter
for systems that evolve on the unit circle. Unlike suboptimal
filtering algorithms that rely on approximations of the system,
the proposed approach preserves the non-linear system model.
This leads to an explicit bound on the optimality gap in terms of
the tracking error. Specifically, the optimality gap is bounded by
a term that is fourth-order in the tracking error. A simulation
demonstrates that the filter can track a signal on the unit circle
in the presence of large disturbances. An optimal algorithm for
recursive estimation of static (non-dynamic) data on the unit
circle appears as a special case of the proposed filter.

I. INTRODUCTION

There is a large body of work on filtering theory, including

seminal works by Wiener [16], Kalman [9], Duncan [6],

Mortensen [12] and Zakai [18] to name just a small

selection. These works all address the question ‘What is a

reasonable way to guess the current value of the system

state?’. The classical approach is to model all unknowns

— initial state, process noise and measurement noise — as

random variables. Then the tools of probability theory and

statistics may be used to derive the most likely value for

the state vector at a given time. This stochastic approach

has produced some very elegant theory and a wealth of

success in technological applications, see e.g. [1], [7], [11]

for examples and references. The paradigmatic example

is the Kalman filter for linear systems that produces the

maximum likelihood state vector as its own state and uses

the same computational resources each time that its estimate

is updated.

Unfortunately, the desirable characteristics of linear

stochastic filters — primarily the property that the parametric

space of Gaussian random variables is closed under

transformations by linear system dynamics — does not

generalise to non-linear systems. As a consequence, it is

normally impossible to find a finite dimensional stochastic

filter for a non-linear system: see e.g. the survey paper

by Marcus [11] for some of the more subtle issues with

non-linear stochastic filtering. Most applications are tackled

using suboptimal algorithms, e.g. the extended Kalman filter

[1], particle filter [5] or unscented filter [8], or using non-

linear observers: see [13] for a relatively recent survey or

[2], [4], [10] for specific applications to rigid body attitude

estimation.

However, from the very beginnings of modern system

theory the community has been aware of other, non-
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stochastic approaches to state estimation. In particular, there

exists a large body of knowledge concerning what we call

‘deterministic filtering’ (in this paper we are following the

terminology used by Sontag [14] and Willems [17]). This

approach has variously been named the ‘method of least

squares’ [15], see also [1], or the ‘statistical method’ [7].

The deterministic approach to filtering treats measured

data as evidence of what is really (i.e. deterministically)

happening to the system. The disturbance functions are

used only to resolve inconsistency concerning our dynamical

model, the known input data and measurement data. No

claim is made that disturbances have a priori known

statistical properties. Rather, they are treated as unknown

but deterministic signals. The idea is that we explain

the observed data using a hypothesis, in the form of a

process disturbance, measurement disturbance and initial

state that reproduce the observed data. A “good” hypothesis

fits the measured data (is unfalsified) and is maximally

parsimonious. That is, the postulated disturbances ought to

be as small as possible, while still generating the observed

data. In fact, the Kalman filter can be interpreted as tacitly

containing precisely such an explanation of observed data

[7], [15], [14], [17].

In this paper, we investigate the use of the deterministic

paradigm in the field of non-linear filtering. We present a

derivation of a near-optimal filter for a deterministic non-

linear system with a state evolving on the unit circle. Filtering

on the unit circle is the principle behind the construction

of phase-locked loops in radio receivers [1]. Moreover, this

filtering task is the simplest possible case of two other,

more general problems: filtering on spheres and filtering

on non-linear unitary systems. For applications of systems

on spheres see e.g. [3]. Our solution is near-optimal, in

the sense that our filter utilises an explanation that has a

small optimality gap. The optimality gap is bounded by a

term that is fourth-order in the tracking error. This term is

very small for typical examples, as is demonstrated in the

simulation provided. Moreover, in the case of zero process

noise (but unknown initial state and noisy measurements)

our filter is optimal. This case is related to recursive least-

squares estimation of static (non-dynamic) data, adapted to

systems on the unit circle.

