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Abstract— We discuss some ideas and preliminary results

on the stability of nD systems described by linear constant
coefficient PDE’s. The stability concept used is L 2-stability
and L 2-asymptotic stability, with time as a distinguished
variable. For scalar equations, stability conditions are derived,
including methods to make these conditions into LMI’s in the
system parameters. These conditions are interpreted in terms
of Lyapunov functions for systems involving many independent
variables. Several open problems for multivariable nD systems
are formulated.

Index Terms— nD systems, PDE’s, stability, Lyapunov func-
tions, quadratic differential forms, LMI’s.

I. INTRODUCTION

We use standard symbols for
�����������	���
����

, etc. When
the number of rows or columns in vectors or matrices
is immaterial (but finite), we use � , � ��� , etc. Of course,
when we then add or multiply vectors or matrices, we
assume that the dimensions are compatible. � 0 means
that a symmetric matrix is nonnegative definite, with ob-
vious changes to other domains and for positivity, etc.
C∞ � �
����������� D � ������������� L p

� �
��������� denote the set of in-
finitely differentiable, infinitely differentiable with compact
support, and L p functions from

� �
to
� �

.
���

ξ1
�
ξ2
���������

ξ�� 
denotes the set of polynomials, and

� � ξ1
�
ξ2
���������

ξ � � the set
of rational functions with real coefficients in the indetermi-
nates ξ1

�
ξ2
���������

ξ � .
Let R ! �"� ξ1

�
ξ2
���������

ξ �� � ��� , and consider the system of
linear constant coefficient partial differential equations

R # ∂
∂ x1

� ∂
∂ x2

��������� ∂
∂ x $�% w & 0

�
(1)

This PDE defines, through its solutions, the behavior

B & kernel # R # ∂
∂ x1

� ∂
∂ x2

��������� ∂
∂ x $ %'%&)( w ! C

∞ � � � ��� � �+* R # ∂
∂ x1

� ∂
∂ x2

��������� ∂
∂ x $�% w & 0 , � (2)

The C∞ assumption is made purely for ease of exposition.
We refer to the domain variables x1

�
x2
���������

x� of w :
�
�.-� �

as independent variables, and to the codomain variables
w1
�
w2
���������

w � as dependent variables. We denote this class
of nD systems Σ & � �
�����
��� B �

and their behaviors by L
�� .

When /0& 1, we write L
�
. In many applications, one of

the independent variables is time, and the others are spatial
variables.

This class of systems has been studied very deeply in
pure mathematics. In the system theory literature, it has
received a great deal of attention in recent years, with the
work of Oberst [4], [6], Pillai and Shankar [7], Rocha [9],
[10], Zerz [5], [14], and many others. Very nice results
concerning controllability, observability, elimination, i/o and
state representations, etc. have been obtained. One of the
attractive aspects of the theory put forward in these papers,
as opposed to the semi-group approach [1] as applied to
PDE’s, is the fact that all the independent variables are
treated on an equal footing. Also, these methods have put the
algebraic structure to this subject, which had been dominated
by functional analysis, into the foreground.

A nagging issue in this area is the question whether also
in stability one should let all variables play a symmetric role,
or if it makes more sense to consider time as a distinguished
variable. In [11], [3] a stability theory is put forward in which
all the independent variables play symmetric roles. In the
present paper, however, we discuss stability and the con-
struction of Lyapunov functions with time as a distinguished
variable.

