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Abstract— A procedure for modeling interconnected systems
is outlined, following the methodology of tearing, zooming,
and linking. The interconnection architecture is a graph with
leaves. The nodes are associated with the subsystems, the edges
correspond to the interconnected terminals, and the leaves
correspond to the terminals through which the interconnected
system can interact with its environment. The subsystems are
modeled as behavioral systems with terminals. The manifest
variables, the variables at which the model aims, are specified
by the manifest variable assignment. The system behavior is
obtained by combining the module behavior, the interconnection
constraints, and the manifest variable assignment.

Index Terms— Interconnected systems, zooming, tearing, lin-
king, manifest variables.

I. INTRODUCTION

We outline a formal procedure for obtaining a model by
viewing a system, a black box, as an interconnection of
subsystems, smaller black boxes. This procedure is useable
both in a pedagogical environment and as a blueprint for
computer implementations [1]. This modeling methodology
is in contrast to modeling using output-to-input assignment,
which has limited applicability [3].
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Fig. 1. Tearing, zooming, and linking

The problem addressed is to provide a mathematical
language for obtaining a model for certain specified variables
in an interconnected system from a model of the subsystems,
the way in which the systems are interconnected, and the
interconnection constraints, keeping in mind Figure 1. The
formalism uses the notions of a behavior and of latent
variables in an effective way [2], [3]. The basic ingredients
are:

(i) terminals,
(ii) (parameterized) modules,

(iii) the interconnection architecture,
(iv) the module embedding, and
(v) the manifest variable assignment.

II. TERMINALS AND MODULES

A terminal is specified by its type. The terminal type
may be of a physical nature, such as electrical, mechanical,
hydraulic, or thermal type, or logical, such as input or output
type. The terminal type implies the nature of the variables
that live on this terminal. For example, a voltage and current
for a terminal of electrical type, a force and position for a 1D
mechanical terminal, a force, position, angle, and torque for
a 2D or 3D mechanical terminal, a pressure and mass flow
for a hydraulic terminal, a temperature and heat flow for a
thermal terminal, an input for a terminal where a variable is
imposed on the system, or an output for a terminal where a
variable is imposed on the environment.

A module is a dynamical system with a finite number of
terminals, and a specification of the behavior of the terminal
variables as a dynamical system, a behavior. By specifying
the type of the module, we provide a list of its terminals and
their type, and therefore a list of the variables that live on the
terminals of the module. Usually, the module specification
involves, in addition to its type, a set of parameters, reflecting
the material, geometric, and other properties of the physical
device. We assume that, by providing the type of a module
and its parameter values, we obtain a specification of the
behavior, in the sense of the definition of a dynamical system
[2], [3], of the variables on the terminals of the physical
device.

In order to make concrete what we mean by modules and
terminals, we give as an example a 3-ohm resistor. Its module
type is ohmic resistor. This characterization means that the
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module has two terminals, both of electrical type, and that
the module is parameterized by a nonnegative real number,
the value of the resistor in ohms. Since the terminals are
electrical, there are two variables, a voltage and a current,
counted positive when the current flows into the resistor,
on each terminal. In total there are thus four real variables
associated with a resistor, namely, (V1, I1) and (V2, I2) . From
the fact that we have an ohmic resistor, we know that the
relationship among these variables is

V1−V2 = RI1, I1 + I2 = 0,

where R is the value of the resistor in ohms. Setting R = 3
yields the behavioral equations

V1−V2 = 3I1, I1 + I2 = 0.

These equations completely specify the behavior of an ohmic
resistor with parameter value 3.