It is hoped that the ideas presented in this paper will

lead to, for example, near-optimal filters for systems on the

special orthogonal group SO(3) that describe the attitude

of rigid bodies such as autonomous flying vehicles. Also,

it is hoped that the case where our filter is optimal can be

generalised to spheres and non-linear unitary systems — in

particular to the problems of averaging on manifolds and
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recursive estimation on spheres.

This paper is organised as follows. Section II introduces

the deterministic filtering problem for systems on the unit

circle. A near-optimal solution to that problem is given in

Section III. For the case where there is no process noise (the

recursive estimation problem), the optimal filter appears as a

special case of our main result — this is detailed in Section

IV. Section V contains a simulations of the proposed filter,

and compares the results to those obtained using an extended

Kalman filter. Section VI concludes.

II. PROBLEM FORMULATION

A. System Model

Consider a system of the form:

θ̇ = w + δ′, y = θ + ǫ, (1)

where θ, y, ǫ ∈ S1 and δ′, w ∈ R , TθS
1. That is, the

system evolves on the unit circle - therefore the output y
and the measurement “noise” ǫ live on the unit circle S1.

The input w is the rate at which θ rotates; it is defined on

the tangent space TθS
1 to the unit circle at θ, as is the plant

“noise” δ′.
In real world examples, δ′ is typically “noise” in a

measure of angular velocity (analogous to gyrometer noise),

while ǫ is “noise” on the state measurement (analogous to

accelerometer noise).

A key concept in our paper is that δ′ and ǫ are not modeled

as noise processes — they are considered to be unknown

deterministic functions that are inputs to the system. Hence

we will not use the term “noise” again in the derivation

of the filtering algorithm. Rather, we will discuss unknown

disturbance functions. In particular, we are concerned with

the possible trajectories of these deterministic disturbances,

given known dynamics (1) and known input and output data.

We aim to find a state estimate θ̂(T ) using known input

data wd and observed output data yd recorded up to time T in

the face of unknown disturbances δ′ and ǫ and an unknown

initial state θ(0).
We restrict our attention to recursive filters because these

are required in settings where computational resources are

limited, e.g. applications in robotics and embedded control

systems. In these settings a small optimality gap is generally

more tolerable than an untractable algorithm.

B. The Deterministic Filtering Principle

Following the deterministic filtering paradigm [17], our

filter works in the following way. It is known that yd and

wd were the signals that actually occurred, therefore the

disturbances and initial condition that were actually realised

must generate the known data from the known dynamics

(1). We formalise this requirement using the notion of an

explanation:

Definition 1: An initial condition and a set of disturbance

functions specified on t ∈ [0, T ] are called an explanation

of known (system) data on t ∈ [0, T ] if the disturbances,

known data and initial condition jointly satisfy the system

equations.

We only consider hypotheses that are explanations of the

observed data. However, for any T ≥ 0 there are infinitely

many specifications of the initial condition and disturbances

that are valid explanations of the observed data from the

system (1).

Filter design requires a principled way to choose good

explanations above bad explanations, and hence to make a

good estimate of the value of θ(T ). We propose that the

correct principle is parsimony - the data must be explained

using disturbance signals that are small. That is, we seek a

simple, reasonable, self-consistent account of what is taking

place inside our plant; a simple explanation being one that

does not postulate large unmodeled inputs (disturbances).

This filter design paradigm can be made precise in the

following way. Consider all the possible explanations of the

data. Our filtering principle is to choose the explanation that

minimises the cost functional:

J ′

T =

∫ T

0

|Qδ′(τ)2 + R(1 − cos(ǫ(τ)))|dτ

+γ′(1 − cos(θ(0))),

for positive R, Q and γ′.

Remark 1: The positive value of R, Q and γ′ allow the

definition of a simple explanation to be scaled by the relative

uncertainty in each disturbance and in the initial condition.

