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Abstract— Behavioral system theory has become a successful
framework in providing a viewpoint that does not depend on
a priori notions of inputs/outputs. In particular, this theory
provides such notions as controllability, without an explicit
reference to state space formalism. One also obtains several
interesting consequences of controllability, for example, direct
sum decomposition of the signal space with a controllable
behavior % as a direct summand. While there are some
attempts to extend this theory to infinite-dimensional systems,
for example, delay systems, the overall picture seems to remains
incomplete. This article extends this theory, particularly the
notion of controllability, to a well-behaved class of infinite-
dimensional systems called pseudorational. A crucial notion
in connection with this is the Bézout identity, and we relate
a recent result to the context of behavioral controllability.
We establish the relationships with such notions as image
representation, direct sum decompositions.

I. INTRODUCTION

Behavioral system theory has become a successful frame-
work in providing a viewpoint that does not depend on
the a priori notions of inputs/outputs. An introductory and
tutorial account is given in [7], [3]. In particular, this theory
successfully provides such notions as controllability, without
an explicit reference to state space formalism. One also
obtains several interesting and illuminating consequences of
controllability, for example, direct sum decomposition of
the signal space with a controllable behavior 2 as a direct
summand.

There are some attempts to extend this theory to infinite-
dimensional systems, for example, delay systems, and some
rank conditions for behavioral controllability have been
obtained; see, e.g., [4], [2]. While these results give a
nice generalization of their finite-dimensional counterparts,
the overall picture still needs to be further studied in a
more general and perhaps abstract setting. For example,
one wants to see how the notion of zeros and poles can
affect controllability in an abstract setting. This is to some
extent accomplished in [4], [2], but we here intend to give
a theory in a more general, and unified setting, and provide
a framework in a well-behaved class of infinite-dimensional
systems called pseudorational.
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In [8], [9], the first author introduced the notion of pseu-
dorational impulse responses. Roughly speaking, an impulse
response is said to be pseudorational if it is expressible
as a ratio of distributions with compact support, e.g., G =
p~ !+ g(While we used g~ ' % p in [8], [9] and in other
papers, it is customary to use p for a denominator, so we
have switched the notation to p~!x¢.) This leads to an
input/output relation

pxy=qx*u, (1)

and various system properties have been studied associated
to it: for example,

1) realization procedure

2) complete characterization of spectra in terms of the
denominator of the transfer function

3) stability characterization in terms of the spectrum
location

4) relations between controllability and coprimeness con-
ditions.

These are summarized in a survey paper [11].

The representation (1) is also suitable for behavioral study.
The difference here is that behavioral theory is not restricted
by the causality constraints, and hence somewhat a crucial
condition on supports of p and g in [8], [9] can then be re-
moved. This leads to a different condition for unimodularity
of distributions, and hence coprimeness conditions.

The paper is organized as follows: Section 2 introduces
pseudorationality, and then generalizes this notion to the be-
havioral context. We briefly describe a state space formalism
and realization procedures in Section 3. Spectral properties
and eigenfunction completeness are also reviewed, and they
are crucial in characterizing coprimeness properties. Section
4 introduces the notions of behavioral controllability in the
present context, and gives various criteria for controllability.
Of particular importance is the Bézout identity. Section 5
gives a proof for a condition for the Bézout identity, with
generalization to the multivariable case.



II. PSEUDORATIONALITY

We first review the classical notion of pseudorationality as
introduced in [8]. Let &’(R_) denote the space of distribu-
tions having compact support contained in the negative half
line (—eo,0]. Distributions such as Dirac’s delta §, placed at
a <0, its derivative ), are examples of elements in &’ (R_).
For basic notation and nomenclature, see the Appendix.

An impulse response function p X m matrix G (suppG C
[0,00)) is said to be pseudorational ([8]) if there exist ma-
trices P and Q having entries in &' (R_)?*? and &'(R_)?"",
respectively, such that

1) G =P~ ' Q where the inverse is taken with respect to
convolution;

2) orddetP~! = —orddetP, where ord y denotes the or-
der of a distribution y [5], [6] (for a definition, see the
Appendix).