II. STABILITY OF ND SYSTEMS

For 1D systems the natural definition of stability is,
following Lyapunov, as follows.� �

B ! L
�

is stable  : 1� � � w ! B
�
2 � w is bounded on

�
0
�
∞
���   �

and� �
B ! L

�
is asymptotically stable  : 1� � � w ! B

��2 � w � t �
- 0 for t
-

∞
�   �

We now generalize these notions to PDE’s as (1). But,
since we wish to have time as a special variable, we first
incorporate this in the notation. For stability, we consider
(n+1)D systems

R # ∂
∂ t
� ∂

∂ x1

� ∂
∂ x2

��������� ∂
∂ x $ % w & 0

�
(3)

with R ! ��� ξ0
�
ξ1
�
ξ2
���������

ξ �� � ��� . Denote elements of its
behavior as w : � t � x �43- w � t � x � . The stability concepts that
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we will use for PDE’s is as follows. Let B ! L
���5 1 be given

in kernel representation by (3).� �
B ! L

���5 1 is L 2-stable  : 1� � � w ! B and w � t ��67� ! L 2
� � � ��� � � for t 8 0

�92� *:*w � t ��6 �;*<* L 2 = > $@? >�A�B is bounded on
�
0
�
∞
���   �

and� �
B ! L

���5 1 is L 2-asymptotically stable   : 1� � � w ! B and w � t ��67� ! L 2
� � � ��� � � for t 8 0

�92� *:*w � t ��6 �;*<* L 2 = > $ ? > A B - 0 as t
-

∞   �
In order to motivate this definition, consider the diffusion

equation
∂
∂ t w & ∂ 2

∂ x2 w (4)

This system, perhaps the most studied one of applied math-
ematics, defines a system in L 1

2 . We wish it to define an
L 2-asymptotically stable system. Perhaps the fact that for
this system� � � w ! B and w � t ��67� ! L 1

� �C���D� for t 8 0
�   2� � E 5 ∞F ∞

w � t � x � dx & E 5 ∞F ∞
w � 0 � x � dx for t 8 0   �

may be felt to contradict asymptotic stability. But this shows
only that the system is not L 1-asymptotically stable. As we
shall see later, it is indeed L 2-asymptotically stable. In fact,
it is L p-stable for 1 G p, and L p-asymptotically stable for
1 H p. If this is bothersome, replace (4) by

∂
∂ t w &JI w K ∂ 2

∂ x2 w
�

which is L p-asymptotically stable for 1 G p.
(4) is, by all intuitive reasonings, asymptotically stable.

But it nevertheless has solutions that increase exponentially
in time. Indeed, w : � t � x �
3- eαt 5 β x is a solution iff α & β 2.
Hence 0 L& β leads to a solution that increases exponentially
in time. Note that if we consider spatially oscillatory solu-
tions, (0 L& β imaginary), then we do have α H 0. In any
case, we cannot simply identify stability with the fact that
all solutions are somehow bounded (or go to zero) for t M 0.
We have to limit the class of solutions considered.

Note that assuming w � 0 ��67� ! L 2
� �����D� does not suffice

either, for (4) is known [2, pp. 50-51] to have solutions with
w � 0 ��67� & 0 and w � t ��67�ON! L 2

� �C���D� for t M 0. So imposing L 2-
boundedness of the initial condition does not suffice either.
We therefore consider in our definition of L 2-stability only
solutions of which we assume a priori that w � t ��67� ! L 2

� �C���D�
for t ! � 0 � ∞ � . In this sense, stability as we consider it here,
is very much like what is done in the semi-group approach
[1].

III. STABILITY OF SCALAR SYSTEMS

In this section, we consider the stability of systems de-
scribed by

∂
∂ t w & a # ∂

∂ x1

� ∂
∂ x2

��������� ∂
∂ x $�% w

�
(5)

with a ! �C� ξ1
�
ξ2
���������

ξ�� . This defines a system in L 1� . The
problem is to determine conditions on a for L 2-stability
and asymptotic stability. Such conditions are easy to obtain.
Define ω : & � ω1

�
ω2
���������

ω � � ! � � .� � � 5 � is L 2 I stable  1� �
a � iω � K a � I iω

� G 0 P ω ! � �   � (6)

and� �
(5) is L 2 I asymptotically stable   1� �

a � iω � K a � I iω
� G 0 for almost all ω ! � �   � (7)

These conditions can be proven using the L 2-Fourier
transform ŵ � t � i 6 � ! L 2

� �
�����Q� of w � t ��6 � ! L 2
� ���	���Q� . This

Fourier transform is governed by the ordinary differential
equation

d
dt ŵ � 6<� iω � & a � iω � ŵ � 6<� iω �@�

parametrized by ω ! ��� . This yields

ŵ � t � iω � & ea = iω B tŵ � 0 � iω ���
and the stability results follow from some simple estimates.

