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Abstract— In this paper, we consider the approximate identi-
fication problem for hidden Markov models, i.e. given a finite-
valued output string generated by an unknown hidden Markov
model, find an approximation of the underlying model. We
propose a two-step procedure for the approximate identifica-
tion problem. In the first step the underlying state sequence
corresponding to the output sequence is estimated directly
from the output data. In the second step the system matrices
are calculated from the obtained state sequence and the given
output sequence. In a simulation example the performance of
our proposed method is compared with the performance of
the classical Baum-Welch approach for identification of hidden
Markov models.

I. INTRODUCTION

Hidden Markov models (HMMs) were introduced in the

literature in the late 1950s [1]. Twenty years later, HMMs

started to be used in engineering applications, such as speech

processing, image processing and bioinformatics. Despite the

success in applications, many theoretical questions remain

unanswered until now. For instance there does not exist a

fundamental study of the exact identification problem, i.e.

given an infinite output string generated by an unknown

hidden Markov model of finite order, find the minimal under-

lying state dimension and calculate the exact system matrices

of the underlying model. In this paper we consider the

approximate realization problem for hidden Markov models,

i.e. given a finite-valued output string of a hidden Markov

model, find an approximation of the system matrices of the

underlying model.

A popular approach for the identification of hidden

Markov models is the Baum-Welch algorithm [4]. The

Baum-Welch method iteratively increases the likelihood,

where the likelihood is defined as the probability of the

observed output string given the model. Despite the fact

that Baum-Welch is widely used in practise, there are some

drawbacks to the method. First of all, the solution is very

sensitive to the initial choise of the system matrices. More-

over, the method garantees only that one will end up with

a local maximum of the likelihood function, so we are not

garanteed to find the global optimum. Finally, the Baum-

Welch algorithm is very expensive from computational point

of view.

In this paper we propose a technique that is inspired by the

basic idea of subspace identification [5] for Gauss-Markov

stochastic models. A typical subspace algorithm consists of

two steps. In the first step the underlying state sequence
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is estimated directly from data. In the second step the

system matrices are calculated from the state sequence and

output sequence. Our proposed technique for identification

of HMMs consists of the same two steps. In the first step

the underlying state sequence is estimated directly from the

output data and in the second step the system matrics are

determined using this state sequence and the given output se-

quence. While subspace methods for Gauss-Markov systems

need the singular value decomposition, our hidden Markov

identification algorithm uses nonnegative matrix factorization

techniques.

The paper is organized as follows. In section II, we

introduce the notation for hidden Markov models. Section III

shortly reviews the Baum-Welch approach for identification

of HMMs. Section IV describes the nonnegative matrix

factorization which is needed for our identification method.

Section V contains the main results of this paper. It is first

explained how the state sequence can be extracted from the

given output sequence. Next we explain how the system

matrices can be calculated from the estimated state sequence

and the given output sequence. In Section VI, we apply our

identification method on a simulation example and compare

the results with the results of the Baum-Welch identification

method.

The following notation is used. R+ is the set of nonnega-

tive real numbers. If X is a matrix, then we mean with Xij

the i, j-th element of X , with Xi:, the i-th row of X and with

X:j , the j-th column of X . X ≥ 0 denotes that the elements

of X are nonnegative. With e we indicate a column vector

with all elements equal to 1, i.e. e :=
[

1 1 . . . 1
]⊤

.

II. HIDDEN MARKOV MODELS

Consider a stochastic process y defined on the time axis

N taking values from a finite set Y, called the output

alphabet, with |Y| the cardinality of Y. A Mealy hidden

Markov model (HMM) of such stochastic process is defined

as (X, Y, Π, π(1)), where

• X with |X| < ∞ is the state alphabet, and Y is the

output alphabet;

• π(1) is a row vector in R
|X|
+ with π(1)e = 1;

• Π is a mapping from Y to R
|X|×|X|
+ with the matrix

ΠX :=
∑

y∈Y
Π(y) such that ΠXe = e.

One can think of an underlying state process x which

generates the output process y. The process x takes values

from the finite set X with cardinality |X|. Without loss of

generality, we take X = {1, 2, . . . , |X|}. The element Πij(y)
is then equal to P (x(t + 1) = j, y(t) = y|x(t) = i), the

probability of going from state i to state j while producing
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the output symbol y. The element πi(1) is equal to P (x(1) =
i), the initial distribution of the underlying state process.