As an example, consider the delay-differential equation:

() = x(t—1)+u)
y) = x().

This can be expressed as x = (8’ — &)~ ! xu. Shifting the
time axis by 1, we obtain x = (8", — 8)~'x&_ xu, and this
is pseudorational.

We will extend this notion as to be appropriate to the study
of behaviors. To this end, we introduce the following.

Definition 2.1: Let R be an p X w matrix with entries in
&'(R). It is said to be pseudorational if there exists a p X p
submatrix P such that

1) P! € 2/ (R) exists with respect to convolution

2) orddetP~! = —orddetP.

Note that we have removed the constraint that the support
of R be contained in (—eo,0]. However, note that we can
make it belong to &'(R_)P*" by suitably shifting its element
to the left.

To introduce behaviors in this context, let L7 (—oo,c0) be
the space of locally square integrable functions. We give the
following definition:

Definition 2.2: Let R be pseudorational as defined above.
The behavior 9 defined by R is given by

B :={we (LIZUC(—OO,OO))W|R*W =0} 2)

The convolution R *w is taken in the sense of distributions.
Since R has compact support, this convolution is always well
defined [5].

Example 2.3: Let R be defined as

R:=[8—&8,-8"
This yields a behavioral equation
d /
Ewl(f)—wl(f—l)—wz(f)zo- (3)

Clearly, this can be also written as

d
Ewl(t—l— 1) —wi () —wh(t+1) =0,

because the behavior defined by (3) is shift-invariant. In the
latter expression, R is given by

R:= [5/_1 — 5, —5/_1].
The behavior 4 is time-invariant in the sense that 6; % C
P for every t € R, where o; is the left shift semigroup in
L2 (—o0,00) defined by

loc
(orw)(s) :=w(s+1). 4)

This clearly follows from the definition (2) since R (o,w) =
R+b6_;xw=06_xRxw=0.

We introduce behaviors in a wider space of signals,
namely in the space of distributions. Let 2’ be the space
of distributions on R, and let R be pseudorational. The
distributional behavior %5 defined by R is given by

By ={we (2')'|Rxw=0}. (5)
III. STATE SPACE REPRESENTATIONS

Let R € &'(R)?*" be pseudorational. Suppose, without loss
of generality, that R is partitioned as R=| P Q | such that
P satisfies the invertibility condition of Definition 2.1, i.e.,
we consider the kernel representation

Pxy+Q+u=0 6)

where w:=[y u }T is partitioned conformably with the
sizes of P and Q.

When G := P! xQ belongs to L?, (—o0,00)""", and supp G
is contained in [0, o0), it is possible to give a state space model
to (6).

To this end, it is possible to invoke realization theory
developed in [8]; see also [11] for a comprehensive survey
materials. We here content ourselves with a simplest model.
Let I':= L7 [0,00) be the space of all locally Lebesgue
square integrable functions with obvious family of semi-

norms. 1/2
loll, := { / |¢<t>|2dt} |

This is the projective limit of spaces {L?[0,n]},0. This space
is equipped with a shift operator

(o7)(s) :=7y(s+1), yeT,t>0,5>0. @)
Define X¥ by
XP = {xeTI?|x(P*x) =0}, ®)

where 7 is the truncation to (0,0). It is easy to check X” is a
o:-invariant closed subspace of I'P. Take this X7 as the state
space, and let T(z) := o; be the state transition semigroup.
Since X” is easily seen to be o;-invariant, T'(¢) defines a Cy-
semigroup. Denote by A the infinitesimal generator of 7. Let
B :=G(-). Since G= P~ xQ, Gu belongs to X’ for every
u € R". Then the state space model

d
pa Ax; + Bu(t) ©)
y#) = x(0) (10)



for x;(-) € X realizes the convolution input/output relation
(6) [8]. The evaluation mapping

XP 5 x— x(0)

is a densely defined closed operator in X”, and the domain
of A is
D(A) = {x € X" |dx/dt € X*}.