Given an explanation (δ′
h
, ǫh, θh(0)) that minimises J ′

T
,

the best estimate of the current state is found by running the

system (1) with input wd, δ′
h

and ǫh and initial condition

θh(0) to time T . The state θh(T ) is then the best estimate

that can be made from the data (based on the principle of

parsimony, formalised by the explicit cost functional).

Finding the filter estimate θh(T ) may appear to

be a computationally intractable task. However, it is

demonstrated below that this apparently complicated

optimisation procedure does not need to be re-executed each

time the data is updated. In fact, a filter need not ever execute

a large optimisation algorithm. Rather, the desired result —

θh(T ) that is consistent with a good explanation — can be

found recursively.

C. Equivalent problem formulation

The filtering problem outlined above can be considerably

simplified by consideration of the system

θ̇ = w + gδ, y = θ + ǫ, (2)

and the uncertainty measure

JT =

∫ T

0

|δ(τ)2 + (1 − cos(ǫ(τ)))|dτ

+γ(1 − cos(θ(0))).

The assignments γ = γ′Q−1 and g =
√

Q(
√

R)−1 (i.e.

δ′ =
√

Q(
√

R)−1δ) yield system (1) and the uncertainty

measure JT = Q−1J ′

T
. That is, min(JT ) = min(J ′

T
).

In the following, we consider only explanations of

observed data yd and wd from system (2) and aim to choose

an explanation (δh, ǫh, θh(0)) that has a low uncertainty

measure JT .
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III. MAIN RESULT

The following Theorem 1 contains the main result of the

paper. It states the existence of near-optimal explanations of

data and presents the associated near-optimal deterministic

filter. It also provides an upper bound on the optimality gap.

Theorem 1: For a given time T and real-time data yd :
[0, T ] → S1 and wd : [0, T ] → R from system (2),

and provided that there is a solution to (4), there exist an

initial condition θh(0) and signals δh : [0, T ] → R and

ǫh : [0, T ] → S1 such that:

1) The initial condition θh(0) and disturbance functions

δh and ǫh explain the observed data wd and yd,

2) The recursive filter

˙̂
θ = wd + K sin(yd − θ̂), θ̂(0) = 0, (3)

K̇ =
1

2
g2 − cos(yd − θ̂)K2, K(0) =

1

γ
, (4)

yields a value θ̂(T ) that is equal to the state θh(T )
of system (2) generated by initial condition θh(0) and

inputs (wd, δh, ǫh), and,

3) The uncertainty measure JT (θh(0), δh, ǫh) is near-

optimal, in the sense that

0 ≤ JT (θh(0), δh, ǫh) − min(JT ) ≤ E,

where

E =

∫ T

0

∣

∣

∣

∣

g

K(τ)
sin2(

1

2
(θ(τ) − θ̂(τ)))

∣

∣

∣

∣

2

dτ.

Proof: Define the tracking error ∆ = θ − θ̂ and the

innovation α = yd − θ̂, and observe that ∆̇ = wd + gδ − ˙̂
θ.

Consider the following function:

L =
1 − cos(∆)

K
. (5)

The time-derivative of L is given by

L̇ = −K̇(1 − cos(∆))

K2
+

sin(∆)gδ

K
+

sin(∆)(wd − ˙̂
θ)

K
.

By completing the square, one finds that

L̇ = δ2 −
∣

∣

∣

∣

g sin(∆)

2K
− δ

∣

∣

∣

∣

2

+
g2 sin2(∆)

4K2

− (
˙̂
θ − wd) sin(∆)

K
− K̇(1 − cos ∆)

K2
.

Substituting the filter dynamics (3) and (4) yields:

L̇ = |δ|2 + |1 − cos(ǫ)| − | 12 sin(∆)K−1g − δ|2

−|1 − cos(α)| + g2K−2
[

sin2(∆)
4 + cos(∆)

2 − 1
2

]

.

