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Abstract— Linear Parameter-Varying (LPV) systems are usu-
ally described in either state-space or input-output form.
When analyzing system equivalence between different models
it appears that time-shifted versions of the scheduling signal
(dynamic dependence) need to be taken into account. In order to
construct a parametrization-free description of LPV systems a
behavioral approach is introduced that serves as a solid basis for
specifying system theoretic properties. LPV systems are defined
as the collection of valid trajectories of system variables (like
inputs and outputs) and scheduling variables. Kernel, input-
output, and state-space representations are introduced as well as
appropriate equivalence transformations between these models.

Index Terms— LPV, behavioral approach, dynamic depen-
dency, equivalence.

I. INTRODUCTION

Many physical/chemical processes exhibit parameter vari-
ations due to non-stationary or nonlinear behavior, or de-
pendence on external variables. For such processes, the
theory of Linear Parameter-Varying (LPV) systems offers
an attractive modeling framework [1]. This class of systems
is particularly suited to deal with systems that operate in
varying operating regimes. LPV systems can be seen as
an extension of the class of Linear Time-Invariant (LTI)
systems. In LPV systems, the signal relations are considered
to be linear, but the model parameters are assumed to be
functions of a time-varying signal, the so-called scheduling
variable p. As a result of this parameter variation, the LPV
system class can describe both time-varying and nonlinear
phenomena. Practical use of this framework is stimulated
by the fact that LPV control design is well worked out,
extending results of optimal and robust LTI control theory
to nonlinear, time-varying plants [1], [2], [3].

In a discrete-time setting, LPV systems are commonly
described in a state-space (SS) form:

qx = A(p)x + B(p)u, (1a)
y = C(p)x + D(p)u, (1b)

where u is the input, y is the output of the system, x is
the state vector, q is the forward time-shift operator, e.g.
qx(k) = x(k + 1), and the system matrices {A,B,C, D}
are functions of the scheduling signal p : Z → P, where
P ⊆ R

nP . It is assumed that p is an external signal of the
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system which is unknown in advance but online measurable
during operation.

In the identification literature, LPV systems are also
described in the form of (filter-type) input-output (IO) rep-
resentations:

y =
na∑
i=1

ai(p)q−iy +
nb∑
j=0

bj(p)q−ju, (2)

where {ai, bj} are functions of p. Note that in these descrip-
tions the coefficients depend on the instantaneous time value
of p. We will call such a dependence static-dependence.
In analogy with the LTI system theory, it is commonly
assumed that representations (1a-b) and (2) define the same
class of LPV systems and that conversion between these
representations follows similar rules as in the LTI case.
However, it has been observed recently that this assumption
is invalid if attention is restricted to static-dependency [4].

Example 1: To illustrate the problem consider the follow-
ing second-order SS representation:[

x1(k + 1)
x2(k + 1)

]
=

[
0 a2(p(k))
1 a1(p(k))

][
x1(k)
x2(k)

]
+

[
b2(p(k))
b1(p(k))

]
u(k),

y(k) = x2(k).

With simple manipulations this system can be written in an
equivalent IO form:

y(k) = a1(p(k − 1))y(k − 1) + a2(p(k − 2))y(k − 2)
+ b1(p(k − 1))u(k − 1) + b2(p(k − 2))u(k − 2),

which is clearly not in the form defined by (2).
For obtaining equivalence between the SS and IO representa-
tions, it is necessary to allow for a dynamic mapping between
p and the coefficients, i.e. {A,B, C,D} and {ai, bj} should
be allowed to depend on (finite many) time-shifted instances
of p(k), i.e. {· · · , p(k− 1), p(k), p(k +1), · · · } [4]. We will
call such a dependence to be dynamic in the sequel.

A common ground between the several representations and
concepts of LPV systems can be found by considering a
behaviorial approach to the problem. In this paper the be-
haviorial framework, originally developed 1 for LTI systems
[8], is extended to LPV systems. Our aim is to establish
well-defined LPV system representations as well as their
interrelationships.