III. THE INTERCONNECTION ARCHITECTURE AND THE

MODULE EMBEDDING

The layout of an interconnected system is visualized as a
graph with modules in the vertices and connected terminals
as edges (see Figure 2).
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Fig. 2. Interconnection architecture

This layout is formalized by the interconnection archi-
tecture and the module embedding. The interconnection
architecture or the interconnection graph is a graph with
leaves. Recall that a graph is defined as G = (V,E,A ),
where V is a set of vertices, E is a set of edges, and A is the
adjacency map. The adjacency map A associates with each
edge e∈E an unordered pair A (e) = [v1,v2] with v1,v2 ∈V;
the edge e is adjacent to v1 and v2. A graph with leaves (see
Figure 2(a)) is a graph in which some special ‘edges’, called
leaves, are adjacent to only one vertex. Formally, a graph
with leaves is defined as G = (V,E,L,A ), where V is a set
of vertices, E is a set of edges, L is a set of leaves, and
A is the adjacency map. The adjacency map A associates
with each edge e ∈ E an unordered pair A (e) = [v1,v2] with
v1,v2 ∈V, and with each leaf �∈L an element A (�) = v∈V;
e is adjacent to v1 and v2, while � is adjacent to v. The degree
of a vertex is the sum of the number of edges and the number
of leaves that are adjacent to the vertex. A self-loop, that is,
an edge with A (e) = [v,v], contributes 2 to the degree of v.

Modeling an interconnected system requires specifying
the laws of the subsystems, as well as the interconnection
of the subsystems. The concept that formalizes the way in
which the subsystems are embedded in the overall system
is the module embedding, which associates a module with
each vertex of the interconnection architecture, as illustrated
in Figure 2(b). The degree of the vertex is assumed to be
equal to the number of terminals of the associated module.
Moreover, the module embedding determines, for every
vertex, a one-to-one assignment between the terminals of the
module that has been associated with the vertex and the edges
and leaves adjacent to the vertex, as illustrated in Figure 2(c).
The edges serve to specify how terminals of subsystems are
connected, while the leaves allow for unconnected terminals,
for example, terminals by which the interconnected system
can interact with its environment.

Since each edge is adjacent to two vertices, the module
embedding assigns two terminals to each edge. We postulate
that this assignment results in two terminals that are of the
same type if the terminals are of physical type — both
electrical, mechanical, hydraulic, or thermal — or of opposite
type — one input, one output — if the terminals are of logical
type. In other words, if the edge e is adjacent to vertices v1

and v2, then the module embedding must imply that v1 and
v2 are either of the same physical type, or of opposite logical
type. In this way, each vertex is labeled as a module, and
each edge and leaf are labeled by a terminal type.

IV. EXAMPLES

The following examples illustrate interconnection archi-
tectures and module assignments.
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Fig. 3. RLC circuit

Consider the electrical circuit of Figure 3. The goal is
to model the external port behavior the circuit. The port
variables consist of the difference of the voltages of the
external terminals and the current that flows into the cir-
cuit along the upper terminal. This circuit has 6 modules,
two ohmic resistors denoted by RC and RL, respectively,
one capacitor denoted by C, one inductor denoted by L,
and two connectors denoted by connector1 and connector2,
respectively. The parameter value of modules RC, RL, C, and
L are denoted by the same symbol as the corresponding
module. The parameter value of the modules connector1
and connector2 are both 3, meaning that they connect 3
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terminals. All of the terminals of all of the modules are
of electrical type, the resistors, capacitor, and inductor each
have 2 terminals, and the connectors each have 3 terminals.
We denote the 2 terminals of RC by RC,1 and RC,2, the 3
terminals of connector1 by connector11, connector12, and
connector13, and use a similar notation for the terminals of
the other modules.

The interconnection architecture, shown in Figure 3(b),
has six vertices, labeled 1,2,3,4,5,6, six edges, labeled
c,d,e, f ,g,h, and two leaves, labeled a,b. The module em-
bedding first requires that we associate a module with each
vertex. For the example at hand, this association is given by

RC �→ 2,RL �→ 5,C �→ 4,L �→ 3,

connector1 �→ 1,connector2 �→ 6.