Denote by Y
∗ the set of all finite strings with symbols

from the set Y (including the empty string) and by u =
u1u2 . . . u|u| a sequence from Y

∗, where |u| denotes the

length of u. Let P : Y
∗ 7→ [0, 1] be string probabilities,

defined as P(u) := P (y(1, 2, . . . , |u|) = u1u2 . . . u|u|) :=
P (y(1) = u1, y(2) = u2, . . . , y(|u|) = u|u|). Of course, the

string probabilities satisfy P(φ) = 1 and
∑

y∈Y
P(uy) =

P(u)1. Now it holds that

P(u) = π(1)Π(u)e,

where Π(u) := Π(u1)Π(u2) . . . Π(u|u|).
A Moore hidden Markov model is a more structured case

of the Mealy hidden Markov model. In a Moore HMM, the

generation of the next state and the generation of the output

are independent.

If it holds for all u ∈ Y
∗ that

∑

y∈Y
P(yu) = P(u)

then the process is called stationary. Because of the fact

that
∑

y∈Y
P(uy) = P(u) is due to consistency, we have for

stationary processes that
∑

y∈Y

P(uy) =
∑

y∈Y

P(yu).

A stationary hidden Markov model has the property that

the state distribution is equal at every time instant π(1) =
π(2) = . . . = π(t) = π where π equals the equilibrium state

distribution, i.e.

πΠX = π.

In this paper we consider only stationary output strings and

corresponding stationary models.

The (approximate) Mealy identification problem for hid-

den Markov models can be stated as

Given: an output string u1u2 . . . uT of length T of an

unknown HMM with a finite number of states,

Find: an hidden Markov model (X, Y, Π, π(1)) of given

order |X| such that the model is optimal (in a to be defined

sense) with respect to the given output string.

III. BAUM-WELCH FOR IDENTIFICATION OF

HMMS

In this section, we give the Baum-Welch algorithm for the

Mealy identification problem. The Baum-Welch method is a

maximum likelihood approach. This means that the system

matrices Π(y),y ∈ Y and π(1) are estimated such that the

likelihood of the observed string is maximized, where the

likelihood is defined as P (y(1, 2, . . . , T ) = u1u2 . . . uT | λ)
where λ denotes the model. This maximum likelihood prob-

lem is solved using the expectation maximization approach.

Expectation maximization is an iterative approach that starts

with an initial guess for the model parameters λ and updates

them iteratively such that the likelihood is nondecreasing in

each step. It can be proven that the Baum-Welch update

1With uy, we mean the concatenation of the string u with the symbol y.
Concatenation of two strings is defined analogously.

formulas end up in a local maximum (or a saddle point)

of the likelihood surface.

Before being able to give the Baum-Welch update formu-

las, we need to define the forward variables α(t) ∈ R
1×|X|

and the backward variables β(t) ∈ R
|X|×1 as

αi(t) := P (x(t + 1) = i, y(1, . . . , t) = u1 . . . ut)

βi(t) := P (y(t, . . . , T ) = ut . . . uT | x(t) = i).

The forward variables can be calculated inductively as

α(1) = πΠ(u1),

α(t + 1) = α(t)Π(ut+1),

while the backward variables can be calculated as

β(T ) = Π(uT )e,

β(t) = Π(ut)β(t + 1).

Next, we need the variables γi(t) and ξij(t) defined as

γi(t) := P (x(t) = i|y(1, . . . , T ) = u1 . . . uT ),

ξij(t) := P (x(t) = i, x(t + 1) = j|y(1, . . . , T ) = u1 . . . uT ).

These variables are related with the forward and backward

variables through

γi(t) =
αi(t− 1)βi(t)

α(t − 1)β(t)
,

ξij(t) =
γi(t)βj(t + 1)Π(ut)ij

βi(t)
.

Given an output sequence and an initial guess of the

model, the Baum-Welch procedure calculates the variables

γi(t) and ξij(t) and then updates the model as

πi(1) = γi(1),

Πij(y) =

∑T−1
t=1 δut,yξij(t)
∑T−1

t=1 γi(t)
,

where δi,j is the Kronecker delta, i.e. δi,j = 0 if i 6= j

and δi,j = 1 if i = j. Next, the variables γi(t) and ξij(t)
are recalculated and the model parameters are updated again.

This procedure is proceeded until convergence.