The paper is organized as follows: In Section II, LPV
systems are defined from the behavioral point of view.
In Section III, an algebraic structure of polynomials is

1In the past decades this framework has been extended to LTV ([5], [6]),
and even nonlinear systems ([7], [8], [9]).
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introduced to define parameter-varying difference equations
as representations of the system behavior. This is followed
by developing kernel, IO, and SS representations of LPV
systems together with the basic notions of IO partitions and
state-variables. In Section IV, it is explored when two kernel,
IO, or SS representation are equivalent. In Section V, equiv-
alence transformation between SS and IO representations is
worked out. Finally, in Section VI, the main conclusions are
summarized. In this paper, we only concentrate on discrete-
time systems, however analog results for the continuous-time
case follow in a similar way.

II. LPV SYSTEMS AND BEHAVIORS

We define a parameter-varying system S as a quadruple

S = (T, P, W, B) , (3)

where T ⊆ R is called the time axis, P denotes the
scheduling space (i.e. p(k) ∈ P), W is the signal space with
dimension nW and B ⊂ (P × W)T is the behavior of the
system (XT stands for all maps from T to X).

The set T defines the time-axis of the system, describing
continuous-time (CT), T = R, and discrete-time (DT), T =
Z, systems alike, while W gives the range of the system
signals. B defines trajectories of (P × W)T that are possible
according to the system model. Note that there is no prior
distinction between inputs and outputs in this setting.

We also introduce the so-called projected scheduling be-
havior

BP = πpB := {p ∈ P
T | ∃w ∈ W

T s.t. (w, p) ∈ B}, (4)

where πp denotes projection onto P
T. BP describes all

possible scheduling trajectories of S. For a given scheduling
trajectory, p ∈ BP, we define the projected behavior as

Bp = {w ∈ W
T | (w, p) ∈ B}. (5)

Bp describes all possible signal trajectories compatible with
p. With these concepts we can define discrete-time LPV
systems as follows:

Definition 1 (DT-LPV system): Let T = Z. The para-
meter-varying system S is called LPV, if the following
conditions are satisfied:

• W is a vector-space and Bp is a linear subspace of W
T

for all p ∈ BP (linearity).
• For any (w, p) ∈ B and any τ ∈ T, it holds that (w(�+

τ), p(� + τ)) ∈ B, in other words qτB = B (time-
invariance).

Note that in terms of Definition 1, for a constant scheduling
trajectory, i.e. there exists p̄ ∈ P s.t. p(k) = p̄ for all
k ∈ Z, time-invariance of S implies time-invariance of the
corresponding system G = (T, W, Bp̄). Based on this and the
linearity condition of Bp, it holds for an LPV system that
for each p̄ ∈ P the associated system G = (T, W,Bp̄) is an
LTI system, which is in accordance with previous definitions
of LPV systems [1].

In the sequel, we restrict our attention to DT systems
with W = R

nW , nW ∈ N and with P a closed subset of
R

nP , nP ∈ N. In fact, we consider LPV systems described

by finite order linear difference equations with parameter-
varying effects in the coefficients. A property of such systems
is that the behavior B is complete, i.e. ((w, p) ∈ B ⇔
(w, p)|[k0,k1] ∈ B|[k0,k1],∀[k0, k1] ⊂ Z).

III. SYSTEM REPRESENTATIONS

A. Algebraic preliminaries

As a first step we introduce difference equations with vary-
ing coefficients as the representation of the behavior B, in
order to develop IO and SS representations. The introduced
difference equations will be associated with polynomials
defining a ring where equivalence of representations and
other concepts of the system theory can be characterized by
simple algebraic manipulations. To develop this polynomial
ring, we introduce the sets Rn of so called real meromorphic
functions f : R

n → R that can be written as the quotient
of two analytic (holomorphic) functions [10]. Furthermore
we restrict Rn to essential n-dimensional functions, i.e.
functions that are not equivalent to a function in Rn′ with
n′ < n. We define the collection of these sets by R =
∪n∈NRn. It can be shown that R is a field [11].

The function class R will be used as the collection of
coefficient functions (like {A, . . . , D} and {ai, bj} in (1a-
b) and (2)) for the representations. This class encompasses
a wide range of functions, including polynomials, rational
functions etc. These functions are used to enable a distinction
between dynamic scheduling dependency of the coefficients
and the dynamic relation between the signals of the system.
For a given P with dimension nP, let r ∈ Rn, so we can
talk about r(x1, · · · , xn). Rename the variables xi to ‘new’
variables ζij in the following order,

{ζ0,1, . . . , ζ0,nP
, ζ1,1, . . . , ζ1,nP

, ζ−1,1, . . . , ζ−1,nP
, ζ2,1, . . .}

and for a given scheduling signal p, associate the variable
ζij with qipj . For this association we introduce the operator


 : (R,BP) → R
Z, defined by r
p = r

(
p, qp, q−1p, . . .