Given xo € X, and an input u, the solution of the state space
model (9) is given by

't
=T+ / Gt — Tu(t)dT = T(t)xo+ (P~ % Q% u).
Jo (1
where T(t) is the shift semigroup generated by A. T(z) is
actually the left shift semigroup o; restricted to X*.

A remarkable feature is that the spectrum of A is com-
pletely characterized in terms of the zeros of the Laplace
transform of P.

Theorem 3.1: The spectrum G(A) is given by

o(A) = {A|detP(A) =0} (12)

Furthermore, every A € o(A) is an eigenvalue with finite
multiplicity. The corresponding eigenfunction for A € 6(A)
is given by e*'v where P(A)v = 0. Similarly for generalized
eigenfunctions such as re*V/. See [9] for details. The re-
solvent set p(A) is its complement. For each 4 € p(A), the
resolvent operator (A7 —A)~! is compact.

Since P (and hence detﬁ) is an entire function of expo-
nential type by the Paley-Wiener theorem 8.1, the spectrum
is discrete, and with finite multiplicities.

IV. CONTROLLABILITY AND COPRIMENESS

We now introduce the notion of controllability [3] in the
present context.

Definition 4.1: Let R be pseudorational, and % the be-
havior associated to it. # is said to be controllable if for
every pair wi,wy € A, there exists T >0 and w € 4, such
that w(t) =wy(r) for t <0, and w(t) =wy(t —T) fort > T
(see Fig. IV).

In other words, every pair of trajectories can be concatenated
into one trajectory that agrees with them in the past and
future.

Fig. 1.

Concatenation of trajectories

We also introduce an extended notion of controllability as
follows:

Definition 4.2: Let R be pseudorational, and %@/ be the
distributional behavior (5). 4 o 1s said to be distributionally
controllable if for every pair wi,wy € A, there exists T > 0

and w € %, such that w[(_. o) = wj on (—0,0), and w|(7,.) =
O_Twp ONn (T,OO).

We now introduce various notions of coprimeness.

Definition 4.3: The pair (P,Q), P,Q € &'(R) is said to
be spectrally coprime if P(s) and Q(s) have no common
zeros. It is approximately coprime if there exist sequences
P,, ¥, € &' (R) such that Px D, + Q«¥, — 61 in &' (R). The
pair (P,Q) is said to satisfy the Bézout identity (or simply
Bézout), if there exists ®,¥ € &’'(R) such that

Px®+Q*¥ =4I, (13)

Or equivalently,

P(s)d(s) + O(s)¥(s) =1 (14)

for some entire functions &, ¥ satisfying the Paley-Wiener
estimate (39).

It is well known [3] that controllability admits various nice
characterizations in terms of coprimeness, image represen-
tation, full rank conditions, etc. We here attempt to give a
generalization of such results to the present context. To this
end, we confine ourselves to the simplest scalar case, i.e.,
p=m=1. We will also assume that g also satisfies the
condition that the zeros of §(s) is contained in a half plane
{s|Res < ¢} for some ¢ € R.

Theorem 4.4: Let R be pseudorational, and suppose with-
out loss of generality that R is of form R:=[ p ¢ | where
p satisfies the invertibility condition in Definition 2.1. Let
% 4 be the distributional behavior (5). Then the following
statements are equivalent:

1) % is controllable.

2) There exist ¥,¢ € &' (R) such that px ¢ +g* w=34.

3) %, admits an image representation, i.e., there exists
M over &' (R) such that for every w €  , there exists
¢ € C*(R) such that w =M «£.