Generally (6) and (7) are not considered satisfactory
answers from a computational point of view. However, it
is sometimes possible to turn these conditions into an LMI.
We discuss this in the next sections.

Identical stability results hold for scalar systems

∂
∂ t b # ∂

∂ x1

� ∂
∂ x2

��������� ∂
∂ x$�% w & a # ∂

∂ x1

� ∂
∂ x2

��������� ∂
∂ x $�% w

�
(8)

with a
�
b ! �C� ξ1

�
ξ2
���������

ξ �  . Simply replace in (6) and (7)
the polynomial a by the rational function g & b F 1a, or by
b � I ξ

�
a � ξ � , and proceed in exactly the same way.

IV. QUADRATIC FORMS

In this section, we first assume that /�& 1. We introduce
one-variable quadratic differential forms. These have been
studied in depth in [12].

Let F ! �"� ξ  . Define F R�! �S� ξ  by F R � ξ � : & F � I ξ
�
. Call

F ! �S� ξ  � �
symmetric   : 1 � �

F & F R   �
Denote the symmetric elements of

�"�
ξ  by

�S�
ξ  S. Define

the quadratic form Q >F : D � �C�T�U�4-V�
induced by F ! ��� ξ  S

by

Q >F � v � : & 1
2π

E 5 ∞F ∞
v̂ � I iω

�XW
F � iω � v̂ � iω � dω

where ˆ denotes Fourier transform. Call Q >F� �
non-negative, denoted Q >F Y 0   : 1� �

Q >F � v � 8 0 P v ! D � �C���D�   �
and� �

positive, denoted Q >F Z 0   : 1� � � Q >F Y 0
�

and ��� Q >F � v � & 0
� 1 � v & 0

���   �



It is easy to prove that
� �
Q >F Y 0   1 � �

F � iω � 8 0 P ω ! �   , and� �
Q >F Z 0   1 � �

F � iω � M 0 for almost all ω ! �   � Moreover,� �
Q >F Y 0 � Z 0

�   1 � � [ � 0 L& � D ! �S� ξ  such that F & D R D   .
Also two-variable polynomials lead to quadratic forms. Let

Φ ! �S� ζ � η  . Written out in terms of the coefficients,

Φ � ζ � η � & Σ \ ? ] Φ \ ? ] ζ \ η ] �
with the sum assumed to be finite. Let ^ denote the highest
power that appears in Φ. The matrix

Mat � Φ � : &
_```a Φ0 ? 0 Φ1 ? 0 6�6�6

Φ b ? 0
Φ1 ? 0 Φ1 ? 1 6�6�6

Φ b ? 1
...

...
...
...
...

...
Φ b ? 0 Φ b ? 1 6�6�6

Φ b ? b
cedddf

is called the matrix associated with Φ. Define Φ gU! ��� ζ � η  
by Φ g � ζ � η � : & Φ � η � ζ �@� Call Φ ! �S� ζ � η  � �

symmetric   : 1 � �
Φ & Φ g   1 � �

Mat � Φ � & Mat � Φ ��W   �
Denote the symmetric elements of

���
ζ
�
η  by

�S�
ζ
�
η  S. Sym-

metric two-variable polynomials are in one-to-one relation
with quadratic forms in v ! C∞ � �����D� and its derivatives. The
quadratic differential form (QDF) induced by Φ ! ��� ζ � η  S
is defined as the map from C∞ � �h���D� into C∞ � �����D� given
by

QΦ
� v � : & Σ \ ? ] d i

dx i v
W Φ \ ? ] d j

dx j v �
Observe that d

dx QΦ is also a QDF, corresponding to the two-
variable polynomial � ζ K η

�
Φ � ζ � η � .