The term in square brackets is equal to − sin4(∆/2). One

may integrate L over time t ∈ [0, T ] according to

L(T ) =

∫ T

0

L̇dτ + L(0),

and substitute the filter initial conditions (3) and (4). Observe

that the first two terms in the above expression for L̇ also

appear in the definition of JT . Comparing terms shows that

JT = K−1|1 − cos(∆(T ))| +
∫ T

0

|1 − cos(α(τ))|dτ

+

∫ T

0

|1
2

sin(∆(τ))K−1g − δ(τ)|2dτ

+

∫ T

0

|gK−1(sin2(
∆(τ)

2
))|2dτ. (6)

Observe that α is driven solely by the given data yd and

wd (via the deterministic system given in (3) and (4) that

has these data as inputs). This gives a lower-bound for the

uncertainty measure that no filter can surpass:

min(JT ) ≥
∫ T

0

|1 − cos(α(τ))|dτ. (7)

It is unclear whether any filter can achieve JT this small

— hence, we have not derived a value for min(JT ), only a

lower-bound. Consider a signal θh : [0 : T ] → S1 which is

generated by

θ̇h = wd +
g

2K
sin(θh − θ̂), (8)

and fixed by the final condition θh(T )− θ̂(T ) = 0, where θ̂
and K were generated by the proposed filter. Running this

differential equation backwards in time uniquely defines the

signal θh, and in particular there exists a θh(0) which returns

precisely the final condition we have prescribed. Also, we

can define the two signals

δh =
1

2K
sin(θh − θ̂), and

ǫh = yd − θh. (9)

Now, system (8) is obviously the same as the state equation

in system (2) with inputs w = wd and δ = δh. Observe

further that (9) ensures that the inputs and initial condition

under consideration do indeed generate yd. This proves the

first claim of the theorem. Furthermore, the final condition

for (8) proves the second claim made in the theorem. Using

(6), it is apparent that

JT (θh(0), δh, ǫh) =

∫ T

0

(1 − cos α(τ))dτ

+

∫ T

0

|gK−1(sin2(
∆(τ)

2
))|2dτ,

from which the third claim made in the theorem follows.

A few comments are in order:

Remark 2: Statement (3) of the above theorem expresses

that the optimality gap E is bounded by a term that is fourth-

order in the tracking error ∆. Most suboptimal algorithms

rely on approximations, and thus do not have explicit

expressions for the optimality gap. The optimality gap E and

lower-bound on the minimum cost (7) can be used to assess

exactly how ‘near’ to optimal the filter’s performance comes;

see Section V. Statement (2) tells us that the near-optimal

state estimate can be found without explicitly considering
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whole explanations; a filter that does not explicitly depend

on (θh, δh, ǫh) can be used. This ensures that the proposed

filtering algorithm is simple to implement. Furthermore, the

filter equations (3) and (4) do not depend on T . The filter can,

therefore, be used recursively, despite different compatible

explanations (θh, δh, ǫh) for different values of T . Finally,

Theorem 1 requires that the gain equation (4) has a solution

on [0, T ]. This equation is reliably stable in practice (see

Section V and Figure 4). Furthermore, with some extra effort,

the fourth-order optimality gap bound can be derived with

the g in (4) replaced with an arbitrary constant. This constant

can be chosen to guarantee the existence of a solution to the

gain equation.

The following Corollary 1 shows the form of the near-

optimal deterministic filter for the original system (1).

Corollary 1: For given real-time data yd and wd observed

from system (1), and for the filtering principle outlined in

Subsection II-B, a near optimal filter is given by

˙̂
θ = wd + K sin(yd − θ̂), θ̂(0) = 0,

K̇ =
Q

2R
− K2 cos(yd − θ̂), K(0) =

Q

γ′
. (10)

The associated optimality gap is bounded by

E =
Q

R

∫ T

0

∣

∣

∣

∣

1

K(τ)
sin2(

1

2
(θ(τ) − θ̂(τ)))

∣

∣

∣

∣

2

dτ.

Proof: The substitutions suggested in Subsection II-

C can be applied to the filter equations (3) and (4) from

Theorem 1.