4) Py is a direct summand of 92, i.e., there exists an
distributional behavior %’ such that ' = B, & %'

5) Let A:={A € C|p(A) =0}. Suppose that the algebraic
multiplicity of each zero A € A is globally bounded.
There exist k > 0 and ¢ > 0 such that

IA*G(A)| > ¢, VA EA. (15)
Proof of 2) = 3), 4), 5), and 3) = 1) Suppose 2) holds.
Substituting 2 € A, we obtain §(A)@(A) = 1. Since ¢ has
compact support, & is at most of polynomial order [5].
Taking A* to be such an order, 5) follows.
Consider the mapping

n%g,:@’aéH[_‘Ip]*ﬂe@’. (16)

We claim that this gives an image representation. Since

[p H[q

]*Z—O,
w4

the image of (16) clearly belongs to %,. We need only

to prove that this mapping is surjective. Take any [ Z } in



B g, and set

t=[ v ¢]*[y]. (17)

u

It follows that

[2]tv on[2]

_[ axw q*d)]*{y}
| —P*y —px¢ u
_[8-px¢ qx¢ ]*[y}
—pxyY gxy—20 u

[ y—0x(gru—py) }
| u—yx(gxu—pxy)

=[]

Hence gy , is surjective and 3) follows.
To prove 4), first note that

'

-V 0

is a unimodular matrix in 6”(R). In fact, its determinant is
p*¢+q*y=0. Define Z, by

{3 w 0[]0

We first claim B, N Ay = {0}. Indeed, If [y u }T
belongs to both % and %,

P 4q y
* =0
s
which readily yields [ y u }T =0 because of the unimod-

ularity of the matrix on the right.
Now take any [ y u }T in (2')¥. Define

[;]::[—w H*[H
H] - :—pw “_1*“}

- [v ][]
_ _—lﬂ*ﬁm]v,

The first term belongs to % while the second term to B, 9
Hence the correspondence (18) is surjective to 2'", and
9" =B 174 @%}21. Furthermore, since this correspondence
is clearly continuous with respect to the topology of 2, this
direct sum decomposition is topological.

3) = 1) Now if 4) holds, then the behavioral representation

e [

(18)

Then

=0.

Since I is unimodular, the behavior is trivially controllable
([3D. m

To prove the implication 1) = 2), we first prove the
following:

Proposition 4.5: Let R be pseudorational, and suppose
that 2 is controllable. Suppose further that P! belongs to
L? (—o0,00). Then there exist matrices ¥, ® with elements
in L?[a,b] for some a,b > 0 such that P+ ¥ + QP = §1.
Proof Since we can shift Q! arbitrarily, we may assume
without loss of generality that Q! belongs to L7 [0,°) and
P,Q € &(R_). Partition w conformably with P and Q as

w= i . Then £ is described by

Pxy+Qxu=0. (19)

We can invoke realization theory for P~! % Q as described
in Section III. Then by (11) every solution of (19) can be
written as

x(1) = Xfree () + 7r(P*1 * Q*u) (20)

where 7 is the truncation to (0,0), and X (¢) is the solution
to

Pxx=0.

Hence every Xf(t) should take the form P~!xxq for some
Xo. Since £ is controllable, there exist 7 > 0 and (y,u) € &

such that
) = {

This readily implies that there exists ¥ € (L*[—T,0])* such
that 7P~ '« QW = P~!. In other words,

(0,0)
(Pileij,())

t<-T
t>0

P l«Qx¥=P'—®
for some ® € (L*[—T,0])*. Multiplying P from the left yields
Px®+ 0¥ =0l.

a
Proof of 1) = 2) To show this implication, one needs
only to extend the above argument to the case P~ € 7/ (R).
By taking the “state space”

X = {x € Z'|suppx C [0,0),0xx € &' (R_)}.  (21)
One readily see that this is a completion of X” in 2’. The
state transition formula (11) works equally well, and then
we obtain matrices ® and ¥ not in L? but in &”(R_). This
readily yields the desired conclusion. O

Remark 4.6: Note that we do not need % to be a scalar
behavior in the proof above. We can also modify some results
with C* or LZZOC(—oo,oo) behaviors, but we omit the details.

To complete the equivalence in Theorem 4.4, we need to
prove 5) = 2). This will be given in the next section.



V. BEZOUT IDENTITY

As we have seen in the previous section, the Bézout
identity plays a crucial role in characterizing controllability.