)
.

The value of a (p-dependent) coefficient in an LPV system
representation is now given by an operation (r 
 p)(k).

Example 2 (Coefficient function): Let P = R
nP with

nP = 2. Consider the real-meromorphic coefficient function
r : R

3 → R, defined as

r(x1, x2, x3) =
1 + x3

1 − x2
.

Then for a scheduling signal p : Z → R
2:

(r 
 p)(k) = r(p1, p2, qp1)(k) =
1 + p1(k + 1)

1 − p2(k)
.

In the sequel the (time-varying) coefficient sequence (r
p)
will be used to operate on a signal w (like ai(p) in (2)), giv-
ing the varying coefficient sequence of the representations.
In this respect an important property of the 
 operation is that
multiplication with the shift operator q is not commutative, in

R. Tóth et al.: A Behavioral Approach to LPV Systems  TuA9.3 

2016



other words q(r
p) �= (r
p)q. To handle this multiplication,
for r ∈ R we define the shift operations −→r ,←−r as

−→r = r′ ∈ R s.t. r′ 
 p = r 
 (qp),←−r = r′′ ∈ R s.t. r′′ 
 p = r 
 (q−1p),

for p ∈ (RnP)Z. With these notions we can write qr = −→r q
and q−1r = ←−r q−1 which corresponds to

q(r 
 p)w = (−→r 
 p)qw and q−1(r 
 p)w = (←−r 
 p)q−1w

in the signal level.
The considered operator 
 can straightforwardly be ex-

tended to matrix functions r ∈ Rnr×nW where the operation

 is applied to each scalar entry of the matrix. Let R[ξ]nr×nW

be the ring of matrix polynomials in the indeterminant ξ and
with coefficients in Rnr×nW , then a parameter-varying (PV)
difference equation with nr rows and signal dimension nW

is defined as follows:

(R(q) 
 p)w :=
nξ∑
i=0

(ri 
 p)qiw = 0, (6)

where R =
∑nξ

i=0 riq
i, nξ = deg(R), and ri ∈ Rnr×nW .

In this notation the shift operator q operates on the signal
w, while the operation 
 takes care of the time/schedule-
dependent coefficient sequence. Since the indeterminant ξ is
associated with q , multiplication with ξ is noncommutative
on R[ξ]nr×nW , i.e. ξr = −→r ξ and rξ = ξ←−r .

It can be shown that with the above defined noncom-
mutative multiplicative rules R[ξ] defines an Ore algebra
[12] and it is a left and right Euclidian domain [13]. With
these algebraic properties, there exists a duality between
the solution spaces of PV difference equations and the
polynomial modules associated with them, which is implied
by a so called injective cogenerator property. This has been
shown for the solution spaces of the polynomial ring over R1

in [5]. Due to the fact that all required algebraic properties
are satisfied for R[ξ], the proof of the injective cogenerator
property similarly follows in this case. Based on these facts,
we will omit the rather heavy technicalities to prove certain
theorems in the following discussion as all proofs similarly
follows in R[ξ] as in R1[ξ].

Due to the fact that R[ξ] is a right and left Euclidean
domain, there exists left and right division by remainder. This
means, that if R1, R2 ∈ R[ξ] with deg(R1) ≥ deg(R2) and
R2 �= 0, then there exist unique polynomials R′, R′′ ∈ R[ξ]
such that

R1 = R2R
′ + R′′. (7)

wher deg(R2) > deg(R′′).

B. Kernel representation

Using these concepts, we can introduce the kernel repre-
sentation (KR) of an LPV system in the form of (6). More
precisely, we call (6) a representation of the LPV system
S = (Z, P, W,B) with scheduling signal p and signals w if

B = {(w, p) ∈ (RnW × R
nP)Z | (R(q) 
 p) w = 0}. (8)

We will only consider LPV systems which have a kernel
representation and we will show that this system class
includes all LPV systems that can be described in the form
of (1a-b) and (2) (in terms of manifest behavior).