IV. STATIC ESTIMATION

The non-linear filter is optimal in the case of zero input

disturbance (δ ≡ 0 or δ′ ≡ 0). The most common example

of interest is the situation where the state is known to be

constant (θ̇ = 0). We term this the static estimation case. We

use this as our motivating example, however, the results are

applicable in the more general case where there is a non-zero

angular velocity wd with no process noise.

Consider a series of disturbed measurements y of a static

value on the unit circle, θ:

y = θ + ǫ, (11)

where ǫ is an unknown function. For data yd : [0, T ] →
S1, valid explanations are all θh ∈ S1 and only those

ǫh : [0, T ] → S1 such that

yd = θh + ǫh.

To choose good explanations over bad explanations at time

T , nominate a cost functional on the initial condition and

disturbance

JT =

∫ T

0

|1 − cos(ǫ)| dτ + γ |1 − cos(θ)| . (12)

Clearly, this is a special case of Theorem 1, with g = 0.

This means that the optimality gap is zero. The optimal filter

is given by

˙̂
θ = K sin(yd − θ̂); θ̂(0) = 0; (13)

K̇ = −K2 cos(yd − θ̂); K(0) = γ−1.

Obviously, in the case of non-static θ with known input data

and no process disturbance (δ ≡ 0), one simply adds ‘+wd’

to the state-estimate dynamics, (13).

V. SIMULATION

A. System and Disturbance Setup

In order to demonstrate the properties of the filter proposed

in Section III, we include a simulation of a noisy system on

the unit circle. The additive noise is Gaussian — however this

is merely because this is a straightforward way to generate a

disturbance function on time [0, T ]. The system simmulated

is of the form of (1), with noises

δ′ ∼ N (0,
2

5
); ǫ ∼ N (0,

2π

5
).

Note that ǫ is defined on the unit circle, so it is technically

a Von Mises distribution. A convenient intuition is that the

Gaussian distribution “wraps around” the unit circle; samples

from the Gaussian that have magnitude |ǫ(t)| > π are shifted

by ±2π in order to preserve the requirement that ǫ(t) ∈
[−π, π).

The high uncertainty in ǫ and relatively low uncertainty

in δ′ means that the constant g is quite small — that is, the

optimality gap E for the non-linear filter is scaled by a small

constant. This is a situation in which the proposed non-linear

filter is close to optimal.

A relatively high uncertainty in the initial condition was

chosen, in order to demonstrate that the proposed filter

rapidly converges to a small tracking error:

θ0 ∼ N (0,
π

2
).

As for ǫ, this distribution is constrained to the unit circle.

Observe that the large uncertainty in ǫ means that

measurement data yd will occasionally appear around π
radians above or below the true state θ. When algorithms

that apply a linear filter (and continually linearise the system

around the current state estimate) see a value π radians

away from the current estimate, they tend to take quite

drastic action. In particular, the extended Kalman filter moves

further than it would if it received a datum that was only

e.g. π

2 radians above or below the state estimate. That seems

wrong in the non-linear case. Rather, there is no way to know

for sure (on the unit circle) if that datum is π radians above

or below the current estimate. Note that the proposed non-

linear filter treats large innovations yd(t) − θ̂(t) ≈ π with

sceptism; the filter corrects for the sine of the innovation.

Occasional measurements that are π radians away do not

cause drastic reevaluations of the state estimate.

The non-linear filter was simulated over 250 seconds, in

discrete time with a time step of 0.05 seconds. The known

input wd was the function wd(t) = 2 sin(t) + cos(t/2).

B. Results

The trajectory taken by the system and non-linear filter is

plotted in Figure 1 (upper). The filter clearly achieves good

tracking.
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Fig. 1. The trajectory taken by the proposed non-linear filter (upper) and
the extended Kalman filter (lower). Only 15 seconds are shown, for visual
clarity. Clearly, both filters achieve reasonable performance.
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Fig. 2. Comparison of the tracking error ∆ for the proposed non-linear
filter and an extended Kalman filter.