This is first obtained in [10] for the case of & (R_). We
here extend this result to &’'(R) with an indication of a
generalization to the multivariable case.

For the case of measures, characterizing the Bézout iden-
tity

pxO+gxy =29 (22)

is essentially the question of characterizing maximal ideals
in the quotient space the space of measures modulo (p), and
this is a question related to the Gel fand representation theory
[10].

Let us first describe the relationship of the Bézout condi-
tion in &'(R) to that in &'(R_).

Lemma 5.1: Let (p,q) be as in Theorem 4.4. Then (p,q)
is a Bézout pair if and only if there exists L >0, and «,f3 €
&'(R_) such that

prxo+qg*xPB=06_. (23)
Proof Suppose (23) holds. Then by taking the convolutions
with &, on both sides, we obtain

pxox O+ g+ B*6=0.

Conversely, if
px¢+qry=39

for ¢,y € &' (R), then it is clear that by suitably convolving
6_; with both sides we obtain

p*O_ ¥Q*x0_ 1, +q*0_f, *Yx0_[, =0_L

where L=L;+L, and p*6_r,, g*0_r,, 9 *0_1,, Y*0_p,
all belong to &”(R_). This completes the proof. O

This lemma states that the Bézout condition for elements
in &' (R) can be tested whether (23) holds by suitably shifting
p and g to make them belong to &’ (R_). This is because J,
is a unit in &”(R) (although it is never so in &”’(R_) unless
a=0).

Hence it is enough to check condition (23) for elements p
and g already belonging to &’ (R_). Now note that (23) holds
if and only if there exists a < 0 such that max{r(p),r(q)} =
a. But this can be avoided by suitably shifting p and ¢ to
the right to make max{r(p),r(g)} = 0. So let us hereafter
assume that one of p and g, say, p satisfies r(p) = 0.

We now want to characterize the identity (22).

The following theorem is obtained in [10]:

Theorem 5.2: Let p~! g be pseudorational such that
r(p) = 0. Suppose that there exists a nonnegative integer m
such that

1A' q(An)| > c,n=1,2,... (24)

Then the pair (p,q) is Bézout.
The rest of this section is devoted to the proof of this
theorem.

Note first that (22) means [g] = [6] modulo p, namely
[g] is invertible over the quotient space &' (R-)/(p). This is
characterized in [10]. We here briefly review the main outline

of the proof and indicate the basic idea, with indications for
the generalization to the multivariable case.

We first observe that &’(R_) and &[0, ) are dual to each
other with respect to the following duality:

(o, f):==(ax f)(0), o€&(R-),[fEE,»).

It is easy to see that (25) defines a separately continuous
bilinear form on &'(R_) x &[0,), and they are indeed dual
to each other.

The outline of the proof is as follows:

1) To characterize the invertibility of [¢] in &' (R_)/(p),
we view &' (R_)/(p) as the dual of a closed subspace
(denoted &) of &[0, 00).

2) &) admits a very simple representation. Due to the
condition r(p) =0, & (P) is eigenfunction complete [9],
and every element admits an infinite series expansion:
x=Y, oeM,

3) With respect to the duality (25), the action of g on Mt
is given by

(g.e™") = (g+eAnt)(0) = G(An). (26)

4) Using (26), we see that the candidate for v := [g]~!
should satisfy ¥r(A,) =1/G4(A,).

5) Whether this formula leads to a well defined element
in &(R_)/(p) is the crucial step.

Let us start with the following lemma:
Lemma 5.3: The dual space of &' (R_)/(p) is given by
(&'R-)/(p)) = {xe&[0,%)|prxe s’ (R-)}
= 5(17)'
Proof Since (&' (R_)) = &0,0), we have
(&'(R-)/(p)) {x € £10,%0)[(a,x) = OVa € (g) }
{x € &[0,0) |6_; xgxx =0}
= {xe&0,%)|pxxec & (R)}.