Call the QDF QΦ induced by Φ & Φ gC! �S� ζ � η  � �
non-negative, denoted QΦ � 0   

: 1 � �
QΦ

� v � 8 0 P v ! C
∞ � �����D�   1 � �

Mat � Φ � � 0   �
and� �

positive, denoted QΦ Z 0   : 1 � � � QΦ Y 0
�

and��� QΦ
� v � & 0

�@� � v ! L 2
� �C���D���   2k� � � v & 0

���   �
Non-negativity of QΦ is equivalent to the existence of
D ! �"� ξ  such that Φ � ζ � η � & D

W � ζ � D � η � , i.e. QΦ
� v � &*:*

D � d
dx v

*:* 2. For positivity, add D L& 0.
Define ∆ :

�S�
ζ
�
η  -l���

ξ  by

∆ � Φ � : & Φ � I ξ
�
ξ
�@�

∆ maps symmetric elements of
�S�

ζ
�
η  into symmetric

elements of
�"�

ξ  . Note that

ker � ∆ � &m( Φ ! �S� ζ � η  *+[
Φ no! �S� ζ � η  

such that Φ � ζ � η � & � ζ K η
�
Φ n � ζ � η �@�

Equivalently, QΦ & d
dt Q nΦ.

In addition to the pointwise behavior of a QDF, we are
also interested in the behavior of its integral over

�
,E 5 ∞F ∞

QΦ
� v � dx for v ! D � �C�T�D�@�

Observe thatE 5 ∞F ∞
QΦ

� v � � x � dx & 1
2π

E 5 ∞F ∞
v̂ � I iω

��W
∆ � Φ � � iω � v̂ � iω � dω

�
with ˆ the Fourier transform. Note that this integral equals

Q >∆ = Φ B & : Q >Φ �
with a small abuse of notation.

This leads to an interplay between the two kinds of
quadratic forms introduced. It follows that� �

Q >Φ & 0   1 � �
∆ � Φ � & 0   1 � � [

Φ n ! �S� ζ � η  such that QΦ & d
dx QΦ p   �

Similarly� �
Q >Φ Y 0   1 � �

∆ � Φ � � iω � 8 0 P ω ! �   1 � � [
W ! ��� ζ � η  such that the QDF induced by

Φ � ζ � η � K � ζ K η
�
W � ζ � η � is Y 0   �

and� �
Q >Φ Z > 0   1 � �

∆ � Φ � � iω � M 0 for almost all ω ! �   1 � � [
W ! ��� ζ � η  such that the QDF induced by

Φ � ζ � η � K � ζ K η
�
W � ζ � η � is Z 0   �

All this is readily generalized to /qM 1, by considering
ξ
�
ζ
�
η and ω as multindices, and with obvious notational

changes.

V. QUADRATIC LYAPUNOV FUNCTIONS

We aim at explaining how QDF’s can be used as Lyapunov
functions for (5). We consider again first the case /r& 1.
Consider the QDF (in the x-variable) defined by V & V g !�S�

ζ
�
η  S, leading to QV

� w � t ��67��� . Its time-derivative along
solutions of (5) is also a symmetric QDF, induced by

V̇ � ζ � η � : & a � ζ � V � ζ � η � K V � η � ζ � a � η ���
The basic quadratic Lyapunov function result now states

that (5) is L 2-stable iff there exists a V & V g with Q >V Z
0 such that Q >V̇ Y 0, and L 2-asymptotically stable iff there
exists a V & V g Z 0 with Q >V Z 0 such that Q >V̇ Z 0. This
result can be further simplified and leads to� � � 5 � is L 2-stable  1 � � [