An important concept to be established, is full row rank
KR representations. Denote by spanrow

R (R) and spancol
R (R)

the subspace spanned by the rows (columns) of R ∈ R[ξ]·×·,
viewed as a linear space of polynomial vector functions with
coefficients in R·×·. Then it can be shown that

rank(R) = dim(spanrow
R (R)) = dim(spancol

R (R)). (9)

Based on the concept of rank, the following theorem holds:
Theorem 1 (Full row rank KR representation): Let B be

given with a KR representation (6). Then, B can also be
represented by a R′ ∈ R[ξ]·×nW with full row rank.

Due to the algebraic properties of R[ξ], the proof of this
theorem follows along similar lines as in [5]. Like in the
LTI case, the concept of minimality for KR representations
can be defined based on the full row rank of the associated
matrix polynomials.

C. IO representation

For practical applications a partitioning of the signals w
into input signals u ∈ (RnU)Z and output signals y ∈ (RnY)Z,
i.e. w = col(u, y), is often convenient. Such a partitioning
is called an IO partition of S if

1) u is free, i.e. for all u ∈ (RnU)Z and p ∈ BP, there
exists a y ∈ (RnY)Z such that (col(u, y), p) ∈ B.

2) y does not contain any further free component, i.e.
given u, none of the components of y can be chosen
freely for every p ∈ BP (maximally free).

Using an IO partition we can define the IO representation
of S as

(Ry(q) 
 p) y = (Ru(q) 
 p) u, (10)

where Ru and Ry are matrix polynomials with meromorphic
coefficients, and where Ry is full row rank and deg(Ry) ≥
deg(Ru). Using the same type of decomposition as in (6),
we derive the following form of an IO representation

na∑
i=0

(ai 
 p) qiy =
nb∑
j=0

(bj 
 p) qju. (11)

It is apparent that (11) is the ‘dynamic-dependent’ counter-
part of (2).

D. State-space representation

In modeling dynamical systems the use of auxiliary vari-
ables (often called latent variables) is common. The natural
counterpart of (6) to cope with this is

(Rw(q) 
 p)w = (RL(q) 
 p)wL, (12)

where wL : Z → R
nL are the latent variables and

RL ∈ R[ξ]nr×nL . The set of equations (12) is called a
latent variable representation of the latent variable system
(Z, RnP , RnW × R

nL , BL), where the full behavior BL is
composed of the trajectories of (w, wL, p) satisfying (12)
and inducing the manifest behavior B = π(w,p)BL. Based
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on the result of [5] for LTV systems, it can be proven that
elimination of latent variables is always possible on R[ξ]·×·.
This elimination property implies that if (12) corresponds
to a latent variable LPV system, then there exists a R′ ∈
R[ξ]·×nW which defines a LPV-KR representation of B.

Now it is possible to define the concept of state for LPV
systems. Let (Z, RnP , RnW × R

nL , BL) be a LPV latent
variable system. Then the latent variable wL is a state if
for every k0 ∈ Z and (w1, wL,1, p), (w2, wL,2, p) ∈ BL with
wL,1(k0) = wL,2(k0) it follows that the concatenation of
these signals at k0 satisfies

(w1, wL,1, p) ∧
k0

(w2, wL,2, p) ∈ BL. (13)

To decide whether a latent variable is a state, the following
theorem is important:

Theorem 2 (State-kernel form): The latent variable wL is
a state, iff there exist matrices rw ∈ Rnr×nW and r0, r1 ∈
Rnr×nL such that the full behavior BL has the kernel
representation:

rww + r0wL + r1qwL = 0. (14)

The proof of this Theorem follows similarly as in the LTI
case (see [11]). Now we can formulate the DT state-space
representation, based on an IO partition (u, y), as a first-
order parameter-varying difference equation system in the
state variable x : Z → X as:

qx = (A 
 p)x + (B 
 p)u, (15a)
y = (C 
 p)x + (D 
 p)u, (15b)

where X = R
nX is called the state space and

BSS =
{
(u, x, y, p) ∈ (U × X × Y × P)Z | (15a-b) hold

}
,

is the full behavior, and[
A B
C D

]
∈

[ RnX×nX RnX×nU

RnY×nX RnY×nU

]
,

represents the meromorphic PV state-space matrices (matrix
functions) of the representation. It is apparent that (15a-b)
are the ‘dynamic-dependent’ counterparts of (1a-b).

IV. EQUIVALENCE RELATIONS

Using the behavioral framework, it is possible to consider
equivalence of kernel representations, IO representations and
state-space forms via equality of the represented behaviors.