IV. NONNEGATIVE MATRIX FACTORIZATION

In this section, we introduce the nonnegative matrix fac-

torization problem as we will need this factorization in our

identification approach. The nonnegative matrix factorization

problem can be stated as follows: given a matrix M ∈
R

m1×m2
+ , find a decomposition M = V H with V ∈ R

m1×a
+

and H ∈ R
a×m2
+ , and with a as small as possible. The

minimal inner dimension a for which a decomposition exists

is called the positive rank (p−rank) of M . It is clear that 0 ≤
rank(V ) ≤ p−rank(V ) ≤ min{m1, m2}. There does not

exist a practical useful algorithm to find the positive rank of a

general positive matrix. Furthermore, no algorithm is known

to compute a nonnegative matrix factorization. Recently, the

approximate nonnegative matrix factorization problem was

introduced in [2]. The idea is that one choses the inner

dimension a and looks for matrices V and H such that

V H approximates P optimally in a certain distance measure.
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The Kullback-Leibler divergence is a popular such measure.

The Kullback-Leibler divergence between two nonnegative

matrices of the same size is defined as

D(A||B) =
∑

ij

(Aij log
Aij

Bij

−Aij + Bij).

The approximate nonnegative matrix factorization problem

can now be stated as

Problem 1: Given M ∈ R
m1×m2
+ and given a, minimize

D(M ||V H) with respect to V (of size m1 × a) and H (of

size a×m2), subject to the constraints V, H ≥ 0.

Lee and Sueng propose iterative update formulas to solve

problem 1. The convergence of these update formulas leads

to the following theorem.

Theorem 1: [2], [3] The divergence D(M ||V H) is non-

increasing under the update rules

Hi,l ← Hi,l

P

µ
Vµi

Mµl
(V H)µl

P

µ
Vµi

, Vk,i ← Vk,i

P

ν
Hiν

Mkν
(V H)kν

P

ν
Hiν

The matrices V and H are invariant under these updates

if and only if V and H are in a stationary point of the

divergence D(M ||V H).
As the initial values for V and H have to be chosen

nonnegative, the obtained matrices V and H are nonnegative.

V. SUBSPACE APROACH TO IDENTIFICATION OF

HMMS

In this section we explain our approach to the identification

problem of hidden Markov models. The approach consists

of two steps. In the first step the underlying state process is

estimated directly from the given output string. In the second

step the system matrices are calculated from the obtained

state sequence and the given output sequence.

A. Estimating the state sequence

In this section we explain how the state sequence can

be extracted directly from output data. We first describe

a method to find the underlying state sequence under the

assumption that we are given a certain matrix containing

string probabilities of the underlying HMM, and a non-

negative decomposition of this matrix. In a second step,

we explain how this matrix with string probabilities can be

estimated from data. Moreover, we show that the nonnegative

decomposition of this matrix can be found using nonnegative

matrix factorization techniques. By combining both steps we

have a method to find the estimated state sequence directly

from output data.

So suppose first that the matrix M(i1, i2) of the underlying

HMM (X, Y, Π, π(1)) is given, where

(M(i1, i2))kl = P(ukvl),

with ukvl the concatenation of uk and vl and U := (ui, i =
1, 2, . . . |Y|i1) and V := (vi, i = 1, 2, . . . |Y|i2) are the

lexicographical orderings of the string of length i1 and i2
respectively. Suppose also that we are given a decomposition

of the matrix M(i1, i2) in the form

M(i1, i2) = V H, (1)

with

V =











π(1)Π(u1)
π(1)Π(u2)

...

π(1)Π(u|Y|i1 )











,

H =
[

Π(v1)e Π(v2)e . . . Π(v|Y|i2 )e
]

.

The elements of V are then equal to

Vk,i = P (y(1, 2, . . . , i1) = uk, x(i1 + 1) = i),

while the elements of H are equal to

Hi,l = P (y(i1 + 1, i1 + 2, . . . , i1 + i2) = vl|x(i1 + 1) = i).

Define Ṽ as

Ṽ = (diag(V e))−1V,

such that

Ṽk,i = P (x(i1 + 1) = i|y(1, 2, . . . , i1) = uk),

and V̂ as

V̂k,i =

{

1 i = argmaxλ Ṽk,λ,

0 else.