(25)

27

a
From here on suppose for simplicity that the zeros A, of
4(s) are all simple zeros, and that m in (24) is O (although
these are not at all necessary).
Lemma 5.4: Under the hypothesis of r(p) =0,

span{e™' )| (28)

is dense in &), Furthermore, every x € & (P) admits an
expansion of type
e € &P (29)

X =

n=1
that converges with respect to the topology of &[0, o).
Proof That the subset (28) is dense is similar to that given
in [9]. (The proof given there is for LIZUC[O,oo) instead of
&0,0) but the proof is similar).

We want to show (29).

Take any x € & (P). Then there exists a sequence x; such
that

n@)
xi(t) = Z a,(,l)el”t
n=1



and x; — x € &) as i —> oo, This means that every derivative
of finite order Zn la,, /'L'" Mt converges to (d/dt)"x. In

particular, ):n( loc,, 7Lm is convergent for every m > 0. By

the same argument as given for (32) below, Zn locn l’” Pt

is uniformly and absolutely convergent on every bounded
interval [0,T].

We first claim that for each fixed n, the sequence {Ot,(f)}
is convergent as i — co. By the Hahn-Banach theorem, take
a continuous linear functional £, € (£()) such that

<fi’lve i > 5}}1
where  §; J,, denotes
<fn72n 106 2 ety = ol By continuity,
side converges to (f,x), so that o)
i — oo,

Now define o, :=lim; Oc,gi). Then

= lim Z Oc,,

l—»m

delta. Then
the left-hand
is convergent, as

Kronecker’s

x(t) = }Ll?ox,

Since the last term converges locally uniformly and abso-
lutely, we can exchange the order of lim and ¥, and see that
the last term is equal to Y~ o e*'. The same can be said
of every finite-order derivative, and this shows that the series

i Oc,,el t
n=1

actually converges in &(P). This completes the proof. O
Note that the proof above works equally well for the
multivariable case. All we need to do is to replace ¢, by
a corresponding eigenvector.
In view of the Lemma above, we are led to the definition

v =Y o/a(h
n=1

We need to show that this gives a continuous linear form on
&),

This is guaranteed by the following lemma:

Lemma 5.5: Let

(30)

x=Y et e &0, 31
n=1
Then for every r,
Y oun” <o (32)
n=1
In particular,
Y o <o (33)

Sketch of Proof "l:lhel idea of the proof is that if (31)
is convergent (which is guaranteed by Lemma 5.4), then it
means a very strong convergence since it should converge
with respect to the topology of &[0,c). In particular, the
derivative of an arbitrary order should converge. Since A, are
the zeros of an entire function p(s) of exponential type, it
grows with order as fast as n [1, Chapter 8]. This essentially
yields (32). A complete proof may be found in [10]. O

VI. SYSTEMS WITH COMMENSURABLE DELAYS

It is proven in [2], [4] that systems with commensurable
delays are controllable if and only if the matrix R has
constant rank for all A € C. This is somewhat mysterious
in the light of Theorem 4.4, since condition 5) requires that
there be no “asymptotic cancellation at oo,” while the result
by [2], [4] requires only “no cancellation in C.”

Roughly speaking, this is due to the following structure.
Consider ¢(s,z) as a polynomial of two variables. Then
q(s,z) as s — oo can go to zero only at most with polynomial
order in s,z. Hence if there is an asymptotic cancellation as
s — oo, this can be removed by multiplying a suitable factor
s™, because such a cancellation must be of polynomial order.
Hence condition (15) works.

Example 6.1: Consider the pair (z,5z — 1), z = ¢°. This
pair has an asymptotic cancellation for z = 1/s, as s — co.
But this cancellation can be removed by multiplying s to the
first component z. This is why the pair (¢*,se® — 1) is Bézout
over &' (R_) while it is not over the space of measures where
such a multiplication by s is not allowed.