A. Equivalent kernel forms

In the LTI case, two DT kernel representations are equiv-
alent, i.e. they define the same system, if their associated
behavior is equal. Note that in R[ξ] left multiplication of
polynomial R by r ∈ R can alter the associated behavior of
R in terms of (6) as some scheduling trajectories from the
set of solutions might be excluded due to possible singularity
of r. However, the rest of the behavior remains the same.

To define equality of LPV-KR representations with the
previous phenomenon of singularity in mind, define the
restriction of B to B̄P ⊆ BP as

B |B̄P
=

{
(w, p) ∈ B | p ∈ B̄P

}
. (16)

The equivalence of LPV-KR representations can now be
introduced in an almost everywhere sense:

Definition 2 (Equivalent KR representations): Two ker-
nel representations with polynomials R, R′ ∈ R[ξ]�×nW and
behaviors B,B′ ⊆ (RnW × R

nP)Z are called equivalent if
B |BP∩B′

P
= B′ |BP∩B′

P
, i.e. their behaviors are equal for

all possible mutually valid trajectories of p.
To characterize when two KR representations are equivalent
we introduce left/right unimodular transformations just like
in the LTI case. We call a M ∈ R[ξ]n×n unimodular, if
there exists a M† ∈ R[ξ]n×n, such that M†(ξ)M(ξ) = I
and M(ξ)M†(ξ) = I . Based on this concept it is possible
to show that the following theorem holds in the LPV case:

Theorem 3 (Unimodular transfor.): Let R ∈ R[ξ]nr×nW

and M ′ ∈ R[ξ]nr×nr , M ′′ ∈ R[ξ]nW×nW with M ′,M ′′

unimodular. For a given nP ∈ N, define R′ = M ′R and
R′′ = RM ′′. Denote the behaviors corresponding to R, R′

and R′′ by B, B′ and B′′ with scheduling space P ⊆ R
nP

and signal space W = R
nW . Then B |BP∩B′

P
= B′ |BP∩B′

P

while B |BP∩B′′
P

and B′′ |BP∩B′′
P

are isomorphic.
The proof of this theorem similarly follows as in R1[ξ] (see
[5] and [6]).

B. Equivalent IO forms

The introduced equivalency concept generalizes to LPV-
IO representations. Let Ru, R′

u ∈ R[ξ]nY×nU and Ry, R
′
y ∈

R[ξ]nY×nY with Ry, R
′
y full row rank, deg(Ry) ≥ deg(Ru),

and deg(R′
y) ≥ deg(R′

u). For a given nP ∈ N, we
call the LPV-IO representations defined via (Ry, Ru) and
(R′

y, R
′
u) equivalent if there exists a unimodular matrix

M ∈ R[ξ]nY×nY such that

R′
y = MRy and R′

u = MRu. (17)

C. Equivalent state-space forms

We can also generalize the equivalency concept to LPV-
SS representations. To do so, we first have to clarify state-
transformations in the LPV case.

By definition, the full behavior of LPV-SS representation
is represented by a zero-order and a first-order polynomial
matrix Rw ∈ R[ξ]nr×(nY+nU) and RL ∈ R[ξ]nr×nX in the
form of

(Rw(q) 
 p)col(u, y) = (RL(q) 
 p)x. (18)

Similar to the LTI case, left and right side multiplication of
Rw and RL with unimodular M1 ∈ R[ξ]nr×nr and M2 ∈
R[ξ]nX×nX leads to

R′
w = M1Rw, R′

L = M1RLM2. (19)

In terms of Theorem 3, the resulting polynomials R′
w and

R′
L define an equivalent latent variable representation of S,

where the new latent variable is given as

x′ = (M†
2 (q) 
 p)x. (20)

To guarantee that the resulting latent variable representation
qualifies as a SS representation, R′

L needs to be monic and
deg(R′

w) = 0 with deg(R′
L) = 1 must be satisfied. This
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implies that the unimodular matrices must have zero order,
i.e. M1 ∈ Rnr×nr and M2 ∈ RnX×nX , and M1 must have
a special structure in order to guarantee that R′ and R′

L

correspond to an equivalent SS representation. In that case,
(20) is called a state-transformation and T = M†

2 is called
the state transformation matrix resulting in

x′ = (T 
 p)x. (21)

A major difference with respect to LTI state-transformations
is that, in the LPV case, T is inherently dependent on p and
this dependence is dynamic, i.e. T ∈ RnX×nX . Additionally it
can be shown that an invertible T ∈ RnX×nX used as a state-
transformation is always equivalent with a right and left-
side multiplication by unimodular matrix functions yielding
a valid SS representation of the LPV system. Based on this
we call two SS representations equivalent if their states can
be related via an invertible state-transformation (21).