The estimated state sequence matrix X̂i1 ∈ {0, 1}(T−i1)×|X|

is then defined as

X̂i1 =











x̂(i1 + 1)
x̂(i1 + 2)

...

x̂(T )











,

where

x̂(t) = V̂k,:,

with k the position of the string ut−i1 . . . ut−1 in the lexi-

cographical ordering of the strings of length i1. Notice that

the state estimate x̂(t) is a row vector of size |X| with all

elements equal to zero except for the element at position i

which is equal to 1, where i is the most likely state estimate

for x(t) given the past i1 observations of y(t−i1) . . . y(t−1).
It will become clear in the next section that we also need

the most likely state estimate for x(t+1) based on the same

observations. Denote by x̂+(t+1) the row vector of size |X|
that contains only the element zero except for the element

at position i which is equal to 1, where i is the most likely

state estimate at time instant t + 1 given the observations of

y(t− i1) . . . y(t−1). All these state estimates are stacked in

the matrix X̂+
i1+1 defined as

X̂+
i1+1 =











x̂+(i1 + 2)
x̂+(i1 + 3)

...

x̂+(T + 1)











.

To be able to calculate the vectors x̂+(t + 1), the matrix

M(i1 + 1, i2) needs to be given as well as a decomposition

of this matrix in the form

M(i1 + 1, i2) = WH, (2)
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where H is the same as before and

W =











π(1)Π(u1y1)
π(1)Π(u1y2)

...

π(1)Π(u|Y|i1y|Y|)











.

Indeed, x̂+(t + 1) can now be calculated as

W̄ =











e⊤

e⊤

. . .

e⊤











W,

W̃ = (diag(W̄e))−1W̄ ,

Ŵk,i =

{

1 i = argmaxλ W̃k,λ,

0 else,

x̂+(t + 1) = Ŵk,:

where k is the position of the string ut−i1 . . . ut−1 in the

lexicographical ordering of the strings of length i1 and e =
[

1 1 . . . 1
]⊤

of size |Y|.

So far we have described a method to find an estimated

state sequence corresponding to the given output sequence.

The method supposes that for certain choises of i1 and i2
the matrices M(i1, i2) and M(i1 + 1, i2) containing string

probabilities are given. Moreover it is supposed that the

nonnegative decompositions (1) and (2) of these matrices

are given. We will now show that the matrices M(i1, i2)
and M(i1 + 1, i2) can be estimated from data and that the

nonnegative decomposition of these matrices can be approx-

imated using the nonnegative matrix factorization technique.

As a result the complete procedure to find the state sequence

works directly from the given output data.

The matrices M(i1, i2) and M(i1 + 1, i2) contain string

probabilities of strings of length i1 + i2 and i1 + i2 + 1.

By assuming ergodicity, it is possible to estimate these

string probabilities directly from the output sequence. The

probability of a certain output string can be estimated as the

number of times that the string occurs in the output sequence,

divided by the maximum number of times that it could have

occured. The estimated matrices are denoted by M est(i1, i2)
and M est(i1 + 1, i2).

The nonnegative decomposition of the matrices

M est(i1, i2) and M est(i1 + 1, i2) can be obtained by

applying the nonnegative matrix factorization (Theorem 1)

to find an approximate decomposition of the form

[

M est(i1, i2)
M est(i1 + 1, i2)

]

≃

[

V est

W est

]

Hest.

As there does not exist a practical useful procedure to

determine the minimum inner dimension for which such a

decomposition exists, we need to chose the inner dimension.

Notice that the choise of the inner dimension is important as

it will be the state dimension of the obtained model.

B. Calculating the system matrices

In this section we explain how the system matrices can be

obtained from the estimated state sequences and the output

sequence.
Theoretically it holds for t = i1 +1, . . . , T and for y ∈ Y

that

P (x(t + 1), y(t) = y | y(t − i1, . . . , t − 1) = ut−i1 . . . ut−1) =

P (x(t) | y(t − i1, . . . , t − 1) = ut−i1 . . . ut−1)Π(y), (3)

where

P (x(t + 1), y(t) = y | y(t − i1, . . . , t − 1) = ut−i1 . . . ut−1),

P (x(t) | y(t − i1, . . . , t − 1) = ut−i1 . . . ut−1)

are row vectors with length equal to |X|.
Now P (x(t) | y(t− i1, . . . , t− 1) = ut−i1 . . . ut−1) is

replaced by x̂(t). This means that the conditional distibution

of x(t) is replaced by a distribution where the most likely

state estimate for x(t) has a probability 1 and all other states

have probability 0. On the other hand P (x(t + 1), y(t) =
y | y(t− i1, . . . , t−1) = ut−i1 . . . ut−1) is approximated by

x̂y(t + 1) defined as

x̂y(t + 1) =

{

x̂+(t + 1) ut = y,
[

0 0 . . . 0
]

else.