VII. CONCLUDING REMARKS

We have shown some basic facts about pseudorational
behaviors. While we are mostly confined to scalar systems,
the proofs given here depart quite much from the classical
ones in that they do not make use of canonical forms (e.g.,
Smith-MacMillan form) or rank-test conditions which are
confined to more restricted contexts. It is hoped that some
controllability criteria can be generalized to the multivariable
case, as indicated in the last section.
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APPENDIX: NOTATION AND NOMENCLATURE

Let &'(R_) denote the space of distributions having
compact support contained in the negative half line (—eo,0].
Distributions such as Dirac’s delta &, placed at a <0, its
derivative 8§, are examples of elements in &' (R_). In con-
trast, &’ (R) denotes the space of distributions with compact
support, not necessarily contained in (—oo,0]. A distribution
o is said to be of order at most m if it can be extended
as a continuous linear functional on the space of m-times
continuously differentiable functions. Such a distribution is
said to be of finite order. The largest number m, if one exists,
is called the order of o ([5], [6]). The delta distribution
04, a € R is of order zero, and its derivative 5,; is of order
one, etc. A distribution with compact support is known to be
always of finite order ([5], [6]).

For a distribution o € &’(R), define real numbers ¢(a)
and r(co) by

)
—~
R
~—
I

inf{z|r € suppa},
sup{t|t € suppot}.

(34)
(35)

\
N
R
S~—

|

We need various properties of the Laplace transform of
elements in &’(R). Above all, the following Paley-Wiener
theorem is most important:

Theorem 8.1 ([5]): A complex analytic function f(s) is
the Laplace transform of a distribution ¢ € &'(R) if and
only if f(s) is an entire function that satisfies the following
growth estimate for some C > 0,a > 0 and integer m > 0:

f(8)] < C(1+]s|)meResl, (36)

In particular, f(s) = ¢(s) for some ¢ € & (R_) if and only
if it satisfies the estimate

[f()] < C(1+]s])"e" ™, Res >0,

< C(1+|s|)™Res<0

(37

for some C > 0,a > 0 and integer m > 0. In this case, the
support of ¢ is contained in [—a,0]

The zeros of f(s) are discrete, and each zero has a
finite multiplicity. This in particular implies the following
Hadamard factorization for f(s) [1]:

wereDe()
f(s) =ske ﬂ( . exp x

Since there are no finite accumulation point for {A,}, A, — o0
as n— oo,

Theorem 8.2 ([5]): A necessary and sufficient condition
for a complex function ¥ (s) to be the Laplace transform of
a distribution f € &'(R_) is that

1) x(s) is an entire function; and

2) x(s) satisfies the growth estimate

(3%)

< C(1+|s])me*Res Res >0,
< C(1+|s])™ Res<0.

2(s)]
(39)

for some C > 0,a > 0 and integer m > 0.
We will refer to (39) as the Paley-Wiener estimate.

Note that the zeros of (s) are discrete, and each zero has
a finite multiplicity, because x(s) is entire.

Since x(s) is an entire function of exponential type, the
following Hadamard factorization holds ([1]):

wo-tefi(1-)on()

Since there are no finite accumulation point for {A,}, A, — oo
as n — oo,

Hence for a pseudorational impulse response G, its
Laplace transform, i.e., transfer function, G(s) is p(s)/4(s),
and hence it is the ratio of entire functions satisfying the
estimate (39) above.

Let Q := 1i_1>nL2[—n,0] denote the inductive limit of the

(40)

spaces {L*[—n,0]},~0; it is the union UZ_,L*[—n,0], en-
dowed with the finest topology that makes all injections
jn : L*[—n,0] — Q continuous; see, e.g., [6]. Dually, " :=
L2 [0,0) is the space of all locally Lebesgue square inte-
grable functions with obvious family of seminorms:

|¢Lf—{éﬂ¢mﬁm}”7

This is the projective limit of spaces {L?[0,n]},~0. Q is the
space of past inputs, and I" is the space of future outputs, with
the understanding that the present time is 0. These spaces are
equipped with the following natural left shift semigroups:

o(s+1), s<—t,

@oie) = { PO ET e
weQ,r>0,5<0.

(7)(s) :==v(s+1t), yel,t>0,5>0. (42)
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