The module embedding also requires that for each vertex, we
assign to each edge and leaf adjacent to a vertex, a terminal
of the module associated to the vertex. For the RLC example,
this assignment is given by

vertex 1 : connector11 �→ a,connector12 �→ c,

connector13 �→ d,

vertex 2 : RC,1 �→ c,RC,1 �→ e,

vertex 3 : L1 �→ d,L1 �→ f ,

vertex 4 : C1 �→ e,C1 �→ g,

vertex 5 : RL,1 �→ f ,RL,1 �→ h,

vertex 6 : connector21 �→ g,connector22 �→ h,

connector23 �→ b.
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Fig. 4. Feedback system

The second example is the feedback system shown in
Figure 4. The interconnection architecture is the graph with
vertices A1, A2, G1, G2, edges 3,4,5,6, and leaves 1,2.
The modules consist of two adders, associated with vertices
A1 and A2, each with 2 inputs and 1 output, and two
input/output systems, associated with vertices G1 and G2.
The specification of the module embedding is obvious from
Figure 4.

V. THE INTERCONNECTION CONSTRAINTS

The behavioral equations that govern an interconnected
system combine module equations with interconnection con-
straints. We now explain how the interconnection constraints
are obtained. The edges of the interconnection architecture
specify how the terminals of the modules are linked. A
module embedding guarantees that the terminals associated
with the same edge are of the same physical type or of
opposite logical type.

We postulate that there are universal rules, originating
from the physical nature of the interconnections, that specify
relations among the variables on the terminals that are linked.
For instance, if an edge is electrical type, and hence connects
two electrical terminals, the connection rule equates the
voltages on the two terminals and equates the sum of the
currents on the terminals to zero, where currents are counted
positive when they run into a module. If the connected
terminals are hydraulic, the connection rule equates the
pressures and equates the sum of the mass flows to zero.
If the terminals are logical, the connection rule equates the
values of the associated input and the associated output.

The behavioral equations of the interconnected system are
obtained as follows. For each vertex of the interconnection
architecture, we obtain behavioral equations relating the
variables that live on the terminals of the module associated
with the vertex. These behavioral equations are the module
equations. For each edge of the interconnection architecture,
we obtain behavioral equations relating the variables that
live on the terminals and that are linked by the edge. These
behavioral equations are the interconnection equations, or
interconnection constraints. Although no interconnection
equation results from the leaves, the associated terminal
variables nevertheless enter in the module equations.

The module equations and the interconnection equations
together specify the behavior of all of the variables on all of
the terminals involved. Note that each vertex of the intercon-
nection graph is in the end labeled as a module, while each
edge is labeled as a terminal of a specific type. We thus have
systems in the vertices and interconnections in the edges,
in contrast to, for example, conventional electrical circuit
theory, which has modules in the edges, and interconnections
in the vertices.

The interconnection equations are usually very simple. Ty-
pically they equate potential variables and equate the sum of
flow variables to zero. We therefore think of interconnection
as variable sharing.

VI. THE MODULE AND INTERCONNECTION EQUATIONS

FOR THE RLC CIRCUIT

For the RLC circuit, the module equations involve the
currents and voltages on the terminals of the module as-
sociated with each of the vertices. The voltage and current
of terminal RC,1 are denoted by VRC,1 and IRC,1 , respectively,
and a similar notation is used for the remaining terminals.
The module equations are given by

vertex 1 : Vconnector1,1 = Vconnector1,2 = Vconnector1,3,

Iconnector1,1 + Iconnector1,2 + Iconnector1,3 = 0;

vertex 2 : VRC,1−VRC,2 = RCIRC,1, IRC,1 + IRC,2 = 0;

vertex 3 : L d
dt IL,1 = VL,1−VL,2, IL,1 + IL,2 = 0;

vertex 4 : C d
dt (VC,1−VC,2) = IC,1, IC,1 + IC,2 = 0;

vertex 5 : VRL,1−VRL,2 = RLIRL,1, IRL,1 + IRL,2 = 0;