V & V g � W & W g ! �S� ζ � η  S �
such that (i) V � ζ � η � K � ζ K η

�
W � ζ � η � & V̇ � ζ � η ���

(ii) QV Z 0
�
and (iii) QV̇ s 0   �

and� � � 5 � is L 2-asymptotically stable   1� � [
V & V g � W & W g ! �S� ζ � η  S � such that

(i) V � ζ � η � K � ζ K η
�
W � ζ � η � & V̇ � ζ � η �@�

(ii) QV Z 0
�
and (iii) QV̇ t 0   �

Note that this condition is actually an LMI, viewed as a
condition on a ! �"� ξ  .



(6) is equivalent to the factorizability of a � ξ � K a � I ξ
�

as
a � ξ � K a � I ξ

� &uI H
W � I ξ

�
H � ξ � for some H ! ��� ξ  � , while

(7) requires in addition H L& 0. This factorizability is an LMI.
It requires the solvability for X ! � b � b , with ^v& degree � a � ,
of

a � ξ � K a � I ξ
� &

_```a 1I ξ
...� I ξ
� b
cedddf
W

X

_```a 1
ξ
...

ξ b
cedddf � X & X

W s 0
�

(9)

This can be given a Lyapunov interpretation. Let V & V Rw!�S�
ξ  S. Consider the quadratic form Q >V . Its derivative along

solutions of (5) is the quadratic form Q >V̇ , induced by

V̇ : & a R V K V R a �
It follows that� � � 5 � is L 2-stable  1 � � [

V & V R ! �S� ξ  S �
such that (i) Q >V Z 0

�
and (ii) Q >V̇ s 0   �

and� � � 5 � is L 2-asymptotically stable   1 � � [
V & V R ! �"� ξ  S �

such that (i) Q >V Z 0
�
and (ii) Q >V̇ t 0   �

The above is readily generalized to the case /xM 1. QDF’s
acting on / variables are defined completely analogously
to the 1D case (see [8]). It leads to the following. Let V0
be scalar QDF and V a /yI vector of QDF’s, acting on /
variables. Define ∇ by ∇ : &z# ∂

∂ x1

� ∂
∂ x2

��������� ∂
∂ x$�% . Then (5) is

L 2-stable iff there exists QDF’s � V0
�
V
�

acting on / variables,
such that

QV0 Z 0 and ∂
∂ t QV K ∇

6
QV s 0

along solutions of (5). In terms of 2 / -variable polynomials
this leads to, in the obvious multiindex notation,

V0
� ζ � η � Z 0

�
a � ζ � V0

� ζ � η � K V g0 � η � ζ � a � η � K � ζ K η
� W

V � ζ � η � s 0
�

This is easily generalized to L 2-asymptotic stability, and to
quadratic forms on

�
.

VI. EXAMPLES

The diffusion equation

∂
∂ t w & ∂ 2

∂ x2 w (10)

is L 2-asymptotically stable. The test (7) yields

a � iω � K a � I iω
� &)I ω2 �

which is negative almost everywhere. The Lyapunov function
can be constructed as follows. Differentiating

*:*
w
*:* 2 w.r.t. t

along solutions leads to the QDF defined by the two-variable
polynomial

ζ 2 K η2 �

The following are the quadratic Lyapunov functions obtained
for the case at hand. Since

ζ 2 K η2 I � ζ K η
� 2 &mI 2ζη

�
we obtain

∂
∂ t
*
w � t � x �;* 2 ∂

∂ x
� I ∂

∂ x
*
w � t � x �{* 2 � &)I 2

* ∂
∂ x w � t � x �;* 2 �

leading to
d
dt | 5 ∞F ∞

*
w � t � x �{* 2 dx &JI 2 | 5 ∞F ∞

* ∂
∂ x w � t � x �{* 2 dx

�
The wave equation

∂ 2

∂ t2 w & ∂ 2

∂ x2 w (11)

is L 2-stable but not L 2-asymptotically stable. The behavior
of the wave equation is the sum of the behaviors of

∂
∂ t w & ∂

∂ x w and ∂
∂ t w &mI ∂

∂ x w
�

The test given in the previous section yields

a � iω � K a � I iω
� & 0

�
for both systems. The stability results follows.