This means that the conditional joint distribution of the state

x(t+1) and the output y(t) is replaced by a joint distibution

where the combination of the most likely state estimate for

x(t) and the observed output ut has probability 1, while all

other combinations of state symbols and output symbols have

probability 0.

By defining matrices X̂y

i1+1, ∀y ∈ Y

X̂y

i1+1 =











x̂y(i1 + 2)
x̂y(i1 + 3)

...

x̂y(T + 1)











,

equation (3) can be written as

[

X̂
y1

i1+1 X̂
y2

i1+1 . . . X̂
y|Y|

i1+1

]

=

X̂i1

[

Π̂(y1) Π̂(y2) . . . Π̂(y|Y|)
]

, (4)

where the true system matrices are replaced by Π̂(y), y ∈
Y as the true state distribution was replaced by most likely

state estimates. By solving (4) for Π̂(y), y ∈ Y in least

squares sense, we find

[

Π̂(y1) Π̂(y2) . . . Π̂(y|Y|)
]

=

(X̂i1)
†
[

X̂
y1

i1+1 X̂
y2

i1+1 . . . X̂
y|Y|

i1+1

]

where (X̂i1)
† = (diag(e⊤X̂i1))

−1(X̂i1)
⊤ is the Moore-

Penrose pseudo-inverse of X̂i1 . It is easy to see that the

matrices Π̂(y) obtained in this way are elementwise non-

negative. In addition it holds that (
∑

y
Π̂(y))e = e.

The initial state distribution π̂(1) is taken equal to the

normalised left eigenvector of
∑

y
Π̂(y) corresponding to the

eigenvalue 1.

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrA11.4

4904



VI. SIMULATION EXAMPLE

In this simulation example, we are given an

output string u1 . . . u1000 generated with λtrue =
({1, 2}, {1, 2}, Πtrue, πtrue(1)) where

Πtrue(1) =

[

0.20 0.40
0.00 0.20

]

,

Πtrue(2) =

[

0.10 0.30
0.80 0.00

]

,

πtrue =
[

0.53 0.47
]

.

In fact this model is unknown, but we give it here the check

the performance of our algorithm. We now use our proposed

method as well as the Baum-Welch algorithm to find a hidden

Markov model corresponding to the given output sequence.

The model found with our method with i1 = i2 = 3 is given

by λSS = ({1, 2}, {1, 2}, ΠSS, πSS(1)) with

ΠSS(1) =

[

0.0699 0.2574
0.5651 0.0000

]

,

ΠSS(2) =

[

0.1342 0.5386
0.4349 0.0000

]

,

πSS =
[

0.5568 0.4432
]

,

while the model found with Baum-Welch (after convergence)

is given by λBW = ({1, 2}, {1, 2}, ΠBW, πBW(1)) where

ΠBW(1) =

[

0.0736 0.0986
0.5311 0.1415

]

,

ΠBW(2) =

[

0.0751 0.7526
0.2424 0.0850

]

,

πBW =
[

0 1
]

.

The check the quality of both estimated models, we need

a distance measure between the estimated model and the

true model. A popular distance measure between λtrue and

its approximation λapprox is the Kullback-Leibler divergence

defined as

D(λtrue||λapprox) =
∑

y∈Y∗

P(y|λtrue) log
P(y|λtrue)

P(y|λapprox)
,

where P(y|λ) denotes the string probability of the string y for

the model λ. To be able to calculate this distance in practice,

we need to take only a finite selection of the strings instead

of all strings of finite length.

If we take the Kullback-Leibler divergence for string

probabilities of strings up to length 8, we find in this example

D(λtrue||λSS) = 0.3876,

D(λtrue||λBW) = 1.8955,

from which we conclude that our method performs much

better than the popular Baum-Welch approach, but still leaves

room for further improvement.

VII. CONCLUSION

In this paper we considered the approximate identification

problem for hidden Markov models, i.e. given a finite-valued

output string generated by an unknown hidden Markov

model, find an approximation for the underlying model. We

proposed an identification method consisting of two steps. In

the first step a state sequence corresponding to the given out-

put sequence is calculated directly from data. In the second

step the system matrices are estimated using the obtained

state sequence and the given output sequence. We applied

our method to a simulation example and compared the results

with the classical Baum-Welch identification approach.
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