vertex 6 : Vconnector2,1 = Vconnector2,2 = Vconnector2,3,

Iconnector2,1 + Iconnector2,2 + Iconnector2,3 = 0.
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The module embedding for the RLC circuit implies that the
pairs of terminals

edge c : {RC,1,connector12},edge d : {L1,connector13},
edge e : {RC,2,C1},edge f : {L2,RL,1},
edge g : {C2,connector21},edge h : {RL,2,connector22}

share their terminal variables. The interconnection equations,
given by

edge c : VRC,1 = Vconnector12 , IRC,1 + Iconnector1,2 = 0;

edge d : VL1 = Vconnector13 , IL1 + Iconnector13 = 0;

edge e : VRC,2 = VC1 , IRC,2 + IC1 = 0;

edge f : VL2 = VRC,1, IL2 + IRL,1 = 0;

edge g : VC2 = Vconnector21 , IC2 + Iconnector21 = 0;

edge h : VRL,2 = Vconnector22 , IRL,2 + Iconnector22 = 0,

equate the voltages of each of the connected terminals, and
equate the sum of the currents to zero.

The module equations together with the interconnection
constraints specify the behavior of the terminal variables.

For the feedback system example, we obtain, in the
obvious notation, the module equations

vertex G1:(u3,y4) ∈BG1 ; vertex G2:(u5,y6) ∈BG2 ;

vertex A1:y2 = u1 + u6; vertex A2:y4 = u2 + u4.

Here BG1 and BG2 denote, respectively, the behavior of the
input/output systems in the forward loop and the feedback
loop of the feedback system. The interconnection equations
are given by

edge 3: y3 = u3; edge 4: y4 = u4;

edge 5: y5 = u5; edge 6: y6 = u6.

VII. THE MANIFEST VARIABLE ASSIGNMENT

The final step of the modeling procedure consists of the
manifest variable assignment, a map that assigns the manifest
variables as a function of the terminal variables. The terminal
variables are henceforth considered as latent variables.

For the RLC circuit the manifest variable assignment
consists of the specification

Vexternalport =Vconnector1,1−Vconnector2,3, Iexternalport = Iconnector11

of the external port voltage and port current in terms of the
terminal variables. It is easy to deduce from the behavioral
equations obtained in the section ‘The Module and Intercon-
nection Equations for the RLC Circuit’ that the equations
imply that Iconnector11 = −Iconnector2,3. In words, the current
that flows into the circuit through terminal connector11

flows out of the circuit through terminal connector23. In
many circuit theory applications, modeling aims at obtaining
equations of the voltage across a port and the current that
flows into a port. For the feedback system, the manifest
variable assignment consists of

uexternal = (u1,u2) , yexternal = (y6,y5) .

The module equations, combined with the interconnection
constraints and the manifest variable assignment, define the
full behavior. These equations contain many latent variables
— in fact, all of the terminal variables are latent variables —
in addition to the manifest variables the model aims at. This
model is the end result of the modeling process based on
tearing (the interconnection architecture), zooming (leading
to the module equations and manifest variable assignment),
and linking (leading to the interconnection constraints).

VIII. CONCLUDING REMARKS

The tearing, zooming, and linking modeling methodology
is systematic, modular, adaptable to computer-assisted im-
plementation with the module equations in parametric form
and the interconnection equations stored in a database, and
hierarchical, since a model of an interconnected systems can
be used as a module on a higher level. A model library
supporting this methodology is thus re-useable, extendable,
modifiable, and flexible. A disadvantage of this methodology
is that the model equations involve many variables. This
drawback can be alleviated by eliminating variables when
possible. The interconnection equations, for example, allow
the elimination of many of the variables.