VII. EXTENSIONS

The results obtained for (5) and (8) are very simple and
preliminary in nature, but the methods of analysis open up a
way of dealing with the stability of large classes of PDE’s.

The ultimate goal is to obtain L 2-stability results for
general PDE’s (3) with R ! ��� ξ0

�
ξ1
�
ξ2
���������

ξ �  � ��� . We em-
phasize that we view the stability of nD systems with
time considered as a distinguished variable. Using Fourier
transforms in the spatial variables, one can expect that such
conditions can be brought back to the analysis of the 1D
systems

R } d
dt
�
iω ~ ŵ � 6:� iω � & 0

�
(12)

parametrized by ω & � ω1
�
ω2
���������

ω � � ! �
� . A necessary
condition for the L 2-asymptotic stability of (3) is that the 1D
polynomial matrix R � ξ � iω � ! �C� ξ  ����� should be a Hurwitz
polynomial matrix for almost all ω ! � � . More precisely,
that for almost all ω ! �
� ,

rank � R � λ � iω ��� &���P λ ! � with Re � λ � 8 0
�

Establishing the sufficiency of this condition appears to be
hard. It may require more conditions on R.

The case that (3) is first order in ∂
∂ t is of particular interest.

In this case (12) can be brought back to the system
d
dt ŵ � 6:� iω � & A � iω � ŵ � 6<� iω �@� (13)

parametrized by ω ! �
� , with A a matrix of rational functions
A � iω � ! � � ξ0

�
ξ1
�
ξ2
���������

ξ � �T����� . Our conjecture is that the
corresponding PDE (3) is L 2-asymptotically stable iff A � iω �
is Hurwitz for almost all ω ! ��� . It is possible to analyze
this question using Lyapunov functions.

One of the most important results of linear system theory
is the stability of the system

d
dt w & Aw with A ! ���������



This system is asymptotically stable iff A is Hurwitz. This
is equivalent to the solvability of[

Q ! � ����� such that Q & Q
W Z 0

�
A
W

Q K QA &JI I
�

Since this condition is an LMI, it can be argued to be
an effective result computationally. It can also be used to
analyze the stability of (13). Indeed, if A � iω � is Hurwitz for
almost all ω ! �
� , then there exists Q ! � � ξ1

�
ξ2
���������

ξ � � �����
with Q � iω � & Q � I iω

� W Z 0, such that

A � I iω
�XW

Q � iω � K Q � I iω
�XW

A � iω � &mI I

for almost all ω ! �
� . It follows that along solutions of (13)
there holds

d
dt | 5 ∞F ∞ ŵ � I iω

� W
Q � iω � ŵ � iω � dω &�I | 5 ∞F ∞

*:*
ŵ � iω �{*:* 2 dω

�
From this it is possible to prove L 2-asymptotic stability
under certain conditions on Q � iω � , for example, if /0& 1,
if A � ξ � is bi-proper, and if A � iω � is Hurwitz for all ω ! �
and ω & ∞.

A second avenue of research suggested by the analysis
of the stability of (5) is the construction of QDF’s and
quadratic forms for use of Lyapunov functions for (3) for
the stability of multivariable high order nD PDE’s. It calls
for a generalization of the analysis in sections III and IV to
multivariable systems (this is easy, see [12]), to high order
differential equations (in the spirit of what is done in [12,
section 4]), to nD systems (this involves vector QDF’s, and
the sum-of-squares problem for nD polynomials, see [8]),
and to QDF’s involving / -variable rational functions ([13]).
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