The tracking error ∆(t) rapidly converges to

approximately zero. Figure 2 shows a typical trajectory

of ∆, for a run where ∆(0) ≈ −1.46. Figure 3 (upper

plot) is the corresponding histogram of the tracking error

(the transient first 25 seconds of ∆ is excluded from the

histogram). This leads to sin4(∆
2 ) being steadily on the

order of 10−3.

The filter gain K converges to approximately 0.5 and stays

quite steady. The trajectory of K is shown in Figure 4. The

fact that K, Q and R (recall that the latter two are the

uncertainties in the disturbance functions) are on the order

of 1 and sin4(∆
2 ) is on the order of 10−3 yields a very small

optimality gap E. Also, the large measurement noise ensures

that the lower bound on the cost JT (see (7)) is relatively

high.

In fact, the proportion E/(min(JT ) + E), evaluated for

each time T , begins at about 10−1 and soon falls to around
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Fig. 3. Histograms of the tracking error ∆ for the proposed non-linear
filter (upper) and an extended Kalman filter (lower). The first 25 seconds
of tracking were disregarded because they are transient.
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Fig. 4. The trajectory of the gain K of the non-linear filter. The gain quickly
converges to the region K ≈ 0.5, however it is perturbed by measurement
noise (as can be seen from (10)).

3.6 × 10−4, as shown in Figure 5. This means that for

long times the cost attributed to sub-optimality is negligible

compared to the minimum cost that every possible filter

incurs. The claim that the filter is very near to optimal is

well founded.

C. Comparison with Extended Kalman Filter

Tuning extended Kalman filters is notoriously arcane,

and we make no claim to have used every available trick

and technique to tease out the best possible performance.

However, we have used standard methodology and the

disturbance signals have known distributions — the

parameters of these distributions were used in the design

of the Kalman filter.

Note that measurements yd are taken on the unit circle,

meaning that the filter has no choice but to interpret

ThC07.5

5494



0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Time (seconds)

C
o

s
t 

in
c
u

re
d

 d
u

e
 t

o
 o

p
ti
m

a
ilt

y
 g

a
p

Fig. 5. The proportion of total cost incurred by each time that is due to
the optimality gap. This is found by evaluating E/(min(JT ) + E) (the
lower bound is used for the minimum cost, see (7)). By time t = 250, this
fraction is approximately 3.6 × 10−4.

innovations 0 < yd − θ̂ < π as positive and innovations

−π < yd − θ̂ < 0 as negative. This is despite the fact that

the measurement noise will have some values |ǫ(t)| > π.

That is, the Gaussian wraps around the unit circle to form a

Von Mises distribution, and there is no way to tell from the

data which samples should be treated as having magnitude

greater than π, and which have magnitude smaller than π in

the opposite direction.

The trajectory taken by the system and by the extended

Kalman filter is given in Figure 1 (lower). Clearly the filter

achieves state tracking in this case. However, inspection

of Figure 3 reveals that the tracking error tends to be a

little larger than it is for the non-linear filter. The standard

deviation in the tracking error is 0.133 radians for the non-

linear filter; 0.189 radians for the extended Kalman filter

(the transient time at the beginning of the simulation was

excluded from this calculation).

Also, Figure 2 demonstrates that the transient response is

not as fast as for the non-linear filter. This can be attributed

to the high initial tracking error ∆(0) ≈ −1.46 coupled with

the high measurement error; in the first few seconds the filter

is seeing lots of samples that are approximately π radians

away from its current state estimate — some data are telling

it to move one way, some are telling it to move the other

way. This means that it takes extra time to settle into accurate

tracking.

VI. CONCLUSIONS AND FUTURE WORKS

We have presented a deterministic, near-optimal filter for

systems that evolve on the unit circle. An optimal filter for

recursive estimation of static (non-dynamic) data on the unit

circle appears as a special case of our result. A simulation in

the case of high measurement noise has demonstrated that

the non-linear filter does not diverge and is very close to

optimal. Future work includes developing a better theoretical

understanding of the optimality gap, and deriving analogous

filters for general unitary and spherical systems.
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