The philosophy of tearing, zooming, and linking is to
keep the interconnections highly standardized and simple,
and to deal with complex features of a model by means
of modules. For instance, in the circuit example, a multi-
terminal connector is viewed as a module, rather than as a
connection. In mechanical systems, joints, hooks, and hinges
are viewed as modules, rather than as connections. The
variable-sharing approach of tearing, zooming, and linking
formalizes the modeling practice followed in computer-
assisted modeling packages such as Spice and Modelica, in
contrast to Matlab’s output-to-input assignment-based, and
therefore limited, Simulink.
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Abstract — This paper proposes a procedure for parametric 
identification of plants having multiple sources of the pure time 
delays and internal feedbacks, which are extremely complicated 
for the identification. The procedure is based on a genetic 
algorithm applied to the samples of the frequency response on the 
plant. 

Identification; time delay; feedback; genetic algorithm 

I.  INTRODUCTION 
The experimental identification of the transfer function of 

unknown plant is a very important task, because most of the 
control design procedures rely on some knowledge of the plant 
transfer functions. Strictly speaking, the transfer function is 
defined only for linear plants. However, controllers for many 
standard industrial plants are designed using linear 
approximation of the plant dynamics. 

In general, all identification methods may be roughly 
divided into the time-response methods and the frequency-
response methods. The time-response methods are mostly 
simple open loop methods, performed in a short time. They are 
considered adequate only for simple plant models, and they 
usually require the isolation of the plant from the control loop. 
Frequency response methods are based on finding the samples 
of the frequency response of the plant.  The points of the 
plant’s Nyquist plot, which are typical input data for frequency 
response identification methods, are obtained either using 
special signal generators in open loop, or using forced 
oscillations in the closed-loop caused by appropriate controller 
settings. The well-known Ziegler-Nichols (ZN) method for PID 
controller tuning [1] may be regarded as the simplest closed 
loop frequency-response method, as it detects one point on the 
Nyquist plot of the plant. More advanced frequency-response 
methods give more information about the plant, but they 
usually require much longer time. 

For some control design methods, knowledge of a few 
characteristic points on the Nyquist curve is all that is needed 
for design. However, many controller design methods require 
full knowledge of the transfer function, at least in some 
approximate form. Therefore, it is often necessary to obtain 
some model of the unknown transfer function based on 

experimental data. This task is usually accomplished using 
parametric identification, where some model structure is 
chosen in advance. Then, the problem of identification is 
reduced to the problem of finding parameters such that the 
chosen model structure best fits the experimental data, 
according to some pre-selected criteria. One quite general 
method for such identification under the assumption that the 
plant transfer function is rational is given by Levy [2]. Some 
improvements of Levy’s approach in cases when the plant 
contains finite zeros are given in [3]. 

The dynamic of nearly all of the industrial plants contain 
pure time delay. There are a lot of procedures for the 
identification of various models that contain pure time delay. 
One detailed comparison of such procedures is given in [4]. 
There is also a generalization of Levy’s approach for the plants 
that contain pure time delay [5].  However, all such procedures 
are based on the supposition that the plant transfer function 
may be modeled as a product of a rational function of s that 
describes the inertial part of the plant dynamics, and the 
transcendental factor e−τ s that describes the pure delay. Such 
assumption is valid only if there are no internal feedbacks in 
the plant that have a pure delay in the loop. In the presence of 
any such feedback, the transfer function of the plant is not a 
product of one rational and one simple transcendental factor. 
Such transfer functions are very complex, as they have an 
infinite number of poles, and sometimes also an infinite 
number of finite zeros [6]. The situation is even more complex 
if there is more than one source of pure time delay in the plant. 
The overall transfer function of such plant then depends on 
delay terms like e–τ s with different values of τ. Finding exact 
values of the plant parameters seems to be extremely difficult. 
Until now no systematic procedure for the identification of 
such plants is known. This paper proposes an approach based 
on a genetic algorithm that may be useful for the approximate 
identification of parameters of such plants. 

The identification procedure proposed in this paper uses the 
values of the transfer function for some known values of s, 
called samples in the further text, as the input data. For the 
application of the procedure, it is completely irrelevant how 
these samples are obtained. Such samples may be a set of 
points on the Nyquist plot of the plant, which may be obtained 
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