Consider an LPV-SS representation given by (15a-b). Let
T ∈ RnX×nX be an invertible matrix function and consider
x′, given by (21), as a new state variable. It is immediate
that substitution of (21) into (15a) gives

q(T−1 
 p)x′ = (A 
 p)(T−1 
 p)x′ + (B 
 p)u. (22)

This yields that the equivalent LPV-SS representation reads
as [ −→

T AT−1 −→
T B

CT−1 D

]
. (23)

Based on the state-transformations developed and the concept
of state-observability and reachability matrices, the classical
canonical forms can also be defined (see [4], [11]).

V. EQUIVALENCE TRANSFORMATIONS

Next, we establish the concept of equivalence among state-
space and IO representations.

A. State-space to IO

As a consequence of the elimination property on R[ξ]·×·,
for any latent variable representation (18), there exists a
unimodular matrix M ∈ R[ξ]nr×nr such that

MRw =
[

R′
w

R′′
w

]
, MRL =

[
R′

L

0

]
, (24)

with R′
L of full row rank. Then the behavior defined by

(R′′
w(ξ) 
 p)w = 0 is equal to the manifest behavior of (18).

We can use this result to establish an IO realization of a
given SS representation (15a-b) by writing it in the latent
form

Rw(q) =
[

0 B
−I D

]
, RL(q) =

[
Iq − A
−C

]
,

and formulate the unimodular transformation

M(ξ) =
[

M11(ξ) M12(ξ)
M21(ξ) M22(ξ)

]
, (25)

such that

M21(ξ)(Iξ − A) − M22(ξ)C = 0.

This yields that
[ ∗ ∗

−M21(ξ) M21(ξ)B + M22(ξ)D

]
︸ ︷︷ ︸

M(ξ)Rw(ξ)

=
[ ∗

0

]
︸ ︷︷ ︸

M(ξ)RL(ξ)

,

and the resulting R′ = [ −M21 M21B + M22D ] is in the
form of an output side polynomial Ry = M21 and an input
side polynomial Ru = M21B + M22D.

Consider a LPV-SS representation with state dimension
nX. Due to the elimination property, it holds that there
exists a unique monic polynomial R̄y ∈ R[ξ]nY×nY with
deg(R̄y) = nX and a unique R̄u ∈ R[ξ]nY×nX with
deg(R̄u) ≤ nX − 1 such that

R̄y(ξ)C = R̄u(ξ)(Iξ − A). (26)

Let Rc = diag(r1, . . . , rnY
), ri ∈ R[ξ], be the greatest

common divisor of R̄y and R̄uB such that there exist
Ry, Ru ∈ R[ξ] satisfying

Rc(ξ)Ry(ξ) = R̄y(ξ), (27a)
Rc(ξ)Ru(ξ) = R̄u(ξ)B + R̄y(ξ)D. (27b)

Then the IO representation, given by

(Ry(q) 
 p)y = (Ru(q) 
 p)u, (28)

defines a behavior which is equal to the manifest behavior
of (15a-b).

Note that the algorithm defined by (26) and (27a-b) is
structurally similar to the LTI case, but it is more compli-
cated as it involves multiplication with the time operators
on the coefficients. Thus, this transformation can result in
an increased complexity (like dynamic dependence) of the
coefficient functions in the equivalent IO representation.

B. IO to state-space

Finding an equivalent SS representation of a given IO
representation follows by constructing a state mapping. This
construction can be seen as the reverse operation of the latent
variable elimination. The aim is to introduce a latent variable
into (28) such that it satisfies the state property, i.e. it defines
a SS representation (Theorem 2). Similar to the LTI case,
the central idea of such a state construction is the cut-and-
shift-map �− : R[ξ]·×· → R[ξ]·×· that acts on polynomial
matrices as:

�−(r0 + r1ξ + . . . + rnξn︸ ︷︷ ︸
R(ξ)

) = ←−r1 + . . . + ←−rnξn−1.

This operator can be seen as an intuitive way to introduce
state variables for a kernel representation associated with R,
as wL = �−(R(q) 
 p)w implies that

(R(q) 
 p)w = (r0 
 p)w + qwL. (29)
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Repeated use of �− and stacking the resulting polynomial
matrices gives
⎡
⎢⎢⎢⎢⎢⎣

�−(R)
�2
−(R)

...
�n−2
− (R)

�n−1
− (R)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Σ−(R)

(ξ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r
[1]
1 + . . . + r

[1]
n−1ξ

n−2 + ξn−1

r
[2]
2 + . . . + r

[2]
n−1ξ

n−3 + ξn−2

...

r
[n−1]
n−1 + ξ

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

where r
[j]
i denotes the backward shift operation applied on ri

for j-times. In case R ∈ R[ξ]nr×nW with nr = 1, the rows of
Σ− are independent, thus it can be shown that X = Σ−(R)
defines a minimal state-map in the form of

x = (X(q) 
 p)w. (30)

In other cases (MIMO case), independent rows of Σ−(R)
are selected to formulate X , but this selection is generally
not unique. Later it is shown that a given state-map implies
a unique SS representation. Before that, we characterize all
possible minimal state maps that lead to an equivalent SS
representation.

Denote the left-side multiplication of R(ξ) by ξ as �+ and
introduce moduleR[ξ](R) as the left module in R[ξ]nr×nW

spanned by the rows of R ∈ R[ξ]nr×nW :

moduleR[ξ](R) = spanrow
R

⎛
⎜⎝

⎡
⎢⎣

R
�+(R)

...

⎤
⎥⎦

⎞
⎟⎠ . (31)

This module represents the set of equivalence classes on
spanrow

R (Σ−(R)). Let X ∈ R[ξ]·×nW be a polynomial matrix
with independent rows (full row-rank) and such that

spanrow
R (X) ⊕ moduleR[ξ](R) =

spanrow
R (Σ−(R)) + moduleR[ξ](R). (32)

Then, similar to the LTI case, it is possible to show that X
is a minimal state-map of the LPV system S and it defines
a state variable by (30). This way, it is possible to obtain
all minimal, equivalent SS realizations of S which have a
kernel representation associated with R.

The next step is to characterize these SS representations
with respect to an IO partition. For a given kernel represen-
tation associated with the polynomial R ∈ R[ξ]nr×nW , the
input-output partition is characterized by choosing a selector
matrix Su ∈ R

·×nW giving u = Suw and a complementary
matrix Sy ∈ R

·×nW giving y = Syw.
Assume that a full row rank X ∈ R[ξ]·×nW is given which

satisfies (32). Then X and Su jointly lead to

spanrow
R (�+(X)) ⊆ spanrow

R (X)⊕
spanrow

R (Su) ⊕ moduleR[ξ](R). (33)

On the other hand, Sy gives

spanrow
R (Sy) ⊆ spanrow

R (X)⊕
spanrow

R (Su) ⊕ moduleR[ξ](R). (34)

These inclusions imply that there exist unique matrix func-
tions {A,B, C,D} in R·×· and polynomial matrix functions
Xu, Xy ∈ R[ξ]·×· with appropriate dimensions such that

ξX(ξ) = AX(ξ) + BSu + Xu(ξ)R(ξ), (35a)
Sy = CX(ξ) + DSu + Xy(ξ)R(ξ). (35b)

Then [
A B
C D

]
∈

[ RnX×nX RnX×nU

RnY×nX RnY×nU

]
, (36)

is a minimal state-representation of the LPV system S. This
algorithm provides an SS realization of both LPV-IO and
LPV-KR representations. Specific choices of X leads to
specific canonical forms. Note that a similar algorithm can be
deduced for a realization in a image type of representation,
i.e. latent variable representation (18) where Rw(q) = I .

VI. CONCLUSION

In this paper, we have extended the behavioral approach to
LPV systems in order to lay the foundations of a LPV system
theory which provides a clear understanding of this system
class and the relations of its representations. We have defined
LPV systems as the collection of signal and scheduling
trajectories and it has been shown that representations of
these systems need dynamic dependence on the scheduling
variable. By the use of such system descriptions, it has been
proven that equivalence relations and transformations be-
tween these descriptions can be developed, giving a common
ground where model structures of LPV system identification
and concepts of LPV control can be compared, analyzed, and
further developed.
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